1
|
De Castro E, Hulo C, Masson P, Auchincloss A, Bridge A, Le Mercier P. ViralZone 2024 provides higher-resolution images and advanced virus-specific resources. Nucleic Acids Res 2024; 52:D817-D821. [PMID: 37897348 PMCID: PMC10767872 DOI: 10.1093/nar/gkad946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
ViralZone (http://viralzone.expasy.org) is a knowledge repository for viruses that links biological knowledge and databases. It contains data on virion structure, genome, proteome, replication cycle and host-virus interactions. The new update provides better access to the data through contextual popups and higher resolution images in Scalable Vector Graphics (SVG) format. These images are designed to be dynamic and interactive with human viruses to give users better access to the data. In addition, a new coronavirus-specific resource provides regularly updated data on variants and molecular biology of SARS-CoV-2. Other virus-specific resources have been added to the database, particularly for HIV, herpesviruses and poxviruses.
Collapse
Affiliation(s)
- Edouard De Castro
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel Servet, 1211 Geneva 4, Switzerland
| | - Chantal Hulo
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel Servet, 1211 Geneva 4, Switzerland
| | - Patrick Masson
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel Servet, 1211 Geneva 4, Switzerland
| | - Andrea Auchincloss
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel Servet, 1211 Geneva 4, Switzerland
| | - Alan Bridge
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel Servet, 1211 Geneva 4, Switzerland
| | - Philippe Le Mercier
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
2
|
Zhuang J, Yin J, Lv S, Wang B, Mu Y. Advanced "lab-on-a-chip" to detect viruses - Current challenges and future perspectives. Biosens Bioelectron 2020; 163:112291. [PMID: 32421630 PMCID: PMC7215165 DOI: 10.1016/j.bios.2020.112291] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
Massive viral outbreaks draw attention to viruses that have not been thoroughly studied or understood. In recent decades, microfluidic chips, known as "lab-on-a-chip", appears as a promising tool for the detection of viruses. Here, we review the development of microfluidic chips that could be used in response to viral detection, specifically for viruses involved in more recent outbreaks. The advantages as well as the disadvantages of microfluidic systems are discussed and analyzed. We also propose ideas for future development of these microfluidic chips and we expect this advanced technology to be used in the future for viral outbreaks.
Collapse
Affiliation(s)
- Jianjian Zhuang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130000, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
3
|
Brinkmann A, Andrusch A, Belka A, Wylezich C, Höper D, Pohlmann A, Nordahl Petersen T, Lucas P, Blanchard Y, Papa A, Melidou A, Oude Munnink BB, Matthijnssens J, Deboutte W, Ellis RJ, Hansmann F, Baumgärtner W, van der Vries E, Osterhaus A, Camma C, Mangone I, Lorusso A, Marcacci M, Nunes A, Pinto M, Borges V, Kroneman A, Schmitz D, Corman VM, Drosten C, Jones TC, Hendriksen RS, Aarestrup FM, Koopmans M, Beer M, Nitsche A. Proficiency Testing of Virus Diagnostics Based on Bioinformatics Analysis of Simulated In Silico High-Throughput Sequencing Data Sets. J Clin Microbiol 2019; 57:e00466-19. [PMID: 31167846 PMCID: PMC6663916 DOI: 10.1128/jcm.00466-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Quality management and independent assessment of high-throughput sequencing-based virus diagnostics have not yet been established as a mandatory approach for ensuring comparable results. The sensitivity and specificity of viral high-throughput sequence data analysis are highly affected by bioinformatics processing using publicly available and custom tools and databases and thus differ widely between individuals and institutions. Here we present the results of the COMPARE [Collaborative Management Platform for Detection and Analyses of (Re-)emerging and Foodborne Outbreaks in Europe] in silico virus proficiency test. An artificial, simulated in silico data set of Illumina HiSeq sequences was provided to 13 different European institutes for bioinformatics analysis to identify viral pathogens in high-throughput sequence data. Comparison of the participants' analyses shows that the use of different tools, programs, and databases for bioinformatics analyses can impact the correct identification of viral sequences from a simple data set. The identification of slightly mutated and highly divergent virus genomes has been shown to be most challenging. Furthermore, the interpretation of the results, together with a fictitious case report, by the participants showed that in addition to the bioinformatics analysis, the virological evaluation of the results can be important in clinical settings. External quality assessment and proficiency testing should become an important part of validating high-throughput sequencing-based virus diagnostics and could improve the harmonization, comparability, and reproducibility of results. There is a need for the establishment of international proficiency testing, like that established for conventional laboratory tests such as PCR, for bioinformatics pipelines and the interpretation of such results.
Collapse
Affiliation(s)
- Annika Brinkmann
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens 1, Berlin, Germany
| | - Andreas Andrusch
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens 1, Berlin, Germany
| | - Ariane Belka
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Claudia Wylezich
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Anne Pohlmann
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Thomas Nordahl Petersen
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kongens Lyngby, Denmark
| | - Pierrick Lucas
- French Agency for Food, Environmental and Occupational Health and Safety, Laboratory of Ploufragan, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Yannick Blanchard
- French Agency for Food, Environmental and Occupational Health and Safety, Laboratory of Ploufragan, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Anna Papa
- Microbiology Department, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - Angeliki Melidou
- Microbiology Department, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Erhard van der Vries
- Department of Infectious Diseases and Immunology, University of Utrecht, Utrecht, The Netherlands
| | | | - Cesare Camma
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise G. Caporale, National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Teramo, Italy
| | - Iolanda Mangone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise G. Caporale, National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise G. Caporale, National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise G. Caporale, National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Teramo, Italy
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Miguel Pinto
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Annelies Kroneman
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Dennis Schmitz
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Victor Max Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Terry C Jones
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Rene S Hendriksen
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kongens Lyngby, Denmark
| | - Frank M Aarestrup
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kongens Lyngby, Denmark
| | - Marion Koopmans
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Martin Beer
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Andreas Nitsche
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens 1, Berlin, Germany
| |
Collapse
|
4
|
Ibrahim B, McMahon DP, Hufsky F, Beer M, Deng L, Mercier PL, Palmarini M, Thiel V, Marz M. A new era of virus bioinformatics. Virus Res 2018; 251:86-90. [PMID: 29751021 DOI: 10.1016/j.virusres.2018.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
Despite the recognized excellence of virology and bioinformatics, these two communities have interacted surprisingly sporadically, aside from some pioneering work on HIV-1 and influenza. Bringing together the expertise of bioinformaticians and virologists is crucial, since very specific but fundamental computational approaches are required for virus research, particularly in an era of big data. Collaboration between virologists and bioinformaticians is necessary to improve existing analytical tools, cloud-based systems, computational resources, data sharing approaches, new diagnostic tools, and bioinformatic training. Here, we highlight current progress and discuss potential avenues for future developments in this promising era of virus bioinformatics. We end by presenting an overview of current technologies, and by outlining some of the major challenges and advantages that bioinformatics will bring to the field of virology.
Collapse
Affiliation(s)
- Bashar Ibrahim
- European Virus Bioinformatics Center, Jena, Germany; RNA Bioinformatics and High Throughput Analysis Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Dino P McMahon
- European Virus Bioinformatics Center, Jena, Germany; Host Parasite Evolution and Ecology, Institute of Biology, Free University of Berlin, Berlin, Germany; Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Franziska Hufsky
- European Virus Bioinformatics Center, Jena, Germany; RNA Bioinformatics and High Throughput Analysis Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Beer
- European Virus Bioinformatics Center, Jena, Germany; Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Li Deng
- European Virus Bioinformatics Center, Jena, Germany; Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
| | - Philippe Le Mercier
- European Virus Bioinformatics Center, Jena, Germany; Swiss-Prot Group, SIB,CMU, University of Geneva Medical School, Geneva, Switzerland
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Volker Thiel
- European Virus Bioinformatics Center, Jena, Germany; Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhausen, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Manja Marz
- European Virus Bioinformatics Center, Jena, Germany; RNA Bioinformatics and High Throughput Analysis Jena, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
5
|
Hufsky F, Ibrahim B, Beer M, Deng L, Mercier PL, McMahon DP, Palmarini M, Thiel V, Marz M. Virologists-Heroes need weapons. PLoS Pathog 2018; 14:e1006771. [PMID: 29420617 PMCID: PMC5805341 DOI: 10.1371/journal.ppat.1006771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, Jena, Germany
- RNA Bioinformatics and High-Throughput Analysis Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Bashar Ibrahim
- European Virus Bioinformatics Center, Jena, Germany
- RNA Bioinformatics and High-Throughput Analysis Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Beer
- European Virus Bioinformatics Center, Jena, Germany
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Li Deng
- European Virus Bioinformatics Center, Jena, Germany
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
| | - Philippe Le Mercier
- European Virus Bioinformatics Center, Jena, Germany
- Swiss-Prot group, SIB, CMU, University of Geneva Medical School, Geneva, Switzerland
| | - Dino P. McMahon
- European Virus Bioinformatics Center, Jena, Germany
- Host parasite evolution and ecology, Institute of Biology, Free University of Berlin, Berlin, Germany
- Department for Materials and Environment, BAM, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Massimo Palmarini
- European Virus Bioinformatics Center, Jena, Germany
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Volker Thiel
- European Virus Bioinformatics Center, Jena, Germany
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Manja Marz
- European Virus Bioinformatics Center, Jena, Germany
- RNA Bioinformatics and High-Throughput Analysis Jena, Friedrich Schiller University Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
6
|
Abstract
Computer-assisted technologies of the genomic structure, biological function, and evolution of viruses remain a largely neglected area of research. The attention of bioinformaticians to this challenging field is currently unsatisfying in respect to its medical and biological importance. The power of new genome sequencing technologies, associated with new tools to handle "big data", provides unprecedented opportunities to address fundamental questions in virology. Here, we present an overview of the current technologies, challenges, and advantages of Next-Generation Sequencing (NGS) in relation to the field of virology. We present how viral sequences can be detected de novo out of current short-read NGS data. Furthermore, we discuss the challenges and applications of viral quasispecies and how secondary structures, commonly shaped by RNA viruses, can be computationally predicted. The phylogenetic analysis of viruses, as another ubiquitous field in virology, forms an essential element of describing viral epidemics and challenges current algorithms. Recently, the first specialized virus-bioinformatic organizations have been established. We need to bring together virologists and bioinformaticians and provide a platform for the implementation of interdisciplinary collaborative projects at local and international scales. Above all, there is an urgent need for dedicated software tools to tackle various challenges in virology.
Collapse
Affiliation(s)
- Martin Hölzer
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany; FLI Leibniz Institute for Age Research, Jena, Germany.
| |
Collapse
|