1
|
Tian L, Xu R, Chen D, Ananjeva NB, Brown RM, Min MS, Cai B, Mijidsuren B, Zhang B, Guo X. Range-Wide Phylogeography and Ecological Niche Modeling Provide Insights into the Evolutionary History of the Mongolian Racerunner ( Eremias argus) in Northeast Asia. Animals (Basel) 2024; 14:1124. [PMID: 38612363 PMCID: PMC11011046 DOI: 10.3390/ani14071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The Mongolian racerunner, Eremias argus, is a small lizard endemic to Northeast Asia that can serve as an excellent model for investigating how geography and past climate change have jointly influenced the evolution of biodiversity in this region. To elucidate the processes underlying its diversification and demography, we reconstructed the range-wide phylogeographic pattern and evolutionary trajectory, using phylogenetic, population genetic, landscape genetic, Bayesian phylogeographic reconstruction and ecological niche modeling approaches. Phylogenetic analyses of the mtDNA cyt b gene revealed eight lineages that were unbounded by geographic region. The genetic structure of E. argus was mainly determined by geographic distance. Divergence dating indicated that E. argus and E. brenchleyi diverged during the Mid-Pliocene Warm Period. E. argus was estimated to have coalesced at~0.4351 Ma (Marine Isotope Stage 19). Bayesian phylogeographic diffusion analysis revealed out-of-Inner Mongolia and rapid colonization events from the end of the Last Interglacial to the Last Glacial Maximum, which is consistent with the expanded suitable range of the Last Glacial Maximum. Pre-Last Glacial Maximum growth of population is presented for most lineages of E. argus. The Glacial Maximum contraction model and the previous multiple glacial refugia hypotheses are rejected. This may be due to an increase in the amount of climatically favorable habitats in Northeast Asia. Furthermore, E. argus barbouri most likely represents an invalid taxon. The present study is the first to report a range-wide phylogeography of reptiles over such a large region in Northeast Asia. Our results make a significant contribution towards understanding the biogeography of the entire Northeast Asia.
Collapse
Affiliation(s)
- Lili Tian
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China;
| | - Natalia B. Ananjeva
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia;
| | - Rafe M. Brown
- Biodiversity Institute, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| | - Mi-Sook Min
- Conservation Genome Resource Bank for Korean Wildlife, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea;
| | - Bo Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| | - Byambasuren Mijidsuren
- Plant Protection Research Institute, Mongolian University of Life Sciences, Ulaanbaatar 210153, Mongolia;
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| |
Collapse
|
2
|
Ualiyeva D, Liu J, Dujsebayeva T, Li J, Tian L, Cai B, Zeng X, Guo X. Genetic Structure and Population History of the Zaisan Toad-Headed Agama ( Phrynocephalus melanurus) Inferred from Mitochondrial DNA. Animals (Basel) 2024; 14:209. [PMID: 38254378 PMCID: PMC10812424 DOI: 10.3390/ani14020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The agamid lizard Phrynocephalus melanurus is restricted to Northwest China (Dzungar Basin) and the adjacent Eastern Kazakhstan (Zaisan and Alakol basins). To elucidate the phylogeography of P. melanurus, we obtained the mitochondrial DNA COI segments of 175 sampled lizards from 44 localities across the whole distribution. Phylogenetic analyses revealed two main Clades comprising five geographically structured lineages (I, IIa, IIb1, IIb2, and IIb3) that fit an isolation-by-distance (IBD) model. The divergence from the most recent common ancestor was dated to ~1.87 million years ago (Ma). Demographic analyses demonstrated lineage-specific response to past climate change: stable population for Clade I, Subclade IIb1; past population expansion for IIb3 since 0.18 Ma, respectively. Bayesian phylogeographic diffusion analyses detected initial spreading at the Saur Mount vicinity, approximately 1.8 Ma. Historical species distribution model (SDM) projected expansion of the suitable habitat in the last interglacial and shift and contraction in the last glacial maximum and Holocene epochs. The SDM predicted a drastic reduction in suitable area throughout the range as a response to future climate change. Our findings suggest that the evolution of P. melanurus followed a parapatric divergence with subsequent dispersal and adaptation to cold and dry environments during the Quaternary. Overall, this work improves our understanding of the lineage diversification and population dynamics of P. melanurus, providing further insights into the evolutionary processes that occurred in Northwest China and adjacent Eastern Kazakhstan.
Collapse
Affiliation(s)
- Daniya Ualiyeva
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (D.U.); (J.L.); (L.T.); (B.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Ornithology and Herpetology, Institute of Zoology CS MES RK, 93 al-Farabi Avenue, Almaty 050060, Kazakhstan;
| | - Jinlong Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (D.U.); (J.L.); (L.T.); (B.C.)
| | - Tatjana Dujsebayeva
- Laboratory of Ornithology and Herpetology, Institute of Zoology CS MES RK, 93 al-Farabi Avenue, Almaty 050060, Kazakhstan;
| | - Jun Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Lili Tian
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (D.U.); (J.L.); (L.T.); (B.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (D.U.); (J.L.); (L.T.); (B.C.)
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (D.U.); (J.L.); (L.T.); (B.C.)
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (D.U.); (J.L.); (L.T.); (B.C.)
| |
Collapse
|