1
|
Li W, Zhang J, Zhang W, Zhang Q, Wang H, Xu T, Chen Z, Zhang Z. The F box protein INHIBITOR FOR BROWN FURROWS 1 (IBF1) regulates flavonoid accumulation in rice hull by promoting degradation of chalcone synthase 1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70105. [PMID: 40121665 DOI: 10.1111/tpj.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Flavonoids are secondary metabolites of plants that play various roles in plants. The transcriptional level regulation of flavonoid synthesis in plants has been extensively studied, but research on the protein level of flavonoid synthesis in plants is still limited. In the present study, a brown hull mutant, bh2, was screened from an ethane methyl sulfonate (EMS)-induced bank from the seeds of the indica cultivar RH2B. The bh2 mutant exhibited a brown hull phenotype and higher levels of total flavonoids and anthocyanins compared with wild-type plants. We identified the gene INHIBITOR FOR BROWN FURROWS 1 (IBF1) in the bh2 mutant through MutMap analysis and subsequently cloned it. IBF1 encodes an F-box protein and is involved in the formation of an SCF (S-phase kinase-associated protein 1 [SKP1], Cullin, and F-box) complex with the Oryza sativa SKP1-like proteins OSK1/OSK20. Through yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays, the interaction of IBF1 with chalcone synthase 1 (CHS1) was confirmed. This interaction facilitated the degradation of CHS1 through the ubiquitin-26S proteasome system. The ibf1 chs1 double mutants exhibited normal hull color, restoring the phenotype of ibf1. Genetic analysis suggested that IBF1 regulates hull color in a CHS1-dependent manner. Collectively, our study suggests that IBF1 serves as a crucial negative regulator that controls flavonoid biosynthesis by mediating CHS1 degradation, thereby regulating hull color.
Collapse
Affiliation(s)
- Weiyan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Jingjing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Wan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Qiuxin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Haoyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Tingting Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Zhongxian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| |
Collapse
|
2
|
Wang N, Lin C, Yang Z, Zhao D. Transcriptome and genome-wide analysis of the potential role of SKP1 gene family in the development of floral organs of two related species of Allium fistulosum. FRONTIERS IN PLANT SCIENCE 2024; 15:1470780. [PMID: 39574443 PMCID: PMC11578749 DOI: 10.3389/fpls.2024.1470780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Allium fistulosum is an important plant germplasm resource, rich in nutrients and possessing unique medicinal value. However, due to its small floral organs, low seed setting rate of a single flower, high cost of artificial emasculation, and artificial pollination, the use of male sterile lines to prepare Allium hybrids has become a common choice. In this study, A. fistulosum var. viviparum Makino and A. galanthum were used as materials to study the regulation mechanism of anther development, aiming to provide a reference for male sterility. Through transcriptome differential gene screening and genome-wide bioinformatics analysis, 34 SKP1 (S-phase kinase-associated protein 1) genes (AfSKP1-1 to AfSKP1-34) were identified in the whole genome of A. fistulosum. The AfSKP1 genes are unevenly distributed on eight chromosomes. Furthermore, two pairs of collinear relationships are evident among family members, and fragment replication events between AfSKP1 genes have been identified. The phylogenetic tree analysis demonstrated that the AfSKP1, AtSKP1, OsSKP1, and SlSKP1 genes were clustered into six groups, exhibiting a gene structure analogous to that observed in members of an evolutionary classification. A combination of gene structure and phylogenetic analysis revealed the presence of cis-acting elements associated with growth, hormone regulation, and stress response within the AfSKP1 genes. Furthermore, expression analysis demonstrated that the AfSKP1 genes exhibited differential expression patterns across various tissues of A. fistulosum. The tissue-specific expression of the AfSKP1 gene was verified by Real-Time PCR. A comparison of the two materials revealed significant differences in the expression of the AfSKP1-8 gene in floral buds, the AfSKP1-11 gene in inflorescence meristems, and the AfSKP1-14 gene in inflorescence meristems, scapes, and floral buds. The results indicated that the three genes may be involved in anther development, thereby providing a theoretical basis for further study of floral organ development and pollen development in AfSKP1 family members.
Collapse
Affiliation(s)
| | - Chenyi Lin
- *Correspondence: Chenyi Lin, ; Zhongmin Yang,
| | | | | |
Collapse
|
3
|
Chen Y, Dan Z, Li S. GROWTH REGULATING FACTOR 7-mediated arbutin metabolism enhances rice salt tolerance. THE PLANT CELL 2024; 36:2834-2850. [PMID: 38701348 PMCID: PMC11289636 DOI: 10.1093/plcell/koae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Salt stress is an environmental factor that limits plant growth and crop production. With the rapid expansion of salinized arable land worldwide, investigating the molecular mechanisms underlying the salt stress response in plants is urgently needed. Here, we report that GROWTH REGULATING FACTOR 7 (OsGRF7) promotes salt tolerance by regulating arbutin (hydroquinone-β-D-glucopyranoside) metabolism in rice (Oryza sativa). Overexpression of OsGRF7 increased arbutin content, and exogenous arbutin application rescued the salt-sensitive phenotype of OsGRF7 knockdown and knockout plants. OsGRF7 directly promoted the expression of the arbutin biosynthesis genes URIDINE DIPHOSPHATE GLYCOSYLTRANSFERASE 1 (OsUGT1) and OsUGT5, and knockout of OsUGT1 or OsUGT5 reduced rice arbutin content, salt tolerance, and grain size. Furthermore, OsGRF7 degradation through its interaction with F-BOX AND OTHER DOMAINS CONTAINING PROTEIN 13 reduced rice salinity tolerance and grain size. These findings highlight an underexplored role of OsGRF7 in modulating rice arbutin metabolism, salt stress response, and grain size, as well as its broad potential use in rice breeding.
Collapse
Affiliation(s)
- Yunping Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhiwu Dan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
4
|
Jaiswal P, Singh A, Bajpai K, Tripathi K, Sahi AN, Barthakur S. Genetic diversity, transcript heterogeneity and allele mining of TaSKP1-6B-4 gene variants across diverse genotypes under terminal heat stress and genome wide characterization of TaSKP1 gene family from bread wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2023; 113:279-301. [PMID: 37985582 DOI: 10.1007/s11103-023-01389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
SKP1 (S-phase kinase protein1) is an essential regulatory component of SCF (Skp1-cullin-F-box) E3 ubiquitin ligases involved in maintenance of cellular protein homeostasis through ubiquitin mediated proteasome system (UPS). UPS play a key role in stress response and grain yield. Earlier, we isolated TaSKP1-6B-4, highly induced in flag leaf tissues (Accession No. KJ830759.1) of developing wheat caryopses under heat stress. To further assess the functional role of SKP1, genetic variability analysis was carried out in a panel of 25 contrasting germplasm through extensive phenotyping and transcript profiling of TaSKP1-6B-4 during anthesis under ambient and terminal heat stress (THS) in field experiments for two consecutive years. The analysis of variance revealed significant variations for all the traits studied. Higher H2(%), GCV, PCV, GA and GA% mean observed in tiller number per plant (23.81, 17.65, 5.71, 28, 30.86%) and grain number per head (30.27, 82.79, 60.16, 105.00, 108.64%) under THS over ambient temperature. Higher fold induction of TaSKP1-6B-4 transcripts was recorded in 10 genotypes viz. HD2967 (9.9), IC145456 (6.18) in flag leaf; while C-306 (15.88), RAJ3765 (8.37) in ear head. Allele mining of SKP1-6B-4 showed genotypic sequence variations. Whole genome wide search of SKP1 gene family identified 95 SKP1 genes which were structurally characterized. Grain yield, leaf senescence and other agronomic-morpho-physiological parameters combined with transcript profiling, cvHD2967, was found to be the best positively responsive to THS which by pedigree was not heat tolerant. We report a novel 2 year comprehensive field based analysis on collective genetic variability and SKP1/UPS modulation under a natural environmental setting. The data reveals potential functional role of UPS under THS and tolerant cultivars can be further utilized for clarifying the role of UPS mechanistically at the molecular level and for developing terminal heat stress tolerant wheat.
Collapse
Affiliation(s)
- Praful Jaiswal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Amity Institute of Biotechnology, Amity University, Noida, U.P, India
| | - Akshay Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Kriti Bajpai
- ICAR- Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Kabitha Tripathi
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | | | | |
Collapse
|
5
|
Huang Y, Ji Z, Tao Y, Wei S, Jiao W, Fang Y, Jian P, Shen C, Qin Y, Zhang S, Li S, Liu X, Kang S, Tian Y, Song Q, Harberd NP, Wang S, Li S. Improving rice nitrogen-use efficiency by modulating a novel monouniquitination machinery for optimal root plasticity response to nitrogen. NATURE PLANTS 2023; 9:1902-1914. [PMID: 37798338 DOI: 10.1038/s41477-023-01533-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/01/2023] [Indexed: 10/07/2023]
Abstract
Plant nitrogen (N)-use efficiency (NUE) is largely determined by the ability of root to take up external N sources, whose availability and distribution in turn trigger the modification of root system architecture (RSA) for N foraging. Therefore, improving N-responsive reshaping of RSA for optimal N absorption is a major target for developing crops with high NUE. In this study, we identified RNR10 (REGULATOR OF N-RESPONSIVE RSA ON CHROMOSOME 10) as the causal gene that underlies the significantly different root developmental plasticity in response to changes in N level exhibited by the indica (Xian) and japonica (Geng) subspecies of rice. RNR10 encodes an F-box protein that interacts with a negative regulator of auxin biosynthesis, DNR1 (DULL NITROGEN RESPONSE1). Interestingly, RNR10 monoubiquitinates DNR1 and inhibits its degradation, thus antagonizing auxin accumulation, which results in reduced root responsivity to N and nitrate (NO3-) uptake. Therefore, modulating the RNR10-DNR1-auxin module provides a novel strategy for coordinating a desirable RSA and enhanced N acquisition for future sustainable agriculture.
Collapse
Affiliation(s)
- Yunzhi Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ji
- Department of Biology, University of Oxford, Oxford, UK
| | - Yujun Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shuxian Wei
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Wu Jiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yongzhi Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Peng Jian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Chengbo Shen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yaojun Qin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Siyu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shunqi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xuan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shuming Kang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yanan Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | | | - Shaokui Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Shan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Jain N, Khurana P, Khurana JP. Overexpression of a rice Tubby-like protein-encoding gene, OsFBT4, confers tolerance to abiotic stresses. PROTOPLASMA 2023; 260:1063-1079. [PMID: 36539640 DOI: 10.1007/s00709-022-01831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/05/2022] [Indexed: 06/07/2023]
Abstract
The OsFBT4 belongs to a small sub-class of rice F-box proteins called TLPs (Tubby-like proteins) containing the conserved N-terminal F-box domain and a C-terminal Tubby domain. These proteins have largely been implicated in both abiotic and biotic stress responses, besides developmental roles in plants. Here, we investigated the role of OsFBT4 in abiotic stress signalling. The OsFBT4 transcript was strongly upregulated in response to different abiotic stresses in rice, including exogenous ABA. When ectopically expressed, in Arabidopsis, under a constitutive CaMV 35S promoter, the overexpression (OE) caused hypersensitivity to most abiotic stresses, including ABA, during seed germination and early seedling growth. At the 5-day-old seedling growth stage, the OE conferred tolerance to all abiotic stresses. The OE lines displayed significant tolerance to salinity and water deficit at the mature growth stage. The stomatal size and density were seen to be altered in the OE lines, accompanied by hypersensitivity to ABA and hydrogen peroxide (H2O2) and a reduced water loss rate. Overexpression of OsFBT4 caused upregulation of several ABA-regulated/independent stress-responsive genes at more advanced stages of growth, showing wide and intricate roles played by OsFBT4 in stress signalling. The OsFBT4 showed interaction with several OSKs (Oryza SKP1 proteins) and localized to the plasma membrane (PM). The protein translocates to the nucleus, in response to oxidative and osmotic stresses, but failed to show transactivation activity in the yeast system. The OE lines also displayed morphological deviations from the wild-type (WT) plants, suggesting a role of the gene also in plant development.
Collapse
Affiliation(s)
- Nitin Jain
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| |
Collapse
|
7
|
Sharma E, Bhatnagar A, Bhaskar A, Majee SM, Kieffer M, Kepinski S, Khurana P, Khurana JP. Stress-induced F-Box protein-coding gene OsFBX257 modulates drought stress adaptations and ABA responses in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1207-1231. [PMID: 36404527 DOI: 10.1111/pce.14496] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
F-box (FB) proteins that form part of SKP1-CUL1-F-box (SCF) type of E3 ubiquitin ligases are important components of plant growth and development. Here we characterized OsFBX257, a rice FB protein-coding gene that is differentially expressed under drought conditions and other abiotic stresses. Population genomics analysis suggest that OsFBX257 shows high allelic diversity in aus accessions and has been under positive selection in some japonica, aromatic and indica cultivars. Interestingly, allelic variation at OsFBX257 in aus cultivar Nagina22 is associated with an alternatively spliced transcript. Conserved among land plants, OsFBX257 is a component of the SCF complex, can form homomers and interact molecularly with the 14-3-3 rice proteins GF14b and GF14c. OsFBX257 is co-expressed in a network involving protein kinases and phosphatases. We show that OsFBX257 can bind the kinases OsCDPK1 and OsSAPK2, and that its phosphorylation can be reversed by phosphatase OsPP2C08. OsFBX257 expression level modulates root architecture and drought stress tolerance in rice. OsFBX257 knockdown (OsFBX257KD ) lines show reduced total root length and depth, crown root number, panicle size and survival under stress. In contrast, its overexpression (OsFBX257OE ) increases root depth, leaf and grain length, number of panicles, and grain yield in rice. OsFBX257 is a promising breeding target for alleviating drought stress-induced damage in rice.
Collapse
Affiliation(s)
- Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Akanksha Bhatnagar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Avantika Bhaskar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Susmita M Majee
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Martin Kieffer
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stefan Kepinski
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Global Food and Environment Institute, University of Leeds, Leeds, UK
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
8
|
Zhang D, Yu Z, Hu S, Liu X, Zeng B, Gao W, Qin H, Ma X, He Y. Genome-wide identification of members of the Skp1 family in almond ( Prunus dulcis), cloning and expression characterization of PsdSSK1. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:35-49. [PMID: 36733834 PMCID: PMC9886703 DOI: 10.1007/s12298-023-01278-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/04/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Skp1 (S-phase kinase-associated protein 1) is the core gene of SCF ubiquitin ligase, which mediates protein degradation, thereby regulating biological processes such as cell cycle progression, transcriptional regulation, and signal transduction. A variety of plant Skp1 gene family studies have been reported. However, the almond Skp1 gene family has not yet been studied. In this study, we identified 18 members of the Prunus dulcis PdSkp1 family that were unevenly distributed across six chromosomes of the almond genome. Phylogenetic tree analysis revealed that the PdSkp1 members can be divided into three groups: I, II, and III. PdSkp1 members in each subfamily have relatively conserved motif types and exon/intron numbers. There were three pairs of fragment duplication genes and one pair of tandem repeat genes, and their functions were highly evolutionarily conserved. Transcriptome data showed that PdSkp1 is expressed in almond flower tissues, and that its expression shows significant change during cross-pollination. Fluorescence quantitative results showed that eight PdSkp1 genes had different expression levels in five tissues of almond, i.e., branches, leaves, flower buds, flesh, and cores. In addition, we cloned a PsdSSK1 gene based on PdSkp1. The cloned PsdSSK1 showed the same protein sequence as PdSkp1-12. Results of qPCR and western blot analysis showed high expression of PsdSSK1 in almond pollen. In conclusion, we report the first clone of the key gene SSK1 that controls self-incompatibility in almonds. Our research lays a foundation for future functional research on PdSkp1 members, especially for exploring the mechanism of almond self-incompatibility. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01278-9.
Collapse
Affiliation(s)
- Dongdong Zhang
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Zhenfan Yu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Shaobo Hu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Xingyue Liu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
- GuangZhou Institute of Forestry and Landscape Architecture, GuangZhou, China
| | - Bin Zeng
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Wenwen Gao
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - HuanXue Qin
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Xintong Ma
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Yawen He
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| |
Collapse
|
9
|
Zeng Y, Wen J, Fu J, Geng H, Dan Z, Zhao W, Xu W, Huang W. Genome-wide identification and comprehensive analysis of tubby-like protein gene family in multiple crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1093944. [PMID: 36589128 PMCID: PMC9795058 DOI: 10.3389/fpls.2022.1093944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The highly conserved tubby-like proteins (TLPs) play key roles in animal neuronal development and plant growth. The abiotic stress tolerance function of TLPs has been widely explored in plants, however, little is known about comparative studies of TLPs within crops. METHODS Bioinformatic identification, phylogenetic analysis, Cis-element analysis, expression analysis, Cis-element analysis, expression analysis and so on were explored to analysis the TLP gene family of multiple crops. RESULTS In this study, a comprehensive analysis of TLP genes were carried out in seven crops to explore whether similar function of TLPs in rice could be achieved in other crops. We identified 20, 9, 14, 11, 12, 35, 14 and 13 TLP genes in Glycine max, Hordeum vulgare, Sorghum bicolor, Arabidopsis thaliana, Oryza sativa Japonica, Triticum aestivum, Setaria italic and Zea mays, respectively. All of them were divided into two groups and ten orthogroups (Ors) based on amino acids. A majority of TLP genes had two domains, tubby-like domain and F-box domain, while members of Or5 only had tubby-like domain. In addition, Or5 had more exons and shorter DNA sequences, showing that characteristics of different Ors reflected the differentiated function and feature of TLP genes in evolutionary process, and Or5 was the most different from the other Ors. Besides, we recognized 25 cis-elements in the promoter of TLP genes and explored multiple new regulation pathway of TLPs including light and hormone response. The bioinformatic and transcriptomic analysis implied the stresses induced expression and possible functional redundancy of TLP genes. We detected the expression level of 6 OsTLP genes at 1 to 6 days after seed germination in rice, and the most obvious changes in these days were appeared in OsTLP10 and OsTLP12. DISCUSSION Combined yeast two-hybrid system and pull down assay, we suggested that the TLP genes of Or1 may have similar function during seed germination in different species. In general, the results of comprehensive analysis of TLP gene family in multiple species provide valuable evolutionary and functional information of TLP gene family which are useful for further application and study of TLP genes.
Collapse
|
10
|
Li A, Hao C, Wang Z, Geng S, Jia M, Wang F, Han X, Kong X, Yin L, Tao S, Deng Z, Liao R, Sun G, Wang K, Ye X, Jiao C, Lu H, Zhou Y, Liu D, Fu X, Zhang X, Mao L. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. MOLECULAR PLANT 2022; 15:504-519. [PMID: 35026438 DOI: 10.1016/j.molp.2022.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 05/10/2023]
Abstract
Diversity surveys of crop germplasm are important for gaining insights into the genomic basis for plant architecture and grain yield improvement, which is still poorly understood in wheat. In this study, we exome sequenced 287 wheat accessions that were collected in the past 100 years. Population genetics analysis identified that 6.7% of the wheat genome falls within the selective sweeps between landraces and cultivars, which harbors the genes known for yield improvement. These regions were asymmetrically distributed on the A and B subgenomes with regulatory genes being favorably selected. Genome-wide association study (GWAS) identified genomic loci associated with traits for yield potential, and two underlying genes, TaARF12 encoding an auxin response factor and TaDEP1 encoding the G-protein γ-subunit, were located and characterized to pleiotropically regulate both plant height and grain weight. Elite single-nucleotide haplotypes with increased allele frequency in cultivars relative to the landraces were identified and found to have accumulated over the course of breeding. Interestingly, we found that TaARF12 and TaDEP1 function in epistasis with the classical plant height Rht-1 locus, leading to propose a "Green Revolution"-based working model for historical wheat breeding. Collectively, our study identifies selection signatures that fine-tune the gibberellin pathway during modern wheat breeding and provides a wealth of genomic diversity resources for the wheat research community.
Collapse
Affiliation(s)
- Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chenyang Hao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenyu Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meiling Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingchen Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingjie Yin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu Tao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongyin Deng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruyi Liao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoliang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingguo Ye
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengzhi Jiao
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Hongfeng Lu
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Yun Zhou
- Collaborative Innovation Center of Crop Stress Biology & Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng 475004, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xueyong Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Wang S, Li S, Wang J, Li Q, Xin XF, Zhou S, Wang Y, Li D, Xu J, Luo ZQ, He SY, Sun W. A bacterial kinase phosphorylates OSK1 to suppress stomatal immunity in rice. Nat Commun 2021; 12:5479. [PMID: 34531388 PMCID: PMC8445998 DOI: 10.1038/s41467-021-25748-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
The Xanthomonas outer protein C2 (XopC2) family of bacterial effectors is widely found in plant pathogens and Legionella species. However, the biochemical activity and host targets of these effectors remain enigmatic. Here we show that ectopic expression of XopC2 promotes jasmonate signaling and stomatal opening in transgenic rice plants, which are more susceptible to Xanthomonas oryzae pv. oryzicola infection. Guided by these phenotypes, we discover that XopC2 represents a family of atypical kinases that specifically phosphorylate OSK1, a universal adaptor protein of the Skp1-Cullin-F-box ubiquitin ligase complexes. Intriguingly, OSK1 phosphorylation at Ser53 by XopC2 exclusively increases the binding affinity of OSK1 to the jasmonate receptor OsCOI1b, and specifically enhances the ubiquitination and degradation of JAZ transcription repressors and plant disease susceptibility through inhibiting stomatal immunity. These results define XopC2 as a prototypic member of a family of pathogenic effector kinases and highlight a smart molecular mechanism to activate jasmonate signaling.
Collapse
Affiliation(s)
- Shanzhi Wang
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Shuai Li
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyang Wang
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Qian Li
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiu-Fang Xin
- grid.17088.360000 0001 2150 1785DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA ,grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), CAS John Innes Centre of Excellence for Plant and Microbial Sciences (CEPAMS), Shanghai, China
| | - Shuang Zhou
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Yanping Wang
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Dayong Li
- grid.464353.30000 0000 9888 756XCollege of Plant Protection, Jilin Agricultural University, Changchun, Jilin China
| | - Jiaqing Xu
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Zhao-Qing Luo
- grid.169077.e0000 0004 1937 2197Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN USA
| | - Sheng Yang He
- grid.17088.360000 0001 2150 1785DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA ,grid.17088.360000 0001 2150 1785Howard Hughes Medical Institute, Michigan State University, East Lansing, MI USA
| | - Wenxian Sun
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China ,grid.464353.30000 0000 9888 756XCollege of Plant Protection, Jilin Agricultural University, Changchun, Jilin China
| |
Collapse
|
12
|
Ji H, Liu D, Zhang Z, Sun J, Han B, Li Z. A bacterial F-box effector suppresses SAR immunity through mediating the proteasomal degradation of OsTrxh2 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1054-1072. [PMID: 32881160 DOI: 10.1111/tpj.14980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Plant bacterial pathogens usually cause diseases by secreting and translocating numerous virulence effectors into host cells and suppressing various host immunity pathways. It has been demonstrated that the extensive ubiquitin systems of host cells are frequently interfered with or hijacked by numerous pathogenic bacteria, through various strategies. Some type-III secretion system (T3SS) effectors of plant pathogens have been demonstrated to impersonate the F-box protein (FBP) component of the SKP1/CUL1/F-box (SCF) E3 ubiquitin system for their own benefit. Although numerous putative eukaryotic-like F-box effectors have been screened for different bacterial pathogens by bioinformatics analyses, the targets of most F-box effectors in host immune systems remain unknown. Here, we show that XopI, a putative F-box effector of African Xoo (Xanthomonas oryzae pv. oryzae) strain BAI3, strongly inhibits the host's OsNPR1-dependent resistance to Xoo. The xopI knockout mutant displays lower virulence in Oryza sativa (rice) than BAI3. Mechanistically, we identify a thioredoxin protein, OsTrxh2, as an XopI-interacting protein in rice. Although OsTrxh2 positively regulates rice immunity by catalyzing the dissociation of OsNPR1 into monomers in rice, the XopI effector serves as an F-box adapter to form an OSK1-XopI-OsTrxh2 interaction complex, and further disrupts OsNPR1-mediated resistance through proteasomal degradation of OsTrxh2. Our results indicate that XopI targets OsTrxh2 and further represses OsNPR1-dependent signaling, thereby subverting systemic acquired resistance (SAR) immunity in rice.
Collapse
Affiliation(s)
- Hongtao Ji
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Delong Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zhaoxin Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiawen Sun
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Bing Han
- Institute of Plant Protection, Dezhou Academy of Agricultural Sciences, Dezhou, 253015, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
13
|
HajSalah El Beji I, Mouzeyar S, Bouzidi MF, Roche J. Expansion and Functional Diversification of SKP1-Like Genes in Wheat ( Triticum aestivum L.). Int J Mol Sci 2019; 20:ijms20133295. [PMID: 31277523 PMCID: PMC6650978 DOI: 10.3390/ijms20133295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 07/02/2019] [Indexed: 01/17/2023] Open
Abstract
The ubiquitin proteasome 26S system (UPS), involving monomeric and multimeric E3 ligases is one of the most important signaling pathways in many organisms, including plants. The SCF (SKP1/Cullin/F-box) multimeric complex is particularly involved in response to development and stress signaling. The SKP1 protein (S-phase kinase-associated protein 1) is the core subunit of this complex. In this work, we firstly identified 92 and 87 non-redundant Triticum aestivumSKP1-like (TaSKP) genes that were retrieved from the latest release of the wheat genome database (International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0) and the genome annotation of the TGAC v1 respectively. We then investigated the structure, phylogeny, duplication events and expression patterns of the SKP1-like gene family in various tissues and environmental conditions using a wheat expression platform containing public data. TaSKP1-like genes were expressed differentially in response to stress conditions, displaying large genomic variations or short insertions/deletions which suggests functional specialization within TaSKP1-like genes. Finally, interactions between selected wheat FBX (F-box) proteins and putative ancestral TaSKP1-like proteins were tested using the yeast two-hybrid (Y2H) system to examine the molecular interactions. These observations suggested that six Ta-SKP1 genes are likely to be ancestral genes, having similar functions as ASK1 and ASK2 in Arabidopsis, OSK1 and OSK20 in rice and PpSKP1 and PpSKP2 in Physcomitrella patens.
Collapse
Affiliation(s)
- Imen HajSalah El Beji
- UMR INRA/UCA 1095 GDEC, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA 60026 AUBIERE, France
| | - Said Mouzeyar
- UMR INRA/UCA 1095 GDEC, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA 60026 AUBIERE, France
| | - Mohammed-Fouad Bouzidi
- UMR INRA/UCA 1095 GDEC, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA 60026 AUBIERE, France
| | - Jane Roche
- UMR INRA/UCA 1095 GDEC, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA 60026 AUBIERE, France.
| |
Collapse
|
14
|
Liu S, Wang J, Jiang S, Wang H, Gao Y, Zhang H, Li D, Song F. Tomato SlSAP3, a member of the stress-associated protein family, is a positive regulator of immunity against Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT PATHOLOGY 2019; 20:815-830. [PMID: 30907488 PMCID: PMC6637894 DOI: 10.1111/mpp.12793] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tomato stress-associated proteins (SAPs) belong to A20/AN1 zinc finger protein family, some of which have been shown to play important roles in plant stress responses. However, little is known about the functions and underlying molecular mechanisms of SAPs in plant immune responses. In the present study, we reported the function of tomato SlSAP3 in immunity to Pseudomonas syringae pv. tomato (Pst) DC3000. Silencing of SlSAP3 attenuated while overexpression of SlSAP3 in transgenic tomato increased immunity to Pst DC3000, accompanied with reduced and increased Pst DC3000-induced expression of SA signalling and defence genes, respectively. Flg22-induced reactive oxygen species (ROS) burst and expression of PAMP-triggered immunity (PTI) marker genes SlPTI5 and SlLRR22 were strengthened in SlSAP3-OE plants but were weakened in SlSAP3-silenced plants. SlSAP3 interacted with two SlBOBs and the A20 domain in SlSAP3 is critical for the SlSAP3-SlBOB1 interaction. Silencing of SlBOB1 and co-silencing of all three SlBOB genes conferred increased resistance to Pst DC3000, accompanied with increased Pst DC3000-induced expression of SA signalling and defence genes. These data demonstrate that SlSAP3 acts as a positive regulator of immunity against Pst DC3000 in tomato through the SA signalling and that SlSAP3 may exert its function in immunity by interacting with other proteins such as SlBOBs, which act as negative regulators of immunity against Pst DC3000 in tomato.
Collapse
Affiliation(s)
- Shixia Liu
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Jiali Wang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Siyu Jiang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
- College of Life ScienceTaizhou UniversityTaizhouZhejiang318000China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
15
|
Kim SH, Woo OG, Jang H, Lee JH. Characterization and comparative expression analysis of CUL1 genes in rice. Genes Genomics 2018; 40:233-241. [PMID: 29892794 DOI: 10.1007/s13258-017-0622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/15/2017] [Indexed: 11/28/2022]
Abstract
Cullin-RING E3 ubiquitin ligase (CRL) complex is known as the largest family of E3 ligases. The most widely characterized CRL, SCF complex (CRL1), utilizes CUL1 as a scaffold protein to assemble the complex components. To better understand CRL1-mediated cellular processes in rice, three CUL1 genes (OsCUL1s) were isolated in Oryza sativa. Although all OsCUL1 proteins exhibited high levels of amino acid similarities with each other, OsCUL1-3 had a somewhat distinct structure from OsCUL1-1 and OsCUL1-2. Basal expression levels of OsCUL1-3 were much lower than those of OsCUL1-1 and OsCUL1-2 in all selected samples, showing that OsCUL1-1 and OsCUL1-2 play predominant roles relative to OsCUL1-3 in rice. OsCUL1-1 and OsCUL1-2 genes were commonly upregulated in dry seeds and by ABA and salt/drought stresses, implying their involvement in ABA-mediated processes. These genes also showed similar expression patterns in response to various hormones and abiotic stresses, alluding to their functional redundancy. Expression of the OsCUL1-3 gene was also induced in dry seeds and by ABA-related salt and drought stresses, implying their participation in ABA responses. However, its expression pattern in response to hormones and abiotic stresses was somehow different from those of the OsCUL1-1 and OsCUL1-2 genes. Taken together, these findings suggest that the biological role and function of OsCUL1-3 may be distinct from those of OsCUL1-1 and OsCUL1-2. The results of expression analysis of OsCUL1 genes in this study will serve as a useful platform to better understand overlapping and distinct roles of OsCUL1 proteins and CRL1-mediated cellular processes in rice plants.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea
| | - Og-Geum Woo
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea.,Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunsoo Jang
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
16
|
Zhang F, Tang D, Shen Y, Xue Z, Shi W, Ren L, Du G, Li Y, Cheng Z. The F-Box Protein ZYGO1 Mediates Bouquet Formation to Promote Homologous Pairing, Synapsis, and Recombination in Rice Meiosis. THE PLANT CELL 2017; 29:2597-2609. [PMID: 28939596 PMCID: PMC5774573 DOI: 10.1105/tpc.17.00287] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/18/2017] [Accepted: 09/20/2017] [Indexed: 05/18/2023]
Abstract
Telomere bouquet formation, a highly conserved meiotic event, plays an important role in homologous pairing and therefore progression of meiosis; however, the underlying molecular mechanism remains largely unknown. Here, we identified ZYGOTENE1 (ZYGO1), a novel F-box protein in rice (Oryza sativa), and verified its essential role in bouquet formation during early meiosis. In zygo1 mutants, zygotene chromosome aggregation and telomere clustering failed to occur. The suppressed telomere clustering in homologous pairing aberration in rice meiosis1 (pair1) zygo1 and rice completion of meiotic recombination (Oscom1) zygo1 double mutants, together with the altered localization of OsSAD1 (a SUN protein associated with the nuclear envelope) in zygo1, showed that ZYGO1 has a significant function in bouquet formation. In addition, the interaction between ZYGO1 and rice SKP1-like protein 1 suggested that ZYGO1 might modulate bouquet formation as a component of the SKP1-Cullin1-F-box complex. Although double-strand break formation and early recombination element installation occurred normally, zygo1 mutants showed defects in full-length pairing and synaptonemal complex assembly. Furthermore, crossover (CO) formation was disturbed, and foci of Human enhancer of invasion 10 were restricted to the partially synapsed chromosome regions, indicating that CO reduction might be caused by the failure of full-length chromosome alignment in zygo1 Therefore, we propose that ZYGO1 mediates bouquet formation to efficiently promote homolog pairing, synapsis, and CO formation in rice meiosis.
Collapse
Affiliation(s)
- Fanfan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihui Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqing Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Ren
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Tao T, Zhou CJ, Wang Q, Chen XR, Sun Q, Zhao TY, Ye JC, Wang Y, Zhang ZY, Zhang YL, Guo ZJ, Wang XB, Li DW, Yu JL, Han CG. Rice black streaked dwarf virus P7-2 forms a SCF complex through binding to Oryza sativa SKP1-like proteins, and interacts with GID2 involved in the gibberellin pathway. PLoS One 2017; 12:e0177518. [PMID: 28494021 PMCID: PMC5426791 DOI: 10.1371/journal.pone.0177518] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/29/2017] [Indexed: 11/18/2022] Open
Abstract
As a core subunit of the SCF complex that promotes protein degradation through the 26S proteasome, S-phase kinase-associated protein 1 (SKP1) plays important roles in multiple cellular processes in eukaryotes, including gibberellin (GA), jasmonate, ethylene, auxin and light responses. P7-2 encoded by Rice black streaked dwarf virus (RBSDV), a devastating viral pathogen that causes severe symptoms in infected plants, interacts with SKP1 from different plants. However, whether RBSDV P7-2 forms a SCF complex and targets host proteins is poorly understood. In this study, we conducted yeast two-hybrid assays to further explore the interactions between P7-2 and 25 type I Oryza sativa SKP1-like (OSK) proteins, and found that P7-2 interacted with eight OSK members with different binding affinity. Co-immunoprecipitation assay further confirmed the interaction of P7-2 with OSK1, OSK5 and OSK20. It was also shown that P7-2, together with OSK1 and O. sativa Cullin-1, was able to form the SCF complex. Moreover, yeast two-hybrid assays revealed that P7-2 interacted with gibberellin insensitive dwarf2 (GID2) from rice and maize plants, which is essential for regulating the GA signaling pathway. It was further demonstrated that the N-terminal region of P7-2 was necessary for the interaction with GID2. Overall, these results indicated that P7-2 functioned as a component of the SCF complex in rice, and interaction of P7-2 with GID2 implied possible roles of the GA signaling pathway during RBSDV infection.
Collapse
Affiliation(s)
- Tao Tao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Cui-Ji Zhou
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Qian Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong Province, People's Republic of China
| | - Xiang-Ru Chen
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Qian Sun
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Tian-Yu Zhao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Jian-Chun Ye
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Ying Wang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Zong-Ying Zhang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Yong-Liang Zhang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Ze-Jian Guo
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Xian-Bing Wang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Da-Wei Li
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Jia-Lin Yu
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Cheng-Gui Han
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
18
|
Hao Q, Ren H, Zhu J, Wang L, Huang S, Liu Z, Gao Z, Shu Q. Overexpression of PSK1, a SKP1-like gene homologue, from Paeonia suffruticosa, confers salinity tolerance in Arabidopsis. PLANT CELL REPORTS 2017; 36:151-162. [PMID: 27787596 DOI: 10.1007/s00299-016-2066-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/18/2016] [Indexed: 05/25/2023]
Abstract
Our study is the first to demonstrate that PSK1 , a SKP1 -like gene homologue, is involved in salinity tolerance. Our functional characterization of PSK1 provides new insights into tree peony development. A homologous gene of S-phase kinase-associated protein1 (SKP1) was cloned from tree peony (Paeonia suffruticosa) and denoted as PSK1. The 462-bp open reading frame of PSK1 was predicted to encode a protein comprising 153 amino acids, with a molecular mass of 17 kDa. The full-length gene was 1,634 bp long and included a large 904-bp intron. PSK1 transcription was detected in all tissues, with the highest level observed in sepals, followed by leaves. Under salinity stress, overexpression of PSK1 in Arabidopsis resulted in increased germination percentages, cotyledon greening, and fresh weights relative to wild-type plants. Furthermore, transgenic Arabidopsis lines containing 35S::PSK1 displayed increased expression of genes that would be essential for reproduction and growth under salinity stress: ASK1, LEAFY, FT, and CO involved in flower development and flowering time as well as P5CS, RAB18, DREB, and SOD1-3 contributing to salinity tolerance. Our functional characterization of PSK1 adds to global knowledge of the multiple functions of previously explored SKP1-like genes in plants and sheds light on the molecular mechanism underlying its role in salinity tolerance. Our findings also provide information on the function and molecular mechanism of PSK1 in tree peony flower development, thereby revealing a theoretical basis for regulation of flowering and conferral of salinity tolerance in tree peony.
Collapse
Affiliation(s)
- Qing Hao
- Landscape and Forestry College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hongxu Ren
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jin Zhu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shouchen Huang
- Landscape and Forestry College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zheng'an Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhimin Gao
- International Center for Bamboo and Rattan, Key Laboratory on the Science and Technology of Bamboo and Rattan, Beijing, 100102, China.
| | - Qingyan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
19
|
He Y, Wang C, Higgins JD, Yu J, Zong J, Lu P, Zhang D, Liang W. MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice. THE PLANT CELL 2016; 28:1879-93. [PMID: 27436711 PMCID: PMC5006700 DOI: 10.1105/tpc.16.00108] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/31/2016] [Accepted: 07/18/2016] [Indexed: 05/21/2023]
Abstract
F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression.
Collapse
Affiliation(s)
- Yi He
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Chong Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - James D Higgins
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Junping Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Jie Zong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Pingli Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| |
Collapse
|
20
|
Reiner T, Hoefle C, Hückelhoven R. A barley SKP1-like protein controls abundance of the susceptibility factor RACB and influences the interaction of barley with the barley powdery mildew fungus. MOLECULAR PLANT PATHOLOGY 2016; 17:184-95. [PMID: 25893638 PMCID: PMC6638371 DOI: 10.1111/mpp.12271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In an increasing number of plant-microbe interactions, it has become evident that the abundance of immunity-related proteins is controlled by the ubiquitin-26S proteasome system. In the interaction of barley with the biotrophic barley powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh), the RAC/ROP [RAT SARCOMA-related C3 botulinum toxin substrate/RAT SARCOMA HOMOLOGUE (RHO) of plants] guanosine triphosphatase (GTPase) HvRACB supports the fungus in a compatible interaction. By contrast, barley HvRBK1, a ROP-binding receptor-like cytoplasmic kinase that interacts with and can be activated by constitutively activated HvRACB, limits fungal infection success. We have identified a barley type II S-phase kinase 1-associated (SKP1)-like protein (HvSKP1-like) as a molecular interactor of HvRBK1. SKP1 proteins are subunits of the SKP1-cullin 1-F-box (SCF)-E3 ubiquitin ligase complex that acts in the specific recognition and ubiquitination of protein substrates for subsequent proteasomal degradation. Transient induced gene silencing of either HvSKP1-like or HvRBK1 increased protein abundance of constitutively activated HvRACB in barley epidermal cells, whereas abundance of dominant negative RACB only weakly increased. In addition, silencing of HvSKP1-like enhanced the susceptibility of barley to haustorium establishment by Bgh. In summary, our results suggest that HvSKP1-like, together with HvRBK1, controls the abundance of HvRACB and, at the same time, modulates the outcome of the barley-Bgh interaction. A possible feedback mechanism from RAC/ROP-activated HvRBK1 on the susceptibility factor HvRACB is discussed.
Collapse
Affiliation(s)
- Tina Reiner
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann Straße 2, D-85350, Freising-Weihenstephan, Germany
| | - Caroline Hoefle
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann Straße 2, D-85350, Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann Straße 2, D-85350, Freising-Weihenstephan, Germany
| |
Collapse
|
21
|
Li P, Miao H, Ma Y, Wang L, Hu G, Ye Z, Zhao J, Qin Y. CrWSKP1, an SKP1-like Gene, Is Involved in the Self-Incompatibility Reaction of "Wuzishatangju" (Citrus reticulata Blanco). Int J Mol Sci 2015; 16:21695-710. [PMID: 26370985 PMCID: PMC4613275 DOI: 10.3390/ijms160921695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022] Open
Abstract
Plant S-phase kinase-associated protein 1 (SKP1) genes play crucial roles in plant development and differentiation. However, the role of SKP1 in citrus is unclear. Herein, we described a novel SKP1-like gene, designated as CrWSKP1, from "Wuzishatangju" (Citrus reticulata Blanco). The cDNA sequence of CrWSKP1 is 779 base pairs (bp) and contains an open reading frame (ORF) of 477 bp. The genomic sequence of the CrWSKP1 gene is 1296 bp with two exons and one intron. CrWSKP1 has high identity with SKP1-like genes from other plant species within two conserved regions. Approximately 85% of pollen tubes of self-pollinated CrWSKP1 transgenic tobaccos became twisted at four days after self-pollination. Pollen tube numbers of self-pollinated CrWSKP1 transformants entering into ovules were significantly fewer than that of the control. Seed number of self-pollinated CrWSKP1 transformants was significantly reduced. These results suggested that the CrWSKP1 is involved in the self-incompatibility (SI) reaction of "Wuzishatangju".
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Hongxia Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crop Bioscience and Biotechnology, Ministry of Agriculture, Haikou 571101, China.
| | - Yuewen Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Zixing Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Zhang Y, Wang C, Lin Q, Gao F, Ma Y, Zhang M, Lin Y, Ma Q, Hua X. Genome-wide analysis of phylogeny, expression profile and sub-cellular localization of SKP1-Like genes in wild tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:105-14. [PMID: 26259179 DOI: 10.1016/j.plantsci.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/05/2015] [Accepted: 06/07/2015] [Indexed: 05/23/2023]
Abstract
SKP1 is a core component of SCF complex, a major type of E3 ubiquitin ligase catalyzing the last step in ubiquitin-mediated protein degradation pathway. In present study, SKP1 gene family in Solanum pimpinellifolium (SSK), a wild species of tomato, was investigated. A total of 19 SSK genes were identified through homologous search. Their chromosomal locations, gene structures, phylogeny, expression profiles, sub-cellular localizations and protein-protein interaction patterns with putative F-box proteins were analyzed in detail. The high homology and similar expression patterns among clustered SSK genes in chromosome suggested that they may have evolved from duplication events and are functionally redundant. Sub-cellular localization indicated that most of the SSK proteins are distributed in both cytosol and nucleus, except for SSK8, which is detected in cytosol only. Tissue-specific expression patterns suggested that many SSK genes may be involved in tomato fruit development. Furthermore, several SSK genes were found to be responsive to heat stress and salicylic acid treatment. Based on phylogenetic analysis, expression profiles and protein interaction property, we proposed that tomato SSK1 and SSK2 might have similar function to ASK1 and ASK2 in Arabidopsis.
Collapse
Affiliation(s)
- YueQin Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - CuiPing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan 750004, China
| | - QingFang Lin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - FengHua Gao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yan Ma
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Min Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - YueHui Lin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - QingHu Ma
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - XueJun Hua
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
23
|
Chlorovirus Skp1-binding ankyrin repeat protein interplay and mimicry of cellular ubiquitin ligase machinery. J Virol 2014; 88:13798-810. [PMID: 25253343 DOI: 10.1128/jvi.02109-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The ubiquitin-proteasome system is targeted by many viruses that have evolved strategies to redirect host ubiquitination machinery. Members of the genus Chlorovirus are proposed to share an ancestral lineage with a broader group of related viruses, nucleo-cytoplasmic large DNA viruses (NCLDV). Chloroviruses encode an Skp1 homolog and ankyrin repeat (ANK) proteins. Several chlorovirus-encoded ANK repeats contain C-terminal domains characteristic of cellular F-boxes or related NCLDV chordopox PRANC (pox protein repeats of ankyrin at C-terminal) domains. These observations suggested that this unique combination of Skp1 and ANK repeat proteins might form complexes analogous to the cellular Skp1-Cul1-F-box (SCF) ubiquitin ligase complex. We identified two ANK proteins from the prototypic chlorovirus Paramecium bursaria chlorella virus-1 (PBCV-1) that functioned as binding partners for the virus-encoded Skp1, proteins A682L and A607R. These ANK proteins had a C-terminal Skp1 interactional motif that functioned similarly to cellular F-box domains. A C-terminal motif of ANK protein A682L binds Skp1 proteins from widely divergent species. Yeast two-hybrid analyses using serial domain deletion constructs confirmed the C-terminal localization of the Skp1 interactional motif in PBCV-1 A682L. ANK protein A607R represents an ANK family with one member present in all 41 sequenced chloroviruses. A comprehensive phylogenetic analysis of these related ANK and viral Skp1 proteins suggested partnered function tailored to the host alga or common ancestral heritage. Here, we show protein-protein interaction between corresponding family clusters of virus-encoded ANK and Skp1 proteins from three chlorovirus types. Collectively, our results indicate that chloroviruses have evolved complementing Skp1 and ANK proteins that mimic cellular SCF-associated proteins. IMPORTANCE Viruses have evolved ways to direct ubiquitination events in order to create environments conducive to their replication. As reported in the manuscript, the large chloroviruses encode several components involved in the SCF ubiquitin ligase complex including a viral Skp1 homolog. Studies on how chloroviruses manipulate their host algal ubiquitination system will provide insights toward viral protein mimicry, substrate recognition, and key interactive domains controlling selective protein degradation. These findings may also further understanding of the evolution of other large DNA viruses, like poxviruses, that are reported to share the same monophyly lineage as chloroviruses.
Collapse
|
24
|
Collado-Romero M, Alós E, Prieto P. Unravelling the proteomic profile of rice meiocytes during early meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:356. [PMID: 25104955 PMCID: PMC4109522 DOI: 10.3389/fpls.2014.00356] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/03/2014] [Indexed: 05/06/2023]
Abstract
Transfer of genetic traits from wild or related species into cultivated rice is nowadays an important aim in rice breeding. Breeders use genetic crosses to introduce desirable genes from exotic germplasms into cultivated rice varieties. However, in many hybrids there is only a low level of pairing (if existing) and recombination at early meiosis between cultivated rice and wild relative chromosomes. With the objective of getting deeper into the knowledge of the proteins involved in early meiosis, when chromosomes associate correctly in pairs and recombine, the proteome of isolated rice meiocytes has been characterized by nLC-MS/MS at every stage of early meiosis (prophase I). Up to 1316 different proteins have been identified in rice isolated meiocytes in early meiosis, being 422 exclusively identified in early prophase I (leptotene, zygotene, or pachytene). The classification of proteins in functional groups showed that 167 were related to chromatin structure and remodeling, nucleic acid binding, cell-cycle regulation, and cytoskeleton. Moreover, the putative roles of 16 proteins which have not been previously associated to meiosis or were not identified in rice before, are also discussed namely: seven proteins involved in chromosome structure and remodeling, five regulatory proteins [such as SKP1 (OSK), a putative CDK2 like effector], a protein with RNA recognition motifs, a neddylation-related protein, and two microtubule-related proteins. Revealing the proteins involved in early meiotic processes could provide a valuable tool kit to manipulate chromosome associations during meiosis in rice breeding programs. The data have been deposited to the ProteomeXchange with the PXD001058 identifier.
Collapse
Affiliation(s)
| | | | - Pilar Prieto
- *Correspondence: Pilar Prieto, Plant Breeding Department, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas, Av. Menéndez Pidal s/n, Campus Alameda del Obispo, Apartado 4084, Córdoba 14080, Spain e-mail:
| |
Collapse
|