1
|
Gabaev I, Rowland A, Jovanovic E, Gawden-Bone CM, Crozier TWM, Teixeira-Silva A, Greenwood EJD, Gerber PP, Wit N, Nathan JA, Matheson NJ, Lehner PJ. CRISPR-Cas9 genetic screens reveal regulation of TMPRSS2 by the Elongin BC-VHL complex. Sci Rep 2025; 15:11907. [PMID: 40195420 PMCID: PMC11976923 DOI: 10.1038/s41598-025-95644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
The TMPRSS2 cell surface protease is used by a broad range of respiratory viruses to facilitate entry into target cells. Together with ACE2, TMPRSS2 represents a key factor for SARS-CoV-2 infection, as TMPRSS2 mediates cleavage of viral spike protein, enabling direct fusion of the viral envelope with the host cell membrane. Since the start of the COVID-19 pandemic, TMPRSS2 has gained attention as a therapeutic target for protease inhibitors which would inhibit SARS-CoV-2 infection, but little is known about TMPRSS2 regulation, particularly in cell types physiologically relevant for SARS-CoV-2 infection. Here, we performed an unbiased genome-wide CRISPR-Cas9 library screen, together with a library targeted at epigenetic modifiers and transcriptional regulators, to identify cellular factors that modulate cell surface expression of TMPRSS2 in human colon epithelial cells. We find that endogenous TMPRSS2 is regulated by the Elongin BC-VHL complex and HIF transcription factors. Depletion of Elongin B or treatment of cells with PHD inhibitors resulted in downregulation of TMPRSS2 and inhibition of SARS-CoV-2 infection. We show that TMPRSS2 is still utilised by SARS-CoV-2 Omicron variants for entry into colonic epithelial cells. Our study enhances our understanding of the regulation of endogenous surface TMPRSS2 in cells physiologically relevant to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexandra Rowland
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Emilija Jovanovic
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Christian M Gawden-Bone
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Thomas W M Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ana Teixeira-Silva
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Edward J D Greenwood
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Pehuén Pereyra Gerber
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Niek Wit
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - James A Nathan
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
2
|
Fischer LA, Meyer B, Reyes M, Zemke JE, Harrison JK, Park KM, Wang T, Jüppner H, Dietmann S, Theunissen TW. Tracking and mitigating imprint erasure during induction of naive human pluripotency at single-cell resolution. Stem Cell Reports 2025; 20:102419. [PMID: 39952244 PMCID: PMC11960550 DOI: 10.1016/j.stemcr.2025.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/17/2025] Open
Abstract
Naive human pluripotent stem cells (hPSCs) model the pre-implantation epiblast. However, parent-specific epigenetic marks (imprints) are eroded in naive hPSCs, which represents an important deviation from the epiblast in vivo. To track the dynamics of imprint erasure during naive resetting in real time, we established a dual-colored fluorescent reporter at both alleles of the imprinted SNRPN locus. During primed-to-naive resetting, SNRPN expression becomes biallelic in most naive cells, and biallelic SNRPN expression is irreversible upon re-priming. We utilized this live-cell reporter to evaluate chemical and genetic strategies to minimize imprint erasure. Decreasing the level of MEK/ERK inhibition or overexpressing the KRAB zinc-finger protein ZFP57 protected a subset of imprints during naive resetting. Combining these two strategies protected imprint levels to a further extent than either strategy alone. This study offers an experimental tool to track and enhance imprint stability during transitions between human pluripotent states in vitro.
Collapse
Affiliation(s)
- Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brittany Meyer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Monica Reyes
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph E Zemke
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessica K Harrison
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyoung-Mi Park
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sabine Dietmann
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA; Institute for Informatics (I(2)), Washington University School of Medicine, St. Louis, MO, USA
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Ulhe A, Sharma N, Mahajan A, Patil R, Hegde M, Bhalerao S, Mali A. Decoding the therapeutic landscape of alpha-linolenic acid: a network pharmacology and bioinformatics investigation against cancer-related epigenetic modifiers. J Biomol Struct Dyn 2025; 43:1929-1954. [PMID: 38088751 DOI: 10.1080/07391102.2023.2293267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2025]
Abstract
Omega-3 (n - 3) and omega-6 (n - 6) polyunsaturated fatty acids (PUFAs) are vital for human health, but an imbalance between these types is associated with chronic diseases, including cancer. Alpha-linolenic acid (ALA), a n - 3 PUFA, shows promise as an anticancer agent in both laboratory and animal studies. However, the precise molecular mechanisms underlying ALA's actions against cancer-related epigenetic modifiers (CaEpM) remain unclear. To understand this, we employed network pharmacology (NP) and molecular docking techniques. Our study identified 51 potential ALA targets and GO and KEGG pathway analysis revealed possible molecular targets and signaling pathways of ALA against CaEpM. From PPI analysis, EZH2, KAT2B, SIRT1, KAT2A, KDM6B, EHMT2, WDR5, SETD7, SIRT2, and HDAC3 emerged as the top 10 potential targets. Additionally, GeneMANIA functional association (GMFA) network analysis of these top 10 targets was performed to enhance NP insights and explore ALA's multi-target approach. After an exhaustive analysis of the core FGN subnetwork, it became evident that 9 out of the 15 targets-namely EZH2, SUZ12, EED, PARP1, HDAC3, DNMT1, NCOR2, KAT2B, and TRRAP-manifested evidently strong and abundant interconnections among each other. Molecular docking of both top 10 targets and core FGN targets confirmed strong binding affinity between ALA and SIRT2, WDR5, KDM6B, EHMT2, HDAC3, EZH2, PARP1, and KAT2B, underscoring their roles in ALA's anti-CaEpM mechanism. Our findings suggest that ALA may target key signaling pathways related to transcriptional regulation, microRNA involvement, stem cell pluripotency and cellular senescence in cancer epigenetics. These findings illuminate ALA's potential as a multi-target agent against CaEpM.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amrita Ulhe
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Nidhi Sharma
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Akanksha Mahajan
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Rajesh Patil
- Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Department of Pharmaceutical Chemistry, Vadgaon (BK), Pune, Maharashtra, India
| | - Mahabaleshwar Hegde
- Center for Innovation in Nutrition, Health, Disease (CINHD), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Supriya Bhalerao
- Obesity and Diabetes Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Aniket Mali
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
4
|
Naqvi I, Bandyopadhyay A, Panda A, Hareramadas B. Polycystic Ovarian Syndrome: A Review of Multi-omics Analyses. Reprod Sci 2025; 32:618-646. [PMID: 39875694 DOI: 10.1007/s43032-025-01789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Polycystic Ovary Syndrome (PCOS) is among the most prevalent endocrinological abnormalities of young females, posing a grave public health challenge to the society. The objective of the present literature review is to analyze the enormous amount of information available by way of numerous multi-omic studies, and to explore a meaningful relationship between various factors such as genetic, proteomic, environmental etc. to understand the multifactorial metabolic disorder in a proper manner. Detailed literature search was done in various science article repositories and biomedical databases such as PubMed, Google Scholar, BioMed Central, Embase etc. by using several keywords in whole gamut of combinations. PCOS is a heritable disease. It manifests as a result of a combination of several intricately inter-linked symptoms such as anovulation, obesity, type II diabetes, hyperandrogenism, polycystic ovaries etc., the last one being the main manifestation of the disease, thus leading to infertility among several other complications. Such a multifactorial metabolic disorder with extreme symptomatic heterogeneity cannot be fully explained solely based on symptoms or genetic variations; thus, giving some space of thought to other factors such as epigenetic, microbiomic factors etc. playing a role in the causation of the disease. The present scientific survey of literature extensively reviews various aspects of PCOS by critically looking into the vast multi-omic data, and concluded with suggesting treatment options as well as lifestyle changes required to deal with the psychological/ emotional impacts of the condition on affected women.
Collapse
Affiliation(s)
- Ilmas Naqvi
- Department of Zoology, Zakir Husain Delhi College (University of Delhi), J.L.N. Marg, New Delhi, 110002, India
| | | | - Amisha Panda
- Lab. No. 115, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - B Hareramadas
- Department of Zoology, Zakir Husain Delhi College (University of Delhi), J.L.N. Marg, New Delhi, 110002, India.
| |
Collapse
|
5
|
van der Heiden AD, Pensch R, Agger S, Gardner HL, Hendricks W, Zismann V, Wong S, Briones N, Turner B, Forsberg-Nilsson K, London C, Lindblad-Toh K, Arendt ML. Characterization of the genomic landscape of canine diffuse large B-cell lymphoma reveals recurrent H3K27M mutations linked to progression-free survival. Sci Rep 2025; 15:4724. [PMID: 39922874 PMCID: PMC11807134 DOI: 10.1038/s41598-025-89245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive hematopoietic neoplasm that affects humans as well as dogs. While previous studies on canine DLBCL (cDLBCL) have significantly advanced our understanding of the disease, the majority of this research has relied on whole-exome sequencing, which is limited in its ability to detect copy number aberrations and other genomic changes beyond coding regions. Furthermore, many of these studies lack sufficient clinical follow-up data, making it difficult to draw meaningful associations between genetic variants and patient outcomes. Our study aimed to characterize the mutational landscape of cDLBCL using whole-genome sequencing of matched tumor-normal samples obtained from a cohort of 43 dogs previously enrolled in a clinical trial for which longitudinal follow-up was available. We focused on identifying genes that were significantly or recurrently mutated with coding point mutations, copy number aberrations, and their associations with patient outcomes. We identified 26 recurrently mutated genes, 18 copy number gains, and 8 copy number losses. Consistent with prior studies, the most commonly mutated genes included TRAF3, FBXW7, POT1, TP53, SETD2, DDX3X and TBL1XR1. The most prominent copy number gain occurred on chromosome 13, overlapping key oncogenes such as MYC and KIT, while the most frequent deletion was a focal loss on chromosome 26, encompassing IGL, PRAME, GNAZ, RAB36, RSPH14, and ZNF280B. Notably, our set of recurrently mutated genes was significantly enriched with genes involved in epigenetic regulation. In particular, we identified hotspot mutations in two histone genes, H3C8, and LOC119877878, resulting in H3K27M alterations predicted to dysregulate gene expression. Finally, a survival analysis revealed that H3K27M mutations in H3C8 were associated with increased hazard ratios for progression-free survival. No copy number aberrations were associated with survival. These findings underscore the critical role of epigenetic dysregulation in cDLBCL and affirm the dog as a relevant large animal model for interrogating the biological activity of novel histone-modifying treatment strategies.
Collapse
Affiliation(s)
- Anna Darlene van der Heiden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- SciLifeLab, Uppsala University, Uppsala, Sweden.
| | - Raphaela Pensch
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Sophie Agger
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heather L Gardner
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - William Hendricks
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ, US
| | - Victoria Zismann
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ, US
| | - Shukmei Wong
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ, US
| | - Natalia Briones
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ, US
| | - Bryce Turner
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ, US
| | - Karin Forsberg-Nilsson
- SciLifeLab, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Cheryl London
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Maja Louise Arendt
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Sun L, Fu X, Xiao Z, Ma G, Zhou Y, Hu H, Shi L, Li D, Jauch R, Hutchins AP. BRD8 Guards the Pluripotent State by Sensing and Maintaining Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409160. [PMID: 39656858 PMCID: PMC11792058 DOI: 10.1002/advs.202409160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Epigenetic control of cell fates is a critical determinant to maintain cell type stability and permit differentiation during embryonic development. However, the epigenetic control mechanisms are not well understood. Here, it is shown that the histone acetyltransferase reader protein BRD8 impairs the conversion of primed mouse EpiSCs (epiblast stem cells) to naive mouse ESCs (embryonic stem cells). BRD8 works by maintaining histone acetylation on promoters and transcribed gene bodies. BRD8 is responsible for maintaining open chromatin at somatic genes, and histone acetylation at naive-specific genes. When Brd8 expression is reduced, chromatin accessibility is unchanged at primed-specific genes, but histone acetylation is reduced. Conversely, naive-specific genes has reduced repressive chromatin marks and acquired accessible chromatin more rapidly during the cell type conversion. It is shown that this process requires active histone deacetylation to promote the conversion of primed to naive. This data supports a model for BRD8 reading histone acetylation to accurately localize the genome-wide binding of the histone acetyltransferase KAT5. Overall, this study shows how the reading of the histone acetylation state by BRD8 maintains cell type stability and both enables and impairs stem cell differentiation.
Collapse
Affiliation(s)
- Li Sun
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Xiuling Fu
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Zhen Xiao
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Gang Ma
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Yibin Zhou
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Haoqing Hu
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Centre for Translational Stem Cell BiologyHong KongSARChina
| | - Liyang Shi
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Dongwei Li
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510799China
| | - Ralf Jauch
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Centre for Translational Stem Cell BiologyHong KongSARChina
| | - Andrew Paul Hutchins
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
7
|
Bondhus L, Nava AA, Liu IS, Arboleda VA. Epigene functional diversity: isoform usage, disordered domain content, and variable binding partners. Epigenetics Chromatin 2025; 18:8. [PMID: 39893491 PMCID: PMC11786378 DOI: 10.1186/s13072-025-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Epigenes are defined as proteins that perform post-translational modification of histones or DNA, reading of post-translational modifications, form complexes with epigenetic factors or changing the general structure of chromatin. This specialized group of proteins is responsible for controlling the organization of genomic DNA in a cell-type specific fashion, controlling normal development in a spatial and temporal fashion. Moreover, mutations in epigenes have been implicated as causal in germline pediatric disorders and as driver mutations in cancer. Despite their importance to human disease, to date, there has not been a systematic analysis of the sources of functional diversity for epigenes at large. Epigenes' unique functions that require the assembly of pools within the nucleus suggest that their structure and amino acid composition would have been enriched for features that enable efficient assembly of chromatin and DNA for transcription, splicing, and post-translational modifications. RESULTS In this study, we assess the functional diversity stemming from gene structure, isoforms, protein domains, and multiprotein complex formation that drive the functions of established epigenes. We found that there are specific structural features that enable epigenes to perform their variable roles depending on the cellular and environmental context. First, epigenes are significantly larger and have more exons compared with non-epigenes which contributes to increased isoform diversity. Second epigenes participate in more multimeric complexes than non-epigenes. Thirdly, given their proposed importance in membraneless organelles, we show epigenes are enriched for substantially larger intrinsically disordered regions (IDRs). Additionally, we assessed the specificity of their expression profiles and showed epigenes are more ubiquitously expressed consistent with their enrichment in pediatric syndromes with intellectual disability, multiorgan dysfunction, and developmental delay. Finally, in the L1000 dataset, we identify drugs that can potentially be used to modulate expression of these genes. CONCLUSIONS Here we identify significant differences in isoform usage, disordered domain content, and variable binding partners between human epigenes and non-epigenes using various functional genomics datasets from Ensembl, ENCODE, GTEx, HPO, LINCS L1000, and BrainSpan. Our results contribute new knowledge to the growing field focused on developing targeted therapies for diseases caused by epigene mutations, such as chromatinopathies and cancers.
Collapse
Affiliation(s)
- Leroy Bondhus
- Department of Human Genetics, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Isabelle S Liu
- Department of Human Genetics, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Ma G, Fu X, Zhou L, Babarinde IA, Shi L, Yang W, Chen J, Xiao Z, Qiao Y, Ma L, Ou Y, Li Y, Chang C, Deng B, Zhang R, Sun L, Tong G, Li D, Li Y, Hutchins AP. The nuclear matrix stabilizes primed-specific genes in human pluripotent stem cells. Nat Cell Biol 2025; 27:232-245. [PMID: 39789220 DOI: 10.1038/s41556-024-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The nuclear matrix, a proteinaceous gel composed of proteins and RNA, is an important nuclear structure that supports chromatin architecture, but its role in human pluripotent stem cells (hPSCs) has not been described. Here we show that by disrupting heterogeneous nuclear ribonucleoprotein U (HNRNPU) or the nuclear matrix protein, Matrin-3, primed hPSCs adopted features of the naive pluripotent state, including morphology and upregulation of naive-specific marker genes. We demonstrate that HNRNPU depletion leads to increased chromatin accessibility, reduced DNA contacts and increased nuclear size. Mechanistically, HNRNPU acts as a transcriptional co-factor that anchors promoters of primed-specific genes to the nuclear matrix with POLII to promote their expression and their RNA stability. Overall, HNRNPU promotes cell-type stability and when reduced promotes conversion to earlier embryonic states.
Collapse
Affiliation(s)
- Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lulu Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liyang Shi
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhen Xiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Qiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lisha Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Ou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Chen Chang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Boping Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Guoqing Tong
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
9
|
Porter RS, An S, Gavilan MC, Nagai M, Murata-Nakamura Y, Zhou B, Bonefas KM, Dionne O, Manuel JM, St-Germain J, Gascon S, Kim J, Browning L, Laurent B, Cho US, Iwase S. Coordinated neuron-specific splicing events restrict nucleosome engagement of the LSD1 histone demethylase complex. Cell Rep 2025; 44:115213. [PMID: 39817906 PMCID: PMC11864812 DOI: 10.1016/j.celrep.2024.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/15/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025] Open
Abstract
Chromatin regulatory proteins are expressed broadly and assumed to exert the same intrinsic function across cell types. Here, we report that 14 chromatin regulators undergo evolutionary-conserved neuron-specific splicing events involving microexons. Among them are two components of a histone demethylase complex: LSD1 H3K4 demethylase and the H3K4me0-reader PHF21A. We found that neuronal LSD1 splicing reduces the enzymes' affinity to the nucleosome. Meanwhile, neuronal PHF21A splicing significantly attenuates histone H3 binding and further ablates the DNA-binding function exerted by an AT-hook motif. Furthermore, in vitro reconstitution of the canonical and neuronal PHF21A-LSD1 complexes, combined with in vivo methylation mapping, identified the neuronal complex as a hypomorphic H3K4 demethylating machinery. The neuronal PHF21A, albeit with its weaker nucleosome binding, is necessary for normal gene expression and the H3K4 landscape in the developing brain. Thus, ubiquitously expressed chromatin regulatory complexes can exert neuron-specific functions via alternative splicing of their subunits.
Collapse
Affiliation(s)
- Robert S Porter
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sojin An
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria C Gavilan
- Genetics and Genomics Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masayoshi Nagai
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yumie Murata-Nakamura
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bo Zhou
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katherine M Bonefas
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Olivier Dionne
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jeru Manoj Manuel
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joannie St-Germain
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Suzanne Gascon
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jacqueline Kim
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Liam Browning
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Benoit Laurent
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Yin C, Chi K, Chen Z, Zhuang S, Ye Y, Zhang B, Cai C. Development and pan-cancer validation of an epigenetics-based random survival forest model for prognosis prediction and drug response in OS. Front Pharmacol 2025; 16:1529525. [PMID: 39925852 PMCID: PMC11803151 DOI: 10.3389/fphar.2025.1529525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Background Osteosarcoma (OS) exhibits significant epigenetic heterogeneity, yet its systematic characterization and clinical implications remain largely unexplored. Methods We analyzed single-cell transcriptomes of five primary OS samples, identifying cell type-specific epigenetic features and their evolutionary trajectories. An epigenetics-based Random Survival Forest (RSF) model was constructed using 801 curated epigenetic factors and validated in multiple independent cohorts. Results Our analysis revealed distinct epigenetic states in the OS microenvironment, with particular activity in OS cells and osteoclasts. The RSF model identified key predictive genes including OLFML2B, ACTB, and C1QB, and demonstrated broad applicability across multiple cancer types. Risk stratification analysis revealed distinct therapeutic response patterns, with low-risk groups showing enhanced sensitivity to traditional chemotherapy drugs while high-risk groups responded better to targeted therapies. Conclusion Our epigenetics-based model demonstrates excellent prognostic accuracy (AUC>0.997 in internal validation, 0.832-0.929 in external cohorts) and provides a practical tool for treatment stratification. These findings establish a clinically applicable framework for personalized therapy selection in OS patients.
Collapse
Affiliation(s)
- Chaoyi Yin
- Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Kede Chi
- Department One of Spine Surgery, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Zhiqing Chen
- Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Shabin Zhuang
- Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Yongsheng Ye
- Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Binshan Zhang
- Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Cailiang Cai
- Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| |
Collapse
|
11
|
Perkins ML, Crocker J, Tkačik G. Chromatin enables precise and scalable gene regulation with factors of limited specificity. Proc Natl Acad Sci U S A 2025; 122:e2411887121. [PMID: 39793086 PMCID: PMC11725945 DOI: 10.1073/pnas.2411887121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs). Under what conditions and by how much can chromatin reduce regulatory errors on a global scale? We use a theoretical approach to compare two scenarios for gene regulation: one that relies on TF binding to free DNA alone and one that uses a combination of TFs and chromatin-regulating PFs to achieve desired gene expression patterns. We find, first, that chromatin effectively silences groups of genes that should be simultaneously OFF, thereby allowing more accurate graded control of expression for the remaining ON genes. Second, chromatin buffers the deleterious consequences of nontarget binding as the number of OFF genes grows, permitting a substantial expansion in regulatory complexity. Third, chromatin-based regulation productively co-opts nontarget TF binding for ON genes in order to establish a "leaky" baseline expression level, which targeted activator or repressor binding subsequently up- or down-modulates. Thus, on a global scale, using chromatin simultaneously alleviates pressure for high specificity of regulatory interactions and enables an increase in genome size with minimal impact on global expression error.
Collapse
Affiliation(s)
- Mindy Liu Perkins
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117Heidelberg, Germany
| | - Justin Crocker
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117Heidelberg, Germany
| | - Gašper Tkačik
- Institute of Science and Technology Austria, AT-3400Klosterneuburg, Austria
| |
Collapse
|
12
|
Flores-Gomez D, Hobo W, van Ens D, Kessler EL, Novakovic B, Schaap NPM, Rijnen WHC, Joosten LAB, Netea MG, Riksen NP, Bekkering S. Interleukin-1β induces trained innate immunity in human hematopoietic progenitor cells in vitro. Stem Cell Reports 2024; 19:1651-1664. [PMID: 39515317 PMCID: PMC11751800 DOI: 10.1016/j.stemcr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024] Open
Abstract
Innate immune cells can develop a long-lasting hyperresponsive phenotype, termed trained immunity, mediated by epigenetic and metabolic reprogramming. In mice, exposure to Bacille Calmette-Guérin (BCG), β-glucan, or Western diet induces trained immunity by reprogramming hematopoietic progenitor cells (HPCs), through interleukin-1β (IL-1β) signaling in the bone marrow (BM). We investigated whether IL-1β induces trained immunity in primary human BM-derived HPCs in vitro. We exposed human BM-derived HPCs to IL-1β for 4 h. HPCs were expanded and differentiated into monocytes followed by functional and transcriptomic characterization. IL-1β-exposed HPCs showed higher granulocyte-macrophage colony-forming units. The monocyte offspring produced more tumor necrosis factor (TNF) and IL-1β after restimulation with lipopolysaccharide (LPS) and Pam3Cys and is metabolically more active. Transcriptomic analysis showed upregulation of key atherogenic and inflammatory pathways. In conclusion, brief exposure of human BM-derived HPCs to IL-1β in vitro induces a trained immunity phenotype.
Collapse
Affiliation(s)
- Daniela Flores-Gomez
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands
| | - Diede van Ens
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands
| | - Elise L Kessler
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands; Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center, Utrecht, 3584 CX Utrecht, the Netherlands
| | - Boris Novakovic
- Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Nicolaas P M Schaap
- Department of Hematology, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands
| | - Wim H C Rijnen
- Department of Orthopedics, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands; Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands.
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands
| |
Collapse
|
13
|
Lin I, Awamleh Z, Sinvhal M, Wan A, Bondhus L, Wei A, Russell BE, Weksberg R, Arboleda VA. ASXL1 truncating variants in BOS and myeloid leukemia drive shared disruption of Wnt-signaling pathways but have differential isoform usage of RUNX3. BMC Med Genomics 2024; 17:282. [PMID: 39614348 DOI: 10.1186/s12920-024-02039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Rare variants in epigenes (a.k.a. chromatin modifiers), a class of genes that control epigenetic regulation, are commonly identified in both pediatric neurodevelopmental syndromes and as somatic variants in cancer. However, little is known about the extent of the shared disruption of signaling pathways by the same epigene across different diseases. To address this, we study an epigene, Additional Sex Combs-like 1 (ASXL1), where truncating heterozygous variants cause Bohring-Opitz syndrome (BOS, OMIM #605039), a germline neurodevelopmental disorder, while somatic variants are driver events in acute myeloid leukemia (AML). No BOS patients have been reported to have AML. METHODS This study explores common pathways dysregulated by ASXL1 variants in patients with BOS and AML. We analyzed whole blood transcriptomic and DNA methylation data from patients with BOS and AML with ASXL1-variant (AML-ASXL1) and examined differential exon usage and cell proportions. RESULTS Our analyses identified common molecular signatures between BOS and AML-ASXL1 and highlighted key biomarkers, including VANGL2, GRIK5 and GREM2, that are dysregulated across samples with ASXL1 variants, regardless of disease type. Notably, our data revealed significant de-repression of posterior homeobox A (HOXA) genes and upregulation of Wnt-signaling and hematopoietic regulator HOXB4. While we discovered many shared epigenetic and transcriptomic features, we also identified differential splice isoforms in RUNX3 where the long isoform, p46, is preferentially expressed in BOS, while the shorter p44 isoform is expressed in AML-ASXL1. CONCLUSION Our findings highlight the strong effects of ASXL1 variants that supersede cell-type and even disease states. This is the first direct comparison of transcriptomic and methylation profiles driven by pathogenic variants in a chromatin modifier gene in distinct diseases. Similar to RASopathies, in which pathogenic variants in many genes lead to overlapping phenotypes that can be treated by inhibiting a common pathway, our data identifies common pathways for ASXL1 variants that can be targeted for both disease states. Comparative approaches of high-penetrance genetic variants across cell types and disease states can identify targetable pathways to treat multiple diseases. Finally, our work highlights the connections of epigenes, such as ASXL1, to an underlying stem-cell state in both early development and in malignancy.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mili Sinvhal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Andrew Wan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Leroy Bondhus
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Angela Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bianca E Russell
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, Division of Clinical Genetics, UCLA, Los Angeles, CA, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Sciences, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Interdepartmental Bioinformatics Program, UCLA, Los Angeles, CA, USA.
- Molecular Biology institute, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Zhou J, Guo M, Yang G, Cui X, Hu J, Lin T, Wang H, Gao S, Jiang C, Wang L, Wang Y. Chromatin landscape dynamics during reprogramming towards human naïve and primed pluripotency reveals the divergent function of PRDM1 isoforms. Cell Death Discov 2024; 10:474. [PMID: 39562537 PMCID: PMC11576854 DOI: 10.1038/s41420-024-02230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) technology holds great potential in both scientific research and clinical applications. It enables the generation of naïve and primed iPSCs from various cell types through different strategies. Despite extensive characterizations of transcriptional and epigenetic factors, the intricacies of chromatin landscape dynamics during naïve and primed reprogramming, particularly in humans, remain poorly understood. In this study, we employed ATAC-seq and RNA-seq analyses to delineate and compare the chromatin landscape of naïve and primed pluripotency through the human secondary reprogramming system. Our investigations revealed several key transcriptional and epigenetic factors pivotal for reprogramming-associated chromatin remodeling. Notably, we found two isoforms of PRDM1, PRDM1α, and PRDM1β, bind to distinct genomic loci and play different roles in the naïve reprogramming process. We proposed an auto-regulatory model explaining the distinct functions of PRDM1α and PRDM1β. Overall, our findings highlight the complexity and diversity of transcription factors in shaping chromatin landscape dynamics and directing the fates of pluripotent cells.
Collapse
Affiliation(s)
- Jianfeng Zhou
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Mingyue Guo
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, 510700, Guangzhou, China
| | - Guang Yang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, 200065, Shanghai, China
| | - Xinyu Cui
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, 200065, Shanghai, China
| | - Jindian Hu
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Tan Lin
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| | - Cizhong Jiang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, 200065, Shanghai, China.
| | - Liping Wang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
- Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, 200072, Shanghai, China.
| | - Yixuan Wang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
15
|
Tycko J, Van MV, Aradhana, DelRosso N, Ye H, Yao D, Valbuena R, Vaughan-Jackson A, Xu X, Ludwig C, Spees K, Liu K, Gu M, Khare V, Mukund AX, Suzuki PH, Arana S, Zhang C, Du PP, Ornstein TS, Hess GT, Kamber RA, Qi LS, Khalil AS, Bintu L, Bassik MC. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Nat Biotechnol 2024:10.1038/s41587-024-02442-6. [PMID: 39487265 PMCID: PMC12043968 DOI: 10.1038/s41587-024-02442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2024] [Indexed: 11/04/2024]
Abstract
Transcriptional effectors are protein domains known to activate or repress gene expression; however, a systematic understanding of which effector domains regulate transcription across genomic, cell type and DNA-binding domain (DBD) contexts is lacking. Here we develop dCas9-mediated high-throughput recruitment (HT-recruit), a pooled screening method for quantifying effector function at endogenous target genes and test effector function for a library containing 5,092 nuclear protein Pfam domains across varied contexts. We also map context dependencies of effectors drawn from unannotated protein regions using a larger library tiling chromatin regulators and transcription factors. We find that many effectors depend on target and DBD contexts, such as HLH domains that can act as either activators or repressors. To enable efficient perturbations, we select context-robust domains, including ZNF705 KRAB, that improve CRISPRi tools to silence promoters and enhancers. We engineer a compact human activator called NFZ, by combining NCOA3, FOXO3 and ZNF473 domains, which enables efficient CRISPRa with better viral delivery and inducible control of chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mike V Van
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Aradhana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hanrong Ye
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - David Yao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Alun Vaughan-Jackson
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
| | - Xiaoshu Xu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Connor Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Katherine Liu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Mingxin Gu
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Venya Khare
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sophia Arana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Catherine Zhang
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Thea S Ornstein
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Gaelen T Hess
- Department of Biomolecular Chemistry and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Roarke A Kamber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Giannoudis A, Heath A, Sharma V. ENO1 as a Biomarker of Breast Cancer Progression and Metastasis: A Bioinformatic Approach Using Available Databases. Breast Cancer (Auckl) 2024; 18:11782234241285648. [PMID: 39483155 PMCID: PMC11526306 DOI: 10.1177/11782234241285648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 11/03/2024] Open
Abstract
Background Metabolic reprogramming is one of the hallmarks of cancer, and in breast cancer (BC), several metabolic enzymes are overexpressed and overactivated. One of these, Enolase 1 (ENO1), catalyses glycolysis and is involved in the regulation of multiple signalling pathways. Objectives This study aimed to evaluate in silico the prognostic and predictive effects of ENO1 expression in BC. Design This is a bioinformatic in silico analysis. Methods Using available online platforms (Kaplan-Meier [KM] plotter, receiver operating characteristic curve [ROC] plotter, cBioPortal, Genotype-2-Outcome [G-2-O], MethSurv, and Tumour-Immune System Interaction Database [TISIDB]), we performed a bioinformatic in silico analysis to establish the prognostic and predictive effects related to ENO1 expression in BC. A network analysis was performed using the Oncomine platform, and signalling, epigenetic, and immune regulation pathways were explored. Results ENO1 was overexpressed in all the analysed Oncomine, epigenetic, and immune pathways in triple-negative, but not in hormone receptor-positive BCs. In human epidermal growth factor receptor 2 (HER2)-positive BCs, ENO1 expression showed a mixed profile. Analysis on disease progression and histological types showed ENO1 overexpression in ductal in situ and invasive carcinoma, in high-grade tumours followed by advanced or metastasis and was linked to worse survival. High ENO1 expression was also associated with relapse-free, distant metastasis-free and overall survival, irrespectively of treatment and was mainly related to basal subtype. Conclusion ENO1 overexpression recruits a range of signalling pathways during disease progression conferring a worse prognosis and can be potentially used as a biomarker of disease progression and therapeutic target, particularly in triple-negative and in ductal invasive carcinoma.
Collapse
Affiliation(s)
- Athina Giannoudis
- School of Dentistry, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Alistair Heath
- Department of Cellular Pathology, Liverpool Clinical Laboratories, Royal Liverpool Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UKK
| | - Vijay Sharma
- Department of Cellular Pathology, Liverpool Clinical Laboratories, Royal Liverpool Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UKK
- Institute of Systems, Molecular and Integrative Biology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
17
|
Desterke C, Francés R, Monge C, Marchio A, Pineau P, Mata-Garrido J. Alternative Balance between Transcriptional and Epigenetic Regulation during Developmental Proliferation of Human Cranial Neural Crest Cells. Cells 2024; 13:1634. [PMID: 39404397 PMCID: PMC11476078 DOI: 10.3390/cells13191634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
Cranial neural crest cells are implicated in multiple transcriptional events at the different stages of differentiation during development. The alteration of some transcription factors expressed during neural crest development, like PAX7, could be implicated in the etiology of face malformation in murine models. Epigenetic regulation has been shown to be an important mechanistic actor in the control of timing and the level of gene expression at different stages of neural crest development. During this work, we investigated the interconnection between epigenetics and transcription factors across a diversity of human development cranial neural crest cells. Across a diversity of neural cells from human developing cranial tissues, in accordance with their proliferation stage, an alternative balance of regulation between transcription factors and epigenetic factors was identified.
Collapse
Affiliation(s)
- Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, Université Paris-Saclay and INSERM UMRS1310, 94270 Le Kremlin-Bicêtre, France;
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France;
| | - Claudia Monge
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Agnès Marchio
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Pascal Pineau
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Jorge Mata-Garrido
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| |
Collapse
|
18
|
Inge M, Miller R, Hook H, Bray D, Keenan J, Zhao R, Gilmore T, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. Nucleic Acids Res 2024; 52:10276-10296. [PMID: 39166482 PMCID: PMC11417405 DOI: 10.1093/nar/gkae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here, we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced histone 3 lysine 27 acetylation (H3K27ac). Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data support clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- Melissa M Inge
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Rebekah Miller
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Heather Hook
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - David Bray
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Jessica L Keenan
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Rose Zhao
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| |
Collapse
|
19
|
Ji C, Shao JJ. Epi-Clock: A sensitive platform to help understand pathogenic disease outbreaks and facilitate the response to future outbreaks of concern. Heliyon 2024; 10:e36162. [PMID: 39296090 PMCID: PMC11408147 DOI: 10.1016/j.heliyon.2024.e36162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/21/2024] Open
Abstract
To predict potential epidemic outbreaks, we tested our strategy, Epi-Clock, which applies the novel ZHU algorithm to different SARS-CoV-2 datasets before outbreaks to search for significant mutational accumulation patterns correlated with outbreak events. Surprisingly, some inter-species genetic distances in Coronaviridae may represent intermediate states of different species or subspecies in the evolutionary history of Coronaviridae. The insertions and deletions in whole-genome sequences between different hosts were separately associated with important roles in host transmission and shifts in Coronaviridae. Furthermore, we believe that non-nucleosomal DNA may play a dominant role in the divergence of different lineages of SARS-CoV-2 in different regions of the world owing to the lack of nucleosome protection. We suggest that strong selective variation among different lineages of SARS-CoV-2 is required to produce strong codon usage bias, which appears in B.1.640.2 and B.1.617.2 (Delta). Notably, we found that an increasing number of other types of substitutions, such as those resulting from the hitchhiking effect, accumulated, especially in the pre-breakout phase, although some of the previous substitutions were replaced by other dominant genotypes. From most validations, we could accurately predict the potential pre-phase of outbreaks with a median interval of 5 days.
Collapse
Affiliation(s)
- Cong Ji
- Liferiver Science and Technology Institute, Shanghai ZJ Bio-Tech Co., Ltd., Shanghai, China
| | - Junbin Jack Shao
- Liferiver Science and Technology Institute, Shanghai ZJ Bio-Tech Co., Ltd., Shanghai, China
| |
Collapse
|
20
|
Munawar N, Wynne K, Oliviero G. PRC1 Protein Subcomplexes Architecture: Focus on the Interplay between Distinct PCGF Subunits in Protein Interaction Networks. Int J Mol Sci 2024; 25:9809. [PMID: 39337298 PMCID: PMC11432245 DOI: 10.3390/ijms25189809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The six PCGF proteins (PCGF1-6) define the biochemical identity of Polycomb repressor complex 1 (PRC1) subcomplexes. While structural and functional studies of PRC1 subcomplexes have revealed their specialized roles in distinct aspects of epigenetic regulation, our understanding of the variation in the protein interaction networks of distinct PCGF subunits in different PRC1 complexes is incomplete. We carried out an affinity purification mass spectrometry (AP-MS) screening of three PCGF subunits, PCGF1 (NSPC1), PCGF2 (MEL18), and PCGF4 (BMI1), to define their interactome and potential cellular function in pluripotent human embryonal carcinoma cell "NT2". The bioinformatic analysis revealed that these interacting proteins cover a range of functional pathways, often involved in cell biology and chromatin regulation. We also found evidence of mutual regulation (at mRNA and protein level) between three distinct PCGF subunits. Furthermore, we confirmed that the disruption of these subunits results in reduced cell proliferation ability. We reveal an interplay between the compositional diversity of the distinct PCGF containing PRC1 complex and the potential role of PCGF proteins within the wider cellular network.
Collapse
Affiliation(s)
- Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Kieran Wynne
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 C1P1 Dublin, Ireland;
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland
| |
Collapse
|
21
|
Menichetti G, Barabási AL, Loscalzo J. Decoding the Foodome: Molecular Networks Connecting Diet and Health. Annu Rev Nutr 2024; 44:257-288. [PMID: 39207880 PMCID: PMC11610447 DOI: 10.1146/annurev-nutr-062322-030557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Diet, a modifiable risk factor, plays a pivotal role in most diseases, from cardiovascular disease to type 2 diabetes mellitus, cancer, and obesity. However, our understanding of the mechanistic role of the chemical compounds found in food remains incomplete. In this review, we explore the "dark matter" of nutrition, going beyond the macro- and micronutrients documented by national databases to unveil the exceptional chemical diversity of food composition. We also discuss the need to explore the impact of each compound in the presence of associated chemicals and relevant food sources and describe the tools that will allow us to do so. Finally, we discuss the role of network medicine in understanding the mechanism of action of each food molecule. Overall, we illustrate the important role of network science and artificial intelligence in our ability to reveal nutrition's multifaceted role in health and disease.
Collapse
Affiliation(s)
- Giulia Menichetti
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
- Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA
- Harvard Data Science Initiative, Harvard University, Boston, Massachusetts, USA
| | - Albert-László Barabási
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
- Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
22
|
Guo X, Hong P, Xiong S, Yan Y, Xie H, Guan JS. Kdm4a is an activity downregulated barrier to generate engrams for memory separation. Nat Commun 2024; 15:5887. [PMID: 39003305 PMCID: PMC11246488 DOI: 10.1038/s41467-024-50218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Memory engrams are a subset of learning activated neurons critical for memory recall, consolidation, extinction and separation. While the transcriptional profile of engrams after learning suggests profound neural changes underlying plasticity and memory formation, little is known about how memory engrams are selected and allocated. As epigenetic factors suppress memory formation, we developed a CRISPR screening in the hippocampus to search for factors controlling engram formation. We identified histone lysine-specific demethylase 4a (Kdm4a) as a negative regulator for engram formation. Kdm4a is downregulated after neural activation and controls the volume of mossy fiber boutons. Mechanistically, Kdm4a anchors to the exonic region of Trpm7 gene loci, causing the stalling of nascent RNAs and allowing burst transcription of Trpm7 upon the dismissal of Kdm4a. Furthermore, the YTH domain containing protein 2 (Ythdc2) recruits Kdm4a to the Trpm7 gene and stabilizes nascent RNAs. Reducing the expression of Kdm4a in the hippocampus via genetic manipulation or artificial neural activation facilitated the ability of pattern separation in rodents. Our work indicates that Kdm4a is a negative regulator of engram formation and suggests a priming state to generate a separate memory.
Collapse
Affiliation(s)
- Xiuxian Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Pengfei Hong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Songhai Xiong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuze Yan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong Xie
- Institute of Photonic Chips, School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai, China.
| | - Ji-Song Guan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
23
|
Chen L, Gu R, Li Y, Liu H, Han W, Yan Y, Chen Y, Zhang Y, Jiang Y. Epigenetic target identification strategy based on multi-feature learning. J Biomol Struct Dyn 2024; 42:5946-5962. [PMID: 37827992 DOI: 10.1080/07391102.2023.2259511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 10/14/2023]
Abstract
The identification of potential epigenetic targets for a known bioactive compound is essential and promising as more and more epigenetic drugs are used in cancer clinical treatment and the availability of chemogenomic data related to epigenetics increases. In this study, we introduce a novel epigenetic target identification strategy (ETI-Strategy) that integrates a multi-task graph convolutional neural network prior model and a protein-ligand interaction classification discriminating model using large-scale bioactivity data for a panel of 55 epigenetic targets. Our approach utilizes machine learning techniques to achieve an AUC value of 0.934 for the prior model and 0.830 for the discriminating model, outperforming inverse docking in predicting protein-ligand interactions. When comparing with other open-source target identification tools, it was found that only our tool was able to accurately predict all the targets corresponding to each compound. This further demonstrates the ability of our strategy to take full advantage of molecular-level information as well as protein-level information in molecular activity prediction. Our work highlights the contribution of machine learning in the identification of potential epigenetic targets and offers a novel approach for epigenetic drug discovery and development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lingfeng Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Rui Gu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Li
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Weijie Han
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yingchao Yan
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yulei Jiang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
24
|
Deng C, Li HD, Zhang LS, Liu Y, Li Y, Wang J. Identifying new cancer genes based on the integration of annotated gene sets via hypergraph neural networks. Bioinformatics 2024; 40:i511-i520. [PMID: 38940121 PMCID: PMC11211849 DOI: 10.1093/bioinformatics/btae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
MOTIVATION Identifying cancer genes remains a significant challenge in cancer genomics research. Annotated gene sets encode functional associations among multiple genes, and cancer genes have been shown to cluster in hallmark signaling pathways and biological processes. The knowledge of annotated gene sets is critical for discovering cancer genes but remains to be fully exploited. RESULTS Here, we present the DIsease-Specific Hypergraph neural network (DISHyper), a hypergraph-based computational method that integrates the knowledge from multiple types of annotated gene sets to predict cancer genes. First, our benchmark results demonstrate that DISHyper outperforms the existing state-of-the-art methods and highlight the advantages of employing hypergraphs for representing annotated gene sets. Second, we validate the accuracy of DISHyper-predicted cancer genes using functional validation results and multiple independent functional genomics data. Third, our model predicts 44 novel cancer genes, and subsequent analysis shows their significant associations with multiple types of cancers. Overall, our study provides a new perspective for discovering cancer genes and reveals previously undiscovered cancer genes. AVAILABILITY AND IMPLEMENTATION DISHyper is freely available for download at https://github.com/genemine/DISHyper.
Collapse
Affiliation(s)
- Chao Deng
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Hong-Dong Li
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Li-Shen Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Yiwei Liu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0001, United States
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| |
Collapse
|
25
|
Klomp JA, Klomp JE, Stalnecker CA, Bryant KL, Edwards AC, Drizyte-Miller K, Hibshman PS, Diehl JN, Lee YS, Morales AJ, Taylor KE, Peng S, Tran NL, Herring LE, Prevatte AW, Barker NK, Hover LD, Hallin J, Chowdhury S, Coker O, Lee HM, Goodwin CM, Gautam P, Olson P, Christensen JG, Shen JP, Kopetz S, Graves LM, Lim KH, Wang-Gillam A, Wennerberg K, Cox AD, Der CJ. Defining the KRAS- and ERK-dependent transcriptome in KRAS-mutant cancers. Science 2024; 384:eadk0775. [PMID: 38843331 PMCID: PMC11301402 DOI: 10.1126/science.adk0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/17/2024] [Indexed: 06/15/2024]
Abstract
How the KRAS oncogene drives cancer growth remains poorly understood. Therefore, we established a systemwide portrait of KRAS- and extracellular signal-regulated kinase (ERK)-dependent gene transcription in KRAS-mutant cancer to delineate the molecular mechanisms of growth and of inhibitor resistance. Unexpectedly, our KRAS-dependent gene signature diverges substantially from the frequently cited Hallmark KRAS signaling gene signature, is driven predominantly through the ERK mitogen-activated protein kinase (MAPK) cascade, and accurately reflects KRAS- and ERK-regulated gene transcription in KRAS-mutant cancer patients. Integration with our ERK-regulated phospho- and total proteome highlights ERK deregulation of the anaphase promoting complex/cyclosome (APC/C) and other components of the cell cycle machinery as key processes that drive pancreatic ductal adenocarcinoma (PDAC) growth. Our findings elucidate mechanistically the critical role of ERK in driving KRAS-mutant tumor growth and in resistance to KRAS-ERK MAPK targeted therapies.
Collapse
Affiliation(s)
- Jeffrey A. Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer E. Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A. Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kirsten L. Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Cole Edwards
- Cell Biology & Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Priya S. Hibshman
- Cell Biology & Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Nathaniel Diehl
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ye S. Lee
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexis J. Morales
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Khalilah E. Taylor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sen Peng
- Illumina, Inc., San Diego, CA 92121, USA
| | - Nhan L. Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Laura E. Herring
- Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alex W. Prevatte
- Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie K. Barker
- Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, CA 92121, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Oluwadara Coker
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Hey Min Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prson Gautam
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, CA 92121, USA
| | | | - John P. Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Lee M. Graves
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kian-Huat Lim
- Division of Medical Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrea Wang-Gillam
- Division of Medical Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cell Biology & Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cell Biology & Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
Klomp JE, Diehl JN, Klomp JA, Edwards AC, Yang R, Morales AJ, Taylor KE, Drizyte-Miller K, Bryant KL, Schaefer A, Johnson JL, Huntsman EM, Yaron TM, Pierobon M, Baldelli E, Prevatte AW, Barker NK, Herring LE, Petricoin EF, Graves LM, Cantley LC, Cox AD, Der CJ, Stalnecker CA. Determining the ERK-regulated phosphoproteome driving KRAS-mutant cancer. Science 2024; 384:eadk0850. [PMID: 38843329 PMCID: PMC11301400 DOI: 10.1126/science.adk0850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/17/2024] [Indexed: 06/16/2024]
Abstract
To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.
Collapse
Affiliation(s)
- Jennifer E. Klomp
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey A. Klomp
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Cole Edwards
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Runying Yang
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexis J. Morales
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Khalilah E. Taylor
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kirsten L. Bryant
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Antje Schaefer
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jared L. Johnson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily M. Huntsman
- Meyer Cancer Center, Weill Cornell Medicine; New York, NY 10065, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tomer M. Yaron
- Meyer Cancer Center, Weill Cornell Medicine; New York, NY 10065, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Elisa Baldelli
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - Alex W. Prevatte
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K. Barker
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Lee M. Graves
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lewis C. Cantley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A. Stalnecker
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Bingyu W, Xi Y, Jiangfang L, Jianqing Z. Key chromatin regulator-related genes associated with the risk of coronary artery disease regulate the expression of HCFC1, RNF8, TNP1 and SET. Heliyon 2024; 10:e28685. [PMID: 38596069 PMCID: PMC11002600 DOI: 10.1016/j.heliyon.2024.e28685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Chromatin regulators are indispensable upstream epigenetic regulators.The emergence and progression of atherosclerosis has been demonstrated to be influenced by smooth muscle-related chromatin regulators, such as ZEB2 and MAFF. However, specific chromatin regulators and their possible roles have not been clarified. Information was gathered from 51 patients diagnosed with coronary artery disease (CAD) and 50 individuals in good health from the GEO database. 440 genes were identified as having differential expression across the two datasets, and these genes were linked to cellular reactions. Enrichment of pathways related to histone modification and transcriptional regulatory factors was observed in GO and KEGG analyses. Four machine learning models (RF, SVM, GLM, and XGB) were developed using the expression profiles of 440 chromatin-associated genes in the CAD cohort to pinpoint genes with significant diagnostic potential. After evaluating residuals, root mean square errors, receiver operating characteristic curves, and immune-infiltration, four key genes (HCFC1, RNF8, TNP1, and SET) were identified. Gene expression in different blood vessel levels in atherosclerotic plaques in a mouse model of coronary artery disease showed significant variations. The gene expression levels in macrophages aligned with clinical data from the GEO database as expected. This discovery is crucial for future analysis and the prediction of drug and miRNA targets. In conclusion, we found that the four hub genes are important in the mechanism of CAD. These findings provide new ideas for the study of potential epigenetic predictive markers and therapeutic targets to be used in determining a treatment strategy for CAD.
Collapse
Affiliation(s)
- Wang Bingyu
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yang Xi
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Lian Jiangfang
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Zhou Jianqing
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| |
Collapse
|
28
|
Álvarez-Campos P, García-Castro H, Emili E, Pérez-Posada A, Del Olmo I, Peron S, Salamanca-Díaz DA, Mason V, Metzger B, Bely AE, Kenny NJ, Özpolat BD, Solana J. Annelid adult cell type diversity and their pluripotent cellular origins. Nat Commun 2024; 15:3194. [PMID: 38609365 PMCID: PMC11014941 DOI: 10.1038/s41467-024-47401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Many annelids can regenerate missing body parts or reproduce asexually, generating all cell types in adult stages. However, the putative adult stem cell populations involved in these processes, and the diversity of cell types generated by them, are still unknown. To address this, we recover 75,218 single cell transcriptomes of the highly regenerative and asexually-reproducing annelid Pristina leidyi. Our results uncover a rich cell type diversity including annelid specific types as well as novel types. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such as vasa, piwi and nanos homologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. We find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors, in piwi+ cells. Finally, lineage reconstruction analyses reveal computational differentiation trajectories from piwi+ cells to diverse adult types. Our data reveal the cell type diversity of adult annelids by single cell transcriptomics and suggest that a piwi+ cell population with a pluripotent stem cell signature is associated with adult cell type differentiation.
Collapse
Affiliation(s)
- Patricia Álvarez-Campos
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) & Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Helena García-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Irene Del Olmo
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) & Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sophie Peron
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - David A Salamanca-Díaz
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Vincent Mason
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Bria Metzger
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 05432, USA
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, Saint Louis, MO, 63130, USA
| | - Alexandra E Bely
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Nathan J Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand
| | - B Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 05432, USA.
- Department of Biology, Washington University in St. Louis. 1 Brookings Dr. Saint Louis, Saint Louis, MO, 63130, USA.
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
- Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
29
|
Anatskaya OV, Vinogradov AE. Polyploidy Promotes Hypertranscription, Apoptosis Resistance, and Ciliogenesis in Cancer Cells and Mesenchymal Stem Cells of Various Origins: Comparative Transcriptome In Silico Study. Int J Mol Sci 2024; 25:4185. [PMID: 38673782 PMCID: PMC11050069 DOI: 10.3390/ijms25084185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSC) attract an increasing amount of attention due to their unique therapeutic properties. Yet, MSC can undergo undesirable genetic and epigenetic changes during their propagation in vitro. In this study, we investigated whether polyploidy can compromise MSC oncological safety and therapeutic properties. For this purpose, we compared the impact of polyploidy on the transcriptome of cancer cells and MSC of various origins (bone marrow, placenta, and heart). First, we identified genes that are consistently ploidy-induced or ploidy-repressed through all comparisons. Then, we selected the master regulators using the protein interaction enrichment analysis (PIEA). The obtained ploidy-related gene signatures were verified using the data gained from polyploid and diploid populations of early cardiomyocytes (CARD) originating from iPSC. The multistep bioinformatic analysis applied to the cancer cells, MSC, and CARD indicated that polyploidy plays a pivotal role in driving the cell into hypertranscription. It was evident from the upregulation of gene modules implicated in housekeeping functions, stemness, unicellularity, DNA repair, and chromatin opening by means of histone acetylation operating via DNA damage associated with the NUA4/TIP60 complex. These features were complemented by the activation of the pathways implicated in centrosome maintenance and ciliogenesis and by the impairment of the pathways related to apoptosis, the circadian clock, and immunity. Overall, our findings suggest that, although polyploidy does not induce oncologic transformation of MSC, it might compromise their therapeutic properties because of global epigenetic changes and alterations in fundamental biological processes. The obtained results can contribute to the development and implementation of approaches enhancing the therapeutic properties of MSC by removing polyploid cells from the cell population.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Institute of Cytology Russian Academy of Sciences, 194064 St. Petersburg, Russia;
| | | |
Collapse
|
30
|
Inge MM, Miller R, Hook H, Bray D, Keenan JL, Zhao R, Gilmore TD, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588333. [PMID: 38617258 PMCID: PMC11014505 DOI: 10.1101/2024.04.05.588333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced H3K27ac. Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data supports clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- M M Inge
- Department of Biology, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - R Miller
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - H Hook
- Department of Biology, Boston University, Boston, MA, USA
| | - D Bray
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - J L Keenan
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - R Zhao
- Department of Biology, Boston University, Boston, MA, USA
| | - T D Gilmore
- Department of Biology, Boston University, Boston, MA, USA
| | - T Siggers
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
31
|
Nava AA, Arboleda VA. The omics era: a nexus of untapped potential for Mendelian chromatinopathies. Hum Genet 2024; 143:475-495. [PMID: 37115317 PMCID: PMC11078811 DOI: 10.1007/s00439-023-02560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The OMICs cascade describes the hierarchical flow of information through biological systems. The epigenome sits at the apex of the cascade, thereby regulating the RNA and protein expression of the human genome and governs cellular identity and function. Genes that regulate the epigenome, termed epigenes, orchestrate complex biological signaling programs that drive human development. The broad expression patterns of epigenes during human development mean that pathogenic germline mutations in epigenes can lead to clinically significant multi-system malformations, developmental delay, intellectual disabilities, and stem cell dysfunction. In this review, we refer to germline developmental disorders caused by epigene mutation as "chromatinopathies". We curated the largest number of human chromatinopathies to date and our expanded approach more than doubled the number of established chromatinopathies to 179 disorders caused by 148 epigenes. Our study revealed that 20.6% (148/720) of epigenes cause at least one chromatinopathy. In this review, we highlight key examples in which OMICs approaches have been applied to chromatinopathy patient biospecimens to identify underlying disease pathogenesis. The rapidly evolving OMICs technologies that couple molecular biology with high-throughput sequencing or proteomics allow us to dissect out the causal mechanisms driving temporal-, cellular-, and tissue-specific expression. Using the full repertoire of data generated by the OMICs cascade to study chromatinopathies will provide invaluable insight into the developmental impact of these epigenes and point toward future precision targets for these rare disorders.
Collapse
Affiliation(s)
- Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Ma Y, Fang F, Liao K, Zhang J, Wei C, Liao Y, Zhao B, Fang Y, Chen Y, Zhang X, Tang D. Identification and validation of the clinical prediction model and biomarkers based on chromatin regulators in colon cancer by integrated analysis of bulk- and single-cell RNA sequencing data. Transl Cancer Res 2024; 13:1290-1313. [PMID: 38617504 PMCID: PMC11009811 DOI: 10.21037/tcr-23-1886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Chromatin regulators (CRs) are implicated in the development of cancer, but a comprehensive investigation of their role in colon adenocarcinoma (COAD) is inadequate. The purpose of this study is to find CRs that can provide recommendations for clinical diagnosis and treatment, and to explore the reasons why they serve as critical CRs. METHODS We obtained data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Weighted Gene Co-Expression Network Analysis (WGCNA) screened tumor-associated CRs. LASSO-Cox regression was used to construct the model and to screen key CRs together with support vector machine (SVM), the univariate Cox regression. We used single-cell data to explore the expression of CRs in cells and their communication. Immune infiltration, immune checkpoints, mutation, methylation, and drug sensitivity analyses were performed. Gene expression was verified by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Pan-cancer analysis was used to explore the importance of hub CRs. RESULTS We finally obtained 32 tumor-associated CRs. The prognostic model was constructed based on RCOR2, PPARGC1A, PKM, RAC3, PHF19, MYBBP1A, ORC1, and EYA2 by the LASSO-Cox regression. Single-cell data revealed that the model was immune-related. Combined with immune infiltration analysis, immune checkpoint analysis, and tumor immune dysfunction and exclusion (TIDE) analysis, the low-score risk group had more immune cell infiltration and better immune response. Mutation and methylation analysis showed that multiple CRs may be mutated and methylated in colon cancer. Drug sensitivity analysis revealed that the low-risk group may be more sensitive to several drugs and PKM was associated with multiple drugs. Combined with machine learning, PKM is perhaps the most critical gene in CRs. Pan-cancer analysis showed that PKM plays a role in the prognosis of cancers. CONCLUSIONS We developed a prognostic model for COAD based on CRs. Increased expression of the core gene PKM is linked with a poor prognosis in several malignancies.
Collapse
Affiliation(s)
- Yichao Ma
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Fang Fang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Kai Liao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jingqiu Zhang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Chen Wei
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yiqun Liao
- Department of Clinical Medical college, Dalian Medical University, Dalian, China
| | - Bin Zhao
- Department of Clinical Medical college, Dalian Medical University, Dalian, China
| | - Yongkun Fang
- Department of Clinical Medical college, Dalian Medical University, Dalian, China
| | - Yuji Chen
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xinyue Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Nair PR, Danilova L, Gómez-de-Mariscal E, Kim D, Fan R, Muñoz-Barrutia A, Fertig EJ, Wirtz D. MLL1 regulates cytokine-driven cell migration and metastasis. SCIENCE ADVANCES 2024; 10:eadk0785. [PMID: 38478601 PMCID: PMC10936879 DOI: 10.1126/sciadv.adk0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Cell migration is a critical contributor to metastasis. Cytokine production and its role in cancer cell migration have been traditionally associated with immune cells. We find that the histone methyltransferase Mixed-Lineage Leukemia 1 (MLL1) controls 3D cell migration via cytokines, IL-6, IL-8, and TGF-β1, secreted by the cancer cells themselves. MLL1, with its scaffold protein Menin, controls actin filament assembly via the IL-6/8/pSTAT3/Arp3 axis and myosin contractility via the TGF-β1/Gli2/ROCK1/2/pMLC2 axis, which together regulate dynamic protrusion generation and 3D cell migration. MLL1 also regulates cell proliferation via mitosis-based and cell cycle-related pathways. Mice bearing orthotopic MLL1-depleted tumors exhibit decreased lung metastatic burden and longer survival. MLL1 depletion leads to lower metastatic burden even when controlling for the difference in primary tumor growth rates. Combining MLL1-Menin inhibitor with paclitaxel abrogates tumor growth and metastasis, including preexistent metastasis. These results establish MLL1 as a potent regulator of cell migration and highlight the potential of targeting MLL1 in patients with metastatic disease.
Collapse
Affiliation(s)
- Praful R. Nair
- Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ludmila Danilova
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Estibaliz Gómez-de-Mariscal
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Optical Cell Biology Group, Instituto Gulbenkian de Ciência, R. Q.ta Grande 6 2780, 2780-156 Oeiras, Portugal
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Arrate Muñoz-Barrutia
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - Elana J. Fertig
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
34
|
Zhu J, Tang W, Fang P, Wang C, Gu M, Yang W, Pan B, Wang B, Guo W. STRN3 promotes tumour growth in hepatocellular carcinoma by inhibiting the hippo pathway. J Cell Mol Med 2024; 28:e18147. [PMID: 38429901 PMCID: PMC10907822 DOI: 10.1111/jcmm.18147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 03/03/2024] Open
Abstract
HCC is a globally high-incidence malignant tumour, and its pathogenesis is still unclear. Recently, STRN3 has been found to be elevated in various tumours, but its expression and biological functions in HCC have not been studied. In the study, clinical correlation analysis was performed on 371 liver cancer patients from TCGA database and liver cancer tissues and normal tissues from the GEO database. qRT-PCR and western blotting were used to detect relevant proteins in cells, and CCK8 and colony formation experiments were performed to analyse cell proliferation ability. Transwell and wound healing experiments were performed to detect cell invasion ability, and flow cytometry was used to detect cell apoptosis. Single-cell sequencing data and multiple immunofluorescence were analysed for the expression abundance and distribution of certain proteins. Immunohistochemistry was used to assess the expression of STRN3 in patients' tumour and adjacent non-cancerous tissues. The results indicated STRN3 was highly expressed in liver tumour tissues and was closely associated with poor prognosis. Knockdown of STRN3 could significantly inhibit cell proliferation and migration ability. At the same time, we found that STRN3 could inhibit the Hippo pathway and promote the entry of YAP protein into the nucleus. Our study first found that STRN3 could promote tumour growth by inhibiting the Hippo pathway. The study of STRN3 can promote the understanding and treatment of the occurrence and development of HCC.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wenjia Tang
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Peiqi Fang
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Chong Wang
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Meixiu Gu
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Zhongshan HospitalFudan UniversityShanghaiChina
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan HospitalFudan UniversityXiamenChina
- Department of Laboratory Medicine, Wusong Branch, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
35
|
Lukauskas S, Tvardovskiy A, Nguyen NV, Stadler M, Faull P, Ravnsborg T, Özdemir Aygenli B, Dornauer S, Flynn H, Lindeboom RGH, Barth TK, Brockers K, Hauck SM, Vermeulen M, Snijders AP, Müller CL, DiMaggio PA, Jensen ON, Schneider R, Bartke T. Decoding chromatin states by proteomic profiling of nucleosome readers. Nature 2024; 627:671-679. [PMID: 38448585 PMCID: PMC10954555 DOI: 10.1038/s41586-024-07141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.
Collapse
Affiliation(s)
- Saulius Lukauskas
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nhuong V Nguyen
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mara Stadler
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Statistics, Ludwig Maximilian University Munich, Munich, Germany
| | - Peter Faull
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Proteomic Sciences Technology Platform, The Francis Crick Institute, London, UK
- Northwestern Proteomics Core Facility, Northwestern University, Chicago, IL, USA
| | - Tina Ravnsborg
- VILLUM Center for Bioanalytical Sciences and Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Scarlett Dornauer
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helen Flynn
- Proteomic Sciences Technology Platform, The Francis Crick Institute, London, UK
| | - Rik G H Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Teresa K Barth
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
- Clinical Protein Analysis Unit (ClinZfP), Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Kevin Brockers
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Christian L Müller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Statistics, Ludwig Maximilian University Munich, Munich, Germany
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
| | - Peter A DiMaggio
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Ole N Jensen
- VILLUM Center for Bioanalytical Sciences and Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
- MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
36
|
Li L, Ding X, Sheft AP, Schimenti JC. A high throughput CRISPR perturbation screen identifies epigenetic regulators impacting primordial germ cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582097. [PMID: 38463983 PMCID: PMC10925113 DOI: 10.1101/2024.02.26.582097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Certain environmental factors can impact fertility and reproductive parameters such as the number and quality of sperm and eggs. One possible mechanism is the perturbation of epigenetic landscapes in the germline. To explore this possibility, we conducted a CRISPRi screen of epigenetic-related genes to identify those that specifically perturb the differentiation of embryonic stem cells (ESCs) into primordial germ cell-like cells (PGCLCs), exploiting a highly scalable cytokine-free platform. Of the 701 genes screened, inhibition of 53 decreased the efficiency of PGCLC formation. NCOR2, a transcriptional repressor that acts via recruitment of Class I and Class IIa histone deacetylases (HDACs) to gene targets, was particularly potent in suppressing PGCLC differentiation. Consistent with evidence that histone deacetylation is crucial for germline differentiation, we found that the HDAC inhibitors (HDACi) valproic acid (VPA; an anti-convulsant) and sodium butyrate (SB; a widely-used dietary supplement) also suppressed ESC>PGCLC differentiation. Furthermore, exposure of developing mouse embryos to SB or VPA caused hypospermatogenesis. Transcriptome analyses of HDACi-treated, differentiating ESC>PGCLC cultures revealed suppression of germline-associated pathways and enhancement of somatic pathways. This work demonstrates the feasibility of conducting large-scale functional screens of genes, chemicals, or other agents that may impact germline development.
Collapse
|
37
|
Zhang C, Zeng J, Ye C, Tian K, Xian Z. Construction and validation of a chromatin regulator-related gene signature for prognostic and therapeutic significance of clear cell renal cell carcinoma. Transl Cancer Res 2024; 13:150-172. [PMID: 38410230 PMCID: PMC10894348 DOI: 10.21037/tcr-23-1383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/29/2023] [Indexed: 02/28/2024]
Abstract
Background Epigenetic alterations driven by chromatin regulators (CRs) are well-recognized cancer hallmarks. Growing evidence suggests that the imbalance of CRs may lead to the occurrence of various diseases including tumors. However, the role and prognostic value of CRs in clear cell renal cell carcinoma (ccRCC) remain undefined. Methods Consensus clustering analysis was used to identify different subtypes. Univariate and multivariate Cox regression analysis were performed to identify prognosis-related CRs and constructed a risk model. Transcriptome sequencing was used to verify gene expression levels. Kaplan-Meier survival analysis was used to compare overall survival (OS) between high- and low-risk groups. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was used to evaluate the performance of the model. The ESTIMATE algorithm and single-sample gene set enrichment analysis (ssGSEA) were executed to evaluate the immune characteristics of samples. Correlation analysis was used to assess the relationship between risk score and immune checkpoint genes, the relationship between expression levels of CRs and immune cell infiltration and drug therapeutic response. Finally, we also compared differences in drug sensitivity between low- and high-risk groups. Results We identified three CRs-related subtypes with different characteristics. A prognostic model was built with four CRs and can precisely predict the OS of patients in different risk groups. The model has good stability and applicability and was further verified in the internal and external dataset. The transcriptomic levels of the four CRs were also validated, and the risk score was an independent prognostic factor for ccRCC. Obvious differences in the immune microenvironment and the expression levels of immune checkpoints were observed in low- and high-risk group. Higher immune activity and immune cell infiltration were found in the high-risk group. Besides, the expression levels of CRs were associated with drug therapeutic response. Patients with high-risk score may be more sensitive to gemcitabine, vinblastine, paclitaxel, axitinib, sunitinib, and temsirolimus. Conclusions CRs were strongly associated with the occurrence and development of ccRCC. Targeting CRs may become a new therapeutic strategy for ccRCC. Besides, CRs-related gene signature can predict the prognosis and therapeutic significance of ccRCC, which provides an important reference for clinical decision-making.
Collapse
Affiliation(s)
- Changzheng Zhang
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People’s Hospital’s Nanhai Hospital, Foshan, China
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhiyong Xian
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Urology, Guangdong Provincial People’s Hospital’s Nanhai Hospital, Foshan, China
| |
Collapse
|
38
|
Yu B, Geng C, Wu Z, Zhang Z, Zhang A, Yang Z, Huang J, Xiong Y, Yang H, Chen Z. A CIC-related-epigenetic factors-based model associated with prediction, the tumor microenvironment and drug sensitivity in osteosarcoma. Sci Rep 2024; 14:1308. [PMID: 38225273 PMCID: PMC10789798 DOI: 10.1038/s41598-023-49770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Osteosarcoma is generally considered a cold tumor and is characterized by epigenetic alterations. Although tumor cells are surrounded by many immune cells such as macrophages, T cells may be suppressed, be inactivated, or not be presented due to various mechanisms, which usually results in poor prognosis and insensitivity to immunotherapy. Immunotherapy is considered a promising anti-cancer therapy in osteosarcoma but requires more research, but osteosarcoma does not currently respond well to this therapy. The cancer immunity cycle (CIC) is essential for anti-tumor immunity, and is epigenetically regulated. Therefore, it is possible to modulate the immune microenvironment of osteosarcoma by targeting epigenetic factors. In this study, we explored the correlation between epigenetic modulation and CIC in osteosarcoma through bioinformatic methods. Based on the RNA data from TARGET and GSE21257 cohorts, we identified epigenetic related subtypes by NMF clustering and constructed a clinical prognostic model by the LASSO algorithm. ESTIMATE, Cibersort, and xCell algorithms were applied to analyze the tumor microenvironment. Based on eight epigenetic biomarkers (SFMBT2, SP140, CBX5, HMGN2, SMARCA4, PSIP1, ACTR6, and CHD2), two subtypes were identified, and they are mainly distinguished by immune response and cell cycle regulation. After excluding ACTR6 by LASSO regression, the prognostic model was established and it exhibited good predictive efficacy. The risk score showed a strong correlation with the tumor microenvironment, drug sensitivity and many immune checkpoints. In summary, our study sheds a new light on the CIC-related epigenetic modulation mechanism of osteosarcoma and helps search for potential drugs for osteosarcoma treatment.
Collapse
Affiliation(s)
- Bin Yu
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chengkui Geng
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhongxiong Wu
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhongzi Zhang
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Aili Zhang
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Ze Yang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Jiazheng Huang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Ying Xiong
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Huiqin Yang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| | - Zhuoyuan Chen
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
39
|
Swain T, Pflueger C, Freytag S, Poppe D, Pflueger J, Nguyen T, Li J, Lister R. A modular dCas9-based recruitment platform for combinatorial epigenome editing. Nucleic Acids Res 2024; 52:474-491. [PMID: 38000387 PMCID: PMC10783489 DOI: 10.1093/nar/gkad1108] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Targeted epigenome editing tools allow precise manipulation and investigation of genome modifications, however they often display high context dependency and variable efficacy between target genes and cell types. While systems that simultaneously recruit multiple distinct 'effector' chromatin regulators can improve efficacy, they generally lack control over effector composition and spatial organisation. To overcome this we have created a modular combinatorial epigenome editing platform, called SSSavi. This system is an interchangeable and reconfigurable docking platform fused to dCas9 that enables simultaneous recruitment of up to four different effectors, allowing precise control of effector composition and spatial ordering. We demonstrate the activity and specificity of the SSSavi system and, by testing it against existing multi-effector targeting systems, demonstrate its comparable efficacy. Furthermore, we demonstrate the importance of the spatial ordering of the recruited effectors for effective transcriptional regulation. Together, the SSSavi system enables exploration of combinatorial effector co-recruitment to enhance manipulation of chromatin contexts previously resistant to targeted editing.
Collapse
Affiliation(s)
- Tessa Swain
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Christian Pflueger
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Saskia Freytag
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Daniel Poppe
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Trung Viet Nguyen
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ji Kevin Li
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
40
|
Li X, Li J, Li J, Liu N, Zhuang L. Development and validation of epigenetic modification-related signals for the diagnosis and prognosis of colorectal cancer. BMC Genomics 2024; 25:51. [PMID: 38212708 PMCID: PMC10782594 DOI: 10.1186/s12864-023-09815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/18/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the world's most common malignancies. Epigenetics is the study of heritable changes in characteristics beyond the DNA sequence. Epigenetic information is essential for maintaining specific expression patterns of genes and the normal development of individuals, and disorders of epigenetic modifications may alter the expression of oncogenes and tumor suppressor genes and affect the development of cancer. This study elucidates the relationship between epigenetics and the prognosis of CRC patients by developing a predictive model to explore the potential value of epigenetics in the treatment of CRC. METHODS Gene expression data of CRC patients' tumor tissue and controls were downloaded from GEO database. Combined with the 720 epigenetic-related genes (ERGs) downloaded from EpiFactors database, prognosis-related epigenetic genes were selected by univariate cox and LASSO analyses. The Kaplan-Meier and ROC curve were used to analyze the accuracy of the model. Data of 238 CRC samples with survival data downloaded from the GSE17538 were used for validation. Finally, the risk model is combined with the clinical characteristics of CRC patients to perform univariate and multivariate cox regression analysis to obtain independent risk factors and draw nomogram. Then we evaluated the accuracy of its prediction by calibration curves. RESULTS A total of 2906 differentially expressed genes (DEGs) were identified between CRC and control samples. After overlapping DEGs with 720 ERGs, 56 epigenetic-related DEGs (DEERGs) were identified. Combining univariate and LASSO regression analysis, the 8 epigenetic-related genes-based risk score model of CRC was established. The ROC curves and survival difference of high and low risk groups revealed the good performance of the risk score model based on prognostic biomarkers in both training and validation sets. A nomogram with good performance to predict the survival of CRC patients were established based on age, NM stage and risk score. The calibration curves showed that the prognostic model had good predictive performance. CONCLUSION In this study, an epigenetically relevant 8-gene signature was constructed that can effectively predict the prognosis of CRC patients and provide potential directions for targeted therapies for CRC.
Collapse
Affiliation(s)
- Xia Li
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Jingjing Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Jie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Nannan Liu
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Liwei Zhuang
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
41
|
Fu Y, Zhang F, Wang W, Xu J, Zhao M, Ma C, Cheng Y, Chen W, Su Z, Lv X, Liu Z, Ma K, Ma L. Temporal and Spatial Signatures of Scylla paramamosain Transcriptome Reveal Mechanistic Insights into Endogenous Ovarian Maturation under Risk of Starvation. Int J Mol Sci 2024; 25:700. [PMID: 38255774 PMCID: PMC10815400 DOI: 10.3390/ijms25020700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Variability in food availability leads to condition-dependent investments in reproduction. This study is aimed at understanding the metabolic response and regulatory mechanism of female Scylla paramamosain in response to starvation in a temporal- and tissue-specific manner. The mud crabs were starved for 7 (control), 14, 28, and 40 days for histological and biochemical analysis in the hepatopancreas, ovary, and serum, as well as for RNA sequencing on the hepatopancreas and ovary. We further highlighted candidate gene modules highly linked to physiological traits. Collectively, our observations suggested that starvation triggered endogenous ovarian maturation at the expense of hepatopancreas mass, with both metabolic adjustments to optimize energy and fatty acid supply from hepatopancreas to ovary in the early phase, followed by the activation of autophagy-related pathways in both organs over prolonged starvation. These specific adaptive responses might be considered efficient strategies to stimulate ovarian maturation of Scylla paramamosain under fasting stress, which improves the nutritional value of female mud crabs and other economically important crustaceans.
Collapse
Affiliation(s)
- Yin Fu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Fengying Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Wei Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Jiayuan Xu
- Experimental Base of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo 315604, China
| | - Ming Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Chunyan Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Yongxu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Chen
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Zhixing Su
- Experimental Base of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo 315604, China
| | - Xiaokang Lv
- Experimental Base of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo 315604, China
| | - Zhiqiang Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Keyi Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Lingbo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| |
Collapse
|
42
|
Wang B, Feng Y, Li Z, Zhou F, Luo J, Yang B, Long S, Li X, Liu Z, Li X, Chen J, Wang L, Wei W. Identification and validation of chromatin regulator-related signatures as a novel prognostic model for low-grade gliomas using translational bioinformatics. Life Sci 2024; 336:122312. [PMID: 38042284 DOI: 10.1016/j.lfs.2023.122312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
AIMS The purpose of this study is to explore the potential biological role and prognostic significance of chromatin regulators (CRs) in low-grade gliomas (LGGs). MAIN METHODS CRs were obtained from the FACER database. Transcription profiles of LGG patients were collected from the TCGA and CGGA databases. Differentially expressed CRs (DECRs) between LGGs and normal controls were identified using DESeq2. The consensus clustering algorithm was employed to distinguish subtypes of LGGs based on prognosis-related DECRs. The differences in clinical and molecular characteristics between different subtypes were explored. R packages, GSVA, ssGSEA, and ESTIMATE were utilized to elucidate the tumor microenvironment and activated pathways in different subtypes. Subsequently, a CRs-related signature was developed using LASSO Cox regression. Its performance was evaluated by Kaplan-Meier curve and ROC curve analyses. In vitro experiments were performed to explore the function of JADE3 in LGGs, which predominantly expressed in glioma cells. KEY FINDINGS We identified 43 DECRs and two CRs-related subtypes of LGGs. The subtype characterized by shorter survival displayed significant enrichment for pathways associated with DNA damage response and repair, along with heightened immune cell infiltration. Furthermore, the CRs-based signature exhibited excellent prognostic performance in both the TCGA and CGGA databases. Knockdown of JADE3 significantly increased the invasion, migration, and proliferation abilities of Hs683. SIGNIFICANCE Our study reveals the aberrant expression and prognostic value of CRs in LGGs. It emphasizes the potential regulatory role of CRs in the microenvironment and DNA damage repair in LGGs. JADE3 could be a possible therapeutic target for LGGs.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Feng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Fan Zhou
- Huanggang Central Hospital of Yangtze University, Hubei 438000, China
| | - Jie Luo
- Huanggang Central Hospital of Yangtze University, Hubei 438000, China
| | - Bin Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinyi Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Zhenyuan Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Lei Wang
- Huanggang Central Hospital of Yangtze University, Hubei 438000, China.
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
43
|
Nagai TH, Hartigan C, Mizoguchi T, Yu H, Deik A, Bullock K, Wang Y, Cromley D, Schenone M, Cowan CA, Rader DJ, Clish CB, Carr SA, Xu YX. Chromatin regulator SMARCAL1 modulates cellular lipid metabolism. Commun Biol 2023; 6:1298. [PMID: 38129665 PMCID: PMC10739977 DOI: 10.1038/s42003-023-05665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Biallelic mutations of the chromatin regulator SMARCAL1 cause Schimke Immunoosseous Dysplasia (SIOD), characterized by severe growth defects and premature mortality. Atherosclerosis and hyperlipidemia are common among SIOD patients, yet their onset and progression are poorly understood. Using an integrative approach involving proteomics, mouse models, and population genetics, we investigated SMARCAL1's role. We found that SmarcAL1 interacts with angiopoietin-like 3 (Angptl3), a key regulator of lipoprotein metabolism. In vitro and in vivo analyses demonstrate SmarcAL1's vital role in maintaining cellular lipid homeostasis. The observed translocation of SmarcAL1 to cytoplasmic peroxisomes suggests a potential regulatory role in lipid metabolism through gene expression. SmarcAL1 gene inactivation reduces the expression of key genes in cellular lipid catabolism. Population genetics investigations highlight significant associations between SMARCAL1 genetic variations and body mass index, along with lipid-related traits. This study underscores SMARCAL1's pivotal role in cellular lipid metabolism, likely contributing to the observed lipid phenotypes in SIOD patients.
Collapse
Affiliation(s)
- Taylor Hanta Nagai
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Taiji Mizoguchi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Haojie Yu
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin Bullock
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yanyan Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Debra Cromley
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Monica Schenone
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Chad A Cowan
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yu-Xin Xu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
44
|
Wang J, Shi A, Lyu J. A comprehensive atlas of epigenetic regulators reveals tissue-specific epigenetic regulation patterns. Epigenetics 2023; 18:2139067. [PMID: 36305095 PMCID: PMC9980636 DOI: 10.1080/15592294.2022.2139067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Epigenetic machinery contributes to gene regulation in eukaryotic species. However, the machinery including more than 600 epigenetic regulator (ER) genes responsible for reading, writing, and erasing histone modifications and DNA modifications remains largely uncharacterized across species. We compile a comprehensive list of ERs based on an evolutionary analysis across 23 species, which is the most comprehensive ER list in various species until recently. We further perform comparative transcriptomic analyses across different tissues in humans, mice, as well as other amniote species. We observe a consistent tissue-of-origin expression specificity pattern of duplicated ER genes across species and suggest links between expression specificity and ER gene evolution as well as ER function. Additional analyses further suggest that ER duplication can generate tissue-specific ER genes with the same epigenetic substrates, which may be closely related to their regulatory specificity in tissue development. Our work can serve as a foundation to better comprehend the tissue-specific expression patterns of ER genes from an evolutionary perspective and also the functional implications of ERs in tissue-specific epigenetic regulation.
Collapse
Affiliation(s)
- Jilu Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China
| | - Aiai Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China
| | - Jie Lyu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China.,Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
45
|
Cheng MW, Mitra M, Coller HA. Pan-cancer landscape of epigenetic factor expression predicts tumor outcome. Commun Biol 2023; 6:1138. [PMID: 37973839 PMCID: PMC10654613 DOI: 10.1038/s42003-023-05459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
Oncogenic pathways that drive cancer progression reflect both genetic changes and epigenetic regulation. Here we stratified primary tumors from each of 24 TCGA adult cancer types based on the gene expression patterns of epigenetic factors (epifactors). The tumors for five cancer types (ACC, KIRC, LGG, LIHC, and LUAD) separated into two robust clusters that were better than grade or epithelial-to-mesenchymal transition in predicting clinical outcomes. The majority of epifactors that drove the clustering were also individually prognostic. A pan-cancer machine learning model deploying epifactor expression data for these five cancer types successfully separated the patients into poor and better outcome groups. Single-cell analysis of adult and pediatric tumors revealed that expression patterns associated with poor or worse outcomes were present in individual cells within tumors. Our study provides an epigenetic map of cancer types and lays a foundation for discovering pan-cancer targetable epifactors.
Collapse
Affiliation(s)
- Michael W Cheng
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
46
|
Champion A, Rowland A, Yee L, van den Boomen D, Reeves M, Lehner P, Sinclair J, Poole E. MORC3 represses the HCMV major immediate early promoter in myeloid cells in the absence of PML nuclear bodies. J Med Virol 2023; 95:e29227. [PMID: 38009611 PMCID: PMC10952291 DOI: 10.1002/jmv.29227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Human cytomegalovirus (HCMV) can undergo either a latent or a lytic infection in cells of the myeloid lineage. Whilst the molecular mechanisms which determine the outcome of infection are far from clear, it is well established that a key factor is the differential regulation of the major immediate early promoter (MIEP) responsible for driving lytic immediate early gene expression. Using a myelomonocytic cell line stably transduced with a GFP reporter under the control of the MIEP, which recapitulates MIEP regulation in the context of virus infection, we have used an unbiased CRISPR-Cas9 sub-genomic, epigenetic library screen to identify novel cellular factors involved in MIEP repression during establishment and maintenance of latency in myeloid cells. One such cellular factor identified was MORC3. Consistent with MORC3 being a robust repressor of the MIEP, we show that THP1 cells devoid of MORC3 fail to establish latency. We also show that MORC3 is induced during latent infection, recruited to the MIEP and forms MORC3 nuclear bodies (MORC3-NBs) which, interestingly, co-localize with viral genomes. Finally, we show that the latency-associated functions of MORC3 are regulated by the deSUMOylase activity of the viral latency-associated LUNA protein likely to prevent untimely HCMV reactivation.
Collapse
Affiliation(s)
- Anna Champion
- Department of MedicineUniversity of CambridgeCambridgeUK
| | | | - Levia Yee
- Department of MedicineUniversity of CambridgeCambridgeUK
| | | | - Matthew Reeves
- Divison of Virology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Paul Lehner
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - John Sinclair
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Emma Poole
- Department of MedicineUniversity of CambridgeCambridgeUK
- Department of PathologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
47
|
Chai JW, Hu XW, Zhang MM, Dong YN. Seven chromatin regulators as immune cell infiltration characteristics, potential diagnostic biomarkers and drugs prediction in hepatocellular carcinoma. Sci Rep 2023; 13:18643. [PMID: 37903974 PMCID: PMC10616163 DOI: 10.1038/s41598-023-46107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/27/2023] [Indexed: 11/01/2023] Open
Abstract
Treatment is challenging due to the heterogeneity of hepatocellular carcinoma (HCC). Chromatin regulators (CRs) are important in epigenetics and are closely associated with HCC. We obtained HCC-related expression data and relevant clinical data from The Cancer Genome Atlas (TCGA) databases. Then, we crossed the differentially expressed genes (DEGs), immune-related genes and CRs to obtain immune-related chromatin regulators differentially expressed genes (IRCR DEGs). Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to select the prognostic gene and construct a risk model for predicting prognosis in HCC, followed by a correlation analysis of risk scores with clinical characteristics. Finally, we also carried out immune microenvironment analysis and drug sensitivity analysis, the correlation between risk score and clinical characteristics was analyzed. In addition, we carried out immune microenvironment analysis and drug sensitivity analysis. Functional analysis suggested that IRCR DEGs was mainly enriched in chromatin-related biological processes. We identified and validated PPARGC1A, DUSP1, APOBEC3A, AIRE, HDAC11, HMGB2 and APOBEC3B as prognostic biomarkers for the risk model construction. The model was also related to immune cell infiltration, and the expression of CD48, CTLA4, HHLA2, TNFSF9 and TNFSF15 was higher in high-risk group. HCC patients in the high-risk group were more sensitive to Axitinib, Docetaxel, Erlotinib, and Metformin. In this study, we construct a prognostic model of immune-associated chromatin regulators, which provides new ideas and research directions for the accurate treatment of HCC.
Collapse
Affiliation(s)
- Jin-Wen Chai
- Department of Oncology, Laizhou Traditional Chinese Medicine Hospital, Laizhou, Shandong, China
| | - Xi-Wen Hu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Miao-Miao Zhang
- Department of Oncology, Laizhou Traditional Chinese Medicine Hospital, Laizhou, Shandong, China
| | - Yu-Na Dong
- Department of Gastroenterology, Laizhou People's Hospital, No.1718 Wuli Street, Laizhou, Shandong, China.
| |
Collapse
|
48
|
Porter RS, Nagai M, An S, Gavilan MC, Murata-Nakamura Y, Bonefas KM, Zhou B, Dionne O, Manuel JM, St-Germain J, Browning L, Laurent B, Cho US, Iwase S. A neuron-specific microexon ablates the novel DNA-binding function of a histone H3K4me0 reader PHF21A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563357. [PMID: 37904995 PMCID: PMC10614952 DOI: 10.1101/2023.10.20.563357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
How cell-type-specific chromatin landscapes emerge and progress during metazoan ontogenesis remains an important question. Transcription factors are expressed in a cell-type-specific manner and recruit chromatin-regulatory machinery to specific genomic loci. In contrast, chromatin-regulatory proteins are expressed broadly and are assumed to exert the same intrinsic function across cell types. However, human genetics studies have revealed an unexpected vulnerability of neurodevelopment to chromatin factor mutations with unknown mechanisms. Here, we report that 14 chromatin regulators undergo evolutionary-conserved neuron-specific splicing events involving microexons. Of the 14 chromatin regulators, two are integral components of a histone H3K4 demethylase complex; the catalytic subunit LSD1 and an H3K4me0-reader protein PHF21A adopt neuron-specific forms. We found that canonical PHF21A (PHF21A-c) binds to DNA by AT-hook motif, and the neuronal counterpart PHF21A-n lacks this DNA-binding function yet maintains H3K4me0 recognition intact. In-vitro reconstitution of the canonical and neuronal PHF21A-LSD1 complexes identified the neuronal complex as a hypomorphic H3K4 demethylating machinery with reduced nucleosome engagement. Furthermore, an autism-associated PHF21A missense mutation, 1285 G>A, at the last nucleotide of the common exon immediately upstream of the neuronal microexon led to impaired splicing of PHF21A -n. Thus, ubiquitous chromatin regulatory complexes exert unique intrinsic functions in neurons via alternative splicing of their subunits and potentially contribute to faithful human brain development.
Collapse
|
49
|
Fasano C, Lepore Signorile M, Di Nicola E, Pantaleo A, Forte G, De Marco K, Sanese P, Disciglio V, Grossi V, Simone C. The chromatin remodeling factors EP300 and TRRAP are novel SMYD3 interactors involved in the emerging 'nonmutational epigenetic reprogramming' cancer hallmark. Comput Struct Biotechnol J 2023; 21:5240-5248. [PMID: 37954147 PMCID: PMC10632561 DOI: 10.1016/j.csbj.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
SMDY3 is a histone-lysine N-methyltransferase involved in several oncogenic processes and is believed to play a major role in various cancer hallmarks. Recently, we identified ATM, BRCA2, CHK2, MTOR, BLM, MET, AMPK, and p130 as direct SMYD3 interactors by taking advantage of a library of rare tripeptides, which we first tested for their in vitro binding affinity to SMYD3 and then used as in silico probes to systematically search the human proteome. Here, we used this innovative approach to identify further SMYD3-interacting proteins involved in crucial cancer pathways and found that the chromatin remodeling factors EP300 and TRRAP interact directly with SMYD3, thus linking SMYD3 to the emerging 'nonmutational epigenetic reprogramming' cancer hallmark. Of note, we validated these interactions in gastrointestinal cancer cell lines, including HCT-116 cells, which harbor a C-terminal truncating mutation in EP300, suggesting that EP300 binds to SMYD3 via its N-terminal region. While additional studies are required to ascertain the functional mechanisms underlying these interactions and their significance, the identification of two novel SMYD3 interactors involved in epigenetic cancer hallmark pathways adds important pieces to the puzzle of how SMYD3 exerts its oncogenic role.
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
50
|
Miao B, Xing X, Bazylianska V, Madden P, Moszczynska A, Zhang B. Methamphetamine-induced region-specific transcriptomic and epigenetic changes in the brain of male rats. Commun Biol 2023; 6:991. [PMID: 37758941 PMCID: PMC10533900 DOI: 10.1038/s42003-023-05355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Psychostimulant methamphetamine (METH) is neurotoxic to the brain and, therefore, its misuse leads to neurological and psychiatric disorders. The gene regulatory network (GRN) response to neurotoxic METH binge remains unclear in most brain regions. Here we examined the effects of binge METH on the GRN in the nucleus accumbens, dentate gyrus, Ammon's horn, and subventricular zone in male rats. At 24 h after METH, ~16% of genes displayed altered expression and over a quarter of previously open chromatin regions - parts of the genome where genes are typically active - showed shifts in their accessibility. Intriguingly, most changes were unique to each area studied, and independent regulation between transcriptome and chromatin accessibility was observed. Unexpectedly, METH differentially impacted gene activity and chromatin accessibility within the dentate gyrus and Ammon's horn. Around 70% of the affected chromatin-accessible regions in the rat brain have conserved DNA sequences in the human genome. These regions frequently act as enhancers, ramping up the activity of nearby genes, and contain mutations linked to various neurological conditions. By sketching out the gene regulatory networks associated with binge METH in specific brain regions, our study offers fresh insights into how METH can trigger profound, region-specific molecular shifts.
Collapse
Affiliation(s)
- Benpeng Miao
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Viktoriia Bazylianska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|