1
|
Zhang S, Zhang S, Li S, Ma R, Wang A, Liu Z, Yan K. CaO assisted mechanochemical remediation of lindane-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174154. [PMID: 38942310 DOI: 10.1016/j.scitotenv.2024.174154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
In this study, the planetary ball milling with CaO addition was used to remediate lindane-contaminated soil. Based on Hertzian theory, a mathematical model was proposed to simulate the trajectory of grinding ball and the local energy transfer during a planetary operation at the disk rotation velocities of 150-250 rpm. Besides, the influence of different parameters on lindane removal in soil was investigated, whose results showed that disk rotation velocity and reagent-to-soil ratio had a positive effect, while soil moisture, initial concentration of lindane, and mass of polluted soil demonstrated a negative influence. The mechanochemical method exhibited a higher degradation performance at 3 wt% CaO addition, and a disk rotation velocity of 250 rpm. Active species generated by ball collisions in the presence of CaO, especially superoxide (·O2-) demonstrated a significant role in participating in the lindane conversion. In combination with GCMS and XPS analysis, the proposed model provides insight into mechanochemical remediation process from physical and chemical perspectives, which mainly includes four main steps: mixing, inducing, chemical reaction, and structure destruction.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihao Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shuran Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rongwei Ma
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Anyu Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhen Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Keping Yan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030002, China
| |
Collapse
|
2
|
Verma H, Kaur J, Thakur V, Dhingra GG, Lal R. Comprehensive review on Haloalkane dehalogenase (LinB): a β-hexachlorocyclohexane (HCH) degrading enzyme. Arch Microbiol 2024; 206:380. [PMID: 39143366 DOI: 10.1007/s00203-024-04105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Haloalkane dehalogenase, LinB, is a member of the α/β hydrolase family of enzymes. It has a wide range of halogenated substrates, but, has been mostly studied in context of degradation of hexachlorocyclohexane (HCH) isomers, especially β-HCH (5-12% of total HCH isomers), which is the most recalcitrant and persistent among all the HCH isomers. LinB was identified to directly act on β-HCH in a one or two step transformation which decreases its toxicity manifold. Thereafter, many studies focused on LinB including its structure determination using X-ray crystallographic studies, structure comparison with other haloalkane dehalogenases, substrate specificity and kinetic studies, protein engineering and site-directed mutagenesis studies in search of better catalytic activity of the enzyme. LinB was mainly identified and characterized in bacteria belonging to sphingomonads. Detailed sequence comparison of LinB from different sphingomonads further revealed the residues critical for its activity and ability to catalyze either one or two step transformation of β-HCH. Association of LinB with IS6100 elements is also being discussed in detail in sphingomonads. In this review, we summarized vigorous efforts done by different research groups on LinB for developing better bioremediation strategies against HCH contamination. Also, kinetic studies, protein engineering and site directed mutagenesis studies discussed here forms the basis of further exploration of LinB's role as an efficient enzyme in bioremediation projects.
Collapse
Affiliation(s)
| | - Jasvinder Kaur
- Gargi College, University of Delhi, Delhi, 110007, India
| | | | | | - Rup Lal
- INSA, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
3
|
Kaur J, Verma H, Kaur J, Lata P, Dhingra GG, Lal R. In Silico Analysis of the Phylogenetic and Physiological Characteristics of Sphingobium indicum B90A: A Hexachlorocyclohexane-Degrading Bacterium. Curr Microbiol 2024; 81:233. [PMID: 38904756 DOI: 10.1007/s00284-024-03762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
The study focuses on the in silico genomic characterization of Sphingobium indicum B90A, revealing a wealth of genes involved in stress response, carbon monoxide oxidation, β-carotene biosynthesis, heavy metal resistance, and aromatic compound degradation, suggesting its potential as a bioremediation agent. Furthermore, genomic adaptations among nine Sphingomonad strains were explored, highlighting shared core genes via pangenome analysis, including those related to the shikimate pathway and heavy metal resistance. The majority of genes associated with aromatic compound degradation, heavy metal resistance, and stress response were found within genomic islands across all strains. Sphingobium indicum UT26S exhibited the highest number of genomic islands, while Sphingopyxis alaskensis RB2256 had the maximum fraction of its genome covered by genomic islands. The distribution of lin genes varied among the strains, indicating diverse genetic responses to environmental pressures. Additionally, in silico evidence of horizontal gene transfer (HGT) between plasmids pSRL3 and pISP3 of the Sphingobium and Sphingomonas genera, respectively, has been provided. The manuscript offers novel insights into strain B90A, highlighting its role in horizontal gene transfer and refining evolutionary relationships among Sphingomonad strains. The discovery of stress response genes and the czcABCD operon emphasizes the potential of Sphingomonads in consortia development, supported by genomic island analysis.
Collapse
Affiliation(s)
- Jasvinder Kaur
- Department of Zoology, Gargi College, Siri Fort Road, New Delhi, 110049, India.
| | - Helianthous Verma
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, 110007, India
| | - Jaspreet Kaur
- Department of Zoology, Maitreyi College, University of Delhi, New Delhi, 110021, India
| | - Pushp Lata
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Gauri Garg Dhingra
- Department of Zoology, Kirori Mal College, University of Delhi, New Delhi, 110007, India
| | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, New Delhi, 110019, India.
| |
Collapse
|
4
|
Deng W, Takada Y, Nanasato Y, Kishida K, Stari L, Ohtsubo Y, Tabei Y, Watanabe M, Nagata Y. Transgenic Arabidopsis thaliana plants expressing bacterial γ-hexachlorocyclohexane dehydrochlorinase LinA. BMC Biotechnol 2024; 24:42. [PMID: 38898480 PMCID: PMC11186250 DOI: 10.1186/s12896-024-00867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND γ-Hexachlorocyclohexane (γ-HCH), an organochlorine insecticide of anthropogenic origin, is a persistent organic pollutant (POP) that causes environmental pollution concerns worldwide. Although many γ-HCH-degrading bacterial strains are available, inoculating them directly into γ-HCH-contaminated soil is ineffective because of the low survival rate of the exogenous bacteria. Another strategy for the bioremediation of γ-HCH involves the use of transgenic plants expressing bacterial enzyme for γ-HCH degradation through phytoremediation. RESULTS We generated transgenic Arabidopsis thaliana expressing γ-HCH dehydrochlroninase LinA from bacterium Sphingobium japonicum strain UT26. Among the transgenic Arabidopsis T2 lines, we obtained one line (A5) that expressed and accumulated LinA well. The A5-derived T3 plants showed higher tolerance to γ-HCH than the non-transformant control plants, indicating that γ-HCH is toxic for Arabidopsis thaliana and that this effect is relieved by LinA expression. The crude extract of the A5 plants showed γ-HCH degradation activity, and metabolites of γ-HCH produced by the LinA reaction were detected in the assay solution, indicating that the A5 plants accumulated the active LinA protein. In some A5 lines, the whole plant absorbed and degraded more than 99% of γ-HCH (10 ppm) in the liquid medium within 36 h. CONCLUSION The transgenic Arabidopsis expressing active LinA absorbed and degraded γ-HCH in the liquid medium, indicating the high potential of LinA-expressing transgenic plants for the phytoremediation of environmental γ-HCH. This study marks a crucial step toward the practical use of transgenic plants for the phytoremediation of POPs.
Collapse
Affiliation(s)
- Wenhao Deng
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yoshinobu Takada
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yoshihiko Nanasato
- Forest Bio-Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization (FRMO), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Kouhei Kishida
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Leonardo Stari
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yutaka Tabei
- Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-Machi, Ora-Gun, Gunma, 374-0193, Japan
| | - Masao Watanabe
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yuji Nagata
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
5
|
Sharma M, Singh DN, Uttam G, Sharma P, Meena SA, Verma AK, Negi RK. Adaptive evolution of Sphingopyxis sp. MC4 conferred degradation potential for persistent β- and δ-Hexachlorocyclohexane (HCH) isomers. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132545. [PMID: 37757562 DOI: 10.1016/j.jhazmat.2023.132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Hexachlorocyclohexane (HCH), an organochlorine pesticide imposes several harmful impacts on the ecosystem. β- and δ-isomers of HCH are highly toxic, persistent, and recalcitrant to biodegradation, slow and incomplete degradation of β- and δ- isomers have been reported in a few strains. We have isolated a strain designated as Sphingopyxis strain MC4 that can tolerate and degrade high concentrations of α-, β-, γ- and δ-HCH isomers. To date, no other Sphingopyxis strain has been reported to degrade β- and δ-isomers. To understand the underlying genetic makeup contributing to adaptations, the whole genome of strain MC4 was sequenced. Comparative genome analysis showed that strain MC4 harbors the complete pathway (lin genes) required for HCH degradation. Genetic footprints such as presence of lin genes on genomic islands, IS6100 elements in close proximity of lin genes, and synteny in lin flanking regions with other strains reflects the horizontal gene transfer in strain MC4. Positive selection and HGT drive the adaptive evolution of strain MC4 under the pressure of HCH contamination that it experienced in its surrounding niche. In silico analyses showed efficient binding of β- and δ-isomers with enzymes leading to rapid degradation that need further validation by cloning and biochemical experiments.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Durgesh Narain Singh
- Department of Zoology, University of Delhi, Delhi 110007, India; BioNEST-BHU, InnoResTech Foundation, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gunjan Uttam
- Zoology section, MMV, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Shivam A Meena
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ram Krishan Negi
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
6
|
Zhang S, Liu Z, Li S, Zhang S, Fu H, Tu X, Xu W, Shen X, Yan K, Gan P, Feng X. Remediation of lindane contaminated soil by fluidization-like dielectric barrier discharge. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130164. [PMID: 36308938 DOI: 10.1016/j.jhazmat.2022.130164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
This study proposed the fluidization-like dielectric barrier discharge (DBD) plasma for the remediation of lindane contaminated soil and integrated physical and chemical reaction pathway. Soil particle distribution within the reactor was simulated with Euler-Euler and Gidaspow drag models, and a bipolar pulsed power supply was applied to energize the DBD reactor after full fluidized. The effect of soil particles movement on electric features was discussed in terms of voltage waveforms and Lissajous figures. Lindane degradation was found to be related to electrics parameters and soil properties. Soil samples before and after treatment were analyzed by XRD and SEM methods. A 95.98% lindane decomposition and 0.66 mgLindane/h average reaction rate were obtained with 3 wt% CaO injection by pulse power drove fluidization-like DBD after 32 min treatment. Ozone was proved to play a major role during lindane degrading by plasma. The reaction potential pathway of lindane decomposition contains 4 steps, including dehydrogen, dehydrochlorination, and dechlorination, respectively.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhen Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shuran Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shihao Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui Fu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xuan Tu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenyi Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xing Shen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Keping Yan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030002, China
| | - Ping Gan
- State Environmental Protection Engineering Technology Center for Industrial Contaminated Site and Groundwater Remediation, Cecep Dadi (Hangzhou) Environmental Remediation Co., Ltd, Hangzhou 310017, China
| | - Xiujuan Feng
- The School of Mines, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
7
|
Kato H, Su L, Tanaka A, Katsu H, Ohtsubo Y, Otsuka S, Senoo K, Nagata Y. Genome evolution related to γ-hexachlorocyclohexane metabolic function in the soil microbial population. Biosci Biotechnol Biochem 2022; 86:800-809. [PMID: 35298590 DOI: 10.1093/bbb/zbac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 11/12/2022]
Abstract
γ-Hexachlorocyclohexane (γ-HCH)-degrading strain, Sphingobium sp. TA15, was newly isolated from an experimental field soil from which the archetypal γ-HCH-degrading strain, S. japonicum UT26, was isolated previously. Comparison of the complete genome sequences of these 2 strains revealed that TA15 shares the same basic genome backbone with UT26, but also has the variable regions that are presumed to have changed either from UT26 or from a putative common ancestor. Organization and localization of lin genes of TA15 were different from those of UT26. It was inferred that transposition of IS6100 had played a crucial role in these genome rearrangements. The accumulation of toxic dead-end products in TA15 was lower than in UT26, suggesting that TA15 utilizes γ-HCH more effectively than UT26. These results suggested that genome evolution related to the γ-HCH metabolic function in the soil microbial population is ongoing.
Collapse
Affiliation(s)
- Hiromi Kato
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Lijun Su
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Ayami Tanaka
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Honami Katsu
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Yoshiyuki Ohtsubo
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Shigeto Otsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Yuji Nagata
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| |
Collapse
|
8
|
Liu X, Li W, Kümmel S, Merbach I, Sood U, Gupta V, Lal R, Richnow HH. Soil from a Hexachlorocyclohexane Contaminated Field Site Inoculates Wheat in a Pot Experiment to Facilitate the Microbial Transformation of β-Hexachlorocyclohexane Examined by Compound-Specific Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13812-13821. [PMID: 34609852 DOI: 10.1021/acs.est.1c03322] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-Hexachlorocyclohexane (β-HCH) is a remnant from former HCH pesticide production. Its removal from the environment gained attention in the last few years since it is the most stable HCH isomer. However, knowledge about the transformation of β-HCH in soil-plant systems is still limited. Therefore, experiments with a contaminated field soil were conducted to investigate the transformation of β-HCH in soil-plant systems by compound specific isotope analysis (CSIA). The results showed that the δ13C and δ37Cl values of β-HCH in the soil of the planted control remained stable, revealing no transformation due to a low bioavailability. Remarkably, an increase of the δ13C and δ37Cl values in soil and plant tissues of the spiked treatments were observed, indicating the transformation of β-HCH in both the soil and the plant. This was surprising as previously it was shown that wheat is unable to transform β-HCH when growing in hydroponic culture or garden soil. Thus, results of this work indicate for the first time that a microbial community of the soil inoculated the wheat and then facilitated the transformation of β-HCH in the wheat, which may have implications for the development of phytoremediation concepts. A high abundance of HCH degraders belonging to Sphingomonas sp., Mycobacterium sp., and others was detected in the β-HCH-treated bulk and rhizosphere soil, potentially supporting the biotransformation.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Wang Li
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Applied Geosciences, Technical University Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ines Merbach
- Department of Community Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06102 Halle, Germany
| | - Utkarsh Sood
- The Energy and Resources Institute, Lodhi Road, New Delhi 110003, India
| | - Vipin Gupta
- PhiXGen Private Limited, Gurugram, Haryana 122001, India
| | - Rup Lal
- The Energy and Resources Institute, Lodhi Road, New Delhi 110003, India
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
9
|
Öztürk B, Werner J, Meier-Kolthoff JP, Bunk B, Spröer C, Springael D. Comparative Genomics Suggests Mechanisms of Genetic Adaptation toward the Catabolism of the Phenylurea Herbicide Linuron in Variovorax. Genome Biol Evol 2021; 12:827-841. [PMID: 32359160 PMCID: PMC7313664 DOI: 10.1093/gbe/evaa085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Biodegradation of the phenylurea herbicide linuron appears a specialization within a specific clade of the Variovorax genus. The linuron catabolic ability is likely acquired by horizontal gene transfer but the mechanisms involved are not known. The full-genome sequences of six linuron-degrading Variovorax strains isolated from geographically distant locations were analyzed to acquire insight into the mechanisms of genetic adaptation toward linuron metabolism. Whole-genome sequence analysis confirmed the phylogenetic position of the linuron degraders in a separate clade within Variovorax and indicated that they unlikely originate from a common ancestral linuron degrader. The linuron degraders differentiated from Variovorax strains that do not degrade linuron by the presence of multiple plasmids of 20–839 kb, including plasmids of unknown plasmid groups. The linuron catabolic gene clusters showed 1) high conservation and synteny and 2) strain-dependent distribution among the different plasmids. Most of them were bordered by IS1071 elements forming composite transposon structures, often in a multimeric array configuration, appointing IS1071 as a key element in the recruitment of linuron catabolic genes in Variovorax. Most of the strains carried at least one (catabolic) broad host range plasmid that might have been a second instrument for catabolic gene acquisition. We conclude that clade 1 Variovorax strains, despite their different geographical origin, made use of a limited genetic repertoire regarding both catabolic functions and vehicles to acquire linuron biodegradation.
Collapse
Affiliation(s)
- Başak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Division of Soil and Water Management, KU Leuven, Belgium
| | - Johannes Werner
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Jan P Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department Bioinformatics and Databases, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Department Bioinformatics and Databases, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Belgium
| |
Collapse
|
10
|
Oyewusi HA, Wahab RA, Huyop F. Whole genome strategies and bioremediation insight into dehalogenase-producing bacteria. Mol Biol Rep 2021; 48:2687-2701. [PMID: 33650078 DOI: 10.1007/s11033-021-06239-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
An integral approach to decoding both culturable and uncultured microorganisms' metabolic activity involves the whole genome sequencing (WGS) of individual/complex microbial communities. WGS of culturable microbes, amplicon sequencing, metagenomics, and single-cell genome analysis are selective techniques integrating genetic information and biochemical mechanisms. These approaches transform microbial biotechnology into a quick and high-throughput culture-independent evaluation and exploit pollutant-degrading microbes. They are windows into enzyme regulatory bioremediation pathways (i.e., dehalogenase) and the complete bioremediation process of organohalide pollutants. While the genome sequencing technique is gaining the scientific community's interest, it is still in its infancy in the field of pollutant bioremediation. The techniques are becoming increasingly helpful in unraveling and predicting the enzyme structure and explore metabolic and biodegradation capabilities.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
- Department of Biochemistry, School of Science and Computer Studies, Federal Polytechnic Ado Ekiti, PMB 5351, Ado Ekiti, Ekiti State, Nigeria.
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
11
|
Maucourt B, Vuilleumier S, Bringel F. Transcriptional regulation of organohalide pollutant utilisation in bacteria. FEMS Microbiol Rev 2020; 44:189-207. [PMID: 32011697 DOI: 10.1093/femsre/fuaa002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Organohalides are organic molecules formed biotically and abiotically, both naturally and through industrial production. They are usually toxic and represent a health risk for living organisms, including humans. Bacteria capable of degrading organohalides for growth express dehalogenase genes encoding enzymes that cleave carbon-halogen bonds. Such bacteria are of potential high interest for bioremediation of contaminated sites. Dehalogenase genes are often part of gene clusters that may include regulators, accessory genes and genes for transporters and other enzymes of organohalide degradation pathways. Organohalides and their degradation products affect the activity of regulatory factors, and extensive genome-wide modulation of gene expression helps dehalogenating bacteria to cope with stresses associated with dehalogenation, such as intracellular increase of halides, dehalogenase-dependent acid production, organohalide toxicity and misrouting and bottlenecks in metabolic fluxes. This review focuses on transcriptional regulation of gene clusters for dehalogenation in bacteria, as studied in laboratory experiments and in situ. The diversity in gene content, organization and regulation of such gene clusters is highlighted for representative organohalide-degrading bacteria. Selected examples illustrate a key, overlooked role of regulatory processes, often strain-specific, for efficient dehalogenation and productive growth in presence of organohalides.
Collapse
Affiliation(s)
- Bruno Maucourt
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Françoise Bringel
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
12
|
Storck V, Gallego S, Vasileiadis S, Hussain S, Béguet J, Rouard N, Baguelin C, Perruchon C, Devers-Lamrani M, Karpouzas DG, Martin-Laurent F. Insights into the Function and Horizontal Transfer of Isoproturon Degradation Genes ( pdmAB) in a Biobed System. Appl Environ Microbiol 2020; 86:e00474-20. [PMID: 32414799 PMCID: PMC7357488 DOI: 10.1128/aem.00474-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
Biobeds, designed to minimize pesticide point source contamination, rely mainly on biodegradation processes. We studied the interactions of a biobed microbial community with the herbicide isoproturon (IPU) to explore the role of the pdmA gene, encoding the large subunit of an N-demethylase responsible for the initial demethylation of IPU, via quantitative PCR (qPCR) and reverse transcription-PCR (RT-qPCR) and the effect of IPU on the diversity of the total bacterial community and its active fraction through amplicon sequencing of DNA and RNA, respectively. We further investigated the localization and dispersal mechanisms of pdmAB in the biobed packing material by measuring the abundance of the plasmid pSH (harboring pdmAB) of the IPU-degrading Sphingomonas sp. strain SH (previously isolated from the soil used in the biobed) compared with the abundance of the pdmA gene and metagenomic fosmid library screening. pdmA abundance and expression increased concomitantly with IPU mineralization, verifying its major role in IPU transformation in the biobed system. DNA- and RNA-based 16S rRNA gene sequencing analysis showed no effects on bacterial diversity. The pdmAB-harboring plasmid pSH showed a consistently lower abundance than pdmA, suggesting the localization of pdmAB in replicons other than pSH. Metagenomic analysis identified four pdmAB-carrying fosmids. In three of these fosmids, the pdmAB genes were organized in a well-conserved operon carried by sphingomonad plasmids with low synteny with pSH, while the fourth fosmid contained an incomplete pdmAB cassette localized in a genomic fragment of a Rhodanobacter strain. Further analysis suggested a potentially crucial role of IS6 and IS256 in the transposition and activation of the pdmAB operon.IMPORTANCE Our study provides novel insights into the interactions of IPU with the bacterial community of biobed systems, reinforces the assumption of a transposable nature of IPU-degrading genes, and verifies that on-farm biobed systems are hot spots for the evolution of pesticide catabolic traits.
Collapse
Affiliation(s)
- Veronika Storck
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sara Gallego
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sotirios Vasileiadis
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College, University of Faisalabad, Faisalabad, Pakistan
| | - Jérémie Béguet
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Nadine Rouard
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Céline Baguelin
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
- Hydreka Enoveo, Lyon, France
| | - Chiara Perruchon
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
| | - Marion Devers-Lamrani
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
| | - Fabrice Martin-Laurent
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
13
|
Genome-Wide Analysis Reveals Genetic Potential for Aromatic Compounds Biodegradation of Sphingopyxis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5849123. [PMID: 32596333 PMCID: PMC7273453 DOI: 10.1155/2020/5849123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Members of genus Sphingopyxis are frequently found in diverse eco-environments worldwide and have been traditionally considered to play vital roles in the degradation of aromatic compounds. Over recent decades, many aromatic-degrading Sphingopyxis strains have been isolated and recorded, but little is known about their genetic nature related to aromatic compounds biodegradation. In this study, bacterial genomes of 19 Sphingopyxis strains were used for comparative analyses. Phylogeny showed an ambiguous relatedness between bacterial strains and their habitat specificity, while clustering based on Cluster of Orthologous Groups suggested the potential link of functional profile with substrate-specific traits. Pan-genome analysis revealed that 19 individuals were predicted to share 1,066 orthologous genes, indicating a high genetic homogeneity among Sphingopyxis strains. Notably, KEGG Automatic Annotation Server results suggested that most genes pertaining aromatic compounds biodegradation were predicted to be involved in benzoate, phenylalanine, and aminobenzoate metabolism. Among them, β-ketoadipate biodegradation might be the main pathway in Sphingopyxis strains. Further inspection showed that a number of mobile genetic elements varied in Sphingopyxis genomes, and plasmid-mediated gene transfer coupled with prophage- and transposon-mediated rearrangements might play prominent roles in the evolution of bacterial genomes. Collectively, our findings presented that Sphingopyxis isolates might be the promising candidates for biodegradation of aromatic compounds in pollution sites.
Collapse
|
14
|
Inaba S, Sakai H, Kato H, Horiuchi T, Yano H, Ohtsubo Y, Tsuda M, Nagata Y. Expression of an alcohol dehydrogenase gene in a heterotrophic bacterium induces carbon dioxide-dependent high-yield growth under oligotrophic conditions. MICROBIOLOGY-SGM 2020; 166:531-545. [PMID: 32310743 DOI: 10.1099/mic.0.000908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sphingobium japonicum strain UT26, whose γ-hexachlorocyclohexane-degrading ability has been studied in detail, is a typical aerobic and heterotrophic bacterium that needs organic carbon sources for its growth, and cannot grow on a minimal salt agar medium prepared without adding any organic carbon sources. Here, we isolated a mutant of UT26 with the ability to grow to visible state on such an oligotrophic medium from a transposon-induced mutant library. This high-yield growth under oligotrophic conditions (HYGO) phenotype was CO2-dependent and accompanied with CO2 incorporation. In the HYGO mutant, a transposon was inserted just upstream of the putative Zn-dependent alcohol dehydrogenase (ADH) gene (adhX) so that the adhX gene was constitutively expressed, probably by the transposon-derived promoter. The adhX-deletion mutant (UT26DAX) harbouring a plasmid carrying the adhX gene under the control of a constitutive promoter exhibited the HYGO phenotype. Moreover, the HYGO mutants spontaneously emerged among the UT26-derived hypermutator strain cells, and adhX was highly expressed in these HYGO mutants, while no HYGO mutant appeared among UT26DAX-derived hypermutator strain cells, indicating the necessity of adhX for the HYGO phenotype. His-tagged AdhX that was expressed in Escherichia coli and purified to homogeneity showed ADH activity towards methanol and other alcohols. Mutagenesis analysis of the adhX gene indicated a correlation between the ADH activity and the HYGO phenotype. These results demonstrated that the constitutive expression of an adhX-encoding protein with ADH activity in UT26 leads to the CO2-dependent HYGO phenotype. Identical or nearly identical adhX orthologues were found in other sphingomonad strains, and most of them were located on plasmids, suggesting that the adhX-mediated HYGO phenotype may be an important adaptation strategy to oligotrophic environments among sphingomonads.
Collapse
Affiliation(s)
- Shinnosuke Inaba
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hironori Sakai
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hiromi Kato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Takayuki Horiuchi
- Chitose Laboratory Corp., 2-13-3 Nogawa-honcho, Miyamae-ku, Kawasaki, Kanagawa, 216-0041, Japan
| | - Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
15
|
Glasner ME, Truong DP, Morse BC. How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. FEBS J 2020; 287:1323-1342. [PMID: 31858709 DOI: 10.1111/febs.15185] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/22/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
Promiscuity is the coincidental ability of an enzyme to catalyze its native reaction and additional reactions that are not biological functions in the same active site. Promiscuity plays a central role in enzyme evolution and is thus a useful property for protein and metabolic engineering. This review examines enzyme evolution holistically, beginning with evaluating biochemical support for four enzyme evolution models. As expected, there is strong biochemical support for the subfunctionalization and innovation-amplification-divergence models, in which promiscuity is a central feature. In many cases, however, enzyme evolution is more complex than the models indicate, suggesting much is yet to be learned about selective pressures on enzyme function. A complete understanding of enzyme evolution must also explain the ability of metabolic networks to integrate new enzyme activities. Hidden within metabolic networks are underground metabolic pathways constructed from promiscuous activities. We discuss efforts to determine the diversity and pervasiveness of underground metabolism. Remarkably, several studies have discovered that some metabolic defects can be repaired via multiple underground routes. In prokaryotes, metabolic innovation is driven by connecting enzymes acquired by horizontal gene transfer (HGT) into the metabolic network. Thus, we end the review by discussing how the combination of promiscuity and HGT contribute to evolution of metabolism in prokaryotes. Future studies investigating the contribution of promiscuity to enzyme and metabolic evolution will need to integrate deeper probes into the influence of evolution on protein biophysics, enzymology, and metabolism with more complex and realistic evolutionary models. ENZYMES: lactate dehydrogenase (EC 1.1.1.27), malate dehydrogenase (EC 1.1.1.37), OSBS (EC 4.2.1.113), HisA (EC 5.3.1.16), TrpF, PriA (EC 5.3.1.24), R-mandelonitrile lyase (EC 4.1.2.10), Maleylacetate reductase (EC 1.3.1.32).
Collapse
Affiliation(s)
- Margaret E Glasner
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Dat P Truong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Benjamin C Morse
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Song D, Chen X, Xu M, Hai R, Zhou A, Tian R, Van Nostrand JD, Kempher ML, Guo J, Sun G, Zhou J. Adaptive Evolution of Sphingobium hydrophobicum C1 T in Electronic Waste Contaminated River Sediment. Front Microbiol 2019; 10:2263. [PMID: 31632374 PMCID: PMC6783567 DOI: 10.3389/fmicb.2019.02263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Electronic waste (e-waste) has caused a severe worldwide pollution problem. Despite increasing isolation of degradative microorganisms from e-waste contaminated environments, the mechanisms underlying their adaptive evolution in such habitats remain unclear. Sphingomonads generally have xenobiotic-degrading ability and may play important roles in bioremediation. Sphingobium hydrophobicum C1T, characterized with superior cell surface hydrophobicity, was recently isolated from e-waste contaminated river sediment. To dissect the mechanisms driving its adaptive evolution, we evaluated its stress resistance, sequenced its genome and performed comparative genomic analysis with 19 other Sphingobium strains. Strain C1T can feed on several kinds of e-waste-derived xenobiotics, exhibits a great resistance to heavy metals and possesses a high colonization ability. It harbors abundant genes involved in environmental adaptation, some of which are intrinsic prior to experiencing e-waste contamination. The extensive genomic variations between strain C1T and other Sphingobium strains, numerous C1T-unique genes, massive mobile elements and frequent genome rearrangements reflect a high genome plasticity. Positive selection, gene duplication, and especially horizontal gene transfer drive the adaptive evolution of strain C1T. Moreover, presence of type IV secretion systems may allow strain C1T to be a source of beneficial genes for surrounding microorganisms. This study provides new insights into the adaptive evolution of sphingomonads, and potentially guides bioremediation strategies.
Collapse
Affiliation(s)
- Da Song
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xingjuan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rong Hai
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA, United States
| | - Aifen Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Renmao Tian
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Jun Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guoping Sun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
17
|
Nagata Y, Kato H, Ohtsubo Y, Tsuda M. Lessons from the genomes of lindane-degrading sphingomonads. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:630-644. [PMID: 31063253 DOI: 10.1111/1758-2229.12762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 05/27/2023]
Abstract
Bacterial strains capable of degrading man-made xenobiotic compounds are good materials to study bacterial evolution towards new metabolic functions. Lindane (γ-hexachlorocyclohexane, γ-HCH, or γ-BHC) is an especially good target compound for the purpose, because it is relatively recalcitrant but can be degraded by a limited range of bacterial strains. A comparison of the complete genome sequences of lindane-degrading sphingomonad strains clearly demonstrated that (i) lindane-degrading strains emerged from a number of different ancestral hosts that have recruited lin genes encoding enzymes that are able to channel lindane to central metabolites, (ii) in sphingomonads lin genes have been acquired by horizontal gene transfer mediated by different plasmids and in which IS6100 plays a role in recruitment and distribution of genes, and (iii) IS6100 plays a role in dynamic genome rearrangements providing genetic diversity to different strains and ability to evolve to other states. Lindane-degrading bacteria whose genomes change so easily and quickly are also fascinating starting materials for tracing the bacterial evolution process experimentally in a relatively short time period. As the origin of the specific lin genes remains a mystery, such genes will be useful probes for exploring the cryptic 'gene pool' available to bacteria.
Collapse
Affiliation(s)
- Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Hiromi Kato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| |
Collapse
|
18
|
Kaminski MA, Sobczak A, Dziembowski A, Lipinski L. Genomic Analysis of γ-Hexachlorocyclohexane-Degrading Sphingopyxis lindanitolerans WS5A3p Strain in the Context of the Pangenome of Sphingopyxis. Genes (Basel) 2019; 10:E688. [PMID: 31500174 PMCID: PMC6771000 DOI: 10.3390/genes10090688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 11/29/2022] Open
Abstract
Sphingopyxis inhabit diverse environmental niches, including marine, freshwater, oceans, soil and anthropogenic sites. The genus includes 20 phylogenetically distinct, valid species, but only a few with a sequenced genome. In this work, we analyzed the nearly complete genome of the newly described species, Sphingopyxislindanitolerans, and compared it to the other available Sphingopyxis genomes. The genome included 4.3 Mbp in total and consists of a circular chromosome, and two putative plasmids. Among the identified set of lin genes responsible for γ-hexachlorocyclohexane pesticide degradation, we discovered a gene coding for a new isoform of the LinA protein. The significant potential of this species in the remediation of contaminated soil is also correlated with the fact that its genome encodes a higher number of enzymes potentially involved in aromatic compound degradation than for most other Sphingopyxis strains. Additional analysis of 44 Sphingopyxis representatives provides insights into the pangenome of Sphingopyxis and revealed a core of 734 protein clusters and between four and 1667 unique proteins per genome.
Collapse
Affiliation(s)
- Michal A Kaminski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Adam Sobczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Leszek Lipinski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
19
|
Catabolism of the groundwater micropollutant 2,6-dichlorobenzamide beyond 2,6-dichlorobenzoate is plasmid encoded in Aminobacter sp. MSH1. Appl Microbiol Biotechnol 2018; 102:7963-7979. [PMID: 29984394 DOI: 10.1007/s00253-018-9189-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
Aminobacter sp. MSH1 uses the groundwater micropollutant 2,6-dichlorobenzamide (BAM) as sole source of carbon and energy. In the first step, MSH1 converts BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) by means of the BbdA amidase encoded on the IncP-1β plasmid pBAM1. Information about the genes and degradation steps involved in 2,6-DCBA metabolism in MSH1 or any other organism is currently lacking. Here, we show that the genes for 2,6-DCBA degradation in strain MSH1 reside on a second catabolic plasmid in MSH1, designated as pBAM2. The complete sequence of pBAM2 was determined revealing that it is a 53.9 kb repABC family plasmid. The 2,6-DCBA catabolic genes on pBAM2 are organized in two main clusters bordered by IS elements and integrase genes and encode putative functions like Rieske mono-/dioxygenase, meta-cleavage dioxygenase, and reductive dehalogenases. The putative mono-oxygenase encoded by the bbdD gene was shown to convert 2,6-DCBA to 3-hydroxy-2,6-dichlorobenzoate (3-OH-2,6-DCBA). 3-OH-DCBA was degraded by wild-type MSH1 and not by a pBAM2-free MSH1 variant indicating that it is a likely intermediate in the pBAM2-encoded DCBA catabolic pathway. Based on the activity of BbdD and the putative functions of the other catabolic genes on pBAM2, a metabolic pathway for BAM/2,6-DCBA in strain MSH1 was suggested.
Collapse
|
20
|
Nielsen TK, Rasmussen M, Demanèche S, Cecillon S, Vogel TM, Hansen LH. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH. Genome Biol Evol 2018; 9:2477-2490. [PMID: 28961970 PMCID: PMC5737581 DOI: 10.1093/gbe/evx185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 12/03/2022] Open
Abstract
Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology.
Collapse
Affiliation(s)
| | | | - Sandrine Demanèche
- Environmental Microbial Genomics, Laboratoire Ampère (CNRS UMR5005), École Centrale de Lyon, Université de Lyon, Ecully, France
| | - Sébastien Cecillon
- Environmental Microbial Genomics, Laboratoire Ampère (CNRS UMR5005), École Centrale de Lyon, Université de Lyon, Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère (CNRS UMR5005), École Centrale de Lyon, Université de Lyon, Ecully, France
| | | |
Collapse
|
21
|
Gasc C, Peyret P. Revealing large metagenomic regions through long DNA fragment hybridization capture. MICROBIOME 2017; 5:33. [PMID: 28292322 PMCID: PMC5351058 DOI: 10.1186/s40168-017-0251-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/05/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND High-throughput DNA sequencing technologies have revolutionized genomic analysis, including the de novo assembly of whole genomes from single organisms or metagenomic samples. However, due to the limited capacity of short-read sequence data to assemble complex or low coverage regions, genomes are typically fragmented, leading to draft genomes with numerous underexplored large genomic regions. Revealing these missing sequences is a major goal to resolve concerns in numerous biological studies. METHODS To overcome these limitations, we developed an innovative target enrichment method for the reconstruction of large unknown genomic regions. Based on a hybridization capture strategy, this approach enables the enrichment of large genomic regions allowing the reconstruction of tens of kilobase pairs flanking a short, targeted DNA sequence. RESULTS Applied to a metagenomic soil sample targeting the linA gene, the biomarker of hexachlorocyclohexane (HCH) degradation, our method permitted the enrichment of the gene and its flanking regions leading to the reconstruction of several contigs and complete plasmids exceeding tens of kilobase pairs surrounding linA. Thus, through gene association and genome reconstruction, we identified microbial species involved in HCH degradation which constitute targets to improve biostimulation treatments. CONCLUSIONS This new hybridization capture strategy makes surveying and deconvoluting complex genomic regions possible through large genomic regions enrichment and allows the efficient exploration of metagenomic diversity. Indeed, this approach enables to assign identity and function to microorganisms in natural environments, one of the ultimate goals of microbial ecology.
Collapse
Affiliation(s)
- Cyrielle Gasc
- Université Clermont Auvergne, INRA, MEDIS, 63000 Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRA, MEDIS, 63000 Clermont-Ferrand, France
| |
Collapse
|