1
|
George EM, Rosvall KA. How a territorial challenge changes sex steroid-related gene networks in the female brain: A field experiment with the tree swallow. Horm Behav 2025; 169:105698. [PMID: 39955841 DOI: 10.1016/j.yhbeh.2025.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/21/2024] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Territorial competition can stimulate secretion of testosterone (T), which is thought to act on neural circuits of aggression to promote further aggression. Here, we test the hypothesis that competition modulates sex steroid sensitivity and conversion in the brain, focused on the female tree swallow (Tachycineta bicolor). In this bird species, exogenous T enhances female aggression, but social competition for limited nesting territories does not stimulate systemic T elevation. We exposed free-living females to simulated territorial intrusions and sampled five regions of the vertebrate social behavior network (SBN). Using quantitative PCR, we measured mRNA abundance of: androgen receptor, 5-alpha reductase, estrogen receptor alpha, and aromatase. Using standard analyses, we found essentially no treatment effect on mRNA abundance in any one brain area; however, network analyses revealed marked socially-induced changes in gene co-expression across the SBN. After a territorial challenge, gene expression was more positively correlated with T, and genes specific to the androgen-signaling pathway were also more positively correlated with one another. The challenged brain also exhibited stronger negative correlations among genes in the nucleus taeniae, but stronger positive correlations between the lateral septum and bed nucleus of the stria terminalis. Together, these findings suggest that, in response to female-female territorial challenges, T acts on androgen-mediated circuits of aggression, with some divergence in gene regulation in the nucleus taeniae. The post-transcriptional consequences of these shifts require more research, but their existence underscores insights to be gained from analyzing the neuroendocrine properties of the SBN using network-level perspectives.
Collapse
Affiliation(s)
- Elizabeth M George
- Indiana University, Department of Biology, United States of America; The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, United States of America.
| | | |
Collapse
|
2
|
Freiler MK, Smith GT. Neuroendocrine mechanisms contributing to the coevolution of sociality and communication. Front Neuroendocrinol 2023; 70:101077. [PMID: 37217079 PMCID: PMC10527162 DOI: 10.1016/j.yfrne.2023.101077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/19/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Communication is inherently social, so signaling systems should evolve with social systems. The 'social complexity hypothesis' posits that social complexity necessitates communicative complexity and is generally supported in vocalizing mammals. This hypothesis, however, has seldom been tested outside the acoustic modality, and comparisons across studies are confounded by varying definitions of complexity. Moreover, proximate mechanisms underlying coevolution of sociality and communication remain largely unexamined. In this review, we argue that to uncover how sociality and communication coevolve, we need to examine variation in the neuroendocrine mechanisms that coregulate social behavior and signal production and perception. Specifically, we focus on steroid hormones, monoamines, and nonapeptides, which modulate both social behavior and sensorimotor circuits and are likely targets of selection during social evolution. Lastly, we highlight weakly electric fishes as an ideal system in which to comparatively address the proximate mechanisms underlying relationships between social and signal diversity in a novel modality.
Collapse
Affiliation(s)
- Megan K Freiler
- Department of Biology, Indiana University, Bloomington, IN, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States.
| | - G Troy Smith
- Department of Biology, Indiana University, Bloomington, IN, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
George EM, Wolf SE, Bentz AB, Rosvall KA. Testing hormonal responses to real and simulated social challenges in a competitive female bird. Behav Ecol 2022; 33:233-244. [PMID: 35210941 PMCID: PMC8857935 DOI: 10.1093/beheco/arab129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 08/25/2024] Open
Abstract
Competitive interactions often occur in series; therefore animals may respond to social challenges in ways that prepare them for success in future conflict. Changes in the production of the steroid hormone testosterone (T) are thought to mediate phenotypic responses to competition, but research over the past few decades has yielded mixed results, leading to several potential explanations as to why T does not always elevate following a social challenge. Here, we measured T levels in tree swallows (Tachycineta bicolor), a system in which females compete for limited nesting cavities and female aggression is at least partially mediated by T. We experimentally induced social challenges in two ways: (1) using decoys to simulate territorial intrusions and (2) removing subsets of nesting cavities to increase competition among displaced and territory-holding females. Critically, these experiments occurred pre-laying, when females are physiologically capable of rapidly increasing circulating T levels. However, despite marked aggression in both experiments, T did not elevate following real or simulated social challenges, and in some cases, socially challenged females had lower T levels than controls. Likewise, the degree of aggression was negatively correlated with T levels following a simulated territorial intrusion. Though not in line with the idea that social challenges prompt T elevation in preparation for future challenges, these patterns nevertheless connect T to territorial aggression in females. Coupled with past work showing that T promotes aggression, these results suggest that T may act rapidly to allow animals to adaptively respond to the urgent demands of a competitive event.
Collapse
Affiliation(s)
- Elizabeth M George
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Sarah E Wolf
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Alexandra B Bentz
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
4
|
Rendon NM, Petersen CL, Munley KM, Amez AC, Boyes DL, Kingsbury MA, Demas GE. Seasonal patterns of melatonin alter aggressive phenotypes of female Siberian hamsters. J Neuroendocrinol 2020; 32:e12894. [PMID: 32808694 DOI: 10.1111/jne.12894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Many animal species exhibit year-round aggression, a behaviour that allows individuals to compete for limited resources in their environment (eg, food and mates). Interestingly, this high degree of territoriality persists during the non-breeding season, despite low levels of circulating gonadal steroids (ie, testosterone [T] and oestradiol [E2 ]). Our previous work suggests that the pineal hormone melatonin mediates a 'seasonal switch' from gonadal to adrenal regulation of aggression in Siberian hamsters (Phodopus sungorus); solitary, seasonally breeding mammals that display increased aggression during the short, 'winter-like' days (SDs) of the non-breeding season. To test the hypothesis that melatonin elevates non-breeding aggression by increasing circulating and neural steroid metabolism, we housed female hamsters in long days (LDs) or SDs, administered them timed or mis-timed melatonin injections (mimic or do not mimic a SD-like signal, respectively), and measured aggression, circulating hormone profiles and aromatase (ARO) immunoreactivity in brain regions associated with aggressive or reproductive behaviours (paraventricular hypothalamic nucleus [PVN], periaqueductal gray [PAG] and ventral tegmental area [VTA]). Females that were responsive to SD photoperiods (SD-R) and LD females given timed melatonin injections (Mel-T) exhibited gonadal regression and reduced circulating E2 , but increased aggression and circulating dehydroepiandrosterone (DHEA). Furthermore, aggressive challenges differentially altered circulating hormone profiles across seasonal phenotypes; reproductively inactive females (ie, SD-R and Mel-T females) reduced circulating DHEA and T, but increased E2 after an aggressive interaction, whereas reproductively active females (ie, LD females, SD non-responder females and LD females given mis-timed melatonin injections) solely increased circulating E2 . Although no differences in neural ARO abundance were observed, LD and SD-R females showed distinct associations between ARO cell density and aggressive behaviour in the PVN, PAG and VTA. Taken together, these results suggest that melatonin increases non-breeding aggression by elevating circulating steroid metabolism after an aggressive encounter and by regulating behaviourally relevant neural circuits in a region-specific manner.
Collapse
Affiliation(s)
- Nikki M Rendon
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | | | - Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Andrea C Amez
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Daniel L Boyes
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Marcy A Kingsbury
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
5
|
Kelly AM, Wilson LC. Aggression: Perspectives from social and systems neuroscience. Horm Behav 2020; 123:104523. [PMID: 31002771 DOI: 10.1016/j.yhbeh.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023]
Abstract
Exhibiting behavioral plasticity in order to mount appropriate responses to dynamic and novel social environments is crucial to the survival of all animals. Thus, how animals regulate flexibility in the timing, duration, and intensity of specific behaviors is of great interest to biologists. In this review, we discuss how animals rapidly respond to social challenges, with a particular focus on aggression. We utilize a conceptual framework to understand the neural mechanisms of aggression that is grounded in Wingfield and colleagues' Challenge Hypothesis, which has profoundly influenced how scientists think about aggression and the mechanisms that allow animals to exhibit flexible responses to social instability. Because aggressive behavior is rooted in social interactions, we propose that mechanisms modulating prosocial behavior may be intricately tied to mechanisms of aggression. Therefore, in order to better understand how aggressive behavior is mediated, we draw on perspectives from social neuroscience and discuss how social context, species-typical behavioral phenotype, and neural systems commonly studied in relation to prosocial behavior (i.e., neuropeptides) contribute to organizing rapid responses to social challenges. Because complex behaviors are not the result of one mechanism or a single neural system, we consider how multiple neural systems important for prosocial and aggressive behavior (i.e., neuropeptides and neurosteroids) interact in the brain to produce behavior in a rapid, context-appropriate manner. Applying a systems neuroscience perspective and seeking to understand how multiple systems functionally integrate to rapidly modulate behavior holds great promise for expanding our knowledge of the mechanisms underlying social behavioral plasticity.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | - Leah C Wilson
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
6
|
Wingfield JC, Ramenofsky M, Hegner RE, Ball GF. Whither the challenge hypothesis? Horm Behav 2020; 123:104588. [PMID: 31525343 DOI: 10.1016/j.yhbeh.2019.104588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
Abstract
Almost fifty years ago the advent of assay methods to measure circulating levels of hormones revolutionized endocrinology in relation to investigations of free-living and captive animals. This new field "environmental endocrinology" revealed that endocrine profiles in animals in their natural habitat were not only different from captive animals, but often deviated from predictions. It quickly became apparent that the organization and analysis of data from the field should be sorted by life history stages such as for reproductive processes, migration, molt etc. and spaced in time according to natural duration of those processes. Presentation of data by calendar date alone gives much simpler, even misleading, patterns. Stage-organized analyses revealed species-specific patterns of hormone secretion and dramatic inter-individual differences. The "Challenge Hypothesis" sparked exploration of these results, which diverged from expectations of hormone-behavior interactions. The hypothesis led to specific predictions about how the hypothalamo-pituitary-gonad axis, and particularly circulating patterns of testosterone, might respond to social challenges such as simulated territorial intrusions. Initially, a group of studies on free-living and captive birds played a key role in the formulation of the hypothesis. Over the decades since, the effects of social challenge and environmental context on hormonal responses have been tested in all vertebrate taxa, including humans, as well as in insects. Although it is now clear that the Challenge Hypothesis in its original form is simplistic, field and laboratory tests of the hypothesis have led to other concepts that have become seminal to the development of environmental endocrinology as a field. In this special issue these developments are addressed and examples from many different taxa enrich the emerging concepts, paving the way for investigations using recent technologies for genetic and transcriptome analyses.
Collapse
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA.
| | - Marilyn Ramenofsky
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Robert E Hegner
- ICF Incorporated, 27 Tanglewood Road, Amherst, MA 01002, USA
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Vernasco BJ, Moore IT. Testosterone as a mediator of the tradeoff between cooperation and competition in the context of cooperative reproductive behaviors. Gen Comp Endocrinol 2020; 288:113369. [PMID: 31857075 DOI: 10.1016/j.ygcen.2019.113369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/18/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022]
Abstract
Behavioral tradeoffs occur when the expression of one behavior detracts from the expression of another. Understanding the proximate mediators of behavioral tradeoffs is important as these tradeoffs can act as potential constraints on evolutionary responses to selection. Here, we describe the tradeoff between cooperation and competition faced by species that exhibit cooperative reproductive behaviors and propose that testosterone is a key hormonal mediator of the tradeoff. Cooperative reproductive behaviors occur when multiple individuals coordinate their efforts to gain a reproductive advantage over other individuals and/or those individuals attempting to reproduce in absence of cooperation. We propose that testosterone, a sex steroid known to mediate a number of physiological and behavioral actions associated with reproductive competition, is involved in mediating the tradeoff between cooperation and competition. To support this proposition, we first describe the importance of individual variation in behavior to the evolution of cooperative behaviors. We then describe how proximate mechanisms represent a prominent source of individual variation in social behaviors and highlight evidence suggesting testosterone mediates variation in cooperative behaviors. Two case studies in which the relationship between testosterone and cooperative behaviors have been investigated in detail are then summarized. Throughout we highlight the importance of studying individual variation to understand the mechanistic basis of behaviors, behavioral tradeoffs, and the evolution of cooperative reproductive behaviors more broadly.
Collapse
Affiliation(s)
- Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; School of Biological Sciences, Washington State University, Pullman, WA, USA.
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
8
|
Piña-Andrade S, Ramos G, Cárdenas-León M, Martínez A, Romero-Morales L, Martínez-Torres M, Cedillo-Ildefonso B, Luis J. Testosterone dependent territorial aggression is modulated by cohabitation with a female in male Mongolian gerbils (Meriones unguiculatus). Horm Behav 2020; 117:104611. [PMID: 31669747 DOI: 10.1016/j.yhbeh.2019.104611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/26/2019] [Accepted: 10/04/2019] [Indexed: 11/30/2022]
Abstract
Most mammal studies on the neuroendocrine mechanisms of territorial aggression have demonstrated that testosterone (T) is required for the display of territorial aggression. However, the relationship between T and aggression is more complex and may be modulated by social factor. The aim of this study was to determine the role of T in territorial aggression in the Mongolian gerbil (Meriones unguiculatus), and the effect of social factors on the modulation of this behavior. The relationship between T and territorial aggression was analyzed using castration and T replacement in two social contexts: male-male and male-female cohabitation. Plasma T concentrations in males of all groups were quantified by radioimmunoassay (RIA). T concentrations were compared using two-way ANOVA. Only sham-castrated and castrated males with T replacement in male-female cohabitation showed aggression, whereas castrated gerbils in the same condition were not aggressive. This indicates that T is the hormone that maintains territorial aggression, but mating is a modulator stimulus. The modulator effect of mating in territorial aggression was associated with an increase in T, but it seems that other mechanisms are involved in the regulation of this behavior, since castrated males with T replacement in the male-male cohabitation did not exhibit aggression, although they had T concentrations as high as these males that received the same treatment, but that cohabited with a female. These results suggest that T is involved in the mechanisms that regulate territorial aggression in the male Mongolian gerbil, and that the cohabitation with a female modulates this behavior.
Collapse
Affiliation(s)
- Sonia Piña-Andrade
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, México
| | - Guillermo Ramos
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, México.
| | - Mario Cárdenas-León
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de México, México.
| | - Ana Martínez
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, México
| | - Luis Romero-Morales
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, México
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, México.
| | - Benita Cedillo-Ildefonso
- Laboratorio de Psicología Experimental, FES Iztacala, Universidad Nacional Autónoma de México, México
| | - Juana Luis
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, México.
| |
Collapse
|
9
|
Bukhari SA, Saul MC, James N, Bensky MK, Stein LR, Trapp R, Bell AM. Neurogenomic insights into paternal care and its relation to territorial aggression. Nat Commun 2019; 10:4437. [PMID: 31570726 PMCID: PMC6768867 DOI: 10.1038/s41467-019-12212-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Motherhood is characterized by dramatic changes in brain and behavior, but less is known about fatherhood. Here we report that male sticklebacks—a small fish in which fathers provide care—experience dramatic changes in neurogenomic state as they become fathers. Some genes are unique to different stages of paternal care, some genes are shared across stages, and some genes are added to the previously acquired neurogenomic state. Comparative genomic analysis suggests that some of these neurogenomic dynamics resemble changes associated with pregnancy and reproduction in mammalian mothers. Moreover, gene regulatory analysis identifies transcription factors that are regulated in opposite directions in response to a territorial challenge versus during paternal care. Altogether these results show that some of the molecular mechanisms of parental care might be deeply conserved and might not be sex-specific, and suggest that tradeoffs between opposing social behaviors are managed at the gene regulatory level. Compared to motherhood, the molecular changes associated with fatherhood are less understood. Here, the authors investigate gene expression changes associated with paternal care in male stickleback fish, and compare them with patterns in territorial aggression.
Collapse
Affiliation(s)
- Syed Abbas Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, 1206 Gregory Drive, Urbana, IL, 61801, USA.,Illinois Informatics Institute, University of Illinois, Urbana Champaign, 616 E. Green St., Urbana, IL, 61820, USA.,Department of Evolution, Ecology and Behavior, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Michael C Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, 1206 Gregory Drive, Urbana, IL, 61801, USA.,Jackson Labs, 600 Main St., Bar Harbor, ME, 04609, USA
| | - Noelle James
- Neuroscience Program, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Miles K Bensky
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Laura R Stein
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA.,Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Room 314, Norman, OK, 73019, USA
| | - Rebecca Trapp
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA.,Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA
| | - Alison M Bell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, 1206 Gregory Drive, Urbana, IL, 61801, USA. .,Department of Evolution, Ecology and Behavior, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA. .,Neuroscience Program, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA. .,Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Yamashita H, Shuman L, Warrick JI, Raman JD, Degraff DJ. Androgen represses opioid growth factor receptor (OGFR) in human prostate cancer LNCaP cells and OGFR expression in human prostate cancer tissue. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2018; 6:164-171. [PMID: 30246052 PMCID: PMC6146159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Opioid receptors are G protein-coupled receptors that bind opioid ligands including endorphins and enkephalins. The existence of a number of opioid receptors, including the mu-opioid receptor (OPRM1), delta-opioid receptor (OPRD1), kappa-opioid receptor (OPRK1) and zeta-opioid receptor (OGFR) have been reported. However, the potential expression and role of these receptors on human prostate carcinogenesis is unknown. In the present study, we examined opioid receptor expression in human prostate cancer cell lines and in prostate cancer tissue. We observed using quantitative real-time PCR analysis that OGFR and OGFRL1 mRNA is expressed in all examined prostate cancer cell lines as well as in an immortalized, non-tumorigenic prostate epithelial cell line (RWPE-1). Conversely, OPRK1 mRNA expression was detected in a more limited number of cell lines (LNCaP and VCaP), while OPRD1 and OPRM1 mRNA expression was undetectable in all examined prostate cell lines. Interestingly, androgen sensitive LNCaP cells expressed high amounts of OPRK1, OGFR and OGFRL1 compared to other cell lines. Therefore, we investigated the effect of androgen on the mRNA expression of OPRK1, OGFR, OGFRL1 in the LNCaP cell line. Our results demonstrated that the synthetic androgen (R1881) represses mRNA of OPRK1, OGFR and OGFRL1 in a time-dependent manner. Furthermore, immunohistochemistry demonstrated OGFR is expressed at high levels in prostate cancer tissue compared to benign tissue, and that OGFR expression is high in undifferentiated and aggressive prostate cancer tissue. This is the first study showing OGFR and OGFRL1 are androgen repressed genes, and these results suggest a role for the opioid signaling axis in prostate cancer.
Collapse
Affiliation(s)
- Hironobu Yamashita
- Department of Pathology, College of Medicine, The Pennsylvania State UniversityHershey PA, USA
| | - Lauren Shuman
- Department of Pathology, College of Medicine, The Pennsylvania State UniversityHershey PA, USA
| | - Joshua I Warrick
- Department of Pathology, College of Medicine, The Pennsylvania State UniversityHershey PA, USA
| | - Jay D Raman
- Department of Surgery, Division of Urology, College of Medicine, The Pennsylvania State UniversityHershey PA, USA
| | - David J Degraff
- Department of Pathology, College of Medicine, The Pennsylvania State UniversityHershey PA, USA
- Department of Surgery, Division of Urology, College of Medicine, The Pennsylvania State UniversityHershey PA, USA
| |
Collapse
|
11
|
Albers AN, Jones JA, Siefferman L. Behavioral Differences among Eastern Bluebird Populations Could Be a Consequence of Tree Swallow Presence: A Pilot Study. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Kelly AM, Vitousek MN. Dynamic modulation of sociality and aggression: an examination of plasticity within endocrine and neuroendocrine systems. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160243. [PMID: 28673919 PMCID: PMC5498303 DOI: 10.1098/rstb.2016.0243] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
Endocrine and neuroendocrine systems are key mediators of behavioural plasticity and allow for the ability to shift social behaviour across dynamic contexts. These systems operate across timescales, modulating both rapid responses to environmental changes and developmental plasticity in behavioural phenotypes. Thus, not only do endocrine systems mediate behavioural plasticity, but also the systems themselves exhibit plasticity in functional capabilities. This flexibility at both the mechanistic and behavioural levels can be crucial for reproduction and survival. Here, we discuss how plasticity in nonapeptide and steroid actions may influence the expression of, and allow rapid shifts between, sociality and aggression-behavioural shifts that can be particularly important for social interactions. Recent findings of overlap in the mechanisms that modulate social and aggressive behaviour suggest the potential for a mechanistic continuum between these behaviours. We briefly discuss the potential for a sociality-aggression continuum and novel techniques that will enable probing of the functional connectivity of social behaviours. From an evolutionary perspective, we suggest that plasticity in endocrine and neuroendocrine mechanisms of behaviour may be important targets of selection, and discuss the conditions under which we would predict selection to have resulted in differences in endocrine plasticity across species that differ in social organization.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Cornell University, 229 Uris Hall, Ithaca, NY 14853, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, E237 Corson Hall, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Endocrine Flexibility: Optimizing Phenotypes in a Dynamic World? Trends Ecol Evol 2016; 31:476-488. [DOI: 10.1016/j.tree.2016.03.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 01/08/2023]
|
14
|
Rendon NM, Demas GE. Bi‐directional actions of dehydroepiandrosterone and aggression in female Siberian hamsters. ACTA ACUST UNITED AC 2015; 325:116-21. [DOI: 10.1002/jez.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Nikki M. Rendon
- Department of BiologyCenter for the Integrative Study of Animal BehaviorProgram in NeuroscienceIndiana UniversityBloomingtonIndiana
| | - Gregory E. Demas
- Department of BiologyCenter for the Integrative Study of Animal BehaviorProgram in NeuroscienceIndiana UniversityBloomingtonIndiana
| |
Collapse
|