1
|
Saaoud F, Liu L, Xu K, Lu Y, Shao Y, Ben Issa M, Jiang X, Wang X, Liu X, Autieri M, Wu S, Wei J, Yu J, Bouchareb R, Gillespie A, Luo JJ, Martinez L, Vazquez-Padron R, Sun J, Zhao H, Wang H, Pratico D, Yang X. Alzheimer's disease as an auto-innate immune pathology with potential cell trans-differentiation and enhanced trained immunity in 3xTg-AD mouse model. J Alzheimers Dis 2025; 105:550-572. [PMID: 40232249 DOI: 10.1177/13872877251329583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
BackgroundAlzheimer's disease (AD) is a neurodegenerative disorder characterized by memory impairment. Neuroinflammatory processes, mediated by glial and immune cells, contribute to neuronal damage. Emerging evidence implicates innate immune mechanisms, including trained immunity and cell trans-differentiation, in AD pathogenesis, though their roles remain unclear.ObjectiveTo investigate transcriptomic changes in the 3xTg-AD mouse model, focusing on trained immunity and cell trans-differentiation in disease mechanisms.MethodsRNA-sequencing was performed on brain tissue (cortex plus hippocampus) from 11-month-old female 3xTg-AD and wild-type mice (n = 3/group). Differentially expressed genes (fold change > 1.5, p < 0.05) were identified and followed by bioinformatics and knowledge-based transcriptomic profiling. Public AD datasets were also analyzed.Results3xTg-AD mice exhibited 316 upregulated and 412 downregulated genes. Downregulated genes included those for blood-brain barrier protein, while upregulated genes related to cerebrospinal fluid. Increased expression of proinflammatory markers, as well as genes related to cell differentiation, proliferation, activation, and adhesion. Upregulation of genes associated with cell migration and trans-differentiation suggests a potential role for inflammation and cellular plasticity. Additionally, genes involved in inflammasome pathways, immunometabolism, and trained immunity were upregulated. Mechanistically, these genes were modulated by knockdown of trained immunity promoter SET-7, overexpression of trained immunity inhibitor IL-37, and knockout of inflammasome genes IL-1 receptor, caspase-1, and pattern recognition receptor CD36.ConclusionsThe finding underscore the potential role of trained immunity and cell trans-differentiation in AD, revealing a mechanistic framework in which danger-associated molecular patterns drive innate immune responses, inflammasome activation, and cell plasticity contribute to AD, offering therapeutic targets for neuroinflammation and cellular reprograming.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Lu Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Mohammed Ben Issa
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xianwei Wang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Michael Autieri
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Sheng Wu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Juncheng Wei
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jun Yu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rihab Bouchareb
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jin Jun Luo
- Department of Neurology, Temple University, Philadelphia, PA, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Huaqing Zhao
- Department of Biomedical Education and Data Sciences, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Domenico Pratico
- Alzheimer's Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Sun Y, Lu Y, Liu L, Saaoud F, Shao Y, Xu K, Drummer C, Cueto R, Shan H, Jiang X, Zhao H, Wang H, Yang X. Caspase-4/11 promotes hyperlipidemia and chronic kidney disease-accelerated vascular inflammation by enhancing trained immunity. JCI Insight 2024; 9:e177229. [PMID: 39024553 PMCID: PMC11343595 DOI: 10.1172/jci.insight.177229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
To determine whether hyperlipidemia and chronic kidney disease (CKD) have a synergy in accelerating vascular inflammation via trained immunity (TI), we performed aortic pathological analysis and RNA-Seq of high-fat diet-fed (HFD-fed) 5/6 nephrectomy CKD (HFD+CKD) mice. We made the following findings: (a) HFD+CKD increased aortic cytosolic LPS levels, caspase-11 (CASP11) activation, and 998 gene expressions of TI pathways in the aorta (first-tier TI mechanism); (b) CASP11-/- decreased aortic neointima hyperplasia, aortic recruitment of macrophages, and casp11-gasdermin D-mediated cytokine secretion; (c) CASP11-/- decreased N-terminal gasdermin D (N-GSDMD) membrane expression on aortic endothelial cells and aortic IL-1B levels; (d) LPS transfection into human aortic endothelial cells resulted in CASP4 (human)/CASP11 (mouse) activation and increased N-GSDMD membrane expression; and (e) IL-1B served as the second-tier mechanism underlying HFD+CKD-promoted TI. Taken together, hyperlipidemia and CKD accelerated vascular inflammation by promoting 2-tier trained immunity.
Collapse
Affiliation(s)
- Yu Sun
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Lu Liu
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Charles Drummer
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ramon Cueto
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Huimin Shan
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| |
Collapse
|
3
|
Burak MF, Stanley TL, Lawson EA, Campbell SL, Lynch L, Hasty AH, Domingos AI, Dixit VD, Hotamışlıgil GS, Sheedy FJ, Dixon AE, Brinkley TE, Hill JA, Donath MY, Grinspoon SK. Adiposity, immunity, and inflammation: interrelationships in health and disease: a report from 24th Annual Harvard Nutrition Obesity Symposium, June 2023. Am J Clin Nutr 2024; 120:257-268. [PMID: 38705359 PMCID: PMC11347817 DOI: 10.1016/j.ajcnut.2024.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
The rapidly evolving field of immunometabolism explores how changes in local immune environments may affect key metabolic and cellular processes, including that of adipose tissue. Importantly, these changes may contribute to low-grade systemic inflammation. In turn, chronic low-grade inflammation affecting adipose tissue may exacerbate the outcome of metabolic diseases. Novel advances in our understanding of immunometabolic processes may critically lead to interventions to reduce disease severity and progression. An important example in this regard relates to obesity, which has a multifaceted effect on immunity, activating the proinflammatory pathways such as the inflammasome and disrupting cellular homeostasis. This multifaceted effect of obesity can be investigated through study of downstream conditions using cellular and systemic investigative techniques. To further explore this field, the National Institutes of Health P30 Nutrition Obesity Research Center at Harvard, in partnership with Harvard Medical School, assembled experts to present at its 24th Annual Symposium entitled "Adiposity, Immunity, and Inflammation: Interrelationships in Health and Disease" on 7 June, 2023. This manuscript seeks to synthesize and present key findings from the symposium, highlighting new research and novel disease-specific advances in the field. Better understanding the interaction between metabolism and immunity offers promising preventative and treatment therapies for obesity-related immunometabolic diseases.
Collapse
Affiliation(s)
- Mehmet Furkan Burak
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - Takara L Stanley
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sophia L Campbell
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lydia Lynch
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, VA Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, United Kingdom
| | - Vishwa D Dixit
- Department of Pathology, Department of Comparative Medicine, Department of Immunobiology, Yale School of Medicine, and Yale Center for Research on Aging, New Haven, CT, United States
| | - Gökhan S Hotamışlıgil
- Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Frederick J Sheedy
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Anne E Dixon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Tina E Brinkley
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marc Y Donath
- Department of Biomedicine, University of Basel, Basel, Switzerland; Clinic of Endocrinology, Diabetes & Metabolism, University Hospital Basel, Basel, Switzerland
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Dore MP, Pes GM. Trained Immunity and Trained Tolerance: The Case of Helicobacter pylori Infection. Int J Mol Sci 2024; 25:5856. [PMID: 38892046 PMCID: PMC11172748 DOI: 10.3390/ijms25115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Trained immunity is a concept in immunology in which innate immune cells, such as monocytes and macrophages, exhibit enhanced responsiveness and memory-like characteristics following initial contact with a pathogenic stimulus that may promote a more effective immune defense following subsequent contact with the same pathogen. Helicobacter pylori, a bacterium that colonizes the stomach lining, is etiologically associated with various gastrointestinal diseases, including gastritis, peptic ulcer, gastric adenocarcinoma, MALT lymphoma, and extra gastric disorders. It has been demonstrated that repeated exposure to H. pylori can induce trained immunity in the innate immune cells of the gastric mucosa, which become more responsive and better able to respond to subsequent H. pylori infections. However, interactions between H. pylori and trained immunity are intricate and produce both beneficial and detrimental effects. H. pylori infection is characterized histologically as the presence of both an acute and chronic inflammatory response called acute-on-chronic inflammation, or gastritis. The clinical outcomes of ongoing inflammation include intestinal metaplasia, gastric atrophy, and dysplasia. These same mechanisms may also reduce immunotolerance and trigger autoimmune pathologies in the host. This review focuses on the relationship between trained immunity and H. pylori and underscores the dynamic interplay between the immune system and the pathogen in the context of gastric colonization and inflammation.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy;
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza Blvd, Houston, TX 77030, USA
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy;
| |
Collapse
|
5
|
Moorlag SJCFM, Folkman L, Ter Horst R, Krausgruber T, Barreca D, Schuster LC, Fife V, Matzaraki V, Li W, Reichl S, Mourits VP, Koeken VACM, de Bree LCJ, Dijkstra H, Lemmers H, van Cranenbroek B, van Rijssen E, Koenen HJPM, Joosten I, Xu CJ, Li Y, Joosten LAB, van Crevel R, Netea MG, Bock C. Multi-omics analysis of innate and adaptive responses to BCG vaccination reveals epigenetic cell states that predict trained immunity. Immunity 2024; 57:171-187.e14. [PMID: 38198850 DOI: 10.1016/j.immuni.2023.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
Immune responses are tightly regulated yet highly variable between individuals. To investigate human population variation of trained immunity, we immunized healthy individuals with Bacillus Calmette-Guérin (BCG). This live-attenuated vaccine induces not only an adaptive immune response against tuberculosis but also triggers innate immune activation and memory that are indicative of trained immunity. We established personal immune profiles and chromatin accessibility maps over a 90-day time course of BCG vaccination in 323 individuals. Our analysis uncovered genetic and epigenetic predictors of baseline immunity and immune response. BCG vaccination enhanced the innate immune response specifically in individuals with a dormant immune state at baseline, rather than providing a general boost of innate immunity. This study advances our understanding of BCG's heterologous immune-stimulatory effects and trained immunity in humans. Furthermore, it highlights the value of epigenetic cell states for connecting immune function with genotype and the environment.
Collapse
Affiliation(s)
- Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lukas Folkman
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Rob Ter Horst
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Daniele Barreca
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Linda C Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Fife
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wenchao Li
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Stephan Reichl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Bandim Health Project, OPEN, Institute of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther van Rijssen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria.
| |
Collapse
|
6
|
van Baak MA, Mariman ECM. Obesity-induced and weight-loss-induced physiological factors affecting weight regain. Nat Rev Endocrinol 2023; 19:655-670. [PMID: 37696920 DOI: 10.1038/s41574-023-00887-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 09/13/2023]
Abstract
Weight regain after successful weight loss resulting from lifestyle interventions is a major challenge in the management of overweight and obesity. Knowledge of the causal mechanisms for weight regain can help researchers and clinicians to find effective strategies to tackle weight regain and reduce obesity-associated metabolic and cardiovascular complications. This Review summarizes the current understanding of a number of potential physiological mechanisms underlying weight regain after weight loss, including: the role of adipose tissue immune cells; hormonal and neuronal factors affecting hunger, satiety and reward; resting energy expenditure and adaptive thermogenesis; and lipid metabolism (lipolysis and lipid oxidation). We describe and discuss obesity-associated changes in these mechanisms, their persistence during weight loss and weight regain and their association with weight regain. Interventions to prevent or limit weight regain based on these factors, such as diet, exercise, pharmacotherapy and biomedical strategies, and current knowledge on the effectiveness of these interventions are also reviewed.
Collapse
Affiliation(s)
- Marleen A van Baak
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands.
| | - Edwin C M Mariman
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Mu D, Yang J, Jiang Y, Wang Z, Chen W, Huang J, Zhang Y, Liu Q, Yang D. Single-Cell Transcriptomic Analysis Reveals Neutrophil as Orchestrator during β-Glucan–Induced Trained Immunity in a Teleost Fish. THE JOURNAL OF IMMUNOLOGY 2022; 209:783-795. [DOI: 10.4049/jimmunol.2200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/05/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Trained immunity defines long-term memory of innate immunity based on transcriptional, epigenetic, and metabolic modifications of myeloid cells, which are characterized by elevated proinflammatory responses toward homologous or heterologous secondary stimuli in mammals. However, the evidence of trained immunity-associated immune cells and its molecular mechanism in teleost fish remains largely unknown. In this study, we established a trained immunity activation model in turbot (Scophthalmus maximus) and found that administration with β-glucan induces protection against a bacterial infection. Through single-cell RNA sequencing to annotate 14 clusters of innate and adaptive immune cells, as well as two clusters of blood cells, from head kidney and spleen, respectively, we characterized that neutrophil displays cardinal features of trained immunity by analyzing the expression abundance of trained immunity database–related genes at the single-cell level. Subsequently, through establishing an in vivo training and in vitro neutrophil challenge model, we found that the trained neutrophils exhibit a significant elevation of the IL-1R signaling pathway after Edwardsiella piscicida infection. Furthermore, inhibition of neutrophil’s IL-1R signaling pathway through anakinra treatment impaired the heightened production of reactive oxygen, nitrogen species, lactate, as well as the neutrophil extracellular traps formation and bacterial killing ability. Taken together, these findings characterized neutrophil as the orchestrator to express features of trained immunity, and revealed that the IL-1R signaling pathway plays a critical role in induction of trained immunity for bacterial clearance in teleost fish.
Collapse
Affiliation(s)
- Di Mu
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jin Yang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu Jiang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhuang Wang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Weijie Chen
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jianchang Huang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- †Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qin Liu
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- ‡Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; and
- §Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Dahai Yang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- §Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| |
Collapse
|
8
|
Yang WY, Nguyen B, Wu S, Yu J, Wang H, Yang X. Editorial: Highlights for Cardiovascular Therapeutics in 2021 - Trained Immunity, Immunometabolism, Gender Differences of Cardiovascular Diseases, and Novel Targets of Cardiovascular Therapeutics. Front Cardiovasc Med 2022; 9:892288. [PMID: 35571184 PMCID: PMC9091719 DOI: 10.3389/fcvm.2022.892288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- William Y. Yang
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Bonnie Nguyen
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sheng Wu
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jun Yu
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Cardiovascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
9
|
Brueggeman JM, Zhao J, Schank M, Yao ZQ, Moorman JP. Trained Immunity: An Overview and the Impact on COVID-19. Front Immunol 2022; 13:837524. [PMID: 35251030 PMCID: PMC8891531 DOI: 10.3389/fimmu.2022.837524] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 01/13/2023] Open
Abstract
Effectively treating infectious diseases often requires a multi-step approach to target different components involved in disease pathogenesis. Similarly, the COVID-19 pandemic has become a global health crisis that requires a comprehensive understanding of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infection to develop effective therapeutics. One potential strategy to instill greater immune protection against COVID-19 is boosting the innate immune system. This boosting, termed trained immunity, employs immune system modulators to train innate immune cells to produce an enhanced, non-specific immune response upon reactivation following exposure to pathogens, a process that has been studied in the context of in vitro and in vivo clinical studies prior to the COVID-19 pandemic. Evaluation of the underlying pathways that are essential to inducing protective trained immunity will provide insight into identifying potential therapeutic targets that may alleviate the COVID-19 crisis. Here we review multiple immune training agents, including Bacillus Calmette-Guérin (BCG), β-glucan, and lipopolysaccharide (LPS), and the two most popular cell types involved in trained immunity, monocytes and natural killer (NK) cells, and compare the signaling pathways involved in innate immunity. Additionally, we discuss COVID-19 trained immunity clinical trials, emphasizing the potential of trained immunity to fight SARS-CoV-2 infection. Understanding the mechanisms by which training agents activate innate immune cells to reprogram immune responses may prove beneficial in developing preventive and therapeutic targets against COVID-19.
Collapse
Affiliation(s)
- Justin M. Brueggeman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States,*Correspondence: Jonathan P. Moorman,
| |
Collapse
|
10
|
Caslin HL, Cottam MA, Piñon JM, Boney LY, Hasty AH. Weight cycling induces innate immune memory in adipose tissue macrophages. Front Immunol 2022; 13:984859. [PMID: 36713396 PMCID: PMC9876596 DOI: 10.3389/fimmu.2022.984859] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Weight loss improves obesity-associated diabetes risk. However, most individuals regain weight, which worsens the risk of developing diabetes and cardiovascular disease. We previously reported that male mice retain obesity-associated immunological changes even after weight loss, suggesting that immune cells may remember the state of obesity. Therefore, we hypothesized that cycles of weight gain and loss, otherwise known as weight cycling, can induce innate memory in adipose macrophages. Methods Bone marrow derived macrophages were primed with palmitic acid or adipose tissue conditioned media in a culture model of innate immune memory. Mice also put on low fat or high fat diets over 14-27 weeks to induce weight gain, weight loss, and weight cycling. Results Priming cells with palmitic acid or adipose tissue conditioned media from obese mice increased maximal glycolysis and oxidative phosphorylation and increased LPS-induced TNFα and IL-6 production. Palmitic acid effects were dependent on TLR4 and impaired by methyltransferase inhibition and AMPK activation. While weight loss improved glucose tolerance in mice, adipose macrophages were primed for greater activation to subsequent stimulation by LPS ex vivo as measured by cytokine production. In the model of weight cycling, adipose macrophages had elevated metabolism and secreted higher levels of basal TNFα, suggesting that weight loss can also prime macrophages for heighted activation to weight regain. Discussion Together, these data suggest that weight loss following obesity can prime adipose macrophages for enhanced inflammation upon weight regain. This innate immune memory response may contribute to worsened glucose tolerance following weight cycling.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
| | - Jacqueline M Piñon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Likem Y Boney
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|