1
|
Wang Q, Luo S, Yang Y, Bai Y, Wei J, Xu KW, Yang Y, Li M, Yang X, Duan Y, Guo Z. WP-MOD: A multi-omics and taxonomy database for woody plants. PLANT COMMUNICATIONS 2025; 6:101290. [PMID: 39987466 PMCID: PMC12010388 DOI: 10.1016/j.xplc.2025.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/30/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Woody plants, including trees, shrubs, and woody vines, are vital components of terrestrial ecosystems and are critical for maintaining biodiversity, regulating climate, and supporting human livelihoods. Over the past decade, the accumulation of high-throughput sequencing data, multi-omics data, and taxonomic information on woody plants has increased significantly, highlighting the need for an integrative database. Here, we present the Woody Plant Multi-Omics Database (WP-MOD, https://www.woodyplant.com), a comprehensive and user-friendly platform designed to meet the growing need for specialized resources in woody plant research. The WP-MOD integrates extensive taxonomic information and multi-omics data from 373 species across 35 orders and provides a centralized resource for the analysis and exploration of woody plant biology. The database includes high-quality reference genomes and reanalyzed data from RNA sequencing, small RNA sequencing, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and bisulfite sequencing, along with 17 tools for sequence and omics analysis. The WP-MOD supports both genetic and molecular research and contributes to the conservation and sustainable management of woody plants. We believe that the WP-MOD will be an essential tool for plant science researchers.
Collapse
Affiliation(s)
- Qi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Shaoxuan Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yixiang Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yawen Bai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Junrong Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Meng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaozeng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Yifan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Mora-Márquez F, Hurtado M, López de Heredia U. gymnotoa-db: a database and application to optimize functional annotation in gymnosperms. Database (Oxford) 2025; 2025:baaf019. [PMID: 40052362 PMCID: PMC11886576 DOI: 10.1093/database/baaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/09/2025]
Abstract
Gymnosperms are a clade of non-flowering plants that include about 1000 living species. Due to their complex genomes and lack of genomic resources, functional annotation in genomics and transcriptomics on gymnosperms suffers from limitations. Here we present gymnotoa-db, which is a novel, publicly accessible relational database designed to facilitate functional annotation in gymnosperms. This database stores non-redundant records of gymnosperm proteins, encompassing taxonomic and functional information. The complementary software, gymnotoa-app, enables users to download gymnotoa-db and execute a comprehensive functional annotation pipeline for high-throughput sequencing-derived DNA or cDNA sequences. gymnotoa-app's user-friendly interface and efficient algorithms streamline the functional annotation process, making it an invaluable tool for researchers studying gymnosperms. We compared gymnotoa-app's performance against other annotation tools utilizing disparate reference databases. Our results demonstrate gymnotoa-app's superior ability to accurately annotate gymnosperm transcripts, recovering a greater number of transcripts and unique, non-redundant Gene Ontology terms. gymnotoa-db's distinctive features include comprehensive coverage with a non-redundant dataset of gymnosperm protein sequences, robust functional information that integrates data from multiple ontology systems, including GO, KEGG, EC, and MetaCYC, while keeping the taxonomic context, including Arabidopsis homologs. Database URL: https://blogs.upm.es/gymnotoa-db/2024/09/19/gymnotoa-app/.
Collapse
Affiliation(s)
- Fernando Mora-Márquez
- GI en Desarrollo de Especies y Comunidades Leñosas (WooSP), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid 28040, Spain
| | - Mikel Hurtado
- GI en Desarrollo de Especies y Comunidades Leñosas (WooSP), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid 28040, Spain
| | - Unai López de Heredia
- GI en Desarrollo de Especies y Comunidades Leñosas (WooSP), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid 28040, Spain
| |
Collapse
|
3
|
Lo T, Coombe L, Gagalova KK, Marr A, Warren RL, Kirk H, Pandoh P, Zhao Y, Moore RA, Mungall AJ, Ritland C, Pavy N, Jones SJM, Bohlmann J, Bousquet J, Birol I, Thomson A. Assembly and annotation of the black spruce genome provide insights on spruce phylogeny and evolution of stress response. G3 (BETHESDA, MD.) 2023; 14:jkad247. [PMID: 37875130 PMCID: PMC10755193 DOI: 10.1093/g3journal/jkad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Black spruce (Picea mariana [Mill.] B.S.P.) is a dominant conifer species in the North American boreal forest that plays important ecological and economic roles. Here, we present the first genome assembly of P. mariana with a reconstructed genome size of 18.3 Gbp and NG50 scaffold length of 36.0 kbp. A total of 66,332 protein-coding sequences were predicted in silico and annotated based on sequence homology. We analyzed the evolutionary relationships between P. mariana and 5 other spruces for which complete nuclear and organelle genome sequences were available. The phylogenetic tree estimated from mitochondrial genome sequences agrees with biogeography; specifically, P. mariana was strongly supported as a sister lineage to P. glauca and 3 other taxa found in western North America, followed by the European Picea abies. We obtained mixed topologies with weaker statistical support in phylogenetic trees estimated from nuclear and chloroplast genome sequences, indicative of ancient reticulate evolution affecting these 2 genomes. Clustering of protein-coding sequences from the 6 Picea taxa and 2 Pinus species resulted in 34,776 orthogroups, 560 of which appeared to be specific to P. mariana. Analysis of these specific orthogroups and dN/dS analysis of positive selection signatures for 497 single-copy orthogroups identified gene functions mostly related to plant development and stress response. The P. mariana genome assembly and annotation provides a valuable resource for forest genetics research and applications in this broadly distributed species, especially in relation to climate adaptation.
Collapse
Affiliation(s)
- Theodora Lo
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Kristina K Gagalova
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Alex Marr
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - René L Warren
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Heather Kirk
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Pawan Pandoh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Yongjun Zhao
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Richard A Moore
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Carol Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nathalie Pavy
- Canada Research Chair in Forest Genomics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Steven J M Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Joerg Bohlmann
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Inanç Birol
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Ashley Thomson
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
4
|
Hwarari D, Radani Y, Guan Y, Chen J, Liming Y. Systematic Characterization of GATA Transcription Factors in Liriodendron chinense and Functional Validation in Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2349. [PMID: 37375974 PMCID: PMC10302256 DOI: 10.3390/plants12122349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The Liriodendron chinense in the Magnoliaceae family is an endangered tree species useful for its socio-economic and ecological benefits. Abiotic stresses (cold, heat, and drought stress), among other factors, affect its growth, development, and distribution. However, GATA transcription factors (TFs) respond to various abiotic stresses and play a significant role in plant acclimatization to abiotic stresses. To determine the function of GATA TFs in L. chinense, we investigated the GATA genes in the genome of L. chinense. In this study, a total of 18 GATA genes were identified, which were randomly distributed on 12 of the total 17 chromosomes. These GATA genes clustered together in four separate groups based on their phylogenetic relationships, gene structures, and domain conservation arrangements. Detailed interspecies phylogenetic analyses of the GATA gene family demonstrated a conservation of the GATAs and a probable diversification that prompted gene diversification in plant species. In addition, the LcGATA gene family was shown to be evolutionarily closer to that of O. sativa, giving an insight into the possible LcGATA gene functions. Investigations of LcGATA gene duplication showed four gene duplicate pairs by the segmental duplication event, and these genes were a result of strong purified selection. Analysis of the cis-regulatory elements demonstrated a significant representation of the abiotic stress elements in the promoter regions of the LcGATA genes. Additional gene expressions through transcriptome and qPCR analyses revealed a significant upregulation of LcGATA17, and LcGATA18 in various stresses, including heat, cold, and drought stress in all time points analyzed. We concluded that the LcGATA genes play a pivotal role in regulating abiotic stress in L. chinense. In summary, our results provide new insights into understanding of the LcGATA gene family and their regulatory functions during abiotic stresses.
Collapse
Affiliation(s)
| | | | | | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Liming
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Visser EA, Kampmann TP, Wegrzyn JL, Naidoo S. Multispecies comparison of host responses to Fusarium circinatum challenge in tropical pines show consistency in resistance mechanisms. PLANT, CELL & ENVIRONMENT 2023; 46:1705-1725. [PMID: 36541367 DOI: 10.1111/pce.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Fusarium circinatum poses a threat to both commercial and natural pine forests. Large variation in host resistance exists between species, with many economically important species being susceptible. Development of resistant genotypes could be expedited and optimised by investigating the molecular mechanisms underlying host resistance and susceptibility as well as increasing the available genetic resources. RNA-seq data, from F. circinatum inoculated and mock-inoculated ca. 6-month-old shoot tissue at 3- and 7-days postinoculation, was generated for three commercially important tropical pines, Pinus oocarpa, Pinus maximinoi and Pinus greggii. De novo transcriptomes were assembled and used to investigate the NLR and PR gene content within available pine references. Host responses to F. circinatum challenge were investigated in P. oocarpa (resistant) and P. greggii (susceptible), in comparison to previously generated expression profiles from Pinus tecunumanii (resistant) and Pinus patula (susceptible). Expression results indicated crosstalk between induced salicylate, jasmonate and ethylene signalling is involved in host resistance and compromised in susceptible hosts. Additionally, higher constitutive expression of sulfur metabolism and flavonoid biosynthesis in resistant hosts suggest involvement of these metabolites in resistance.
Collapse
Affiliation(s)
- Erik A Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tamanique P Kampmann
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
7
|
León-Ruiz JA, Cruz Ramírez A. Predicted landscape of RETINOBLASTOMA-RELATED LxCxE-mediated interactions across the Chloroplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1507-1524. [PMID: 36305297 DOI: 10.1111/tpj.16012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
The colonization of land by a single streptophyte algae lineage some 450 million years ago has been linked to multiple key innovations such as three-dimensional growth, alternation of generations, the presence of stomata, as well as innovations inherent to the birth of major plant lineages, such as the origins of vascular tissues, roots, seeds and flowers. Multicellularity, which evolved multiple times in the Chloroplastida coupled with precise spatiotemporal control of proliferation and differentiation were instrumental for the evolution of these traits. RETINOBLASTOMA-RELATED (RBR), the plant homolog of the metazoan Retinoblastoma protein (pRB), is a highly conserved and multifunctional core cell cycle regulator that has been implicated in the evolution of multicellularity in the green lineage as well as in plant multicellularity-related processes such as proliferation, differentiation, stem cell regulation and asymmetric cell division. RBR fulfills these roles through context-specific protein-protein interactions with proteins containing the Leu-x-Cys-x-Glu (LxCxE) short-linear motif (SLiM); however, how RBR-LxCxE interactions have changed throughout major innovations in the Viridiplantae kingdom is a question that remains unexplored. Here, we employ an in silico evo-devo approach to predict and analyze potential RBR-LxCxE interactions in different representative species of key Chloroplastida lineages, providing a valuable resource for deciphering RBR-LxCxE multiple functions. Furthermore, our analyses suggest that RBR-LxCxE interactions are an important component of RBR functions and that interactions with chromatin modifiers/remodelers, DNA replication and repair machinery are highly conserved throughout the Viridiplantae, while LxCxE interactions with transcriptional regulators likely diversified throughout the water-to-land transition.
Collapse
Affiliation(s)
- Jesús A León-Ruiz
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| | - Alfredo Cruz Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| |
Collapse
|
8
|
De Marco A, Sicard P, Feng Z, Agathokleous E, Alonso R, Araminiene V, Augustatis A, Badea O, Beasley JC, Branquinho C, Bruckman VJ, Collalti A, David‐Schwartz R, Domingos M, Du E, Garcia Gomez H, Hashimoto S, Hoshika Y, Jakovljevic T, McNulty S, Oksanen E, Omidi Khaniabadi Y, Prescher A, Saitanis CJ, Sase H, Schmitz A, Voigt G, Watanabe M, Wood MD, Kozlov MV, Paoletti E. Strategic roadmap to assess forest vulnerability under air pollution and climate change. GLOBAL CHANGE BIOLOGY 2022; 28:5062-5085. [PMID: 35642454 PMCID: PMC9541114 DOI: 10.1111/gcb.16278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 05/13/2023]
Abstract
Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.
Collapse
Affiliation(s)
| | | | - Zhaozhong Feng
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Evgenios Agathokleous
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Rocio Alonso
- Ecotoxicology of Air Pollution, CIEMATMadridSpain
| | - Valda Araminiene
- Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| | - Algirdas Augustatis
- Faculty of Forest Sciences and EcologyVytautas Magnus UniversityKaunasLithuania
| | - Ovidiu Badea
- “Marin Drăcea” National Institute for Research and Development in ForestryVoluntariRomania
- Faculty of Silviculture and Forest Engineering“Transilvania” UniversityBraşovRomania
| | - James C. Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| | - Viktor J. Bruckman
- Commission for Interdisciplinary Ecological StudiesAustrian Academy of SciencesViennaAustria
| | | | | | - Marisa Domingos
- Instituto de BotanicaNucleo de Pesquisa em EcologiaSao PauloBrazil
| | - Enzai Du
- Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | | | - Shoji Hashimoto
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| | | | | | | | - Elina Oksanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Yusef Omidi Khaniabadi
- Department of Environmental Health EngineeringIndustrial Medial and Health, Petroleum Industry Health Organization (PIHO)AhvazIran
| | | | - Costas J. Saitanis
- Lab of Ecology and Environmental ScienceAgricultural University of AthensAthensGreece
| | - Hiroyuki Sase
- Ecological Impact Research DepartmentAsia Center for Air Pollution Research (ACAP)NiigataJapan
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine‐WestphaliaRecklinghausenGermany
| | | | - Makoto Watanabe
- Institute of AgricultureTokyo University of Agriculture and Technology (TUAT)FuchuJapan
| | - Michael D. Wood
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| | | | - Elena Paoletti
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| |
Collapse
|
9
|
Liu JJ, Schoettle AW, Sniezko RA, Waring KM, Williams H, Zamany A, Johnson JS, Kegley A. Comparative Association Mapping Reveals Conservation of Major Gene Resistance to White Pine Blister Rust in Southwestern White Pine ( Pinus strobiformis) and Limber Pine ( P. flexilis). PHYTOPATHOLOGY 2022; 112:1093-1102. [PMID: 34732078 DOI: 10.1094/phyto-09-21-0382-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All native North American white pines are highly susceptible to white pine blister rust (WPBR) caused by Cronartium ribicola. Understanding genomic diversity and molecular mechanisms underlying genetic resistance to WPBR remains one of the great challenges in improvement of white pines. To compare major gene resistance (MGR) present in two species, southwestern white pine (Pinus strobiformis) Cr3 and limber pine (P. flexilis) Cr4, we performed association analyses of Cr3-controlled resistant traits using single nucleotide polymorphism (SNP) assays designed with Cr4-linked polymorphic genes. We found that ∼70% of P. flexilis SNPs were transferable to P. strobiformis. Furthermore, several Cr4-linked SNPs were significantly associated with the Cr3-controlled traits in P. strobiformis families. The most significantly associated SNP (M326511_1126R) almost colocalized with Cr4 on the Pinus consensus linkage group 8, suggesting that Cr3 and Cr4 might be the same R locus, or have localizations very close to each other in the syntenic region of the P. strobiformis and P. flexilis genomes. M326511_1126R was identified as a nonsynonymous SNP, causing amino acid change (Val376Ile) in a putative pectin acetylesterase, with coding sequences identical between the two species. Moreover, top Cr3-associated SNPs were further developed as TaqMan genotyping assays, suggesting their usefulness as marker-assisted selection (MAS) tools to distinguish genotypes between quantitative resistance and MGR. This work demonstrates the successful transferability of SNP markers between two closely related white pine species in the hybrid zone, and the possibility for deployment of MAS tools to facilitate long-term WPBR management in P. strobiformis breeding and conservation.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia V8Z 1M5, Canada
| | - Anna W Schoettle
- Rocky Mountain Research Station, Forest Service, U.S. Department of Agriculture, Fort Collins, CO 80526, U.S.A
| | - Richard A Sniezko
- Dorena Genetic Resource Center, Forest Service, U.S. Department of Agriculture, Cottage Grove, OR 97424, U.S.A
| | - Kristen M Waring
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011-5018, U.S.A
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia V8Z 1M5, Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia V8Z 1M5, Canada
| | - Jeremy S Johnson
- Dorena Genetic Resource Center, Forest Service, U.S. Department of Agriculture, Cottage Grove, OR 97424, U.S.A
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011-5018, U.S.A
| | - Angelia Kegley
- Dorena Genetic Resource Center, Forest Service, U.S. Department of Agriculture, Cottage Grove, OR 97424, U.S.A
| |
Collapse
|
10
|
Wood Formation under Changing Environment: Omics Approaches to Elucidate the Mechanisms Driving the Early-to-Latewood Transition in Conifers. FORESTS 2022. [DOI: 10.3390/f13040608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global change scenarios highlight the urgency of clarifying the mechanisms driving the determination of wood traits in forest trees. Coniferous xylem is characterized by the alternation between earlywood (EW) and latewood (LW), on which proportions the wood density depend, one of the most important mechanical xylem qualities. However, the molecular mechanisms triggering the transition between the production of cells with the typical features of EW to the LW are still far from being completely elucidated. The increasing availability of omics resources for conifers, e.g., genomes and transcriptomes, would lay the basis for the comprehension of wood formation dynamics, boosting both breeding and gene-editing approaches. This review is intended to introduce the importance of wood formation dynamics and xylem traits of conifers in a changing environment. Then, an up-to-date overview of the omics resources available for conifers was reported, focusing on both genomes and transcriptomes. Later, an analysis of wood formation studies using omics approaches was conducted, with the aim of elucidating the main metabolic pathways involved in EW and LW determination. Finally, the future perspectives and the urgent needs on this research topic were highlighted.
Collapse
|
11
|
Neale DB, Zimin AV, Zaman S, Scott AD, Shrestha B, Workman RE, Puiu D, Allen BJ, Moore ZJ, Sekhwal MK, De La Torre AR, McGuire PE, Burns E, Timp W, Wegrzyn JL, Salzberg SL. Assembled and annotated 26.5 Gbp coast redwood genome: a resource for estimating evolutionary adaptive potential and investigating hexaploid origin. G3 (BETHESDA, MD.) 2022; 12:6460957. [PMID: 35100403 PMCID: PMC8728005 DOI: 10.1093/g3journal/jkab380] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Sequencing, assembly, and annotation of the 26.5 Gbp hexaploid genome of coast redwood (Sequoia sempervirens) was completed leading toward discovery of genes related to climate adaptation and investigation of the origin of the hexaploid genome. Deep-coverage short-read Illumina sequencing data from haploid tissue from a single seed were combined with long-read Oxford Nanopore Technologies sequencing data from diploid needle tissue to create an initial assembly, which was then scaffolded using proximity ligation data to produce a highly contiguous final assembly, SESE 2.1, with a scaffold N50 size of 44.9 Mbp. The assembly included several scaffolds that span entire chromosome arms, confirmed by the presence of telomere and centromere sequences on the ends of the scaffolds. The structural annotation produced 118,906 genes with 113 containing introns that exceed 500 Kbp in length and one reaching 2 Mb. Nearly 19 Gbp of the genome represented repetitive content with the vast majority characterized as long terminal repeats, with a 2.9:1 ratio of Copia to Gypsy elements that may aid in gene expression control. Comparison of coast redwood to other conifers revealed species-specific expansions for a plethora of abiotic and biotic stress response genes, including those involved in fungal disease resistance, detoxification, and physical injury/structural remodeling and others supporting flavonoid biosynthesis. Analysis of multiple genes that exist in triplicate in coast redwood but only once in its diploid relative, giant sequoia, supports a previous hypothesis that the hexaploidy is the result of autopolyploidy rather than any hybridizations with separate but closely related conifer species.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Department of Computer Science & Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Alison D Scott
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Bikash Shrestha
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Zane J Moore
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Manoj K Sekhwal
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | | | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Emily Burns
- Save the Redwoods League, San Francisco, CA 94104, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA.,Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Gupta P, Naithani S, Preece J, Kim S, Cheng T, D'Eustachio P, Elser J, Bolton EE, Jaiswal P. Plant Reactome and PubChem: The Plant Pathway and (Bio)Chemical Entity Knowledgebases. Methods Mol Biol 2022; 2443:511-525. [PMID: 35037224 DOI: 10.1007/978-1-0716-2067-0_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant Reactome (https://plantreactome.gramene.org) and PubChem ( https://pubchem.ncbi.nlm.nih.gov ) are two reference data portals and resources for curated plant pathways, small molecules, metabolites, gene products, and macromolecular interactions. Plant Reactome knowledgebase, a conceptual plant pathway network, is built by biocuration and integrating (bio)chemical entities, gene products, and macromolecular interactions. It provides manually curated pathways for the reference species Oryza sativa (rice) and gene orthology-based projections that extend pathway knowledge to 106 plant species. Currently, it hosts 320 reference pathways for plant metabolism, hormone signaling, transport, genetic regulation, plant organ development and differentiation, and biotic and abiotic stress responses. In addition to the pathway browsing and search functions, the Plant Reactome provides the analysis tools for pathway comparison between reference and projected species, pathway enrichment in gene expression data, and overlay of gene-gene interaction data on pathways. PubChem, a popular reference database of (bio)chemical entities, provides information on small molecules and other types of chemical entities, such as siRNAs, miRNAs, lipids, carbohydrates, and chemically modified nucleotides. The data in PubChem is collected from hundreds of data sources, including Plant Reactome. This chapter provides a brief overview of the Plant Reactome and the PubChem knowledgebases, their association to other public resources providing accessory information, and how users can readily access the contents.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Sunghwan Kim
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Evan E Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
13
|
Christie N, Mannapperuma C, Ployet R, van der Merwe K, Mähler N, Delhomme N, Naidoo S, Mizrachi E, Street NR, Myburg AA. qtlXplorer: an online systems genetics browser in the Eucalyptus Genome Integrative Explorer (EucGenIE). BMC Bioinformatics 2021; 22:595. [PMID: 34911434 PMCID: PMC8672637 DOI: 10.1186/s12859-021-04514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Affordable high-throughput DNA and RNA sequencing technologies are allowing genomic analysis of plant and animal populations and as a result empowering new systems genetics approaches to study complex traits. The availability of intuitive tools to browse and analyze the resulting large-scale genetic and genomic datasets remain a significant challenge. Furthermore, these integrative genomics approaches require innovative methods to dissect the flow and interconnectedness of biological information underlying complex trait variation. The Plant Genome Integrative Explorer (PlantGenIE.org) is a multi-species database and domain that houses online tools for model and woody plant species including Eucalyptus. Since the Eucalyptus Genome Integrative Explorer (EucGenIE) is integrated within PlantGenIE, it shares genome and expression analysis tools previously implemented within the various subdomains (ConGenIE, PopGenIE and AtGenIE). Despite the success in setting up integrative genomics databases, online tools for systems genetics modelling and high-resolution dissection of complex trait variation in plant populations have been lacking. RESULTS We have developed qtlXplorer ( https://eucgenie.org/QTLXplorer ) for visualizing and exploring systems genetics data from genome-wide association studies including quantitative trait loci (QTLs) and expression-based QTL (eQTL) associations. This module allows users to, for example, find co-located QTLs and eQTLs using an interactive version of Circos, or explore underlying genes using JBrowse. It provides users with a means to build systems genetics models and generate hypotheses from large-scale population genomics data. We also substantially upgraded the EucGenIE resource and show how it enables users to combine genomics and systems genetics approaches to discover candidate genes involved in biotic stress responses and wood formation by focusing on two multigene families, laccases and peroxidases. CONCLUSIONS qtlXplorer adds a new dimension, population genomics, to the EucGenIE and PlantGenIE environment. The resource will be of interest to researchers and molecular breeders working in Eucalyptus and other woody plant species. It provides an example of how systems genetics data can be integrated with functional genetics data to provide biological insight and formulate hypotheses. Importantly, integration within PlantGenIE enables novel comparative genomics analyses to be performed from population-scale data.
Collapse
Affiliation(s)
- Nanette Christie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa.
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 907 81, Umeå, Sweden
| | - Raphael Ployet
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Karen van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Niklas Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 907 81, Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 907 81, Umeå, Sweden.
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
14
|
Jung S, Lee T, Gasic K, Campbell BT, Yu J, Humann J, Ru S, Edge-Garza D, Hough H, Main D. The Breeding Information Management System (BIMS): an online resource for crop breeding. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6355633. [PMID: 34415997 PMCID: PMC8378516 DOI: 10.1093/database/baab054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
In this era of big data, breeding programs are producing ever larger amounts of data. This necessitates access to efficient management systems to keep track of cross, performance, pedigree, geographical and image-based data, as well as genotyping data. In this article, we report the progress on the Breeding Information Management System (BIMS), a free, secure and online breeding management system that allows breeders to store, manage, archive and analyze their private breeding data. BIMS is the first publicly available database system that enables individual breeders to integrate their private phenotypic and genotypic data with public data and, at the same time, have complete control of their own breeding data along with access to tools such as data import/export, data analysis and data archiving. The integration of breeding data with publicly available genomic and genetic data enhances genetic understanding of important traits and maximizes the marker-assisted breeding utility for breeders and allied scientists. BIMS incorporates the use of the Android App Field Book, open-source phenotype data collection software for phones and tablets that allows breeders to replace hard copy field books, thus alleviating the possibility of transcription errors while providing faster access to the collected data. BIMS comes with training materials and support for individual or small group training and is currently implemented in the Genome Database for Rosaceae, CottonGEN, the Citrus Genome Database, the Pulse Crop Database, and the Genome Database for Vaccinium. Database URLs: (https://www.rosaceae.org/), (https://www.cottongen.org/), (https://www.citrusgenomedb.org/), (https://www.pulsedb.org/) and (https://www.vaccinium.org/)
Collapse
Affiliation(s)
- Sook Jung
- Department of Horticulture, Washington State University, 45 Johnson Hall, Pullman, WA 99164, USA
| | - Taein Lee
- Department of Horticulture, Washington State University, 45 Johnson Hall, Pullman, WA 99164, USA
| | - Ksenija Gasic
- Plant and Environmental Sciences Department, 171 Poole Agricultural Center, Clemson University, Clemson, SC 29634, USA
| | - B Todd Campbell
- Coastal Plains Soil, Water, and Plant Research Center, USDA-ARS, 2611 West Lucas St., Florence, SC 29501-1242, USA
| | - Jing Yu
- Department of Horticulture, Washington State University, 45 Johnson Hall, Pullman, WA 99164, USA
| | - Jodi Humann
- Department of Horticulture, Washington State University, 45 Johnson Hall, Pullman, WA 99164, USA
| | - Sushan Ru
- Department of Horticulture, University of Auburn, 287 CASIC Building/120 Funchess, Auburn, AL 36849, USA
| | - Daniel Edge-Garza
- Centre for Horticultural Science, The University of Queensland, Brisbane St Lucia, Brisbane, QLD 4072, Australia
| | - Heidi Hough
- Department of Horticulture, Washington State University, 45 Johnson Hall, Pullman, WA 99164, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, 45 Johnson Hall, Pullman, WA 99164, USA
| |
Collapse
|
15
|
Steele SE, Ryder OA, Maschinski J. RNA-Seq reveals adaptive genetic potential of the rare Torrey pine (Pinus torreyana) in the face of Ips bark beetle outbreaks. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01394-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Liu JJ, Schoettle AW, Sniezko RA, Williams H, Zamany A, Rancourt B. Fine dissection of limber pine resistance to Cronartium ribicola using targeted sequencing of the NLR family. BMC Genomics 2021; 22:567. [PMID: 34294045 PMCID: PMC8299668 DOI: 10.1186/s12864-021-07885-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) domains (NLR) make up one of most important resistance (R) families for plants to resist attacks from various pathogens and pests. The available transcriptomes of limber pine (Pinus flexilis) allow us to characterize NLR genes and related resistance gene analogs (RGAs) in host resistance against Cronartium ribicola, the causal fungal pathogen of white pine blister rust (WPBR) on five-needle pines throughout the world. We previously mapped a limber pine major gene locus (Cr4) that confers complete resistance to C. ribicola on the Pinus consensus linkage group 8 (LG-8). However, genetic distribution of NLR genes as well as their divergence between resistant and susceptible alleles are still unknown. RESULTS To identify NLR genes at the Cr4 locus, the present study re-sequenced a total of 480 RGAs using targeted sequencing in a Cr4-segregated seed family. Following a call of single nucleotide polymorphisms (SNPs) and genetic mapping, a total of 541 SNPs from 155 genes were mapped across 12 LGs. Three putative NLR genes were newly mapped in the Cr4 region, including one that co-segregated with Cr4. The tight linkage of NLRs with Cr4-controlled phenotypes was further confirmed by bulked segregation analysis (BSA) using extreme-phenotype genome-wide association study (XP-GWAS) for significance test. Local tandem duplication in the Cr4 region was further supported by syntenic analysis using the sugar pine genome sequence. Significant gene divergences have been observed in the NLR family, revealing that diversifying selection pressures are relatively higher in local duplicated genes. Most genes showed similar expression patterns at low levels, but some were affected by genetic background related to disease resistance. Evidence from fine genetic dissection, evolutionary analysis, and expression profiling suggests that two NLR genes are the most promising candidates for Cr4 against WPBR. CONCLUSION This study provides fundamental insights into genetic architecture of the Cr4 locus as well as a set of NLR variants for marker-assisted selection in limber pine breeding. Novel NLR genes were identified at the Cr4 locus and the Cr4 candidates will aid deployment of this R gene in combination with other major/minor genes in the limber pine breeding program.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Anna W. Schoettle
- USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO 80526 USA
| | - Richard A. Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, Oregon, 97424 USA
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Benjamin Rancourt
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| |
Collapse
|
17
|
Mora-Márquez F, Chano V, Vázquez-Poletti JL, López de Heredia U. TOA: A software package for automated functional annotation in non-model plant species. Mol Ecol Resour 2020; 21:621-636. [PMID: 33070442 DOI: 10.1111/1755-0998.13285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023]
Abstract
The increase of sequencing capacity provided by high-throughput platforms has made it possible to routinely obtain large sets of genomic and transcriptomic sequences from model and non-model organisms. Subsequent genomic analysis and gene discovery in next-generation sequencing experiments are, however, bottlenecked by functional annotation. One common way to perform functional annotation of sets of sequences obtained from next-generation sequencing experiments, is by searching for homologous sequences and accessing the related functional information deposited in genomic databases. Functional annotation is especially challenging for non-model organisms, like many plant species. In such cases, existing free and commercial general-purpose applications may not offer complete and accurate results. We present TOA (Taxonomy-oriented annotation), a Python-based user-friendly open source application designed to establish functional annotation pipelines geared towards non-model plant species that can run in Linux/Mac computers, HPCs and cloud servers. TOA performs homology searches against proteins stored in the PLAZA databases, NCBI RefSeq Plant, Nucleotide Database and Non-Redundant Protein Sequence Database, and outputs functional information from several ontology systems: Gene Ontology, InterPro, EC, KEGG, Mapman and MetaCyc. The software performance was validated by comparing the runtimes, total number of annotated sequences and accuracy of the functional information obtained for several plant benchmark data sets with TOA and other functional annotation solutions. TOA outperformed the other software in terms of number of annotated sequences and accuracy of the annotation and constitutes a good alternative to improve functional annotation in plants. TOA is especially recommended for gymnosperms or for low quality sequence data sets of non-model plants.
Collapse
Affiliation(s)
- Fernando Mora-Márquez
- GI Sistemas Naturales e Historia Forestal, Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - Víctor Chano
- GI Sistemas Naturales e Historia Forestal, Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - José Luis Vázquez-Poletti
- GI Arquitectura de Sistemas Distribuidos, Dpto. Arquitectura de Computadores y Automática, Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
| | - Unai López de Heredia
- GI Sistemas Naturales e Historia Forestal, Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Abstract
The giant sequoia (Sequoiadendron giganteum) of California are massive, long-lived trees that grow along the U.S. Sierra Nevada mountains. Genomic data are limited in giant sequoia and producing a reference genome sequence has been an important goal to allow marker development for restoration and management. Using deep-coverage Illumina and Oxford Nanopore sequencing, combined with Dovetail chromosome conformation capture libraries, the genome was assembled into eleven chromosome-scale scaffolds containing 8.125 Gbp of sequence. Iso-Seq transcripts, assembled from three distinct tissues, was used as evidence to annotate a total of 41,632 protein-coding genes. The genome was found to contain, distributed unevenly across all 11 chromosomes and in 63 orthogroups, over 900 complete or partial predicted NLR genes, of which 375 are supported by annotation derived from protein evidence and gene modeling. This giant sequoia reference genome sequence represents the first genome sequenced in the Cupressaceae family, and lays a foundation for using genomic tools to aid in giant sequoia conservation and management.
Collapse
|
19
|
Weiss M, Sniezko RA, Puiu D, Crepeau MW, Stevens K, Salzberg SL, Langley CH, Neale DB, De La Torre AR. Genomic basis of white pine blister rust quantitative disease resistance and its relationship with qualitative resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:365-376. [PMID: 32654344 PMCID: PMC10773528 DOI: 10.1111/tpj.14928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The genomic architecture and molecular mechanisms controlling variation in quantitative disease resistance loci are not well understood in plant species and have been barely studied in long-generation trees. Quantitative trait loci mapping and genome-wide association studies were combined to test a large single nucleotide polymorphism (SNP) set for association with quantitative and qualitative white pine blister rust resistance in sugar pine. In the absence of a chromosome-scale reference genome, a high-density consensus linkage map was generated to obtain locations for associated SNPs. Newly discovered associations for white pine blister rust quantitative disease resistance included 453 SNPs involved in wide biological functions, including genes associated with disease resistance and others involved in morphological and developmental processes. In addition, NBS-LRR pathogen recognition genes were found to be involved in quantitative disease resistance, suggesting these newly reported genes are qualitative genes with partial resistance, they are the result of defeated qualitative resistance due to avirulent races, or they have epistatic effects on qualitative disease resistance genes. This study is a step forward in our understanding of the complex genomic architecture of quantitative disease resistance in long-generation trees, and constitutes the first step towards marker-assisted disease resistance breeding in white pine species.
Collapse
Affiliation(s)
- Matthew Weiss
- School of Forestry, Northern Arizona University, 200 E.
Pine Knoll, Flagstaff, AZ 86011
| | - Richard A. Sniezko
- Dorena Genetic Resource Center, USDA Forest Service,
Cottage-Grove, OR 97424
| | - Daniela Puiu
- Department of Biomedical Engineering, Computer Science and
Biostatistics and Center for Computational Biology, Johns Hopkins University, 3100
Wyman Park Dr., Wyman Park Building Room S220, Baltimore, MD 21211
| | - Marc W. Crepeau
- Department of Evolution and Ecology, University of
California-Davis, One Shields Avenue, Davis, CA 95616
| | - Kristian Stevens
- Department of Evolution and Ecology, University of
California-Davis, One Shields Avenue, Davis, CA 95616
| | - Steven L. Salzberg
- Department of Biomedical Engineering, Computer Science and
Biostatistics and Center for Computational Biology, Johns Hopkins University, 3100
Wyman Park Dr., Wyman Park Building Room S220, Baltimore, MD 21211
- Departments of Computer Science and Biostatistics, Johns
Hopkins University, Baltimore, MD 21218
| | - Charles H. Langley
- Department of Evolution and Ecology, University of
California-Davis, One Shields Avenue, Davis, CA 95616
| | - David B. Neale
- Department of Plant Sciences, University of
California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Amanda R. De La Torre
- School of Forestry, Northern Arizona University, 200 E.
Pine Knoll, Flagstaff, AZ 86011
| |
Collapse
|
20
|
Liu JJ, Sniezko RA, Sissons R, Krakowski J, Alger G, Schoettle AW, Williams H, Zamany A, Zitomer RA, Kegley A. Association Mapping and Development of Marker-Assisted Selection Tools for the Resistance to White Pine Blister Rust in the Alberta Limber Pine Populations. FRONTIERS IN PLANT SCIENCE 2020; 11:557672. [PMID: 33042181 PMCID: PMC7522202 DOI: 10.3389/fpls.2020.557672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Since its introduction to North America in the early 1900s, white pine blister rust (WPBR) caused by the fungal pathogen Cronartium ribicola has resulted in substantial economic losses and ecological damage to native North American five-needle pine species. The high susceptibility and mortality of these species, including limber pine (Pinus flexilis), creates an urgent need for the development and deployment of resistant germplasm to support recovery of impacted populations. Extensive screening for genetic resistance to WPBR has been underway for decades in some species but has only started recently in limber pine using seed families collected from wild parental trees in the USA and Canada. This study was conducted to characterize Alberta limber pine seed families for WPBR resistance and to develop reliable molecular tools for marker-assisted selection (MAS). Open-pollinated seed families were evaluated for host reaction following controlled infection using C. ribicola basidiospores. Phenotypic segregation for presence/absence of stem symptoms was observed in four seed families. The segregation ratios of these families were consistent with expression of major gene resistance (MGR) controlled by a dominant R locus. Based on linkage disequilibrium (LD)-based association mapping used to detect single nucleotide polymorphism (SNP) markers associated with MGR against C. ribicola, MGR in these seed families appears to be controlled by Cr4 or other R genes in very close proximity to Cr4. These associated SNPs were located in genes involved in multiple molecular mechanisms potentially underlying limber pine MGR to C. ribicola, including NBS-LRR genes for recognition of C. ribicola effectors, signaling components, and a large set of defense-responsive genes with potential functions in plant effector-triggered immunity (ETI). Interactions of associated loci were identified for MGR selection in trees with complex genetic backgrounds. SNPs with tight Cr4-linkage were further converted to TaqMan assays to confirm their effectiveness as MAS tools. This work demonstrates the successful translation and deployment of molecular genetic knowledge into specific MAS tools that can be easily applied in a selection or breeding program to efficiently screen MGR against WPBR in Alberta limber pine populations.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Richard A. Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Robert Sissons
- Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada
| | | | - Genoa Alger
- Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada
| | - Anna W. Schoettle
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, United States
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Rachel A. Zitomer
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| |
Collapse
|
21
|
Naithani S, Gupta P, Preece J, D’Eustachio P, Elser JL, Garg P, Dikeman DA, Kiff J, Cook J, Olson A, Wei S, Tello-Ruiz MK, Mundo AF, Munoz-Pomer A, Mohammed S, Cheng T, Bolton E, Papatheodorou I, Stein L, Ware D, Jaiswal P. Plant Reactome: a knowledgebase and resource for comparative pathway analysis. Nucleic Acids Res 2020; 48:D1093-D1103. [PMID: 31680153 PMCID: PMC7145600 DOI: 10.1093/nar/gkz996] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
Plant Reactome (https://plantreactome.gramene.org) is an open-source, comparative plant pathway knowledgebase of the Gramene project. It uses Oryza sativa (rice) as a reference species for manual curation of pathways and extends pathway knowledge to another 82 plant species via gene-orthology projection using the Reactome data model and framework. It currently hosts 298 reference pathways, including metabolic and transport pathways, transcriptional networks, hormone signaling pathways, and plant developmental processes. In addition to browsing plant pathways, users can upload and analyze their omics data, such as the gene-expression data, and overlay curated or experimental gene-gene interaction data to extend pathway knowledge. The curation team actively engages researchers and students on gene and pathway curation by offering workshops and online tutorials. The Plant Reactome supports, implements and collaborates with the wider community to make data and tools related to genes, genomes, and pathways Findable, Accessible, Interoperable and Re-usable (FAIR).
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Parul Gupta
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Justin Preece
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | | | - Justin L Elser
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Priyanka Garg
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Daemon A Dikeman
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Jason Kiff
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Justin Cook
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | - Alfonso Munoz-Pomer
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, UK
| | - Suhaib Mohammed
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, UK
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Evan Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Irene Papatheodorou
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, UK
| | - Lincoln Stein
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- USDA-ARS, RW Holley Center for Agriculture & Health, Ithaca, NY, USA
| | - Pankaj Jaiswal
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
22
|
Spoor S, Cheng CH, Sanderson LA, Condon B, Almsaeed A, Chen M, Bretaudeau A, Rasche H, Jung S, Main D, Bett K, Staton M, Wegrzyn JL, Feltus FA, Ficklin SP. Tripal v3: an ontology-based toolkit for construction of FAIR biological community databases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5532788. [PMID: 31328773 PMCID: PMC6643302 DOI: 10.1093/database/baz077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/12/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022]
Abstract
Community biological databases provide an important online resource for both public and private data, analysis tools and community engagement. These sites house genomic, transcriptomic, genetic, breeding and ancillary data for specific species, families or clades. Due to the complexity and increasing quantities of these data, construction of online resources is increasingly difficult especially with limited funding and access to technical expertise. Furthermore, online repositories are expected to promote FAIR data principles (findable, accessible, interoperable and reusable) that presents additional challenges. The open-source Tripal database toolkit seeks to mitigate these challenges by creating both the software and an interactive community of developers for construction of online community databases. Additionally, through coordinated, distributed co-development, Tripal sites encourage community-wide sustainability. Here, we report the release of Tripal version 3 that improves data accessibility and data sharing through systematic use of controlled vocabularies (CVs). Tripal uses the community-developed Chado database as a default data store, but now provides tools to support other data stores, while ensuring that CVs remain the central organizational structure for the data. A new site developer can use Tripal to develop a basic site with little to no programming, with the ability to integrate other data types using extension modules and the Tripal application programming interface. A thorough online User’s Guide and Developer’s Handbook are available at http://tripal.info, providing download, installation and step-by-step setup instructions.
Collapse
Affiliation(s)
- Shawna Spoor
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Chun-Huai Cheng
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | | | - Bradford Condon
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Abdullah Almsaeed
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Ming Chen
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Anthony Bretaudeau
- INRA, UMR IGEPP, BIPAA/GenOuest, INRIA/Irisa - Campus de Beaulieu, Rennes Cedex, France
| | - Helena Rasche
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Kirstin Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.,Computational Biology Core, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - F Alex Feltus
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, USA
| | - Stephen P Ficklin
- Department of Horticulture, Washington State University, Pullman, WA, USA
| |
Collapse
|
23
|
Wegrzyn JL, Falk T, Grau E, Buehler S, Ramnath R, Herndon N. Cyberinfrastructure and resources to enable an integrative approach to studying forest trees. Evol Appl 2020; 13:228-241. [PMID: 31892954 PMCID: PMC6935593 DOI: 10.1111/eva.12860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
Sequencing technologies and bioinformatic approaches are now available to resolve the challenges associated with complex and heterozygous genomes. Increased access to less expensive and more effective instrumentation will contribute to a wealth of high-quality plant genomes in the next few years. In the meantime, more than 370 tree species are associated with public projects in primary repositories that are interrogating expression profiles, identifying variants, or analyzing targeted capture without a high-quality reference genome. Genomic data from these projects generates sequences that represent intermediate assemblies for transcriptomes and genomes. These data contribute to forest tree biology, but the associated sequence remains trapped in supplemental files that are poorly integrated in plant community databases and comparative genomic platforms. Successful implementation of life science cyberinfrastructure is improving data standards, ontologies, analytic workflows, and integrated database platforms for both model and non-model plant species. Unique to forest trees with large populations that are long-lived, outcrossing, and genetically diverse, the phenotypic and environmental metrics associated with georeferenced populations are just as important as the genomic data sampled for each individual. To address questions related to forest health and productivity, cyberinfrastructure must keep pace with the magnitude of genomic and phenomic sampling of larger populations. This review examines the current landscape of cyberinfrastructure, with an emphasis on best practices and resources to align community data with the Findable, Accessible, Interoperable, and Reusable (FAIR) guidelines.
Collapse
Affiliation(s)
- Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut
| | - Taylor Falk
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut
| | - Emily Grau
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut
| | - Sean Buehler
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut
| | - Risharde Ramnath
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut
| | - Nic Herndon
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut
| |
Collapse
|
24
|
López de Heredia U, Mora-Márquez F, Goicoechea PG, Guillardín-Calvo L, Simeone MC, Soto Á. ddRAD Sequencing-Based Identification of Genomic Boundaries and Permeability in Quercus ilex and Q. suber Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:564414. [PMID: 33013984 PMCID: PMC7498617 DOI: 10.3389/fpls.2020.564414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 05/03/2023]
Abstract
Hybridization and its relevance is a hot topic in ecology and evolutionary biology. Interspecific gene flow may play a key role in species adaptation to environmental change, as well as in the survival of endangered populations. Despite the fact that hybridization is quite common in plants, many hybridizing species, such as Quercus spp., maintain their integrity, while precise determination of genomic boundaries between species remains elusive. Novel high throughput sequencing techniques have opened up new perspectives in the comparative analysis of genomes and in the study of historical and current interspecific gene flow. In this work, we applied ddRADseq technique and developed an ad hoc bioinformatics pipeline for the study of ongoing hybridization between two relevant Mediterranean oaks, Q. ilex and Q. suber. We adopted a local scale approach, analyzing adult hybrids (sensu lato) identified in a mixed stand and their open-pollinated progenies. We have identified up to 9,435 markers across the genome and have estimated individual introgression levels in adults and seedlings. Estimated contribution of Q. suber to the genome is higher, on average, in hybrid progenies than in hybrid adults, suggesting preferential backcrossing with this parental species, maybe followed by selection during juvenile stages against individuals with higher Q. suber genomic contribution. Most discriminating markers seem to be scattered throughout the genome, suggesting that a large number of small genomic regions underlie boundaries between these species. A noticeable proportion of the markers (26%) showed allelic frequencies in adult hybrids very similar to one of the parental species, and very different from the other; a finding that seems relevant for understanding the hybridization process and the occurrence of adaptive introgression. Candidate marker databases developed in this study constitute a valuable resource to design large scale re-sequencing experiments in Mediterranean sclerophyllous oak species and could provide insight in species boundaries and on adaptive introgression between Q. suber and Q. ilex.
Collapse
Affiliation(s)
- Unai López de Heredia
- G.I. Genética, Fisiología e Historia Forestal, Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando Mora-Márquez
- G.I. Genética, Fisiología e Historia Forestal, Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Laura Guillardín-Calvo
- G.I. Genética, Fisiología e Historia Forestal, Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marco C. Simeone
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Álvaro Soto
- G.I. Genética, Fisiología e Historia Forestal, Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
- *Correspondence: Álvaro Soto,
| |
Collapse
|
25
|
Wegrzyn JL, Staton MA, Street NR, Main D, Grau E, Herndon N, Buehler S, Falk T, Zaman S, Ramnath R, Richter P, Sun L, Condon B, Almsaeed A, Chen M, Mannapperuma C, Jung S, Ficklin S. Cyberinfrastructure to Improve Forest Health and Productivity: The Role of Tree Databases in Connecting Genomes, Phenomes, and the Environment. FRONTIERS IN PLANT SCIENCE 2019; 10:813. [PMID: 31293610 PMCID: PMC6603172 DOI: 10.3389/fpls.2019.00813] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/05/2019] [Indexed: 05/11/2023]
Abstract
Despite tremendous advancements in high throughput sequencing, the vast majority of tree genomes, and in particular, forest trees, remain elusive. Although primary databases store genetic resources for just over 2,000 forest tree species, these are largely focused on sequence storage, basic genome assemblies, and functional assignment through existing pipelines. The tree databases reviewed here serve as secondary repositories for community data. They vary in their focal species, the data they curate, and the analytics provided, but they are united in moving toward a goal of centralizing both data access and analysis. They provide frameworks to view and update annotations for complex genomes, interrogate systems level expression profiles, curate data for comparative genomics, and perform real-time analysis with genotype and phenotype data. The organism databases of today are no longer simply catalogs or containers of genetic information. These repositories represent integrated cyberinfrastructure that support cross-site queries and analysis in web-based environments. These resources are striving to integrate across diverse experimental designs, sequence types, and related measures through ontologies, community standards, and web services. Efficient, simple, and robust platforms that enhance the data generated by the research community, contribute to improving forest health and productivity.
Collapse
Affiliation(s)
- Jill L. Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Margaret A. Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Nathaniel R. Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Emily Grau
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Nic Herndon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Sean Buehler
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Taylor Falk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Risharde Ramnath
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Peter Richter
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Lang Sun
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Bradford Condon
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Abdullah Almsaeed
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Ming Chen
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Stephen Ficklin
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
26
|
Buble K, Jung S, Humann JL, Yu J, Cheng CH, Lee T, Ficklin SP, Hough H, Condon B, Staton ME, Wegrzyn JL, Main D. Tripal MapViewer: A tool for interactive visualization and comparison of genetic maps. Database (Oxford) 2019; 2019:baz100. [PMID: 31688940 PMCID: PMC6829499 DOI: 10.1093/database/baz100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/09/2019] [Accepted: 07/16/2019] [Indexed: 11/14/2022]
Abstract
Tripal is an open-source, resource-efficient toolkit for construction of genomic, genetic and breeding databases. It facilitates development of biological websites by providing tools to integrate and display biological data using the generic database schema, Chado, together with Drupal, a popular website creation and content management system. Tripal MapViewer is a new interactive tool for visualizing genetic map data. Developed as a Tripal replacement for Comparative Map Viewer (CMap), it enables visualization of entire maps or linkage groups and features such as molecular markers, quantitative trait loci (QTLs) and heritable phenotypic markers. It also provides graphical comparison of maps sharing the same markers as well as dot plot and correspondence matrices. MapViewer integrates directly with the Tripal application programming interface framework, improving data searching capability and providing a more seamless experience for site visitors. The Tripal MapViewer interface can be integrated in any Tripal map page and linked from any Tripal page for markers, QTLs, heritable morphological markers or genes. Configuration of the display is available through a control panel and the administration interface. The administration interface also allows configuration of the custom database query for building materialized views, providing better performance and flexibility in the way data is stored in the Chado database schema. MapViewer is implemented with the D3.js technology and is currently being used at the Genome Database for Rosaceae (https://www.rosaceae.org), CottonGen (https://www.cottongen.org), Citrus Genome Database (https://citrusgenomedb.org), Vaccinium Genome Database (https://www.vaccinium.org) and Cool Season Food Legume Database (https://www.coolseasonfoodlegume.org). It is also currently in development on the Hardwood Genomics Web (https://hardwoodgenomics.org) and TreeGenes (https://treegenesdb.org). Database URL: https://gitlab.com/mainlabwsu/tripal_map.
Collapse
Affiliation(s)
- Katheryn Buble
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Jodi L Humann
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Jing Yu
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Chun-Huai Cheng
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Taein Lee
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Stephen P Ficklin
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Heidi Hough
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Bradford Condon
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| |
Collapse
|