1
|
Woodhouse MR, Cannon EK, Portwood JL, Gardiner JM, Hayford RK, Haley O, Andorf CM. Tools and Resources at the Maize Genetics and Genomics Database (MaizeGDB). Cold Spring Harb Protoc 2025; 2025:pdb.over108430. [PMID: 39151939 DOI: 10.1101/pdb.over108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The Maize Genetics and Genomics Database (MaizeGDB) is the community resource for maize researchers, offering a suite of tools, informatics resources, and curated data sets to support maize genetics, genomics, and breeding research. Here, we provide an overview of the key resources available at MaizeGDB, including maize genomes, comparative genomics, and pan-genomics tools. This review aims to familiarize users with the range of options available for maize research and highlights the importance of MaizeGDB as a central hub for the maize research community. By providing a detailed snapshot of the database's capabilities, we hope to enable researchers to make use of MaizeGDB's resources, ultimately assisting them to better study the evolution and diversity of maize.
Collapse
Affiliation(s)
- Margaret R Woodhouse
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Ethalinda K Cannon
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - John L Portwood
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Rita K Hayford
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Olivia Haley
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Carson M Andorf
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
- Department of Computer Science, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
2
|
Yan Z, Hou J, Leng B, Yao G, Ma C, Sun Y, Zhang F, Mu C, Liu X. Genome-Wide Investigation of the CRF Gene Family in Maize and Functional Analysis of ZmCRF9 in Response to Multiple Abiotic Stresses. Int J Mol Sci 2024; 25:7650. [PMID: 39062894 PMCID: PMC11276700 DOI: 10.3390/ijms25147650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The cytokinin response factors (CRFs) are pivotal players in regulating plant growth, development, and responses to diverse stresses. Despite their significance, comprehensive information on CRF genes in the primary food crop, maize, remains scarce. In this study, a genome-wide analysis of CRF genes in maize was conducted, resulting in the identification of 12 members. Subsequently, we assessed the chromosomal locations, gene duplication events, evolutionary relationships, conserved motifs, and gene structures of all ZmCRF members. Analysis of ZmCRF promoter regions indicated the presence of cis-regulatory elements associated with plant growth regulation, hormone response, and various abiotic stress responses. The expression patterns of maize CRF genes, presented in heatmaps, exhibited distinctive patterns of tissue specificity and responsiveness to multiple abiotic stresses. qRT-PCR experiments were conducted on six selected genes and confirmed the involvement of ZmCRF genes in the plant's adaptive responses to diverse environmental challenges. In addition, ZmCRF9 was demonstrated to positively regulate cold and salt tolerance. Ultimately, we explored the putative interaction partners of ZmCRF proteins. In summary, this systematic overview and deep investigation of ZmCRF9 provides a solid foundation for further exploration into how these genes contribute to the complex interplay of plant growth, development, and responses to stress.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Jing Hou
- School of Agriculture, Ludong University, Yantai 264001, China;
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, China;
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| |
Collapse
|
3
|
Yao E, Blake VC, Cooper L, Wight CP, Michel S, Cagirici HB, Lazo GR, Birkett CL, Waring DJ, Jannink JL, Holmes I, Waters AJ, Eickholt DP, Sen TZ. GrainGenes: a data-rich repository for small grains genetics and genomics. Database (Oxford) 2022; 2022:6591224. [PMID: 35616118 PMCID: PMC9216595 DOI: 10.1093/database/baac034] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 05/16/2023]
Abstract
As one of the US Department of Agriculture-Agricultural Research Service flagship databases, GrainGenes (https://wheat.pw.usda.gov) serves the data and community needs of globally distributed small grains researchers for the genetic improvement of the Triticeae family and Avena species that include wheat, barley, rye and oat. GrainGenes accomplishes its mission by continually enriching its cross-linked data content following the findable, accessible, interoperable and reusable principles, enhancing and maintaining an intuitive web interface, creating tools to enable easy data access and establishing data connections within and between GrainGenes and other biological databases to facilitate knowledge discovery. GrainGenes operates within the biological database community, collaborates with curators and genome sequencing groups and contributes to the AgBioData Consortium and the International Wheat Initiative through the Wheat Information System (WheatIS). Interactive and linked content is paramount for successful biological databases and GrainGenes now has 2917 manually curated gene records, including 289 genes and 254 alleles from the Wheat Gene Catalogue (WGC). There are >4.8 million gene models in 51 genome browser assemblies, 6273 quantitative trait loci and >1.4 million genetic loci on 4756 genetic and physical maps contained within 443 mapping sets, complete with standardized metadata. Most notably, 50 new genome browsers that include outputs from the Wheat and Barley PanGenome projects have been created. We provide an example of an expression quantitative trait loci track on the International Wheat Genome Sequencing Consortium Chinese Spring wheat browser to demonstrate how genome browser tracks can be adapted for different data types. To help users benefit more from its data, GrainGenes created four tutorials available on YouTube. GrainGenes is executing its vision of service by continuously responding to the needs of the global small grains community by creating a centralized, long-term, interconnected data repository. Database URL:https://wheat.pw.usda.gov.
Collapse
Affiliation(s)
- Eric Yao
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
- Department of Bioengineering, University of California, Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Victoria C Blake
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
- Department of Plant Sciences and Plant Pathology, Montana State University, 119 Plant Biosciences Building, Bozeman, MT 59717, USA
| | - Laurel Cooper
- Department of Botany and Plant Pathology, Oregon State University, 1500 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Charlene P Wight
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Steve Michel
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - H Busra Cagirici
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - Gerard R Lazo
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - Clay L Birkett
- United States Department of Agriculture—Agricultural Research Service, Robert Holley Center, 538 Tower Rd., Ithaca, NY 14853, USA
| | - David J Waring
- Section of Plant Breeding and Genetics, Cornell University, Bradfield Hall, 306 Tower Rd, Ithaca, NY 14853, USA
| | - Jean-Luc Jannink
- United States Department of Agriculture—Agricultural Research Service, Robert Holley Center, 538 Tower Rd., Ithaca, NY 14853, USA
- Section of Plant Breeding and Genetics, Cornell University, Bradfield Hall, 306 Tower Rd, Ithaca, NY 14853, USA
| | - Ian Holmes
- Department of Bioengineering, University of California, Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Amanda J Waters
- PepsiCo R&D, 1991 Upper Buford Circle, 210 Borlaug Hall, St. Paul, MN 55108, USA
| | - David P Eickholt
- PepsiCo R&D, 1991 Upper Buford Circle, 210 Borlaug Hall, St. Paul, MN 55108, USA
| | - Taner Z Sen
- *Corresponding author: Tel: +1 (510) 559-5982; Fax: + 1 (510) 559-5963;
| |
Collapse
|
4
|
Caicedo M, Munaiz ED, Malvar RA, Jiménez JC, Ordas B. Precision Mapping of a Maize MAGIC Population Identified a Candidate Gene for the Senescence-Associated Physiological Traits. Front Genet 2021; 12:716821. [PMID: 34671382 PMCID: PMC8521056 DOI: 10.3389/fgene.2021.716821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Senescence is an important trait in maize (Zea mais L.), a key crop that provides nutrition values and a renewable source of bioenergy worldwide. Genome-wide association studies (GWAS) can be used to identify causative genetic variants that influence the major physiological measures of senescence, which is used by plants as a defense mechanism against abiotic and biotic stresses affecting its performance. We measured four physiological and two agronomic traits that affect senescence. Six hundred seventy-two recombinant inbred lines (RILs) were evaluated in two consecutive years. Thirty-six candidate genes were identified by genome-wide association study (GWAS), and 11 of them were supported by additional evidence for involvement in senescence-related processes including proteolysis, sugar transport, and sink activity. We identified a candidate gene, Zm00001d043586, significantly associated with chlorophyll, and independently studied its transcription expression in an independent panel. Our results showed that Zm00001d043586 affects chlorophyl rate degradation, a key determinant of senescence, at late plant development stages. These results contribute to better understand the genetic relationship of the important trait senescence with physiology related parameters in maize and provide new putative molecular markers that can be used in marker assisted selection for line development.
Collapse
Affiliation(s)
- Marlon Caicedo
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), Quito, Ecuador
| | - Eduardo D Munaiz
- National Research Council of Spain (CSIC) Misión Biológica de Galicia, Pontevedra, Spain
| | - Rosa A Malvar
- National Research Council of Spain (CSIC) Misión Biológica de Galicia, Pontevedra, Spain
| | - José C Jiménez
- National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Cuauhtémoc, Mexico
| | - Bernardo Ordas
- National Research Council of Spain (CSIC) Misión Biológica de Galicia, Pontevedra, Spain
| |
Collapse
|
5
|
Khangura RS, Johal GS, Dilkes BP. Variation in Maize Chlorophyll Biosynthesis Alters Plant Architecture. PLANT PHYSIOLOGY 2020; 184:300-315. [PMID: 32641472 PMCID: PMC7479880 DOI: 10.1104/pp.20.00306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Chlorophyll is a tetrapyrrole metabolite essential for photosynthesis in plants. The first committed step of chlorophyll biosynthesis is catalyzed by a multimeric enzyme, magnesium chelatase, the subunit I of which is encoded by the oil yellow1 (oy1) gene in maize (Zea mays). A range of chlorophyll contents and net CO2 assimilation rates can be achieved in maize by combining a semidominant mutant allele of oy1 (Oy1-N1989) and a cis-regulatory modifier named very oil yellow1 (vey1) that varies between different inbred lines. We previously demonstrated that these allelic interactions can delay reproductive maturity. In this study, we demonstrate that multiple gross morphological traits respond to a reduction in chlorophyll. We found that stalk width, number of lateral branches (tillers), and branching of the inflorescence decline with a decrease in chlorophyll level. Chlorophyll deficit suppressed tillering in multiple maize mutants, including teosinte branched1, Tillering1, and grassy tillers1 In contrast to these traits, plant height showed a nonlinear response to chlorophyll levels. Weak suppression of Oy1-N1989 by vey1 B73 resulted in a significant increase in mutant plant height. By contrast, enhancement of the severity of the Oy1-N1989 phenotype by the vey1 Mo17 allele resulted in reduced plant height. We demonstrate that the effects of reduced chlorophyll contents on plant growth and development are complex and depend on the trait being measured. We propose that the lack of chlorophyll exerts growth control via energy balance sensing, which is upstream of the known genetic networks for branching and architecture.
Collapse
Affiliation(s)
- Rajdeep S Khangura
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Gurmukh S Johal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Brian P Dilkes
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
6
|
Portwood JL, Woodhouse MR, Cannon EK, Gardiner JM, Harper LC, Schaeffer ML, Walsh JR, Sen TZ, Cho KT, Schott DA, Braun BL, Dietze M, Dunfee B, Elsik CG, Manchanda N, Coe E, Sachs M, Stinard P, Tolbert J, Zimmerman S, Andorf CM. MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Res 2020; 47:D1146-D1154. [PMID: 30407532 PMCID: PMC6323944 DOI: 10.1093/nar/gky1046] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/16/2018] [Indexed: 01/12/2023] Open
Abstract
Since its 2015 update, MaizeGDB, the Maize Genetics and Genomics database, has expanded to support the sequenced genomes of many maize inbred lines in addition to the B73 reference genome assembly. Curation and development efforts have targeted high quality datasets and tools to support maize trait analysis, germplasm analysis, genetic studies, and breeding. MaizeGDB hosts a wide range of data including recent support of new data types including genome metadata, RNA-seq, proteomics, synteny, and large-scale diversity. To improve access and visualization of data types several new tools have been implemented to: access large-scale maize diversity data (SNPversity), download and compare gene expression data (qTeller), visualize pedigree data (Pedigree Viewer), link genes with phenotype images (MaizeDIG), and enable flexible user-specified queries to the MaizeGDB database (MaizeMine). MaizeGDB also continues to be the community hub for maize research, coordinating activities and providing technical support to the maize research community. Here we report the changes MaizeGDB has made within the last three years to keep pace with recent software and research advances, as well as the pan-genomic landscape that cheaper and better sequencing technologies have made possible. MaizeGDB is accessible online at https://www.maizegdb.org.
Collapse
Affiliation(s)
- John L Portwood
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Margaret R Woodhouse
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Ethalinda K Cannon
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lisa C Harper
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Mary L Schaeffer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jesse R Walsh
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Taner Z Sen
- USDA-ARS Crop Improvement and Genetics Research Unit, Albany, CA 94710, USA.,Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Kyoung Tak Cho
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - David A Schott
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Bremen L Braun
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Miranda Dietze
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Brittney Dunfee
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.,Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Nancy Manchanda
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Ed Coe
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Marty Sachs
- USDA/ARS/MWA Soybean/Maize Germplasm, Pathology & Genetics Research Unit, Urbana, IL, 61801, USA
| | - Philip Stinard
- USDA/ARS/MWA Soybean/Maize Germplasm, Pathology & Genetics Research Unit, Urbana, IL, 61801, USA
| | - Josh Tolbert
- USDA/ARS/MWA Soybean/Maize Germplasm, Pathology & Genetics Research Unit, Urbana, IL, 61801, USA
| | - Shane Zimmerman
- USDA/ARS/MWA Soybean/Maize Germplasm, Pathology & Genetics Research Unit, Urbana, IL, 61801, USA
| | - Carson M Andorf
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| |
Collapse
|
7
|
Interaction Between Induced and Natural Variation at oil yellow1 Delays Reproductive Maturity in Maize. G3-GENES GENOMES GENETICS 2020; 10:797-810. [PMID: 31822516 PMCID: PMC7003087 DOI: 10.1534/g3.119.400838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously demonstrated that maize (Zea mays) locus very oil yellow1 (vey1) encodes a putative cis-regulatory expression polymorphism at the magnesium chelatase subunit I gene (aka oil yellow1) that strongly modifies the chlorophyll content of the semi-dominant Oy1-N1989 mutants. The vey1 allele of Mo17 inbred line reduces chlorophyll content in the mutants leading to reduced photosynthetic output. Oy1-N1989 mutants in B73 reached reproductive maturity four days later than wild-type siblings. Enhancement of Oy1-N1989 by the Mo17 allele at the vey1 QTL delayed maturity further, resulting in detection of a flowering time QTL in two bi-parental mapping populations crossed to Oy1-N1989. The near isogenic lines of B73 harboring the vey1 allele from Mo17 delayed flowering of Oy1-N1989 mutants by twelve days. Just as previously observed for chlorophyll content, vey1 had no effect on reproductive maturity in the absence of the Oy1-N1989 allele. Loss of chlorophyll biosynthesis in Oy1-N1989 mutants and enhancement by vey1 reduced CO2 assimilation. We attempted to separate the effects of photosynthesis on the induction of flowering from a possible impact of chlorophyll metabolites and retrograde signaling by manually reducing leaf area. Removal of leaves, independent of the Oy1-N1989 mutant, delayed flowering but surprisingly reduced chlorophyll contents of emerging leaves. Thus, defoliation did not completely separate the identity of the signal(s) that regulates flowering time from changes in chlorophyll content in the foliage. These findings illustrate the necessity to explore the linkage between metabolism and the mechanisms that connect it to flowering time regulation.
Collapse
|
8
|
Yi Q, Malvar RA, Álvarez-Iglesias L, Ordás B, Revilla P. Dissecting the genetics of cold tolerance in a multiparental maize population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:503-516. [PMID: 31740990 DOI: 10.1007/s00122-019-03482-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/11/2019] [Indexed: 05/21/2023]
Abstract
We identify the largest amount of QTLs for cold tolerance in maize; mainly associated with photosynthetic efficiency, which opens new possibilities for genomic selection for cold tolerance in maize. Breeding for cold tolerance in maize is an important objective in temperate areas. The objective was to carry out a highly efficient study of quantitative trait loci (QTLs) for cold tolerance in maize. We evaluated 406 recombinant inbred lines from a multi-parent advanced generation intercross (MAGIC) population in a growth chamber under cold and control conditions, and in the field at early and normal sowing. We recorded cold tolerance-related traits, including the number of days from sowing to emergence, chlorophyll content and maximum quantum efficiency of photosystem II (Fv/Fm). Association mapping was based on genotyping with near one million single nucleotide polymorphism (SNP) markers. We found 858 SNPs significantly associated with all traits, most of them under cold conditions and early sowing. Most QTLs were associated with chlorophyll and Fv/Fm. Many candidate genes coincided between the current research and previous reports. These results suggest that (1) the MAGIC population is an efficient tool for identifying QTLs for cold tolerance; (2) most QTLs for cold tolerance were associated with Fv/Fm; (3) most of these QTLs were located in specific genomic regions, particularly bin 10.04; (4) the current study allows genetically improving cold tolerance with genome-wide selection.
Collapse
Affiliation(s)
- Q Yi
- Misión Biológica de Galicia (CSIC), Apartado 28, 36080, Pontevedra, Spain
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - R A Malvar
- Misión Biológica de Galicia (CSIC), Apartado 28, 36080, Pontevedra, Spain
| | - L Álvarez-Iglesias
- Misión Biológica de Galicia (CSIC), Apartado 28, 36080, Pontevedra, Spain
| | - B Ordás
- Misión Biológica de Galicia (CSIC), Apartado 28, 36080, Pontevedra, Spain
| | - Pedro Revilla
- Misión Biológica de Galicia (CSIC), Apartado 28, 36080, Pontevedra, Spain.
| |
Collapse
|
9
|
Jiménez-Galindo JC, Malvar RA, Butrón A, Santiago R, Samayoa LF, Caicedo M, Ordás B. Mapping of resistance to corn borers in a MAGIC population of maize. BMC PLANT BIOLOGY 2019; 19:431. [PMID: 31623579 PMCID: PMC6796440 DOI: 10.1186/s12870-019-2052-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/24/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Corn borers constitute an important pest of maize around the world; in particular Sesamia nonagrioides Lefèbvre, named Mediterranean corn borer (MCB), causes important losses in Southern Europe. Methods of selection can be combined with transgenic approaches to increase the efficiency and durability of the resistance to corn borers. Previous studies of the genetic factors involved in resistance to MCB have been carried out using bi-parental populations that have low resolution or using association inbred panels that have a low power to detect rare alleles. We developed a Multi-parent Advanced Generation InterCrosses (MAGIC) population to map with high resolution the genetic determinants of resistance to MCB. RESULTS We detected multiple single nucleotide polymorphisms (SNPs) of low effect associated with resistance to stalk tunneling by MCB. We dissected a wide region related to stalk tunneling in multiple studies into three smaller regions (at ~ 150, ~ 155, and ~ 165 Mb in chromosome 6) that closely overlap with regions associated with cell wall composition. We also detected regions associated with kernel resistance and agronomic traits, although the co-localization of significant regions between traits was very low. This indicates that it is possible the concurrent improvement of resistance and agronomic traits. CONCLUSIONS We developed a mapping population which allowed a finer dissection of the genetics of maize resistance to corn borers and a solid nomination of candidate genes based on functional information. The population, given its large variability, was also adequate to map multiple traits and study the relationship between them.
Collapse
Affiliation(s)
- José Cruz Jiménez-Galindo
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
- National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Ave. Hidalgo 1213, Cd. Cuauhtémoc, 31500 Chihuahua, Mexico
| | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| | - Rogelio Santiago
- Departamento Biología Vegetal y Ciencias del Suelo, Unidad Asociada BVE1-UVIGO y MBG (CSIC), Facultad de Biología, Universidad de Vigo, Campus As Lagoas Marcosende, 36310 Vigo, Spain
| | - Luis Fernando Samayoa
- North Carolina State University, 4210 Williams Hall 101, Derieux Place, Raleigh, NC 27695 USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620 USA
| | - Marlon Caicedo
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), 170315 Quito, Ecuador
| | - Bernardo Ordás
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| |
Collapse
|
10
|
A Very Oil Yellow1 Modifier of the Oil Yellow1-N1989 Allele Uncovers a Cryptic Phenotypic Impact of Cis-regulatory Variation in Maize. G3-GENES GENOMES GENETICS 2019; 9:375-390. [PMID: 30518539 PMCID: PMC6385977 DOI: 10.1534/g3.118.200798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Forward genetics determines the function of genes underlying trait variation by identifying the change in DNA responsible for changes in phenotype. Detecting phenotypically-relevant variation outside protein coding sequences and distinguishing this from neutral variants is not trivial; partly because the mechanisms by which DNA polymorphisms in the intergenic regions affect gene regulation are poorly understood. Here we utilized a dominant genetic reporter to investigate the effect of cis and trans-acting regulatory variation. We performed a forward genetic screen for natural variation that suppressed or enhanced the semi-dominant mutant allele Oy1-N1989, encoding the magnesium chelatase subunit I of maize. This mutant permits rapid phenotyping of leaf color as a reporter for chlorophyll accumulation, and mapping of natural variation in maize affecting chlorophyll metabolism. We identified a single modifier locus segregating between B73 and Mo17 that was linked to the reporter gene itself, which we call very oil yellow1 (vey1). Based on the variation in OY1 transcript abundance and genome-wide association data, vey1 is predicted to consist of multiple cis-acting regulatory sequence polymorphisms encoded at the wild-type oy1 alleles. The vey1 locus appears to be a common polymorphism in the maize germplasm that alters the expression level of a key gene in chlorophyll biosynthesis. These vey1 alleles have no discernable impact on leaf chlorophyll in the absence of the Oy1-N1989 reporter. Thus, the use of a mutant as a reporter for magnesium chelatase activity resulted in the detection of expression-level polymorphisms not readily visible in the laboratory.
Collapse
|
11
|
Sen TZ, Braun BL, Schott DA, Portwood Ii JL, Schaeffer ML, Harper LC, Gardiner JM, Cannon EK, Andorf CM. Surveying the Maize community for their diversity and pedigree visualization needs to prioritize tool development and curation. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:3737830. [PMID: 28605768 PMCID: PMC5467559 DOI: 10.1093/database/bax031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/25/2017] [Indexed: 01/03/2023]
Abstract
The Maize Genetics and Genomics Database (MaizeGDB) team prepared a survey to identify breeders’ needs for visualizing pedigrees, diversity data and haplotypes in order to prioritize tool development and curation efforts at MaizeGDB. The survey was distributed to the maize research community on behalf of the Maize Genetics Executive Committee in Summer 2015. The survey garnered 48 responses from maize researchers, of which more than half were self-identified as breeders. The survey showed that the maize researchers considered their top priorities for visualization as: (i) displaying single nucleotide polymorphisms in a given region for a given list of lines, (ii) showing haplotypes for a given list of lines and (iii) presenting pedigree relationships visually. The survey also asked which populations would be most useful to display. The following two populations were on top of the list: (i) 3000 publicly available maize inbred lines used in Romay et al. (Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol, 2013;14:R55) and (ii) maize lines with expired Plant Variety Protection Act (ex-PVP) certificates. Driven by this strong stakeholder input, MaizeGDB staff are currently working in four areas to improve its interface and web-based tools: (i) presenting immediate progenies of currently available stocks at the MaizeGDB Stock pages, (ii) displaying the most recent ex-PVP lines described in the Germplasm Resources Information Network (GRIN) on the MaizeGDB Stock pages, (iii) developing network views of pedigree relationships and (iv) visualizing genotypes from SNP-based diversity datasets. These survey results can help other biological databases to direct their efforts according to user preferences as they serve similar types of data sets for their communities. Database URL https://www.maizegdb.org.
Collapse
Affiliation(s)
- Taner Z Sen
- U.S. Department of Agriculture- Agricultural Research Service (USDA-ARS) Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA.,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
| | - Bremen L Braun
- U.S. Department of Agriculture- Agricultural Research Service (USDA-ARS) Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - David A Schott
- U.S. Department of Agriculture- Agricultural Research Service (USDA-ARS) Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA.,Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - John L Portwood Ii
- U.S. Department of Agriculture- Agricultural Research Service (USDA-ARS) Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Mary L Schaeffer
- USDA-ARS Plant Genetics Research Unit, University of Missouri, Columbia, MO 65211, USA.,Division of Plant Sciences, Department of Agronomy, University of Missouri, Columbia, MO 65211, USA and
| | - Lisa C Harper
- U.S. Department of Agriculture- Agricultural Research Service (USDA-ARS) Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ethalinda K Cannon
- U.S. Department of Agriculture- Agricultural Research Service (USDA-ARS) Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA.,Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Carson M Andorf
- U.S. Department of Agriculture- Agricultural Research Service (USDA-ARS) Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA.,Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
12
|
Feenstra AD, Alexander LE, Song Z, Korte AR, Yandeau-Nelson MD, Nikolau BJ, Lee YJ. Spatial Mapping and Profiling of Metabolite Distributions during Germination. PLANT PHYSIOLOGY 2017; 174:2532-2548. [PMID: 28634228 PMCID: PMC5543969 DOI: 10.1104/pp.17.00652] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/15/2017] [Indexed: 05/18/2023]
Abstract
Germination is a highly complex process by which seeds begin to develop and establish themselves as viable organisms. In this study, we utilize a combination of gas chromatography-mass spectrometry, liquid chromatography-fluorescence, and mass spectrometry imaging approaches to profile and visualize the metabolic distributions of germinating seeds from two different inbreds of maize (Zea mays) seeds, B73 and Mo17. Gas chromatography and liquid chromatography analyses demonstrate that the two inbreds are highly differentiated in their metabolite profiles throughout the course of germination, especially with regard to amino acids, sugar alcohols, and small organic acids. Crude dissection of the seed followed by gas chromatography-mass spectrometry analysis of polar metabolites also revealed that many compounds were highly sequestered among the various seed tissue types. To further localize compounds, matrix-assisted laser desorption/ionization mass spectrometry imaging was utilized to visualize compounds in fine detail in their native environments over the course of germination. Most notably, the fatty acyl chain-dependent differential localization of phospholipids and triacylglycerols was observed within the embryo and radicle, showing correlation with the heterogeneous distribution of fatty acids. Other interesting observations include unusual localization of ceramides on the endosperm/scutellum boundary and subcellular localization of ferulate in the aleurone.
Collapse
Affiliation(s)
- Adam D Feenstra
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
- Ames Laboratory-United States Department of Energy, Ames, Iowa 50011
| | - Liza E Alexander
- Ames Laboratory-United States Department of Energy, Ames, Iowa 50011
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011
| | - Zhihong Song
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011
| | - Andrew R Korte
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
- Ames Laboratory-United States Department of Energy, Ames, Iowa 50011
| | - Marna D Yandeau-Nelson
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Basil J Nikolau
- Ames Laboratory-United States Department of Energy, Ames, Iowa 50011
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011
| | - Young Jin Lee
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
- Ames Laboratory-United States Department of Energy, Ames, Iowa 50011
| |
Collapse
|
13
|
Jiménez-Galindo JC, Ordás B, Butrón A, Samayoa LF, Malvar RA. QTL Mapping for Yield and Resistance against Mediterranean Corn Borer in Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:698. [PMID: 28533785 PMCID: PMC5420578 DOI: 10.3389/fpls.2017.00698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/18/2017] [Indexed: 05/19/2023]
Abstract
Introduction: The Mediterranean corn borer (MCB), Sesamia nonagrioides, is a major pest of maize, Zea mays, in Mediterranean countries, inflicting significant kernel yield losses. For that reason, it necessary to know the genetic mechanisms that regulate the agronomic and resistance traits. A quantitative trait loci (QTL) mapping study for yield, resistance against MCB attack, and other relevant agronomic traits was performed using a recombinant inbred line (RIL) population derived from the cross A637 × A509 that is expected to segregate for yield, and ear, and stalk resistance to MCB. 171 RILs were evaluated in 2014 and 2015 at Pontevedra, Spain, along with the two parental inbreds A637 and A509 using a 13 × 14 single lattice design with two replications. A genetic map with 285 SNP markers was used for QTL analysis. Our objectives were to detect QTL for resistance to MCB and tolerance-related agronomic traits, to gain insights on the genetic relationship between resistance to MCB attack and yield, and to establish the best way for simultaneously improving yield and resistance to MCB. Results: Twelve significant QTL were detected for agronomic and resistance traits. QTL at bins 1.10 and 5.04 were especially interesting because the same allelic variant at these QTL simultaneously improved yield and insect resistance. In contrast, in the region 8.04-8.05, QTL showed opposite effects for yield and resistance. Several QTL for indexes which combine yield and resistance traits were found especially in the region 10.02-10.03. Conclusions: Selecting genotypes with the favorable allele of QTL on chromosome 5 (bin 5.01) will decrease tunnel length without affect yield, silking and plant height and QTL on the region 5.04 could be used to improve stalk resistance and yield simultaneously. An allele of QTL on bin 9.07 will increase ear resistance to MCB attack but it could produce later varieties while favorable allele in region 1.10 could improve ear and stalk resistance and yield without secondary negative effects. The region 8.03-8.05 mainly but also the region 10.02-10.03 and 5.04 may play an important role to elucidate the association between yield, other agronomic traits and MCB resistance.
Collapse
Affiliation(s)
- José C. Jiménez-Galindo
- Misión Biológica de Galicia, Spanish National Research CouncilPontevedra, Spain
- National Institute of Forestry, Agriculture and Livestock ResearchChihuahua, Mexico
- *Correspondence: José C. Jiménez-Galindo
| | - Bernardo Ordás
- Misión Biológica de Galicia, Spanish National Research CouncilPontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research CouncilPontevedra, Spain
| | - Luis F. Samayoa
- Department of Crop Science, North Carolina State UniversityRaleigh, NC, USA
| | - Rosa A. Malvar
- Misión Biológica de Galicia, Spanish National Research CouncilPontevedra, Spain
| |
Collapse
|
14
|
Revilla P, Rodríguez VM, Ordás A, Rincent R, Charcosset A, Giauffret C, Melchinger AE, Schön CC, Bauer E, Altmann T, Brunel D, Moreno-González J, Campo L, Ouzunova M, Álvarez Á, Ruíz de Galarreta JI, Laborde J, Malvar RA. Association mapping for cold tolerance in two large maize inbred panels. BMC PLANT BIOLOGY 2016; 16:127. [PMID: 27267760 PMCID: PMC4895824 DOI: 10.1186/s12870-016-0816-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/20/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Breeding for cold tolerance in maize promises to allow increasing growth area and production in temperate zones. The objective of this research was to conduct genome-wide association analyses (GWAS) in temperate maize inbred lines and to find strategies for pyramiding genes for cold tolerance. Two panels of 306 dent and 292 European flint maize inbred lines were evaluated per se and in testcrosses under cold and control conditions in a growth chamber. We recorded indirect measures for cold tolerance as the traits number of days from sowing to emergence, relative leaf chlorophyll content or quantum efficiency of photosystem II. Association mapping for identifying genes associated to cold tolerance in both panels was based on genotyping with 49,585 genome-wide single nucleotide polymorphism (SNP) markers. RESULTS We found 275 significant associations, most of them in the inbreds evaluated per se, in the flint panel, and under control conditions. A few candidate genes coincided between the current research and previous reports. A total of 47 flint inbreds harbored the favorable alleles for six significant quantitative trait loci (QTL) detected for inbreds per se evaluated under cold conditions, four of them had also the favorable alleles for the main QTL detected from the testcrosses. Only four dent inbreds (EZ47, F924, NK807 and PHJ40) harbored the favorable alleles for three main QTL detected from the evaluation of the dent inbreds per se under cold conditions. There were more QTL in the flint panel and most of the QTL were associated with days to emergence and ΦPSII. CONCLUSIONS These results open new possibilities to genetically improve cold tolerance either with genome-wide selection or with marker assisted selection.
Collapse
Affiliation(s)
- Pedro Revilla
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), PO Box 2836080, Pontevedra, Spain.
| | - Víctor Manuel Rodríguez
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), PO Box 2836080, Pontevedra, Spain
| | - Amando Ordás
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), PO Box 2836080, Pontevedra, Spain
| | - Renaud Rincent
- INRA, UMR de Génétique Végétale/Université Paris-Sud - CNRS - AgroParisTech, Gif-sur-Yvette, France
| | - Alain Charcosset
- INRA, UMR de Génétique Végétale/Université Paris-Sud - CNRS - AgroParisTech, Gif-sur-Yvette, France
| | - Catherine Giauffret
- UMR INRA/USTL 1281 Stress Abiotiques et Différenciation des Végetaux cultivés, Péronne, France
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, Universität Hohenheim, Stuttgart, Germany
| | | | - Eva Bauer
- Plant Breeding, Technische Universität München, Freising, Germany
| | - Thomas Altmann
- Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | - Laura Campo
- Centro Investigacións Agrarias Mabegondo (CIAM), A Coruña, Spain
| | | | - Ángel Álvarez
- Estación Experimental de Aula Dei (CSIC), Saragossa, Spain
| | | | | | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), PO Box 2836080, Pontevedra, Spain
| |
Collapse
|
15
|
Calderón CI, Yandell BS, Doebley JF. Fine Mapping of a QTL Associated with Kernel Row Number on Chromosome 1 of Maize. PLoS One 2016; 11:e0150276. [PMID: 26930509 PMCID: PMC4773258 DOI: 10.1371/journal.pone.0150276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/11/2016] [Indexed: 12/27/2022] Open
Abstract
The genetic factors underlying changes in ear morphology, and particularly the inheritance of kernel row number (KRN), have been broadly investigated in diverse mapping populations in maize (Zea mays L.). In this study, we mapped a region on the long arm of chromosome 1 containing a QTL for KRN. This work was performed using a set of recombinant chromosome nearly isogenic lines (RCNILs) derived from a BC2S3 population produced using the inbred maize line W22 and teosinte (Zea mays ssp. parviglumis) as the parents. A set of 48 RCNILs was evaluated in the field during the summer of 2013 in order to perform the mapping. A QTL for KRN was found that explained approximately 51% of the phenotypic variance and had a 1.5-LOD confidence interval of 203 kb. Seven genes are described in this interval. One of these candidate genes may have been the target of domestication processes in maize and contributed to the shift from two kernel row ears in teosinte to a highly polystichous ear in maize.
Collapse
Affiliation(s)
- Claudia I. Calderón
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Brian S. Yandell
- Department of Statistics and Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John F. Doebley
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
16
|
Andorf CM, Cannon EK, Portwood JL, Gardiner JM, Harper LC, Schaeffer ML, Braun BL, Campbell DA, Vinnakota AG, Sribalusu VV, Huerta M, Cho KT, Wimalanathan K, Richter JD, Mauch ED, Rao BS, Birkett SM, Sen TZ, Lawrence-Dill CJ. MaizeGDB update: new tools, data and interface for the maize model organism database. Nucleic Acids Res 2015; 44:D1195-201. [PMID: 26432828 PMCID: PMC4702771 DOI: 10.1093/nar/gkv1007] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 11/24/2022] Open
Abstract
MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, the original maize genetics database MaizeDB was created. In 2003, the combined contents of MaizeDB and the sequence data from ZmDB were made accessible as a single resource named MaizeGDB. Over the next decade, MaizeGDB became more sequence driven while still maintaining traditional maize genetics datasets. This enabled the project to meet the continued growing and evolving needs of the maize research community, yet the interface and underlying infrastructure remained unchanged. In 2015, the MaizeGDB team completed a multi-year effort to update the MaizeGDB resource by reorganizing existing data, upgrading hardware and infrastructure, creating new tools, incorporating new data types (including diversity data, expression data, gene models, and metabolic pathways), and developing and deploying a modern interface. In addition to coordinating a data resource, the MaizeGDB team coordinates activities and provides technical support to the maize research community. MaizeGDB is accessible online at http://www.maizegdb.org.
Collapse
Affiliation(s)
- Carson M Andorf
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Ethalinda K Cannon
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
| | - John L Portwood
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Jack M Gardiner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Lisa C Harper
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Mary L Schaeffer
- USDA-ARS Plant Genetics Research Unit, University of Missouri, Columbia, MO 65211, USA Division of Plant Sciences, Department of Agronomy, University of Missouri, Columbia, MO 65211, USA
| | - Bremen L Braun
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Darwin A Campbell
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | - Miranda Huerta
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Kyoung Tak Cho
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Kokulapalan Wimalanathan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Jacqueline D Richter
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Emily D Mauch
- Interdepartmental Genetics and Genomics, Iowa State University, Ames, IA 50011, USA
| | - Bhavani S Rao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Scott M Birkett
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Taner Z Sen
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Carolyn J Lawrence-Dill
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
17
|
Cytogenetic and Sequence Analyses of Mitochondrial DNA Insertions in Nuclear Chromosomes of Maize. G3-GENES GENOMES GENETICS 2015; 5:2229-39. [PMID: 26333837 PMCID: PMC4632043 DOI: 10.1534/g3.115.020677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transfer of mitochondrial DNA (mtDNA) into nuclear genomes is a regularly occurring process that has been observed in many species. Few studies, however, have focused on the variation of nuclear-mtDNA sequences (NUMTs) within a species. This study examined mtDNA insertions within chromosomes of a diverse set of Zea mays ssp. mays (maize) inbred lines by the use of fluorescence in situ hybridization. A relatively large NUMT on the long arm of chromosome 9 (9L) was identified at approximately the same position in four inbred lines (B73, M825, HP301, and Oh7B). Further examination of the similarly positioned 9L NUMT in two lines, B73 and M825, indicated that the large size of these sites is due to the presence of a majority of the mitochondrial genome; however, only portions of this NUMT (~252 kb total) were found in the publically available B73 nuclear sequence for chromosome 9. Fiber-fluorescence in situ hybridization analysis estimated the size of the B73 9L NUMT to be ~1.8 Mb and revealed that the NUMT is methylated. Two regions of mtDNA (2.4 kb and 3.3 kb) within the 9L NUMT are not present in the B73 mitochondrial NB genome; however, these 2.4-kb and 3.3-kb segments are present in other Zea mitochondrial genomes, including that of Zea mays ssp. parviglumis, a progenitor of domesticated maize.
Collapse
|
18
|
Krishnamurthy P, Kim JA, Jeong MJ, Kang CH, Lee SI. Defining the RNA-binding glycine-rich (RBG) gene superfamily: new insights into nomenclature, phylogeny, and evolutionary trends obtained by genome-wide comparative analysis of Arabidopsis, Chinese cabbage, rice and maize genomes. Mol Genet Genomics 2015; 290:2279-95. [PMID: 26123085 DOI: 10.1007/s00438-015-1080-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
RNA-binding glycine-rich (RBG) proteins play diverse roles in plant growth, development, protection and genome organization. An overly broad definition for class IV glycine-rich proteins (GRPs), namely RNA-binding activity and a glycine-rich C-terminus, has resulted in many distantly related and/or non-related proteins being grouped into this class of RBGs. This definition has hampered the study of RBG evolution. In this study, we used a comparative genomic approach consisting of ortholog, homolog, synteny and phylogenetic analyses to legitimately exclude all distantly/non-related proteins from class IV GRPs and to identify 15, 22, 12 and 18 RBG proteins in Arabidopsis, Chinese cabbage, rice and maize genomes, respectively. All identified RBGs could be divided into three subclasses, namely RBGA, RBGB and RBGD, which may be derived from a common ancestor. We assigned RBGs excluded from class IV GRPs to a separate RBG superfamily. RBGs have evolved and diversified in different species via different mechanisms; segmental duplication and recombination have had major effects, with tandem duplication, intron addition/deletion and domain recombination/deletion playing minor roles. Loss and retention of duplicated RBGs after polyploidization has been species and subclass specific. For example, following recent whole-genome duplication and triplication in maize and Chinese cabbage, respectively, most duplicated copies of RBGA have been lost in maize while RBGD duplicates have been retained; in Chinese cabbage, in contrast, RBGA duplicates have been retained while RBGD duplicates have been lost. Our findings reveal fundamental information and shed new light on the structural characteristics and evolutionary dynamics of RBGs.
Collapse
Affiliation(s)
- Panneerselvam Krishnamurthy
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea
| | - Mi-Jeong Jeong
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea
| | - Chang Ho Kang
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, Jinju, 660-701, Korea
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea.
| |
Collapse
|
19
|
Abstract
Multiple disease resistance has important implications for plant fitness, given the selection pressure that many pathogens exert directly on natural plant populations and indirectly via crop improvement programs. Evidence of a locus conditioning resistance to multiple pathogens was found in bin 1.06 of the maize genome with the allele from inbred line "Tx303" conditioning quantitative resistance to northern leaf blight (NLB) and qualitative resistance to Stewart's wilt. To dissect the genetic basis of resistance in this region and to refine candidate gene hypotheses, we mapped resistance to the two diseases. Both resistance phenotypes were localized to overlapping regions, with the Stewart's wilt interval refined to a 95.9-kb segment containing three genes and the NLB interval to a 3.60-Mb segment containing 117 genes. Regions of the introgression showed little to no recombination, suggesting structural differences between the inbred lines Tx303 and "B73," the parents of the fine-mapping population. We examined copy number variation across the region using next-generation sequencing data, and found large variation in read depth in Tx303 across the region relative to the reference genome of B73. In the fine-mapping region, association mapping for NLB implicated candidate genes, including a putative zinc finger and pan1. We tested mutant alleles and found that pan1 is a susceptibility gene for NLB and Stewart's wilt. Our data strongly suggest that structural variation plays an important role in resistance conditioned by this region, and pan1, a gene conditioning susceptibility for NLB, may underlie the QTL.
Collapse
|
20
|
Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D, Tao Y, Zheng Y, Zhang Z. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:405-16. [PMID: 23020630 DOI: 10.1111/tpj.12038] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 09/22/2012] [Accepted: 09/25/2012] [Indexed: 05/20/2023]
Abstract
Maize plant height is closely associated with biomass, lodging resistance and grain yield. Determining the genetic basis of plant height by characterizing and cloning plant height genes will guide the genetic improvement of crops. In this study, a quantitative trait locus (QTL) for plant height, qPH3.1, was identified on chromosome 3 using populations derived from a cross between Zong3 and its chromosome segment substitution line, SL15. The plant height of the two lines was obviously different, and application of exogenous gibberellin A(3) removed this difference. QTL mapping placed qPH3.1 within a 4.0 cM interval, explaining 32.3% of the phenotypic variance. Furthermore, eight homozygous segmental isolines (SILs) developed from two larger F(2) populations further narrowed down qPH3.1 to within a 12.6 kb interval. ZmGA3ox2, an ortholog of OsGA3ox2, which encodes a GA3 β-hydroxylase, was positionally cloned. Association mapping identified two polymorphisms in ZmGA3ox2 that were significantly associated with plant height across two experiments. Quantitative RT-PCR showed that SL15 had higher ZmGA3ox2 expression relative to Zong3. The resultant higher GA(1) accumulation led to longer internodes in SL15 because of increased cell lengths. Moreover, a large deletion in the coding region of ZmGA3ox2 is responsible for the dwarf mutant d1-6016. The successfully isolated qPH3.1 enriches our knowledge on the genetic basis of plant height in maize, and provides an opportunity for improvement of plant architecture in maize breeding.
Collapse
Affiliation(s)
- Feng Teng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Belarmino LC, da S Oliveira AR, Brasileiro-Vidal AC, de A Bortoleti KC, Bezerra-Neto JP, Abdelnoor RV, Benko-Iseppon AM. Mining plant genome browsers as a means for efficient connection of physical, genetic and cytogenetic mapping: An example using soybean. Genet Mol Biol 2012; 35:335-47. [PMID: 22802719 PMCID: PMC3392886 DOI: 10.1590/s1415-47572012000200015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physical maps are important tools to uncover general chromosome structure as well as to compare different plant lineages and species, helping to elucidate genome structure, evolution and possibilities regarding synteny and colinearity. The increasing production of sequence data has opened an opportunity to link information from mapping studies to the underlying sequences. Genome browsers are invaluable platforms that provide access to these sequences, including tools for genome analysis, allowing the integration of multivariate information, and thus aiding to explain the emergence of complex genomes. The present work presents a tutorial regarding the use of genome browsers to develop targeted physical mapping, providing also a general overview and examples about the possibilities regarding the use of Fluorescent In Situ Hybridization (FISH) using bacterial artificial chromosomes (BAC), simple sequence repeats (SSR) and rDNA probes, highlighting the potential of such studies for map integration and comparative genetics. As a case study, the available genome of soybean was accessed to show how the physical and in silico distribution of such sequences may be compared at different levels. Such evaluations may also be complemented by the identification of sequences beyond the detection level of cytological methods, here using members of the aquaporin gene family as an example. The proposed approach highlights the complementation power of the combination of molecular cytogenetics and computational approaches for the anchoring of coding or repetitive sequences in plant genomes using available genome browsers, helping in the determination of sequence location, arrangement and number of repeats, and also filling gaps found in computational pseudochromosome assemblies.
Collapse
Affiliation(s)
- Luis C Belarmino
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Lawrence SD, Novak NG, Kayal WE, Ju CJT, Cooke JEK. Root herbivory: molecular analysis of the maize transcriptome upon infestation by Southern corn rootworm, Diabrotica undecimpunctata howardi. PHYSIOLOGIA PLANTARUM 2012; 144:303-19. [PMID: 22172013 DOI: 10.1111/j.1399-3054.2011.01557.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
While many studies have characterized changes to the transcriptome of plants attacked by shoot-eating insect pests, few have examined transcriptome-level effects of root pests. Maize (Zea mays) seedlings were subjected to infestation for approximately 2 weeks by the root herbivore southern corn rootworm (SCR) Diabrotica undecimpunctata howardi, and changes in transcript abundance within both roots and shoots were analyzed using a 57K element microarray. A total of 541 genes showed statistically significant changes in transcript abundance in infested roots, including genes encoding many pathogenesis-related proteins such as chitinases, proteinase inhibitors, peroxidases and β-1,3-glucanases. Several WRKY transcription factors--often associated with biotic responses--exhibited increased transcript abundance upon SCR feeding. Differentially expressed (DE) genes were also detected in shoots of infested vs control plants. Quantitative Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) was used to confirm patterns of transcript abundance for several significant DE genes using an independent experiment with a 2-6 day period of SCR infestation. Because of the well-documented roles that jasmonic acid (JA) or salicylic acid (SA) play in herbivory responses, the effect of exogenous JA or SA application on transcript abundance corresponding to the same subset of SCR-responsive genes was assessed. The response of these genes at the level of transcript abundance to SA and JA differed between roots and shoots and also differed among the genes that were examined. These data suggested that SA- and JA-dependent and independent signals contributed to the transcriptome-level changes in maize roots and shoots in response to SCR infestation.
Collapse
Affiliation(s)
- Susan D Lawrence
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, BARC-West, 10,300 Baltimore Avenue, Building 011A, Room 214, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|
23
|
Kong L, Wang J, Zhao S, Gu X, Luo J, Gao G. ABrowse--a customizable next-generation genome browser framework. BMC Bioinformatics 2012; 13:2. [PMID: 22222089 PMCID: PMC3265404 DOI: 10.1186/1471-2105-13-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/05/2012] [Indexed: 11/14/2022] Open
Abstract
Background With the rapid growth of genome sequencing projects, genome browser is becoming indispensable, not only as a visualization system but also as an interactive platform to support open data access and collaborative work. Thus a customizable genome browser framework with rich functions and flexible configuration is needed to facilitate various genome research projects. Results Based on next-generation web technologies, we have developed a general-purpose genome browser framework ABrowse which provides interactive browsing experience, open data access and collaborative work support. By supporting Google-map-like smooth navigation, ABrowse offers end users highly interactive browsing experience. To facilitate further data analysis, multiple data access approaches are supported for external platforms to retrieve data from ABrowse. To promote collaborative work, an online user-space is provided for end users to create, store and share comments, annotations and landmarks. For data providers, ABrowse is highly customizable and configurable. The framework provides a set of utilities to import annotation data conveniently. To build ABrowse on existing annotation databases, data providers could specify SQL statements according to database schema. And customized pages for detailed information display of annotation entries could be easily plugged in. For developers, new drawing strategies could be integrated into ABrowse for new types of annotation data. In addition, standard web service is provided for data retrieval remotely, providing underlying machine-oriented programming interface for open data access. Conclusions ABrowse framework is valuable for end users, data providers and developers by providing rich user functions and flexible customization approaches. The source code is published under GNU Lesser General Public License v3.0 and is accessible at http://www.abrowse.org/. To demonstrate all the features of ABrowse, a live demo for Arabidopsis thaliana genome has been built at http://arabidopsis.cbi.edu.cn/.
Collapse
Affiliation(s)
- Lei Kong
- College of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, Peking University, Beijing, 100871, P.R. China
| | | | | | | | | | | |
Collapse
|
24
|
Cannon EKS, Birkett SM, Braun BL, Kodavali S, Jennewein DM, Yilmaz A, Antonescu V, Antonescu C, Harper LC, Gardiner JM, Schaeffer ML, Campbell DA, Andorf CM, Andorf D, Lisch D, Koch KE, McCarty DR, Quackenbush J, Grotewold E, Lushbough CM, Sen TZ, Lawrence CJ. POPcorn: An Online Resource Providing Access to Distributed and Diverse Maize Project Data. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2011; 2011:923035. [PMID: 22253616 PMCID: PMC3255282 DOI: 10.1155/2011/923035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/29/2011] [Indexed: 05/21/2023]
Abstract
The purpose of the online resource presented here, POPcorn (Project Portal for corn), is to enhance accessibility of maize genetic and genomic resources for plant biologists. Currently, many online locations are difficult to find, some are best searched independently, and individual project websites often degrade over time-sometimes disappearing entirely. The POPcorn site makes available (1) a centralized, web-accessible resource to search and browse descriptions of ongoing maize genomics projects, (2) a single, stand-alone tool that uses web Services and minimal data warehousing to search for sequence matches in online resources of diverse offsite projects, and (3) a set of tools that enables researchers to migrate their data to the long-term model organism database for maize genetic and genomic information: MaizeGDB. Examples demonstrating POPcorn's utility are provided herein.
Collapse
Affiliation(s)
- Ethalinda K. S. Cannon
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Scott M. Birkett
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Bremen L. Braun
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Sateesh Kodavali
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Douglas M. Jennewein
- Department of Computer Science, University of South Dakota, Vermillion, SD 57069, USA
| | - Alper Yilmaz
- Plant Biotechnology Center and Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Valentin Antonescu
- Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Sm822, Boston, MA 02215, USA
| | - Corina Antonescu
- Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Sm822, Boston, MA 02215, USA
| | - Lisa C. Harper
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
- USDA-ARS Plant Gene Expression Center, Albany, CA 94710, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jack M. Gardiner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Mary L. Schaeffer
- USDA-ARS Plant Genetics Research Unit, University of Missouri, Columbia, MO 65211, USA
- Division of Plant Sciences, Department of Agronomy, University of Missouri, Columbia, MO 65211, USA
| | - Darwin A. Campbell
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Carson M. Andorf
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Destri Andorf
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Damon Lisch
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Karen E. Koch
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Donald R. McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Sm822, Boston, MA 02215, USA
| | - Erich Grotewold
- Plant Biotechnology Center and Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Carol M. Lushbough
- Department of Computer Science, University of South Dakota, Vermillion, SD 57069, USA
| | - Taner Z. Sen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Carolyn J. Lawrence
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
25
|
Coetzer N, Myburg AA, Berger DK. Maize microarray annotation database. PLANT METHODS 2011; 7:31. [PMID: 21961731 PMCID: PMC3198759 DOI: 10.1186/1746-4811-7-31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/01/2011] [Indexed: 05/24/2023]
Abstract
BACKGROUND Microarray technology has matured over the past fifteen years into a cost-effective solution with established data analysis protocols for global gene expression profiling. The Agilent-016047 maize 44 K microarray was custom-designed from EST sequences, but only reporter sequences with EST accession numbers are publicly available. The following information is lacking: (a) reporter - gene model match, (b) number of reporters per gene model, (c) potential for cross hybridization, (d) sense/antisense orientation of reporters, (e) position of reporter on B73 genome sequence (for eQTL studies), and (f) functional annotations of genes represented by reporters. To address this, we developed a strategy to annotate the Agilent-016047 maize microarray, and built a publicly accessible annotation database. DESCRIPTION Genomic annotation of the 42,034 reporters on the Agilent-016047 maize microarray was based on BLASTN results of the 60-mer reporter sequences and their corresponding ESTs against the maize B73 RefGen v2 "Working Gene Set" (WGS) predicted transcripts and the genome sequence. The agreement between the EST, WGS transcript and gDNA BLASTN results were used to assign the reporters into six genomic annotation groups. These annotation groups were: (i) "annotation by sense gene model" (23,668 reporters), (ii) "annotation by antisense gene model" (4,330); (iii) "annotation by gDNA" without a WGS transcript hit (1,549); (iv) "annotation by EST", in which case the EST from which the reporter was designed, but not the reporter itself, has a WGS transcript hit (3,390); (v) "ambiguous annotation" (2,608); and (vi) "inconclusive annotation" (6,489). Functional annotations of reporters were obtained by BLASTX and Blast2GO analysis of corresponding WGS transcripts against GenBank.The annotations are available in the Maize Microarray Annotation Database http://MaizeArrayAnnot.bi.up.ac.za/, as well as through a GBrowse annotation file that can be uploaded to the MaizeGDB genome browser as a custom track.The database was used to re-annotate lists of differentially expressed genes reported in case studies of published work using the Agilent-016047 maize microarray. Up to 85% of reporters in each list could be annotated with confidence by a single gene model, however up to 10% of reporters had ambiguous annotations. Overall, more than 57% of reporters gave a measurable signal in tissues as diverse as anthers and leaves. CONCLUSIONS The Maize Microarray Annotation Database will assist users of the Agilent-016047 maize microarray in (i) refining gene lists for global expression analysis, and (ii) confirming the annotation of candidate genes before functional studies.
Collapse
Affiliation(s)
- Nanette Coetzer
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Private Bag X20, 0028, South Africa
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, 0028, South Africa
| | - Dave K Berger
- Department of Plant Science, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, 0028, South Africa
| |
Collapse
|
26
|
Schaeffer ML, Harper LC, Gardiner JM, Andorf CM, Campbell DA, Cannon EKS, Sen TZ, Lawrence CJ. MaizeGDB: curation and outreach go hand-in-hand. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar022. [PMID: 21624896 PMCID: PMC3104940 DOI: 10.1093/database/bar022] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
First released in 1991 with the name MaizeDB, the Maize Genetics and Genomics Database, now MaizeGDB, celebrates its 20th anniversary this year. MaizeGDB has transitioned from a focus on comprehensive curation of the literature, genetic maps and stocks to a paradigm that accommodates the recent release of a reference maize genome sequence, multiple diverse maize genomes and sequence-based gene expression data sets. The MaizeGDB Team is relatively small, and relies heavily on the research community to provide data, nomenclature standards and most importantly, to recommend future directions, priorities and strategies. Key aspects of MaizeGDB's intimate interaction with the community are the co-location of curators with maize research groups in multiple locations across the USA as well as coordination with MaizeGDB’s close partner, the Maize Genetics Cooperation—Stock Center. In this report, we describe how the MaizeGDB Team currently interacts with the maize research community and our plan for future interactions that will support updates to the functional and structural annotation of the B73 reference genome.
Collapse
Affiliation(s)
- Mary L Schaeffer
- USDA-ARS Plant Genetics Research Unit and Division of Plant Sciences, Department of Agronomy, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Makumburage GB, Stapleton AE. Phenotype Uniformity in Combined-Stress Environments has a Different Genetic Architecture than in Single-Stress Treatments. FRONTIERS IN PLANT SCIENCE 2011; 2:12. [PMID: 22645526 PMCID: PMC3355809 DOI: 10.3389/fpls.2011.00012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/15/2011] [Indexed: 05/23/2023]
Abstract
For crop production it is desirable for the mapping between genotype and phenotype to be consistent, such that an optimized genotype produces uniform sets of individual plants. Uniformity is strongly selected in breeding programs, usually automatically, as harvest equipment eliminates severely non-uniform individuals. Uniformity is genetically controlled, is known to be increased by interplant competition, and is predicted to increase upon abiotic stress. We mapped maize loci controlling genotype by environment interaction in plant height uniformity. These loci are different than the loci controlling mean plant height. Uniformity decreases upon combining two abiotic stresses, with alleles conferring greater uniformity in a single stress showing little improvement in a combined stress treatment. The maize B73 and Mo17 inbreds do not provide segregating alleles for improvement in plant height uniformity, suggesting that the genetic network specifying plant height has a past history of selection for robustness.
Collapse
Affiliation(s)
- G. Buddhika Makumburage
- Department of Mathematics and Statistics, University of North Carolina WilmingtonWilmington, NC, USA
| | - Ann E. Stapleton
- Department of Biology and Marine Biology, University of North Carolina WilmingtonWilmington, NC, USA
| |
Collapse
|