1
|
del Olmo V, Redondo-Río Á, García AB, Limtong S, Saus E, Gabaldón T. Insights into the origin, hybridisation and adaptation of Candida metapsilosis hybrid pathogens. PLoS Pathog 2025; 21:e1012864. [PMID: 39823524 PMCID: PMC11781744 DOI: 10.1371/journal.ppat.1012864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/30/2025] [Accepted: 12/29/2024] [Indexed: 01/19/2025] Open
Abstract
Hybridisation is a source of genetic diversity, can drive adaptation to new niches and has been found to be a frequent event in lineages harbouring pathogenic fungi. However, little is known about the genomic implications of hybridisation nor its impact on pathogenicity-related traits. A common limitation for addressing these questions is the narrow representativity of sequenced genomes, mostly corresponding to strains isolated from infected patients. The opportunistic human pathogen Candida metapsilosis is a hybrid that descends from the crossing between unknown parental lineages. Here, we sequenced the genomes of five new C. metapsilosis isolates, one representing the first African isolate for this species, and four environmental isolates from marine niches. Our comparative genomic analyses, including a total of 29 sequenced strains, shed light on the phylogenetic relationships between C. metapsilosis hybrid isolates and show that environmental strains are closely related to clinical ones and belong to different clades, suggesting multiple independent colonisations. Furthermore, we identify a new diverging clade likely emerging from the same hybridisation event that originated two other previously described hybrid clades. Lastly, we evaluate phenotypes relevant during infection such as drug susceptibility, thermotolerance or virulence. We identify low drug susceptibility phenotypes which we suggest might be driven by loss of heterozygosity events in key genes. We discover that thermotolerance is mainly clade-dependent and find a correlation with the faecal origin of some strains which highlights the adaptive potential of the fungus as commensal.
Collapse
Affiliation(s)
- Valentina del Olmo
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Álvaro Redondo-Río
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alicia Benavente García
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Ester Saus
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain
| |
Collapse
|
2
|
Gabaldón T. Threats from the Candida parapsilosis complex: the surge of multidrug resistance and a hotbed for new emerging pathogens. Microbiol Mol Biol Rev 2024; 88:e0002923. [PMID: 39508581 DOI: 10.1128/mmbr.00029-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
SUMMARYCandida parapsilosis is a common agent of candidiasis that has gained increased attention in recent years, culminating with its recent consideration as a high-priority fungal pathogen by the World Health Organization. Reasons for this classification are the recent surge in incidence and the alarmingly growing rates of drug and multidrug resistance. In addition, several closely related species such as Candida metapsilosis and Candida orthopsilosis may represent recently emerged opportunistic pathogens originated from environmental niches through interspecies hybridization. Here, I review recent research focused on the potential origin and spread of drug resistance and of emerging species in this complex. I will also discuss open questions regarding the possible implications of human activities in these two epidemiological phenomena.
Collapse
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Center (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Mutalová S, Hodorová V, Brázdovič F, Cillingová A, Tomáška Ľ, Brejová B, Nosek J. Chromosome-level genome assembly of an auxotrophic strain of the pathogenic yeast Candida parapsilosis. Microbiol Resour Announc 2024; 13:e0034724. [PMID: 39083682 PMCID: PMC11385725 DOI: 10.1128/mra.00347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
We report the genome sequence of the pathogenic yeast Candida parapsilosis strain SR23 (CBS 7157) used in a number of experimental studies. The nuclear genome assembly consists of eight chromosome-sized contigs with a total size of 13.04 Mbp (N50 2.09 Mbp) and a G+C content of 38.7%.
Collapse
Affiliation(s)
- Sofia Mutalová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Filip Brázdovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
4
|
Del Olmo V, Gabaldón T. Hybrids unleashed: exploring the emergence and genomic insights of pathogenic yeast hybrids. Curr Opin Microbiol 2024; 80:102491. [PMID: 38833792 PMCID: PMC11358589 DOI: 10.1016/j.mib.2024.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Hybridisation is the crossing of two divergent lineages that give rise to offspring carrying an admixture of both parental genomes. Genome sequencing has revealed that this process is common in the Saccharomycotina, where a growing number of hybrid strains or species, including many pathogenic ones, have been recently described. Hybrids can display unique traits that may drive adaptation to new niches, and some pathogenic hybrids have been shown to have higher prevalence over their parents in human and environmental niches, suggesting a higher fitness and potential to colonise humans. Here, we discuss how hybridisation and its genomic and phenotypic outcomes can shape the evolution of fungal species and may play a role in the emergence of new pathogens.
Collapse
Affiliation(s)
- Valentina Del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain; Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain; Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
5
|
Brejová B, Hodorová V, Mutalová S, Cillingová A, Tomáška Ľ, Vinař T, Nosek J. Chromosome-level genome assembly of the yeast Lodderomyces beijingensis reveals the genetic nature of metabolic adaptations and identifies subtelomeres as hotspots for amplification of mating type loci. DNA Res 2024; 31:dsae014. [PMID: 38686638 PMCID: PMC11100356 DOI: 10.1093/dnares/dsae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Lodderomyces beijingensis is an ascosporic ascomycetous yeast. In contrast to related species Lodderomyces elongisporus, which is a recently emerging human pathogen, L. beijingensis is associated with insects. To provide an insight into its genetic makeup, we investigated the genome of its type strain, CBS 14171. We demonstrate that this yeast is diploid and describe the high contiguity nuclear genome assembly consisting of eight chromosome-sized contigs with a total size of about 15.1 Mbp. We find that the genome sequence contains multiple copies of the mating type loci and codes for essential components of the mating pheromone response pathway, however, the missing orthologs of several genes involved in the meiotic program raise questions about the mode of sexual reproduction. We also show that L. beijingensis genome codes for the 3-oxoadipate pathway enzymes, which allow the assimilation of protocatechuate. In contrast, the GAL gene cluster underwent a decay resulting in an inability of L. beijingensis to utilize galactose. Moreover, we find that the 56.5 kbp long mitochondrial DNA is structurally similar to known linear mitochondrial genomes terminating on both sides with covalently closed single-stranded hairpins. Finally, we discovered a new double-stranded RNA mycovirus from the Totiviridae family and characterized its genome sequence.
Collapse
Affiliation(s)
- Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, 842 48 Bratislava, Slovak Republic
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Sofia Mutalová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, 842 48 Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
6
|
Govrins M, Lass-Flörl C. Candida parapsilosis complex in the clinical setting. Nat Rev Microbiol 2024; 22:46-59. [PMID: 37674021 DOI: 10.1038/s41579-023-00961-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Representatives of the Candida parapsilosis complex are important yeast species causing human infections, including candidaemia as one of the leading diseases. This complex comprises C. parapsilosis, Candida orthopsilosis and Candida metapsilosis, and causes a wide range of clinical presentations from colonization to superficial and disseminated infections with a high prevalence in preterm-born infants and the potential to cause outbreaks in hospital settings. Compared with other Candida species, the C. parapsilosis complex shows high minimal inhibitory concentrations for echinocandin drugs due to a naturally occurring FKS1 polymorphism. The emergence of clonal outbreaks of strains with resistance to commonly used antifungals, such as fluconazole, is causing concern. In this Review, we present the latest medical data covering epidemiology, diagnosis, resistance and current treatment approaches for the C. parapsilosis complex. We describe its main clinical manifestations in adults and children and highlight new treatment options. We compare the three sister species, examining key elements of microbiology and clinical characteristics, including the population at risk, disease manifestation and colonization status. Finally, we provide a comprehensive resource for clinicians and researchers focusing on Candida species infections and the C. parapsilosis complex, aiming to bridge the emerging translational knowledge and future therapeutic challenges associated with this human pathogen.
Collapse
Affiliation(s)
- Miriam Govrins
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Del Olmo V, Mixão V, Fotedar R, Saus E, Al Malki A, Księżopolska E, Nunez-Rodriguez JC, Boekhout T, Gabaldón T. Origin of fungal hybrids with pathogenic potential from warm seawater environments. Nat Commun 2023; 14:6919. [PMID: 37903766 PMCID: PMC10616089 DOI: 10.1038/s41467-023-42679-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
Hybridisation is a common event in yeasts often leading to genomic variability and adaptation. The yeast Candida orthopsilosis is a human-associated opportunistic pathogen belonging to the Candida parapsilosis species complex. Most C. orthopsilosis clinical isolates are hybrids resulting from at least four independent crosses between two parental lineages, of which only one has been identified. The rare presence or total absence of parentals amongst clinical isolates is hypothesised to be a consequence of a reduced pathogenicity with respect to their hybrids. Here, we sequence and analyse the genomes of environmental C. orthopsilosis strains isolated from warm marine ecosystems. We find that a majority of environmental isolates are hybrids, phylogenetically closely related to hybrid clinical isolates. Furthermore, we identify the missing parental lineage, thus providing a more complete overview of the genomic evolution of this species. Additionally, we discover phenotypic differences between the two parental lineages, as well as between parents and hybrids, under conditions relevant for pathogenesis. Our results suggest a marine origin of C. orthopsilosis hybrids, with intrinsic pathogenic potential, and pave the way to identify pre-existing environmental adaptations that rendered hybrids more prone than parental lineages to colonise and infect the mammalian host.
Collapse
Affiliation(s)
- Valentina Del Olmo
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Verónica Mixão
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Bioinformatics Unit, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Rashmi Fotedar
- Department of Genetic Engineering, Biotechnology Centre, Ministry of Municipality and Environment, P.O Box 20022, Doha, Qatar
| | - Ester Saus
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Amina Al Malki
- Department of Genetic Engineering, Biotechnology Centre, Ministry of Municipality and Environment, P.O Box 20022, Doha, Qatar
| | - Ewa Księżopolska
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan Carlos Nunez-Rodriguez
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Teun Boekhout
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Toni Gabaldón
- Life Sciences Department. Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain.
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.
- , Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
8
|
Mixão V, Nunez-Rodriguez JC, Del Olmo V, Ksiezopolska E, Saus E, Boekhout T, Gacser A, Gabaldón T. Evolution of loss of heterozygosity patterns in hybrid genomes of Candida yeast pathogens. BMC Biol 2023; 21:105. [PMID: 37170256 PMCID: PMC10173528 DOI: 10.1186/s12915-023-01608-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Hybrids are chimeric organisms with highly plastic heterozygous genomes that may confer unique traits enabling the adaptation to new environments. However, most evolutionary theory frameworks predict that the high levels of genetic heterozygosity present in hybrids from divergent parents are likely to result in numerous deleterious epistatic interactions. Under this scenario, selection is expected to favor recombination events resulting in loss of heterozygosity (LOH) affecting genes involved in such negative interactions. Nevertheless, it is so far unknown whether this phenomenon actually drives genomic evolution in natural populations of hybrids. To determine the balance between selection and drift in the evolution of LOH patterns in natural yeast hybrids, we analyzed the genomic sequences from fifty-five hybrid strains of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis, which derived from at least six distinct natural hybridization events. RESULTS We found that, although LOH patterns in independent hybrid clades share some level of convergence that would not be expected from random occurrence, there is an apparent lack of strong functional selection. Moreover, while mitosis is associated with a limited number of inter-homeologous chromosome recombinations in these genomes, induced DNA breaks seem to increase the LOH rate. We also found that LOH does not accumulate linearly with time in these hybrids. Furthermore, some C. orthopsilosis hybrids present LOH patterns compatible with footprints of meiotic recombination. These meiotic-like patterns are at odds with a lack of evidence of sexual recombination and with our inability to experimentally induce sporulation in these hybrids. CONCLUSIONS Our results suggest that genetic drift is the prevailing force shaping LOH patterns in these hybrid genomes. Moreover, the observed LOH patterns suggest that these are likely not the result of continuous accumulation of sporadic events-as expected by mitotic repair of rare chromosomal breaks-but rather of acute episodes involving many LOH events in a short period of time.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Present address: Genomics and Bioinformatics Unit, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Juan Carlos Nunez-Rodriguez
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Valentina Del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Attila Gacser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain.
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
9
|
The teenage years of yeast population genomics trace history, admixing and getting wilder. Curr Opin Genet Dev 2022; 75:101942. [PMID: 35753210 DOI: 10.1016/j.gde.2022.101942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Population genomics studies the evolutionary processes that shape intraspecies genetic variations. In this review, I explore the insights into yeast-population genomics that have emerged from recent advances in sequencing. Genomes of the model Saccharomyces cerevisiae and many new yeast species from around the world are being used to address various aspects of population biology, including geographical origin, the level of introgression, domestication signatures, and outcrossing frequency. New long-read sequencing has enabled a greater capacity to quantify these variations at a finer resolution from complete de novo genomes at the population scale to phasing subgenomes of different origins. These resources provide a platform to dissect the relationship between phenotypes across environmental niches.
Collapse
|