1
|
Tavares CS, Wang X, Ghosh S, Mishra R, Bonning BC. Bacillus thuringiensis-derived pesticidal proteins toxic to the whitefly, Bemisia tabaci. J Invertebr Pathol 2025; 210:108291. [PMID: 39986348 DOI: 10.1016/j.jip.2025.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
The whitefly, Bemisia tabaci, is among the most important threats to global agriculture and food security. In addition to losses associated with feeding, B. tabaci vectors hundreds of plant viruses, many of which cause severe disease in staple food crops. The management of B. tabaci is confounded by extensive resistance to chemical insecticides. While pesticidal proteins derived from entomopathogenic bacteria such as Bacillus thuringiensis (Bt) could provide for alternative management approaches, only one pesticidal protein with toxicity to B. tabaci has been identified. Here we screened 11 Bt-derived pesticidal proteins from several different structural classes against the highly invasive, Middle East-Asian Minor 1 (MEAM1) cryptic species of B. tabaci, and assessed the impact of a B. tabaci-active protein on the gut epithelial membrane by transmission electron microscopy. The pesticidal proteins were expressed in Bt or in Escherichia coli and purified for use in bioassays. The toxicity of purified proteins was first assessed by feeding adults on a single dose followed by lethal concentration (LC50) determination for proteins with significant mortality relative to the buffer control. The proteins Tpp78Aa1, Tpp78Ba1, and Cry1Ca were toxic to B. tabaci with LC50 values of 99, 96, and 351 µg/mL, respectively. Disruption of the brush border and severe reduction in microvilli on the gut surface caused by Tpp78Aa1 is consistent with the mode of action of Bt-derived pesticidal proteins. These proteins may provide valuable tools for the integrated management of B. tabaci populations and associated reduced incidence of B. tabaci vectored plant viral diseases.
Collapse
Affiliation(s)
- Clebson S Tavares
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Saptarshi Ghosh
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Berry C, Valby V, Mishra R, Bonning BC, Palma L, Crickmore N. Specificity database for bacterial pesticidal proteins against invertebrate targets. J Invertebr Pathol 2025; 211:108319. [PMID: 40118447 DOI: 10.1016/j.jip.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Bacteria produce a number of proteins with specific biocidal activity against invertebrate pests. These proteins have been employed successfully in biocontrol for decades, by use of microbial sprays and bioengineered crops. While traditionally associated with Bacillus thuringiensis (Bt) and other well-characterised bacteria, the protein repertoire has recently been expanded to include novel structural classes and sources. Here we present a database comprising, at the time of writing, 3963 entries drawn from 466 research articles and 174 patents, documenting activity against 253 invertebrate species across 25 taxonomic orders. This resource includes toxicity and non-toxicity data encompassing both single-component and multi-component protein activities, assay methods, and bibliographic references. The dataset reveals a trend in testing priorities, with a focus on pests of agricultural and medical importance from the orders Lepidoptera, Coleoptera, and Diptera. This focus, however, highlights important gaps for future research: while primarily tested against Lepidoptera, pesticidal proteins increasingly show activity against other orders, including Hemiptera. This database, integrated with recent nomenclature updates, provides a dynamic resource for researchers and regulators, facilitating advancements in understanding bacterial pesticidal proteins and their application for sustainable pest management.
Collapse
Affiliation(s)
- Colin Berry
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Victoria Valby
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Leopoldo Palma
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Departmento de Genética, Universitat de València, 46100 Burjassot, Spain
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
3
|
Muniz VA, de Melo Katak R, Caesar L, de Oliveira JC, Rocha EM, de Oliveira MR, da Silva GF, Roque RA, Marinotti O, Terenius O, de Andrade EV. Genomic and morphological features of an Amazonian Bacillus thuringiensis with mosquito larvicidal activity. AMB Express 2025; 15:39. [PMID: 40045023 PMCID: PMC11882490 DOI: 10.1186/s13568-025-01850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
The occurrence of mosquito-borne diseases is increasing, and their geographical range is expanding due to climate change. New control measures are urgently needed to combat these debilitating and, in some cases, fatal diseases. Bacteria of the genus Bacillus are of interest due to the production of bioactive compounds, including those useful for insect control. The discovery and characterization of new species of Bacillus with mosquito larvicidal activity may offer opportunities to develop new products for vector control. In this study, we evaluated larvicidal activity, described morphological characteristics, and sequenced and analyzed the genome of a bacterial strain (GD02.13) isolated from the Amazon region. The metabolites produced by GD02.13 are as effective in killing Aedes aegypti larvae as the commercial product Natular™ DT (Spinosad). Furthermore, the morphological characteristics of the GD02.13 spores and crystal inclusions resemble those previously described for B. thuringiensis. A phylogenetic analysis based on 443 single-copy orthologs indicated that the bacterial strain GD02.13 belongs to the Bacillus thuringiensis species. Its genome, which was assembled and has a size of 6.6 Mb, contains 16 secondary metabolite biosynthetic gene clusters and genes encoding insecticidal proteins, predicted based on sequence similarity. The data obtained in this study support the development of new insecticide products based on the strain GD02.13 of B. thuringiensis.
Collapse
Affiliation(s)
| | - Ricardo de Melo Katak
- Oswaldo Cruz Foundation - Leônidas and Maria Deane Institute, Manaus, Amazonas, Brazil
| | - Lílian Caesar
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | | | - Marta Rodrigues de Oliveira
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, ESALQ - USP - Piracicaba, São Paulo, Brazil
| | | | | | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Olle Terenius
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, 751 24, Uppsala, Sweden.
| | | |
Collapse
|
4
|
Van Laere Y, Fraiture MA, Gobbo A, De Keersmaecker SCJ, Marchal K, Roosens NHC, Vanneste K. Assessing the authenticity and purity of a commercial Bacillus thuringiensis bioinsecticide through whole genome sequencing and metagenomics approaches. Front Microbiol 2025; 16:1532788. [PMID: 39963497 PMCID: PMC11831548 DOI: 10.3389/fmicb.2025.1532788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Biopesticides, biological agents for pest control in plants, are becoming increasingly prevalent in agricultural practices. However, no established methodology currently exists to assess their quality, and there are currently no publicly available authenticity and purity evaluations of commercial products. This lack of data may represent risks because of their widespread dispersal in the environment. We evaluated the potential of whole genome sequencing (WGS) and metagenomics approaches, including nanopore long-read sequencing, to verify both authenticity (i.e., the labeled strain) and biological purity (i.e., the absence of any undesired genetic material) of commercial Bacillus thuringiensis bioinsecticides. Four commercially available bioinsecticidal products containing Bacillus thuringiensis serovar kurstaki strain HD-1 were collected from the European market as a case study. Two sequencing approaches were employed: WGS of isolates and metagenomics sequencing of all genetic material in a product. To assess authenticity, isolate WGS data were compared against the publicly available reference genome of the expected strain. Antimicrobial resistance gene content, insecticidal gene content, and single nucleotide polymorphism differences were characterized to evaluate similarity to the reference genome. To assess purity, metagenomic sequencing data were analyzed using read classification and strain differentiation methods. Additionally, long- and short-read data were used to assess potential large-scale structural variations. Our results confirmed all investigated products to be authentic and pure. With the increasing usage of biopesticides, it is crucial to have adequate quality control methods. Our proposed approach could be adapted for other biopesticides, and similar products, providing a standardized and robust approach to contribute to biopesticide safety.
Collapse
Affiliation(s)
- Yari Van Laere
- Transversal Activities in Applied Genomics, Sciensano, Elsene, Belgium
- Department of Plant Biotechnology and Bioinformatics, UGent, Zwijnaarde, Belgium
| | | | - Andrea Gobbo
- Transversal Activities in Applied Genomics, Sciensano, Elsene, Belgium
| | | | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, UGent, Zwijnaarde, Belgium
- Department of Information Technology, UGent, Zwijnaarde, Belgium
| | | | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Elsene, Belgium
| |
Collapse
|
5
|
Sun Y, Yang P, She M, Lin C, Ye Y, Xu C, Shen Z. A Vip3Af mutant confers high resistance to broad lepidopteran insect pests. PEST MANAGEMENT SCIENCE 2025; 81:28-35. [PMID: 39300681 DOI: 10.1002/ps.8402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis (Bt) have been utilized for control of lepidopteran insect pests. The majority of known Vip3 proteins possess exceptional high toxicity against Noctuid insects such as the fall armyworm (FAW, Spodoptera frugiperda), beet armyworm (BAW, Spodoptera exigua) and cotton bollworm (CBW, Helicoverpa armigera), but generally have relatively low or even no activity against some very important pest insects, such as Asian corn borer (ACB, Ostrinia furnacalis), European corn borer (ECB, Ostrinia nubilalis), rice stem borer (RSB, Chilo suppressalis) and oriental armyworm (OAW, Mythimna separata). RESULTS Here, we report mutant Vip3Af with a single amino acid mutation, Vip3Af-T686R, which gains significantly higher insecticidal activity against ACB, OAW and BAW, while retaining high activity against FAW, CBW and RSB. Protein proteolytic activation in vitro showed that the proteolytic activation efficiency of the mutant protein was greater than the wild-type protein in the midgut juice of ACB, OAW and BAW. Transgenic corn expressing this mutant Vip3Af showed high levels of resistance to ACB, OAW, FAW, BAW and CBW. CONCLUSION Our results suggest that Vip3Af may be a superior Vip3A mutant for the development of transgenic crops with resistance to a broad range of lepidopteran pest species. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajie Sun
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Pan Yang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mingjun She
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chaoyang Lin
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Yuxuan Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Chao Xu
- Ruifeng Biotechnology Co., Ltd, Hangzhou, China
| | - Zhicheng Shen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| |
Collapse
|
6
|
Yılmaz S, Idris AB, Ayvaz A, Temizgül R, Çetin A, Hassan MA. Genome mining of Bacillus thuringiensis strain SY49.1 reveals novel candidate pesticidal and bioactive compounds. PEST MANAGEMENT SCIENCE 2025; 81:298-307. [PMID: 39324581 PMCID: PMC11632210 DOI: 10.1002/ps.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Bacillus thuringiensis SY49.1 (Bt SY49.1) strain has promising insecticidal and fungicidal activity against phytopathogens and pests. Therefore, we selected this strain for whole-genome sequencing (WGS), annotation and analysis, with the aim of identifying genes responsible for producing putative pesticidal toxins, antimicrobial metabolites and plant growth-promoting features. RESULTS Our results showed that the SY49.1 genome is 6. 32 Mbp long with a GC content of 34.68%. Genome mining revealed the presence of multiple gene inventories for the biosynthesis of bioactive compounds such as insecticidal delta endotoxins, secondary metabolites, and several plant growth-promoting proteins. Multiple sequence alignment revealed residue variations in the toxic core of Cry1Ab when compared with known Cry1Ab sequences from Bt nomenclature databases. This suggests that the cry1Ab of SY49.1 is a new kind of its group. Among the predicted secondary metabolites, we found a kurstakin with a predicted peptide that differs from the known kurstakin peptide available in the NORINE database. In addition, lipopeptides extracted from SY49.1 suppressed the growth of Verticillium dahliae and Fusarium oxysporum. CONCLUSION We anticipate that the complete genome of Bt SY49.1 may provide a model for properly understanding and studying antimicrobial compound mining, genetic diversity among the B. cereus group, and pathogenicity against insects. This is the first report on the WGS and mining of the Bt strain isolated from Turkey. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Semih Yılmaz
- Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTurkey
| | - Abeer Babiker Idris
- Department of Agricultural Sciences and Technologies, Graduate School of Natural and Applied SciencesErciyes UniversityKayseriTurkey
| | - Abdurrahman Ayvaz
- Department of Biology, Faculty of ScienceErciyes UniversityKayseriTurkey
| | - Rıdvan Temizgül
- Department of Biology, Faculty of ScienceErciyes UniversityKayseriTurkey
| | - Aysun Çetin
- Department of Medical Biochemistry, Faculty of MedicineErciyes UniversityKayseriTurkey
| | - Mohammed A Hassan
- Department of BioinformaticsAfrica City of TechnologyKhartoumSudan
- Sanimed international lab and management l.l.CAbu DhabiUAE
| |
Collapse
|
7
|
Murdoch RW, Gemler BT, Wallace N, Heater BS. Draft genome sequence of Bacillus thuringiensis serovar. toumanoffi NRRL B-4059: identification of a novel Cry protein candidate. Microbiol Resour Announc 2024; 13:e0014324. [PMID: 39540769 PMCID: PMC11636235 DOI: 10.1128/mra.00143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Here, we report the high-quality draft genome of Bacillus thuringiensis serovar. toumanoffi NRRL B-4059, with a complete circular chromosome and nine circular plasmids. The assembly is 7,031,170 bp and encodes 6,974 protein-coding genes, 42 rRNA genes, 107 tRNA genes, and has 34.7% GC content. Nine genes encoding Cry proteins were identified, including one previously unidentified Cry protein candidate.
Collapse
|
8
|
Tavares CS, Stelinski LL, Bonning BC. The sandwich feeding assay for use with first instar nymphs of the Asian citrus psyllid, Diaphorina citri confirms the high susceptibility of this life stage to bacterial pesticidal proteins. J Invertebr Pathol 2024; 207:108208. [PMID: 39317311 DOI: 10.1016/j.jip.2024.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Citrus greening or huanglongbing is the most important disease of citrus and threatens citrus production worldwide. As nymphs of Diaphorina citri play a crucial role in the acquisition and transmission of the citrus greening bacterium, suppression of this life stage is particularly important. However, the lack of a tractable feeding assay for use with first instar D. citri nymphs has impeded assessment of the toxicity of bioactives. Of several bacterial pesticidal proteins (BPP) that are toxic to D. citri adults, Mpp51Aa1 and Cry1Ba1, which have LC50 values of 110 and 120 µg/mL respectively in adults, were fed to 1st instar nymphs in a newly developed assay. For this new sandwich feeding assay, parafilm layers containing feeding solution were placed on top of two 35 mm Petri dishes, with a concave surface created on each. Fifty nymphs were transferred to the membrane on one Petri dish, and the second Petri dish placed on the top to create a "sandwich" with the 1st instar nymphs in the middle. Nymphs were fed for four days and the LC50 values for Mpp51Aa1 and Cry1Ba1 were calculated at 6.7 and 41.6 µg/mL respectively. Bioassays with bioengineered plants expressing Cry1Ba1 confirmed that the majority of D. citri mortality occurs during the 1st instar nymph stage, while egg laying adults are much less susceptible. Taken together, these results confirm that 1st instar D. citri nymphs are more susceptible to BPP than adults and demonstrate the utility of the sandwich feeding assay for effective screening of BPPs prior to investment into production of transgenic plants.
Collapse
Affiliation(s)
- Clebson S Tavares
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA.
| | - Lukasz L Stelinski
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, USA
| | - Bryony C Bonning
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Castellane TCL, Fernandes CC, Pinheiro DG, Lemos MVF, Varani AM. Exploratory comparative transcriptomic analysis reveals potential gene targets associated with Cry1A.105 and Cry2Ab2 resistance in fall armyworm (Spodoptera frugiperda). Funct Integr Genomics 2024; 24:129. [PMID: 39039331 DOI: 10.1007/s10142-024-01408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Genetically modified (GM) crops, expressing Bacillus thuringiensis (Bt) insecticidal toxins, have substantially transformed agriculture. Despite rapid adoption, their environmental and economic benefits face scrutiny due to unsustainable agricultural practices and the emergence of resistant pests like Spodoptera frugiperda, known as the fall armyworm (FAW). FAW's adaptation to Bt technology in corn and cotton compromises the long-term efficacy of Bt crops. To advance the understanding of the genetic foundations of resistance mechanisms, we conducted an exploratory comparative transcriptomic analysis of two divergent FAW populations. One population exhibited practical resistance to the Bt insecticidal proteins Cry1A.105 and Cry2Ab2, expressed in the genetically engineered MON-89Ø34 - 3 maize, while the other population remained susceptible to these proteins. Differential expression analysis supported that Cry1A.105 and Cry2Ab2 significantly affect the FAW physiology. A total of 247 and 254 differentially expressed genes were identified in the Cry-resistant and susceptible populations, respectively. By integrating our findings with established literature and databases, we underscored 53 gene targets potentially involved in FAW's resistance to Cry1A.105 and Cry2Ab2. In particular, we considered and discussed the potential roles of the differentially expressed genes encoding ABC transporters, G protein-coupled receptors, the P450 enzymatic system, and other Bt-related detoxification genes. Based on these findings, we emphasize the importance of exploratory transcriptomic analyses to uncover potential gene targets involved with Bt insecticidal proteins resistance, and to support the advantages of GM crops in the face of emerging challenges.
Collapse
Affiliation(s)
- Tereza Cristina L Castellane
- Departamento de Biologia, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil.
| | - Camila C Fernandes
- Instituto de Pesquisa em Bioenergia, Laboratório Multiusuário de Sequenciamento em Larga Escala e Expressão Gênica, IPBEN, 14884-900, Jaboticabal, SP, Brasil
| | - Daniel G Pinheiro
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil
| | - Manoel Victor Franco Lemos
- Departamento de Biologia, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil
- Instituto de Pesquisa em Bioenergia, Laboratório Multiusuário de Sequenciamento em Larga Escala e Expressão Gênica, IPBEN, 14884-900, Jaboticabal, SP, Brasil
| | - Alessandro M Varani
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil.
| |
Collapse
|
10
|
Tavares CS, Mishra R, Kishk A, Wang X, Ghobrial PN, Killiny N, Bonning BC. The beta pore-forming bacterial pesticidal protein Tpp78Aa1 is toxic to the Asian citrus psyllid vector of the citrus greening bacterium. J Invertebr Pathol 2024; 204:108122. [PMID: 38710321 DOI: 10.1016/j.jip.2024.108122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri transmits the causative agent of huanglongbing, or citrus greening disease, that has decimated global citrus production. Pesticidal proteins derived from bacteria such as Bacillus thuringiensis (Bt) can provide effective and environmentally friendly alternatives for management of D. citri, but few with sufficient toxicity to D. citri have been identified. Here, we report on the toxicity of 14 Bt-derived pesticidal proteins from five different structural groups against D. citri. These proteins were selected based on previously reported toxicity to other hemipteran species and on pesticidal protein availability. Most of the proteins were expressed in Escherichia coli and purified from inclusion bodies or His-tag affinity purification, while App6Aa2 was expressed in Bt and purified from spore/crystal mixtures. Pesticidal proteins were initially screened by feeding psyllids on a single dose, and lethal concentration (LC50) then determined for proteins with significantly greater mortality than the buffer control. The impact of CLas infection of D. citri on toxicity was assessed for selected proteins via topical feeding. The Bt protein Tpp78Aa1 was toxic to D. citri adults with an LC50 of approximately 204 µg/mL. Nymphs were more susceptible to Tpp78Aa1 than adults but no significant difference in susceptibility was observed between healthy and CLas-infected nymphs or adults. Tpp78Aa1 and other reported D. citri-active proteins may provide valuable tools for suppression of D. citri populations.
Collapse
Affiliation(s)
- Clebson S Tavares
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Abdelaziz Kishk
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA; Department of Plant Protection, Faculty of Agriculture, Tanta University 31527, Egypt
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Pierre N Ghobrial
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Nabil Killiny
- Department of Plant Protection, Faculty of Agriculture, Tanta University 31527, Egypt
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Chung T, Salazar A, Harm G, Johler S, Carroll LM, Kovac J. Comparison of the performance of multiple whole-genome sequence-based tools for the identification of Bacillus cereus sensu stricto biovar Thuringiensis. Appl Environ Microbiol 2024; 90:e0177823. [PMID: 38470126 PMCID: PMC11026089 DOI: 10.1128/aem.01778-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
The Bacillus cereus sensu stricto (s.s.) species comprises strains of biovar Thuringiensis (Bt) known for their bioinsecticidal activity, as well as strains with foodborne pathogenic potential. Bt strains are identified (i) based on the production of insecticidal crystal proteins, also known as Bt toxins, or (ii) based on the presence of cry, cyt, and vip genes, which encode Bt toxins. Multiple bioinformatics tools have been developed for the detection of crystal protein-encoding genes based on whole-genome sequencing (WGS) data. However, the performance of these tools is yet to be evaluated using phenotypic data. Thus, the goal of this study was to assess the performance of four bioinformatics tools for the detection of crystal protein-encoding genes. The accuracy of sequence-based identification of Bt was determined in reference to phenotypic microscope-based screening for the production of crystal proteins. A total of 58 diverse B. cereus sensu lato strains isolated from clinical, food, environmental, and commercial biopesticide products underwent WGS. Isolates were examined for crystal protein production using phase contrast microscopy. Crystal protein-encoding genes were detected using BtToxin_Digger, BTyper3, IDOPS (identification of pesticidal sequences), and Cry_processor. Out of 58 isolates, the phenotypic production of crystal proteins was confirmed for 18 isolates. Specificity and sensitivity of Bt identification based on sequences were 0.85 and 0.94 for BtToxin_Digger, 0.97 and 0.89 for BTyper3, 0.95 and 0.94 for IDOPS, and 0.88 and 1.00 for Cry_processor, respectively. Cry_processor predicted crystal protein production with the highest specificity, and BtToxin_Digger and IDOPS predicted crystal protein production with the highest sensitivity. Three out of four tested bioinformatics tools performed well overall, with IDOPS achieving high sensitivity and specificity (>0.90).IMPORTANCEStrains of Bacillus cereus sensu stricto (s.s.) biovar Thuringiensis (Bt) are used as organic biopesticides. Bt is differentiated from the foodborne pathogen Bacillus cereus s.s. by the production of insecticidal crystal proteins. Thus, reliable genomic identification of biovar Thuringiensis is necessary to ensure food safety and facilitate risk assessment. This study assessed the accuracy of whole-genome sequencing (WGS)-based identification of Bt compared to phenotypic microscopy-based screening for crystal protein production. Multiple bioinformatics tools were compared to assess their performance in predicting crystal protein production. Among them, identification of pesticidal sequences performed best overall at WGS-based Bt identification.
Collapse
Affiliation(s)
- Taejung Chung
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Abimel Salazar
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Grant Harm
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Integrated Science Lab (IceLab), Umeå University, Umeå, Sweden
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
12
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
13
|
Jiang K, Chen Z, Shi Y, Zang Y, Shang C, Huang X, Zang J, Bai Z, Jiao X, Cai J, Gao X. A strategy to enhance the insecticidal potency of Vip3Aa by introducing additional cleavage sites to increase its proteolytic activation efficiency. ENGINEERING MICROBIOLOGY 2023; 3:100083. [PMID: 39628910 PMCID: PMC11610981 DOI: 10.1016/j.engmic.2023.100083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 12/06/2024]
Abstract
Microbially derived, protein-based biopesticides have become a vital element in pest management strategies. Vip3 family proteins from Bacillus thuringiensis have distinct characteristics from known insecticidal Cry toxins and show efficient insecticidal activity against several detrimental lepidopteran pests. They are considered to be a promising toxic candidate for the management of various detrimental pests. In this study, we found that in addition to the preliminary digestion sites lysine, there are multiple cleavage activation sites in the linker region between domain I (DI) and DII of Vip3Aa. We further demonstrated that by adding more cleavage sites between DI and DII of Vip3Aa, its proteolysis efficiency by midgut proteases can be significantly increased, and correspondingly enhance its insecticidal activity against Spodoptera frugiperda and Helicoverpa armigera larvae. Our study promotes the understanding of the insecticidal mechanism of Vip3 proteins and illustrates an easily implementable strategy to increase the insecticidal potency of Vip3Aa. This facilitates their potential future development and efficient application for sustainable agriculture.
Collapse
Affiliation(s)
- Kun Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yiting Shi
- School of Life Sciences, Shandong University, Qingdao 266237, China
- Taishan College, Shandong University, Jinan 250100, China
| | - Yuanrong Zang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chengbin Shang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xi Huang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiahe Zang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhudong Bai
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xuyao Jiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
14
|
Mishra R, Narayana R, Ibanez F, Achor D, Shilts T, El-Mohtar C, Orbović V, Stelinski LL, Bonning BC. Bacterial Pesticidal Protein Mpp51Aa1 Delivered via Transgenic Citrus Severely Impacts the Fecundity of Asian Citrus Psyllid, Diaphorina citri. Appl Environ Microbiol 2023; 89:e0072323. [PMID: 37458593 PMCID: PMC10467345 DOI: 10.1128/aem.00723-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023] Open
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri vectors the causative agent of citrus greening disease that has the capacity to decimate citrus production. As an alternative and more sustainable approach to manage D. citri than repeated application of chemical insecticides, we investigated the potential use of the bacteria-derived pesticidal protein, Mpp51Aa1, when delivered by transgenic Citrus sinensis cv. Valencia sweet orange or Citrus paradisi cv. Duncan grapefruit. Following confirmation of transcription and translation of mpp51aa1 by transgenic plants, no impact of Mpp51Aa1 expression was seen on D. citri host plant choice between transgenic and control Duncan grapefruit plants. A slight but significant drop in survival of adult psyllids fed on these transgenic plants was noted relative to those fed on control plants. In line with this result, damage to the gut epithelium consistent with that caused by pore-forming proteins was only observed in a minority of adult D. citri fed on the transgenic Duncan grapefruit. However, greater impacts were observed on nymphs than on adults, with a 40% drop in the survival of nymphs fed on transgenic Duncan grapefruit relative to those fed on control plants. For Valencia sweet orange, a 70% decrease in the number of eggs laid by adult D. citri on transgenic plants was noted relative to those on control plants, with a 90% drop in emergence of progeny. These impacts that contrast with those associated with other bacterial pesticidal proteins and the potential for use of Mpp51Aa1-expressing transgenic plants for suppression of D. citri populations are discussed. IMPORTANCE Pesticidal proteins derived from bacteria such as Bacillus thuringiensis are valuable tools for management of agricultural insect pests and provide a sustainable alternative to the application of chemical insecticides. However, relatively few bacterial pesticidal proteins have been used for suppression of hemipteran or sap-sucking insects such as the Asian citrus psyllid, Diaphorina citri. This insect is particularly important as the vector of the causative agent of citrus greening, or huanglongbing disease, which severely impacts global citrus production. In this study, we investigated the potential of transgenic citrus plants that produce the pesticidal protein Mpp51Aa1. While adult psyllid mortality on transgenic plants was modest, the reduced number of eggs laid by exposed adults and the decreased survival of progeny was such that psyllid populations dropped by more than 90%. These results provide valuable insight for potential deployment of Mpp51Aa1 in combination with other control agents for the management of D. citri.
Collapse
Affiliation(s)
- Ruchir Mishra
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| | - Ravishankar Narayana
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Freddy Ibanez
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Turksen Shilts
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Choaa El-Mohtar
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Vladimir Orbović
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Lukasz L. Stelinski
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Bryony C. Bonning
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Bacillus thuringiensis Cyt Proteins as Enablers of Activity of Cry and Tpp Toxins against Aedes albopictus. Toxins (Basel) 2023; 15:toxins15030211. [PMID: 36977103 PMCID: PMC10054650 DOI: 10.3390/toxins15030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Aedes albopictus is a species of mosquito, originally from Southeast Asia, that belongs to the Culicidae family and the Dipteran insect order. The distribution of this vector has rapidly changed over the past decade, making most of the temperate territories in the world vulnerable to important human vector-borne diseases such as dengue, yellow fever, zika or chikungunya. Bacillus thuringiensis var. israeliensis (Bti)-based insecticides represent a realistic alternative to the most common synthetic insecticides for the control of mosquito larvae. However, several studies have revealed emerging resistances to the major Bti Crystal proteins such as Cry4Aa, Cry4Ba and Cry11Aa, making the finding of new toxins necessary to diminish the exposure to the same toxicity factors overtime. Here, we characterized the individual activity of Cyt1Aa, Cry4Aa, Cry4Ba and Cry11Aa against A. albopictus and found a new protein, Cyt1A-like, that increases the activity of Cry11Aa more than 20-fold. Additionally, we demonstrated that Cyt1A-like facilitates the activity three new Bti toxins: Cry53-like, Cry56A-like and Tpp36-like. All in all, these results provide alternatives to the currently available Bti products for the control of mosquito populations and position Cyt proteins as enablers of activity for otherwise non-active crystal proteins.
Collapse
|
16
|
Bel Y, Andrés-Antón M, Escriche B. Abundance, distribution, and expression of nematicidal crystal protein genes in Bacillus thuringiensis strains from diverse habitats. Int Microbiol 2022; 26:295-308. [PMID: 36484913 PMCID: PMC10148773 DOI: 10.1007/s10123-022-00307-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Abstract Bacillus thuringiensis (Bt) is a Gram-positive bacterium that accumulates pesticidal proteins (Cry and Cyt) in parasporal crystals. Proteins from the Cry5, App6 (formerly Cry6), Cry12, Cry13, Cry14, Cry21, and Xpp55 (formerly Cry55) families have been identified as toxic to nematodes. In this study, a total of 846 Bt strains belonging to four collections were analyzed to determine the diversity and distribution of the Bt Cry nematicidal protein genes. We analyzed their presence by PCR, and positives were confirmed by sequencing. As a result, 164 Bt isolates (20%) contained at least one gene coding for nematicidal Cry proteins. The cry5 and cry21 genes were enriched in collection 1 and were often found together in the same strain. Differently, in collection 4, obtained from similar habitats but after 10 years, cry14 was the gene most frequently found. In collection 2, cry5 and app6 were the most abundant genes, and collection 3 had a low incidence of any of these genes. The results point to high variability in the frequencies of the studied genes depending on the timing, geographical origins, and sources. The occurrence of cry1A, cry2, and cry3 genes was also analyzed and showed that the nematicidal Cry protein genes were frequently accompanied by cry1A + cry2. The expression of the genes was assessed by mass spectrometry showing that only 14% of the positive strains produced nematicidal proteins. To our knowledge, this is the first comprehensive screening that examines the presence and expression of genes from the seven known Bt Cry nematicidal families.
Collapse
Affiliation(s)
- Yolanda Bel
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Departament de Genètica, Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Miguel Andrés-Antón
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Departament de Genètica, Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Baltasar Escriche
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Departament de Genètica, Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, Spain.
| |
Collapse
|
17
|
Unzue A, Caballero CJ, Villanueva M, Fernández AB, Caballero P. Multifunctional Properties of a Bacillus thuringiensis Strain (BST-122): Beyond the Parasporal Crystal. Toxins (Basel) 2022; 14:toxins14110768. [PMID: 36356018 PMCID: PMC9695252 DOI: 10.3390/toxins14110768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Chemical products still represent the most common form of controlling crop pests and diseases. However, their extensive use has led to the selection of resistances. This makes the finding of new solutions paramount to countering the economic losses that pests and diseases represent in modern agriculture. Bacillus thuringiensis (Bt) is one of the most reliable alternatives to chemical-based solutions. In this study, we aimed to further expand the global applicability of Bt strains beyond their spores and crystals. To this end, we selected a new Bt strain (BST-122) with relevant toxicity factors and tested its activity against species belonging to different phyla. The spore and crystal mixture showed toxicity to coleopterans. Additionally, a novel Cry5-like protein proved active against the two-spotted spider mite. In vivo and plant assays revealed significant control of the parasitic nematode, Meloidogyne incognita. Surprisingly, our data indicated that the nematocidal determinants may be secreted. When evaluated against phytopathogenic fungi, the strain seemed to decelerate their growth. Overall, our research has highlighted the potential of Bt strains, expanding their use beyond the confinements of spores and crystals. However, further studies are required to pinpoint the factors responsible for the wide host range properties of the BST-122 strain.
Collapse
Affiliation(s)
- Argine Unzue
- Institute of Multidisciplinary Research in Applied Biology-IMAB, Universidad Pública de Navarra, 31192 Mutilva, Spain
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Plaza Cein 5, Nave A14, 31110 Noáin, Spain
| | - Carlos J. Caballero
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Plaza Cein 5, Nave A14, 31110 Noáin, Spain
| | - Maite Villanueva
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Plaza Cein 5, Nave A14, 31110 Noáin, Spain
| | - Ana Beatriz Fernández
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Plaza Cein 5, Nave A14, 31110 Noáin, Spain
| | - Primitivo Caballero
- Institute of Multidisciplinary Research in Applied Biology-IMAB, Universidad Pública de Navarra, 31192 Mutilva, Spain
- Correspondence:
| |
Collapse
|
18
|
Bacteria-derived pesticidal proteins active against hemipteran pests. J Invertebr Pathol 2022; 195:107834. [DOI: 10.1016/j.jip.2022.107834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
|