1
|
Wang J, Hua D, Li M, Liu N, Zhang Y, Zhao Y, Jiang S, Hu X, Wang Y, Zhu H. The Role of Zuo Jin Wan in Modulating the Tumor Microenvironment of Colorectal Cancer. Comb Chem High Throughput Screen 2025; 28:523-532. [PMID: 38284730 DOI: 10.2174/0113862073281374231228041841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Traditional Chinese medicine (TCM) can modulate the immune function of tumor patients in various ways. Zuojin Wan (ZJW, a 6:1 ratio of Huang Lian and Wu Zhu Yu) can modulate the microenvironment of ulcerative colitis, but its role in regulating the colorectal cancer (CRC) microenvironment remains unclear. Exploring the role of ZJW in CRC immunomodulation may improve the antitumor effect of existing immunotherapeutic strategies. MATERIAL AND METHODS The active compounds of each herb in ZJW were obtained from the HIT2.0 database with literature evidence. Single-cell RNA sequencing data of CRC were obtained from published studies (PMID: 32451460, 32103181, and 32561858). Pathway enrichment was analyzed using the reactome database, and intergenic correlation analysis was performed using the corrplot R software package. ZJW-regulated gene expression was verified by RT-qPCR. RESULTS Huang Lian and Wu Zhu Yu contain 19 and 4 compounds, respectively. Huang Lian targets 146 proteins, and Wu Zhu Yu targets 28 proteins based on evidence from the literature. ZJW regulates a range of biological processes associated with immune function, including cytokine signaling and Toll-Like Receptor 4 (TLR4) cascade. ZJW regulates malignant CRC cells, immune cells (including T-cells, B-cells, mast cells, NK/NKT cells, and myeloid cells), and other nonimmune cells (including endothelial cells, enteric glial cells, and pericytes). We confirmed that ZJW significantly downregulated the expression of TIMP1 and MTDHin CRC cell lines. CONCLUSIONS ZJW regulates a range of cells in the CRC microenvironment, including malignant CRC, immune cells, and stromal cells. In CRC cell lines, downregulation of TIMP1 and MTDH by ZJW may play an important role in the immunomodulation in CRC.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dongming Hua
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengyao Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ningning Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shasha Jiang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huirong Zhu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
2
|
Xing Z, Li X, He J, Chen Y, Zhu L, Zhang X, Huang Z, Tang J, Guo Y, He Y. OLFM4 modulates intestinal inflammation by promoting IL-22 +ILC3 in the gut. Commun Biol 2024; 7:914. [PMID: 39075283 PMCID: PMC11286877 DOI: 10.1038/s42003-024-06601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) play key roles in intestinal inflammation. Olfactomedin 4 (OLFM4) is highly expressed in the colon and has a potential role in dextran sodium sulfate-induced colitis. However, the detailed mechanisms underlying the effects of OLFM4 on ILC3-mediated colitis remain unclear. In this study, we identify OLFM4 as a positive regulator of IL-22+ILC3. OLFM4 expression in colonic ILC3s increases substantially during intestinal inflammation in humans and mice. Compared to littermate controls, OLFM4-deficient (OLFM4-/-) mice are more susceptible to bacterial infection and display greater resistance to anti-CD40 induced innate colitis, together with impaired IL-22 production by ILC3, and ILC3s from OLFM4-/-mice are defective in pathogen resistance. Besides, mice with OLFM4 deficiency in the RORγt compartment exhibit the same trend as in OLFM4-/-mice, including colonic inflammation and IL-22 production. Mechanistically, the decrease in IL-22+ILC3 caused by OLFM4 deficiency involves the apoptosis signal-regulating kinase 1 (ASK1)- p38 MAPK signaling-dependent downregulation of RAR-related orphan receptor gamma (RORγt) protein. The OLFM4-metadherin (MTDH) complex upregulates p38/RORγt signaling, which is necessary for IL-22+ILC3 activation. The findings indicate that OLFM4 is a novel regulator of IL-22+ILC3 and essential for modulating intestinal inflammation and tissue homeostasis.
Collapse
Affiliation(s)
- Zhe Xing
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Junyu He
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Yimin Chen
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Lei Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaogang Zhang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Zhengcong Huang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Jiang J, Wang L, Li Q, Wang Y, Wang Z. HIV-1 gp120 amplifies astrocyte elevated gene-1 activity to compromise the integrity of the outer blood-retinal barrier. AIDS 2024; 38:779-789. [PMID: 38578957 DOI: 10.1097/qad.0000000000003844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
OBJECTIVE This study aims to investigate the functions and mechanistic pathways of Astrocyte Elevated Gene-1 (AEG-1) in the disruption of the blood-retinal barrier (BRB) caused by the HIV-1 envelope glycoprotein gp120. DESIGN We utilized ARPE-19 cells challenged with gp120 as our model system. METHODS Several analytical techniques were employed to decipher the intricate interactions at play. These included PCR, Western blot, and immunofluorescence assays for the molecular characterization, and transendothelial electrical resistance (TEER) measurements to evaluate barrier integrity. RESULTS We observed that AEG-1 expression was elevated, whereas the expression levels of tight junction proteins ZO-1, Occludin, and Claudin5 were downregulated in gp120-challenged cells. TEER measurements corroborated these findings, indicating barrier dysfunction. Additional mechanistic studies revealed that the activation of NFκB and MMP2/9 pathways mediated the AEG-1-induced barrier destabilization. Through the use of lentiviral vectors, we engineered cell lines with modulated AEG-1 expression levels. Silencing AEG-1 alleviated gp120-induced downregulation of tight junction proteins and barrier impairment while concurrently inhibiting the NFκB and MMP2/9 pathways. Conversely, overexpression of AEG-1 exacerbated these pathological changes, further compromising the integrity of the BRB. CONCLUSION Gp120 upregulates the expression of AEG-1 and activates the NFκB and MMP2/9 pathways. This in turn leads to the downregulation of tight junction proteins, resulting in the disruption of barrier function.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
4
|
Liu H, Sun J, Wang Z, Han R, Zhao Y, Lou Y, Wang H. S100a10 deficiency in neutrophils aggravates ulcerative colitis in mice. Int Immunopharmacol 2024; 128:111499. [PMID: 38232535 DOI: 10.1016/j.intimp.2024.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND AND AIMS S100a10 is a member of the S100 family of proteins, which plays a key role in the depression and tumor metastasis. However, the role of S100a10 is unclear in ulcerative colitis. METHODS The effect of S100a10 was assessed using a murine ulcerative colitis model which was accompanied by parameters including body weight loss, disease activity index, histological score, colon weight and length. The quantity and role of immune cells was determined by flow cytometry and bone marrow chimeric mice. Neutrophils depletion, adoptive cell transfer and conditional knockout mice were used to ascertain which cells played the key role in ulcerative colitis. The function of neutrophils was evaluated by migration assay, phagocytosis assay, multiplex immunoassay and real-time PCR. RESULTS In this study, our data showed that S100a10-/- mice were prone to ulcerative colitis induced by dextran sodium sulfate. Neutrophils number increased in colon of S100a10-/- mice after dextran sodium sulfate treatment significantly. Meanwhile, adoptive transfer of neutrophils from wild type mice partially decreased the susceptibility of S100a10-/- mice to dextran sodium sulfate. There was no difference in ulcerative colitis between the groups of S100a10-/- mice without neutrophils and wild type mice. Finally, we found that S100a10-/- neutrophils had stronger function in secretion and synthesis of inflammatory factor. CONCLUSIONS In one word, these results suggest that S100a10 has a role in inhibiting the pathogenesis of ulcerative colitis through regulation of neutrophils function.
Collapse
Affiliation(s)
- Huandi Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jiaxiang Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhihui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rui Han
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuxin Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Morphologic Center of College of Basic Medicine, Xinjiang Medical University, Urumqi, China
| | - Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
5
|
Chen Y, Zhao T, Han M, Chen Y. Gigantol protects retinal pigment epithelial cells against high glucose-induced apoptosis, oxidative stress and inflammation by inhibiting MTDH-mediated NF-kB signaling pathway. Immunopharmacol Immunotoxicol 2024; 46:33-39. [PMID: 37681978 DOI: 10.1080/08923973.2023.2247545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE As a frequent complication of diabetes mellitus (DM), diabetic retinopathy (DR) is now one of the major causes of blindness. Recent reports have shown that retinal pigment epithelial cell (RPEC) damage plays an essential part in DR development and progression. This work intended to explore the potential effects of Gigantol on high glucose (HG)-stimulated RPEC damage and identify potential mechanisms. METHODS Cell viability, cell damage, and cell apoptosis were evaluated by CCK-8, lactate dehydrogenase (LDH) and flow cytometry assays. The levels of oxidative stress biomarkers and pro-inflammatory cytokines were assessed using corresponding commercial kits and ELISA. Additionally, the levels of MTDH and NF-kB signaling pathway-related proteins were detected by western blotting. RESULTS Gigantol dose-dependently enhanced cell viability and decreased apoptosis in HG-challenged ARPE-19 cells. Also, Gigantol notably relieved oxidative stress and inflammatory responses in ARPE-19 cells under HG conditions. Gigantol dose-dependently suppressed MTDH expression. In addition, MTDH restoration partially counteracted the protective effects of Gigantol on ARPE-19 cells subject to HG treatment. Mechanically, Gigantol inactivated the NF-kB signaling pathway, which was partly restored after MTDH overexpression. CONCLUSION Our findings suggested that Gigantol protected against HG-induced RPEC damage by inactivating the NF-kB signaling via MTDH inhibition, offering a potent therapeutic drug for DR treatment.
Collapse
Affiliation(s)
- You Chen
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Tong Zhao
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Mengyu Han
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Yi Chen
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
6
|
Zeng F, Wu Q, Song M, Kang X, Ou Z, Yang Z, Luo L, Li D. Circ-SFMBT2 sponges miR-224-5p to induce ketamine-induced cystitis by up-regulating metadherin (MTDH). Hum Cell 2023; 36:2040-2054. [PMID: 37642831 DOI: 10.1007/s13577-023-00972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
There is increasing evidence that circular RNAs (circRNAs) play significant roles in various biological processes, yet few reports have examined their roles and molecular mechanisms in ketamine-induced cystitis (KIC). This study examines the possible molecular mechanisms underlying the circRNA-microRNA-mRNA regulatory network in the development of KIC. Transcriptome data were collected, and bioinformatics analysis was conducted to create a circRNA-miRNA-mRNA regulatory network (ceRNA network) associated with the occurrence of KIC. Human bladder epithelial cells (SV-HUC-1) were used in in vitro cell assays. The binding affinity among circ-SFMBT2, miR-224-5p, and Metadherin (MTDH) was identified. To investigate the effects of circ-SFMBT2/miR-224-5p/MTDH on bladder function, KIC mouse models were induced by intraperitoneal injection of ketamine, and gain- or loss-of-function experiments were conducted. Our results demonstrate that MTDH may be a key gene involved in the occurrence of KIC. Both bioinformatics analysis and in vitro cell assays verified that circ-SFMBT2 can competitively bind to miR-224-5p, and miR-224-5p can target and inhibit MTDH. In the bladder tissues of KIC mice, circ-SFMBT2 and MTDH were up-regulated, while miR-224-5p was down-regulated. Animal experiments further confirmed that circ-SFMBT2 can up-regulate MTDH expression by sponging miR-224-5p, thereby exacerbating bladder dysfunction in KIC mice. This study proved that circ-SFMBT2 up-regulates MTDH by competitively binding to miR-224-5p, thereby exacerbating the bladder dysfunction of KIC.
Collapse
Affiliation(s)
- Fanchang Zeng
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan Province, 19 Xiuhua Road, Xiuying District, Haikou, 570311, People's Republic of China
| | - Qinghui Wu
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan Province, 19 Xiuhua Road, Xiuying District, Haikou, 570311, People's Republic of China
| | - Mi Song
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan Province, 19 Xiuhua Road, Xiuying District, Haikou, 570311, People's Republic of China
| | - Xinli Kang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan Province, 19 Xiuhua Road, Xiuying District, Haikou, 570311, People's Republic of China
| | - Zhewen Ou
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan Province, 19 Xiuhua Road, Xiuying District, Haikou, 570311, People's Republic of China
| | - Zuobing Yang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan Province, 19 Xiuhua Road, Xiuying District, Haikou, 570311, People's Republic of China
| | - Liumei Luo
- Department of Scientific Research, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China
| | - Daoyuan Li
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan Province, 19 Xiuhua Road, Xiuying District, Haikou, 570311, People's Republic of China.
| |
Collapse
|
7
|
Wei C, Zhao X, Zhang H, Wang L. USP2 promotes cell proliferation and metastasis in choroidal melanoma via stabilizing Snail. J Cancer Res Clin Oncol 2023; 149:9263-9276. [PMID: 37199836 DOI: 10.1007/s00432-023-04855-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Choroidal melanoma (CM) is an intraocular tumor that arises from melanocytes. While ubiquitin-specific protease 2 (USP2) modulates the progression of numerous diseases, its role in CM is not known. This study aimed to determine the role of USP2 in CM and elucidate its molecular mechanisms. METHODS MTT, Transwell, and wound-scratch assays were used to investigate the function of USP2 in the proliferation and metastasis of CM. Western blotting and qRT-PCR were used to analyze the expression of USP2, Snail, and factors associated with the epithelial-mesenchymal transition (EMT). The relationship between USP2 and Snail was explored by co-immunoprecipitation and in vitro ubiquitination assays. A nude mouse model of CM was established for verifying the role of USP2 in vivo. RESULTS USP2 overexpression promoted proliferation and metastasis, and induced the EMT in CM cells in vitro, while specific inhibition of USP2 by ML364 produced the opposite effects. ML364 also suppressed CM tumor growth in vivo. Mechanistically, USP2 is known to deubiquitinate Snail, stabilizing the latter through the removal of its K48 poly-ubiquitin chains. However, a catalytically inactive form of USP2 (C276A) had no effect on Snail ubiquitination and failed to increase Snail protein expression. The C276A mutant was also unable to promote CM cell proliferation, migration, and invasion, as well as EMT progression. Furthermore, Snail overexpression partly counteracted the effects of ML364 on proliferation and migration, while rescuing the effects of the inhibitor on the EMT. CONCLUSIONS The findings demonstrated that USP2 modulated CM development through the stabilization of Snail and suggest that USP2 may be a useful target for the development of novel treatments for CM.
Collapse
Affiliation(s)
- Chao Wei
- Department of Ophthalmology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaofei Zhao
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Han Zhang
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Hu W, Fang T, Zhou M, Chen X. Identification of hub genes and immune infiltration in ulcerative colitis using bioinformatics. Sci Rep 2023; 13:6039. [PMID: 37055495 PMCID: PMC10101977 DOI: 10.1038/s41598-023-33292-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine, whose pathogenesis is not fully understood. Given that immune infiltration plays a key role in UC progression, our study aimed to assess the level of immune cells in UC intestinal mucosal tissues and identify potential immune-related genes. The GSE65114 UC dataset was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between healthy and UC tissues were identified using the "limma" package in R, while their Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined with the clusterProfiler package. Protein-protein interaction network analysis and visualization were performed with STRING and Cytoscape. Immune cell infiltration was calculated with CIBERSORT. The relationship between hub genes and immune-infiltrated cells in UC was determined by Pearson correlation. A total of 206 DEGs were identified, of which 174 were upregulated and 32 downregulated. GO and KEGG functional classification indicated DEG enrichment in immune response pathways, including Toll-like receptor signaling, IL-17 signaling, and immune system process and chemokine signaling. 13 hub genes were identified. Infiltration matrix analysis of immune cells showed abundant plasma cells, memory B cells, resting CD4 memory T cells, γδ T cells, M0 and M1 macrophages, and neutrophils in UC intestinal tissues. Correlation analysis revealed 13 hub genes associated with immune-infiltrated cells in UC. 13 hub genes associated with immune-infiltrated cells in UC were identified; they included CXCL13, CXCL10, CXCL9, CXCL8, CCL19, CTLA4, CCR1, CD69, CD163, IL7R, PECAM1, TLR8 and TLR2. These genes could potentially serve as markers for the diagnosis and treatment of UC.
Collapse
Affiliation(s)
- Weitao Hu
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, 362000, Fujian, People's Republic of China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China
| | - Mingxuan Zhou
- Department of General Practice, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China
| | - Xiaoqing Chen
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, 362000, Fujian, People's Republic of China.
| |
Collapse
|
9
|
Wu Q, Han Y, Wu X, Wang Y, Su Q, Shen Y, Guan K, Michal JJ, Jiang Z, Liu B, Zhou X. Integrated time-series transcriptomic and metabolomic analyses reveal different inflammatory and adaptive immune responses contributing to host resistance to PRRSV. Front Immunol 2022; 13:960709. [PMID: 36341362 PMCID: PMC9631489 DOI: 10.3389/fimmu.2022.960709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious disease that affects the global pig industry. To understand mechanisms of susceptibility/resistance to PRRSV, this study profiled the time-serial white blood cells transcriptomic and serum metabolomic responses to PRRSV in piglets from a crossbred population of PRRSV-resistant Tongcheng pigs and PRRSV-susceptible Large White pigs. Gene set enrichment analysis (GSEA) illustrated that PRRSV infection up-regulated the expression levels of marker genes of dendritic cells, monocytes and neutrophils and inflammatory response, but down-regulated T cells, B cells and NK cells markers. CIBERSORT analysis confirmed the higher T cells proportion in resistant pigs during PRRSV infection. Resistant pigs showed a significantly higher level of T cell activation and lower expression levels of monocyte surface signatures post infection than susceptible pigs, corresponding to more severe suppression of T cell immunity and inflammatory response in susceptible pigs. Differentially expressed genes between resistant/susceptible pigs during the course of infection were significantly enriched in oxidative stress, innate immunity and humoral immunity, cell cycle, biotic stimulated cellular response, wounding response and behavior related pathways. Fourteen of these genes were distributed in 5 different QTL regions associated with PRRSV-related traits. Chemokine CXCL10 levels post PRRSV infection were differentially expressed between resistant pigs and susceptible pigs and can be a promising marker for susceptibility/resistance to PRRSV. Furthermore, the metabolomics dataset indicated differences in amino acid pathways and lipid metabolism between pre-infection/post-infection and resistant/susceptible pigs. The majority of metabolites levels were also down-regulated after PRRSV infection and were significantly positively correlated to the expression levels of marker genes in adaptive immune response. The integration of transcriptome and metabolome revealed concerted molecular events triggered by the infection, notably involving inflammatory response, adaptive immunity and G protein-coupled receptor downstream signaling. This study has increased our knowledge of the immune response differences induced by PRRSV infection and susceptibility differences at the transcriptomic and metabolomic levels, providing the basis for the PRRSV resistance mechanism and effective PRRS control.
Collapse
Affiliation(s)
- Qingqing Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yu Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xianmeng Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qiuju Su
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yang Shen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kaifeng Guan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jennifer J. Michal
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiang Zhou, ; Bang Liu,
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiang Zhou, ; Bang Liu,
| |
Collapse
|
10
|
Fu J, Peng J, Tu G. Knockdown MTDH Inhibits Glioma Proliferation and Migration and Promotes Apoptosis by Downregulating MYBL2. Mediators Inflamm 2022; 2022:1706787. [PMID: 36133745 PMCID: PMC9484958 DOI: 10.1155/2022/1706787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Glioma is a malignant tumor that often occurs in the adult central nervous system. Metadherin/astrocyte-elevated gene-1 (MTDH) is involved in the development of cancer, but its relationship with glioma remains unclear. This study is aimed at clarifying the role of MTDH in glioma. GEPIA was employed to find the difference of the expression level of MTDH and MYB protooncogene-like 2 (MYBL2) in glioma tissues and normal tissues, and real-time quantitative reverse transcription PCR (qRT-PCR) and western blot (WB) were applied to verify the differential gene expression of MTDH and MYBL2 cells. After knocking down of MTDH, the expressions of forkhead box M1 (FoxM1), MTDH, and MYBL2 were detected by WB cells. Cell counting kit 8 (CCK-8) was used to detect cell proliferation, and flow cytometry was applied to measure cell apoptosis. The transwell assay was utilized to investigate the ability of cell migration and invasion. The results showed that MTDH and MYBL2 were overexpressed in glioma cells compared with normal cells. The knockdown of MTDH would inhibit the expression of MYBL2 through decreasing the expression of FoxM1 and further reduce glioma cell proliferation and cell migration and invasion. The present study showed that knockdown of MTDH inhibits glioma proliferation and migration and promotes apoptosis by downregulating MYBL2, which suggests that MTDH is a potential gene in clinical treatment of glioma.
Collapse
Affiliation(s)
- Junqi Fu
- Department of Neurosurgery, Haikou People's Hospital, Haikou, Hainan Province 570208, China
| | - Jun Peng
- Department of Neurosurgery, Haikou People's Hospital, Haikou, Hainan Province 570208, China
| | - Guolong Tu
- Department of Neurosurgery, Haikou People's Hospital, Haikou, Hainan Province 570208, China
| |
Collapse
|
11
|
Han D, Wang L, Long L, Su P, Luo D, Zhang H, Li Z, Chen B, Zhao W, Zhang N, Wang X, Liang Y, Li Y, Hu G, Yang Q. The E3 Ligase TRIM4 Facilitates SET Ubiquitin-Mediated Degradation to Enhance ER-α Action in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201701. [PMID: 35843886 PMCID: PMC9443474 DOI: 10.1002/advs.202201701] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Estrogen receptor alpha (ER-α) action is critical for hormone-dependent breast cancer, and ER-α dysregulation can lead to the emergence of resistance to endocrine therapy. Here, it is found that TRIM4 is downregulated in tamoxifen (TAM)-resistant breast cancer cells, while the loss of TRIM4 is associated with an unfavorable prognosis. In vitro and in vivo experiments confirm that TRIM4 increased ER-α expression and the sensitivity of breast cancer cells to TAM. Mechanistically, TRIM4 is found to target SET, and TRIM4-SET interactions are mediated by the RING and B-box domains of TRIM4 and the carboxyl terminus of SET. Moreover, it is determined that TRIM4 catalyzed the K48-linked polyubiquitination of SET (K150 and K172), promoting its proteasomal degradation and disassociation from p53 and PP2A. Once released, p53 and PP2A are able to further promote ESR1 gene transcription and enhance mRNA stability. Moreover, univariate and multivariate Cox proportional hazards regression analyses confirm that TRIM4 expression is an independent predictor of overall survival and recurrence-free survival outcomes in patients with ER-α positive breast cancer. Taken together, the data highlights a previously undiscovered mechanism and suggest that TRIM4 is a valuable biomarker that can be analyzed to predict response to endocrine therapy in breast cancer patients.
Collapse
Affiliation(s)
- Dianwen Han
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Lijuan Wang
- Pathology Tissue BankQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Li Long
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
- Mianyang Central HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaMianyangSichuan621000China
| | - Peng Su
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Dan Luo
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Hanwen Zhang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Zheng Li
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Bing Chen
- Pathology Tissue BankQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Wenjing Zhao
- Pathology Tissue BankQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Ning Zhang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Xiaolong Wang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Yiran Liang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Yaming Li
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Guohong Hu
- The Key Laboratory of Stem Cell BiologyInstitute of Health SciencesShanghai Institutes for Biological SciencesChinese Academy of Sciences & Shanghai Jiao Tong University School of MedicineUniversity of Chinese Academy of SciencesShanghai200233China
| | - Qifeng Yang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
- Pathology Tissue BankQilu Hospital of Shandong UniversityJinanShandong250012China
- Research Institute of Breast CancerShandong UniversityJinanShandong250012China
| |
Collapse
|
12
|
Li X, Abdel-Moneim AME, Mesalam NM, Yang B. Effects of Lysophosphatidylcholine on Jejuna Morphology and Its Potential Mechanism. Front Vet Sci 2022; 9:911496. [PMID: 35795789 PMCID: PMC9252431 DOI: 10.3389/fvets.2022.911496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023] Open
Abstract
Lysophosphatidylcholine (LPC) plays a vital role in promoting jejuna morphology in broilers. However, the potential mechanism behind LPC improving the chicken jejuna morphology is unclear. Therefore, the present study was designed to reveal the important genes associated with LPC regulation in birds' jejuna. Thus, GSE94622, the gene expression microarray, was obtained from Gene Expression Omnibus (GEO). GSE94622 consists of 15 broiler jejuna samples from two LPC-treated (LPC500 and LPC1000) and the control groups. Totally 98 to 217 DEGs were identified by comparing LPC500 vs. control, LPC1000 vs. control, and LPC1000 vs. LPC500. Gene ontology (GO) analysis suggested that those DEGs were mainly involved in the one-carbon metabolic process, carbon dioxide transport, endodermal cell differentiation, the positive regulation of dipeptide transmembrane transport, cellular pH reduction, and synaptic transmission. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated the DEGs were enriched in NOD-like receptor (NLR), RIG-I-like receptor (RILR), Toll-like receptor (TLR), and necroptosis signaling pathway. Moreover, many genes, such as RSAD2, OASL, EPSTI1, CMPK2, IFIH1, IFIT5, USP18, MX1, and STAT1 might be involved in promoting the jejuna morphology of broilers. In conclusion, this study enhances our understanding of LPC regulation in jejuna morphology.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Huainan, China
| | | | - Noura M. Mesalam
- Department of Biological Applications, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, Egypt
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Huainan, China
- *Correspondence: Bing Yang
| |
Collapse
|
13
|
Jing L, Zhang X, Liu D, Yang Y, Xiong H, Dong G. ACK1 Contributes to the Pathogenesis of Inflammation and Autoimmunity by Promoting the Activation of TLR Signaling Pathways. Front Immunol 2022; 13:864995. [PMID: 35669783 PMCID: PMC9164107 DOI: 10.3389/fimmu.2022.864995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) are the first line of defense in the immune system, whose activation plays a key role in the pathogenesis of inflammation and autoimmunity. TLRs can activate a variety of immune cells such as macrophages and dendritic cells, which produce proinflammatory cytokines, chemokines, and co-stimulatory molecules that lead to the development of inflammation and autoimmune diseases. As a nonreceptor tyrosine kinase, ACK1 is involved in multiple signaling pathways and physiological processes. However, the roles of ACK1 in the activation of TLR pathways and in the pathogenesis of inflammation and autoimmune diseases have not yet been reported. We found that the expression of ACK1 could be upregulated by TLR pathways in vivo and in vitro. Intriguingly, overexpression of ACK1 significantly promoted the activation of TLR4, TLR7, and TLR9 pathways, while knockdown of ACK1 or the use of the ACK1 inhibitor AIM-100 significantly inhibited the activation of TLR4, TLR7, and TLR9 pathways. In vivo studies showed that the inhibition of ACK1 activity by AIM-100 could significantly protect mice from the TLR4 agonist lipopolysaccharide (LPS)-mediated endotoxin shock and alleviate the condition of imiquimod-mediated lupus-prone mice and MRL/lpr mice. In summary, ACK1 participates in TLR-mediated inflammation and autoimmunity and has great potential in controlling inflammation and alleviating autoimmune diseases.
Collapse
Affiliation(s)
- Lina Jing
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Dong Liu
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Guanjun Dong, ; Huabao Xiong,
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Guanjun Dong, ; Huabao Xiong,
| |
Collapse
|
14
|
Duan X, Song Y, Li F, Liao Y, Liu W. Metadherin silencing results in the inhibition of pyroptosis in lipopolysaccharide/adenosine triphosphate - stimulated renal tubular epithelial cells. Tissue Cell 2022; 75:101722. [PMID: 35026615 DOI: 10.1016/j.tice.2021.101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Pyroptosis is induced following inflammation via activation of the NLRP3 inflammasome. Lipopolysaccharide (LPS)-induced acute inflammation causes pyroptosis in renal tubular epithelial cells, which aggravates kidney damage and is involved in physiopathological processes in multiple renal diseases. Metadherin (Mtdh) induces inflammation by NLRP3 inflammasome activation. Specifically, it induces inflammatory injury in the kidney by activating the nuclear factor kappa B (NF-κB) signaling pathway, which is involved in NLRP3 inflammasome activation. However, the role of Mtdh in pyroptosis in renal tubular epithelial cells is unclear. Therefore, we investigated whether Mtdh participates in pyroptosis in LPS/adenosine triphosphate (ATP)-treated NRK-52E cells by activating the NLRP3 inflammasome and NF-κB signaling pathway. We induced pyroptosis in NRK-52E cells with LPS/ATP, after which Mtdh was silenced via transfection with small interfering RNA. LPS/ATP upregulated Mtdh expression and induced pyroptosis and NLRP3 inflammasome activation in NRK-52E cells. However, downregulation of Mtdh expression resulted in the alleviation of pyroptosis in LPS/ATP-treated NRK-52E cells. Additionally, activation of the NLRP3 inflammasome and NF-κB signaling pathway was inhibited. This demonstrates that downregulation of Mtdh expression results in the inhibition of pyroptosis in LPS/ATP-treated NRK-52E cells through the suppression of NLRP3 inflammasome activation, which occurs via inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiuping Duan
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Yashan Song
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Fuji Li
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Yunhua Liao
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China.
| | - Wenting Liu
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China.
| |
Collapse
|
15
|
Zhu YC, Liang B, Gu N. Cellular and Molecular Mechanism of Traditional Chinese Medicine on Ventricular Remodeling. Front Cardiovasc Med 2021; 8:753095. [PMID: 34926607 PMCID: PMC8671630 DOI: 10.3389/fcvm.2021.753095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Ventricular remodeling is related to the renin-angiotensin-aldosterone system, immune system, and various cytokines involved in inflammation, apoptosis, and cell signal regulation. Accumulated studies have shown that traditional Chinese medicine can significantly inhibit the process of ventricular remodeling, which may be related to the mechanism mentioned above. Here, we conducted a system overview to critically review the cellular and molecular mechanism of traditional Chinese medicine on ventricular remodeling. We mainly searched PubMed for basic research about the anti-ventricular remodeling of traditional Chinese medicine in 5 recent years, and then objectively summarized these researches. We included more than 25 kinds of Chinese herbal medicines including Qi-Li-Qian-Xin, Qi-Shen-Yi-Qi Pill, Xin-Ji-Er-Kang Formula, and Yi-Qi-Wen-Yang Decoction, and found that they can inhibit ventricular remodeling effectively through multi-components and multi-action targets, which are promoting the clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yong-Chun Zhu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Li R, Cheng L, Wang Q, Zhou L. Comparative Transcriptomic Analysis Reveals the Immunosuppressive Targets of Mesalazine in Dextran Sulfate Sodium-Induced Ulcerative Colitis. Front Genet 2021; 12:698983. [PMID: 34456974 PMCID: PMC8386351 DOI: 10.3389/fgene.2021.698983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Ulcerative colitis (UC) is a complex inflammatory bowel disorder that can induce colonic and rectal dysfunction. Mesalazine, a first-line medicine, is routinely prescribed for UC treatment. However, the pharmacological targets of mesalazine against UC are not detailed in current publications. In the current study, a transcriptomics strategy was applied to reveal the therapeutic targets and molecular mechanisms of mesalazine for treating dextran sulfate sodium (DSS)-induced UC in mice. Compared with the UC group, a total of 1,663 differentially expressed genes were identified in mesalazine-treated mice, of which 262 were upregulated and 1,401 were downregulated. GO and KEGG enrichment analyses indicated that the protective actions of mesalazine for treating UC were related to the functional regulation of immune inflammatory response, such as the regulation of T cells, white blood cells, and cytokine receptor pathways. In addition, ingenuity pathway analysis of the gene network further revealed the inhibitory action of mesalazine on C-C motif chemokine ligands (CCL11 and CCL21) and C-X-C motif chemokine ligands (CXCL3 and CXCR2). Taken together, the current transcriptomic findings revealed anti-UC pharmacological targets, including the newly discovered biotargets CCL11, CCL21, CXCL3, and CXCR2, of mesalazine against DSS-induced intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | - Liming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|