1
|
Ma J, Wang FY, Tang XD. Involvement of the NLRP3/IL-1β pathway in activation and effector functions of γδT17 cells in patients with ulcerative colitis. World J Gastroenterol 2025; 31:98174. [PMID: 40182600 PMCID: PMC11962846 DOI: 10.3748/wjg.v31.i12.98174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 12/23/2024] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The interleukin-17 (IL-17) mediated aberrant immune-inflammatory response plays a paramount role in ulcerative colitis (UC). γδT17 cells are one of the critical sources of IL-17, but the role they play in UC remains under debate. AIM To clarify the role of γδT17 cells in patients with mild-to-moderate UC. METHODS A single-centre observational pragmatic study was conducted on patients with UC who attended the outpatient and inpatient departments of Xiyuan Hospital of the China Academy of Traditional Chinese Medicine from September 2020 to December 2022. The research population consisted of two groups of adult patients. The first group consisted of healthy volunteers with no significant abnormalities on colonoscopy, and the other group consisted of patients with mild-to-moderate ulcerative colitis. Serum samples from healthy volunteers and patients with UC were collected for the detection of relevant inflammatory factors. Moreover, five colon mucosa samples were randomly selected from each group for testing and analyses. RESULTS An increased number of γδT17 cells and hyperactivation of the NLR family pyrin domain containing 3/IL-1β signaling pathway were observed in colonic mucosal tissues from patients with UC. CONCLUSION Hyperactivation of the NLR family pyrin domain containing 3/IL-1β signaling pathway promotes the activation of γδT17 cells in colonic mucosal tissues of patients with UC.
Collapse
Affiliation(s)
- Jing Ma
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Feng-Yun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xu-Dong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
2
|
Xu Y, Zhang X, Liu S, Qu N, Gao Y, Lu C, Zhai J, Zhu J. The role of Interleukin-38 in modulating T cells in chronic Colitis: A mouse model study. Cytokine 2024; 184:156769. [PMID: 39342821 DOI: 10.1016/j.cyto.2024.156769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Interleukin (IL)-38 belongs to the IL-36 subfamily within the IL-1 family. Patients with inflammatory bowel diseases (IBD) exhibit higher levels of IL-38 in their intestinal tissue compared to healthy controls, suggesting that IL-38 may play a role in the pathogenesis of IBD. However, IL-38's impact on T cell-mediated immune responses in gastrointestinal inflammation has not been investigated. Therefore, the objective of this work was to elucidate the role of IL-38 in modulating T cells in a mouse model of dextran sulfate sodium (DSS)-induced chronic colitis. METHODS Recombinant IL-38 (rIL-38) was administered intraperitoneally (i.p.) to mice with chronic colitis induced by DSS. Clinical symptoms, length of colon, and histologic alterations were assessed. Cytokine production was quantified using ELISA, and helper T (Th) cell subsets were evaluated via flow cytometry. RESULTS Administration of recombinant IL-38 (rIL-38) alleviated DSS-induced chronic colitis. In addition, animals with chronic colitis treated with rIL-38 exhibited a significant decrease in the spontaneous production of inflammatory cytokines by neutrophils in the lamina propria. Furthermore, rIL-38 treatment increased the absolute numbers and percentages of regulatory T cells (Tregs) but decreased the absolute numbers and percentages of Th1 and Th17 cells. Moreover, rIL-38 treatment also decreased IL-17A-producing γδT cells substantially. CONCLUSION This study's results show that IL-38 reduces the effects of chronic colitis caused by DSS by boosting Treg reactions and reducing Th1/Th17 reactions and IL-17A-producing γδT cells in LPL. Therefore, we propose that IL-38 has the potential to be utilized as a biological therapy agent for IBD.
Collapse
Affiliation(s)
- Ying Xu
- Office of Drug Clinical Trials, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xuan Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Shanshan Liu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Nanfang Qu
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yi Gao
- General Surgery I Department, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Changlong Lu
- Institute of Immunology, China Medical University, Shenyang 110122, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu Universiry, Tongliao 028000, China
| | - Junfeng Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| |
Collapse
|
3
|
Hu W, Zhang X, Liu Z, Yang J, Sheng H, Liu Z, Chen C, Shang R, Chen Y, Lu Y, Hu X, Huang Y, Yin W, Cai X, Fan D, Yan L, Hao J, Luo G, He W. Spatiotemporal orchestration of macrophage activation trajectories by Vγ4 T cells during skin wound healing. iScience 2024; 27:109545. [PMID: 38617557 PMCID: PMC11015460 DOI: 10.1016/j.isci.2024.109545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
Dysregulated macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes underlies impaired cutaneous wound healing. This study reveals Vγ4+ γδ T cells spatiotemporally calibrate macrophage trajectories during skin repair via sophisticated interferon-γ (IFN-γ) conditioning across multiple interconnected tissues. Locally within wound beds, infiltrating Vγ4+ γδ T cells directly potentiate M1 activation and suppress M2 polarization thereby prolonging local inflammation. In draining lymph nodes, infiltrated Vγ4+ γδ T cells expand populations of IFN-γ-competent lymphocytes which disseminate systemically and infiltrate into wound tissues, further enforcing M1 macrophages programming. Moreover, Vγ4+γδ T cells flushed into bone marrow stimulate increased IFN-γ production, which elevates the output of pro-inflammatory Ly6C+monocytes. Mobilization of these monocytes continually replenishes the M1 macrophage pool in wounds, preventing phenotypic conversion to M2 activation. Thus, multi-axis coordination of macrophage activation trajectories by trafficking Vγ4+ γδ T cells provides a sophisticated immunological mechanism regulating inflammation timing and resolution during skin repair.
Collapse
Affiliation(s)
- Wengang Hu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Zhongyang Liu
- Department of Plastic Surgery, the First Affiliated Hospital, Zhengzhou University, Henan, China
| | - Jiacai Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Hao Sheng
- Urology Department, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Zhihui Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Cheng Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Yunxia Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Yifei Lu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Wenjing Yin
- Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Xin Cai
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Dejiang Fan
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Lingfeng Yan
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000 Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
4
|
Zhu T, Zhu L, Sheng C, Wu D, Gu Q, Jiang Z, Xu J, Fu G, Jiang Y. Hyperactivation and enhanced cytotoxicity of reduced CD8 + gamma delta T cells in the intestine of patients with Crohn's disease correlates with disease activity. BMC Immunol 2024; 25:15. [PMID: 38336646 PMCID: PMC10858568 DOI: 10.1186/s12865-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND AND AIMS We aimed to investigate the immune characteristics of intestinal CD8+ gamma delta T (CD8+ γδ T) cells in Crohn's disease (CD) and their correlation with disease activity. METHODS The study cohorts included 21 CD patients and 21 healthy individuals. CD8+ γδ T cells were isolated from human ileal mucosa for detection by flow cytometry. The activation or inhibition status of cells was detected by detecting the expression of activation marker HLA-DR and the immunosuppressive molecule PD-1 on cells. The cytotoxicity of cells was assessed by detecting the expression of cytotoxic molecules (Perforin, Granzyme B, and TRAIL) in cells. Ratios of investigated cells were calculated as prediction factors by receiver operating characteristic curve (ROC) analysis. RESULTS The study revealed a reduction in intestinal CD8+ γδT cells among active CD patients, with a more pronounced reduction observed in moderately active patients compared to mildly active patients. Moreover, active CD patients exhibited heightened activation levels in their intestinal CD8+ γδT cells, whereas the activation was comparatively weakened in moderately active patients compared with mildly active patients. Additionally, the cytotoxicity of intestinal CD8+ γδT cells was enhanced solely in mildly active patients, while it was impaired in moderately active patients compared with mildly active patients. Furthermore, HLA-DR+ CD8+ γδT cell ratio, CD8+ γδT ratio, and CD8+ γδT count were identified as indicators in the diagnosis of active CD. Meanwhile, the ratios of Granzyme B+ CD8+ γδT cell and Perforin+ CD8+ γδT cell were identified as indicators that distinguish mildly moderately active CD cases. CONCLUSIONS Intestinal CD8+ γδT was reduced in active CD patients, but their activation and cytotoxicity were enhanced. However, with increased disease activity, intestinal CD8+ γδ T cells became dysfunctional. CD-specific perturbations observed in various phenotypic markers in CD8+ γδ T cells can be used as indicators to assist in diagnosing CD patients.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Linlin Zhu
- Department of Gastroenterology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Caixia Sheng
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Danju Wu
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qianru Gu
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jiaqi Xu
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yujie Jiang
- Department of Pathology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
5
|
Devan J, Nosi V, Spagnuolo J, Chancellor A, Beshirova A, Loureiro JP, Vacchini A, Hendrik Niess J, Calogero R, Mori L, De Libero G, Hruz P. Surface protein and functional analyses identify CD4+CD39+ TCR αβ+ and activated TCR Vδ1+ cells with distinct pro-inflammatory functions in Crohn's disease lesions. Clin Exp Immunol 2024; 215:79-93. [PMID: 37586415 PMCID: PMC10776239 DOI: 10.1093/cei/uxad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Crohn's disease (CD) is a chronic immune-mediated disorder of the gastrointestinal tract. Extensive screening studies have revealed the accumulation of immune cell subsets with unique plasticity and immunoregulatory properties in patients with CD. We performed phenotypic and functional studies on inflamed and non-inflamed bioptic tissue to investigate the presence of distinct T cells in the intestinal mucosa of CD patients. We analysed hundreds of surface molecules expressed on cells isolated from the intestinal tissue of CD patients using anti-CD45 mAbs-based barcoding. A gene ontology enrichment analysis showed that proteins that regulate the activation of T cells were the most enriched group. We, therefore, designed T-cell focused multicolour flow-cytometry panels and performed clustering analysis which revealed an accumulation of activated TEM CD4+CD39+ T cells producing IL-17 and IL-21 and increased frequency of terminally differentiated TCR Vδ1+ cells producing TNF-α and IFN-γ in inflamed tissue of CD patients. The different functional capacities of CD4+ and TCR Vδ1+ cells in CD lesions indicate their non-overlapping contribution to inflammation. The abnormally high number of terminally differentiated TCR Vδ1+ cells suggests that they are continuously activated in inflamed tissue, making them a potential target for novel therapies.
Collapse
Affiliation(s)
- Jan Devan
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Julian Spagnuolo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jose Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jan Hendrik Niess
- Gastroenterology, Department of Biomedicine, University of Basel, Clarunis, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Petr Hruz
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
6
|
Carlson SL, Mathew L, Savage M, Kok K, Lindsay JO, Munro CA, McCarthy NE. Mucosal Immunity to Gut Fungi in Health and Inflammatory Bowel Disease. J Fungi (Basel) 2023; 9:1105. [PMID: 37998910 PMCID: PMC10672531 DOI: 10.3390/jof9111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
The gut microbiome is a diverse microbial community composed of bacteria, viruses, and fungi that plays a major role in human health and disease. Dysregulation of these gut organisms in a genetically susceptible host is fundamental to the pathogenesis of inflammatory bowel disease (IBD). While bacterial dysbiosis has been a predominant focus of research for many years, there is growing recognition that fungal interactions with the host immune system are an important driver of gut inflammation. Candida albicans is likely the most studied fungus in the context of IBD, being a near universal gut commensal in humans and also a major barrier-invasive pathogen. There is emerging evidence that intra-strain variation in C. albicans virulence factors exerts a critical influence on IBD pathophysiology. In this review, we describe the immunological impacts of variations in C. lbicans colonisation, morphology, genetics, and proteomics in IBD, as well as the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Sean L. Carlson
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Liya Mathew
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Michael Savage
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Klaartje Kok
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - James O. Lindsay
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Carol A. Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Neil E. McCarthy
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
7
|
Mortier C, Quintelier K, De Craemer AS, Renson T, Deroo L, Dumas E, Verheugen E, Coudenys J, Decruy T, Lukasik Z, Van Gassen S, Saeys Y, Hoorens A, Lobatón T, Van den Bosch F, Van de Wiele T, Venken K, Elewaut D. Gut Inflammation in Axial Spondyloarthritis Patients is Characterized by a Marked Type 17 Skewed Mucosal Innate-like T Cell Signature. Arthritis Rheumatol 2023; 75:1969-1982. [PMID: 37293832 DOI: 10.1002/art.42627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Patients with spondyloarthritis (SpA) often present with microscopic signs of gut inflammation, a risk factor for progressive disease. We investigated whether mucosal innate-like T cells are involved in dysregulated interleukin-23 (IL-23)/IL-17 responses in the gut-joint axis in SpA. METHODS Ileal and colonic intraepithelial lymphocytes (IELs), lamina propria lymphocytes (LPLs), and paired peripheral blood mononuclear cells (PBMCs) were isolated from treatment-naive patients with nonradiographic axial SpA with (n = 11) and without (n = 14) microscopic gut inflammation and healthy controls (n = 15) undergoing ileocolonoscopy. The presence of gut inflammation was assessed histopathologically. Immunophenotyping of innate-like T cells and conventional T cells was performed using intracellular flow cytometry. Unsupervised clustering analysis was done by FlowSOM technology. Serum IL-17A levels were measured via Luminex. RESULTS Microscopic gut inflammation in nonradiographic axial SpA was characterized by increased ileal intraepithelial γδ-hi T cells, a γδ-T cell subset with elevated γδ-T cell receptor expression. γδ-hi T cells were also increased in PBMCs of patients with nonradiographic axial SpA versus healthy controls and were strongly associated with Ankylosing Spondylitis Disease Activity Score. The abundance of mucosal-associated invariant T cells and invariant natural killer T cells was unaltered. Innate-like T cells in the inflamed gut showed increased RORγt, IL-17A, and IL-22 levels with loss of T-bet, a signature that was less pronounced in conventional T cells. Presence of gut inflammation was associated with higher serum IL-17A levels. In patients treated with tumor necrosis factor blockade, the proportion of γδ-hi cells and RORγt expression in blood was completely restored. CONCLUSION Intestinal innate-like T cells display marked type 17 skewing in the inflamed gut mucosa of patients with nonradiographic axial SpA. γδ-hi T cells are linked to intestinal inflammation and disease activity in SpA.
Collapse
Affiliation(s)
- Céline Mortier
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Katrien Quintelier
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium, Data Mining and Modeling for Biomedicine group, VIB-UGent Center for Inflammation Research, Ghent, Belgium, and Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ann-Sophie De Craemer
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Thomas Renson
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Liselotte Deroo
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Emilie Dumas
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Eveline Verheugen
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Julie Coudenys
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tine Decruy
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Zuzanna Lukasik
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Sofie Van Gassen
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University and Data Mining and Modeling for Biomedicine group, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University and Data Mining and Modeling for Biomedicine group, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Triana Lobatón
- Department of Internal Medicine and Pediatrics, Ghent University and Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Filip Van den Bosch
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Koen Venken
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
8
|
Hu W, Fang T, Zhou M, Chen X. Identification of hub genes and immune infiltration in ulcerative colitis using bioinformatics. Sci Rep 2023; 13:6039. [PMID: 37055495 PMCID: PMC10101977 DOI: 10.1038/s41598-023-33292-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine, whose pathogenesis is not fully understood. Given that immune infiltration plays a key role in UC progression, our study aimed to assess the level of immune cells in UC intestinal mucosal tissues and identify potential immune-related genes. The GSE65114 UC dataset was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between healthy and UC tissues were identified using the "limma" package in R, while their Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined with the clusterProfiler package. Protein-protein interaction network analysis and visualization were performed with STRING and Cytoscape. Immune cell infiltration was calculated with CIBERSORT. The relationship between hub genes and immune-infiltrated cells in UC was determined by Pearson correlation. A total of 206 DEGs were identified, of which 174 were upregulated and 32 downregulated. GO and KEGG functional classification indicated DEG enrichment in immune response pathways, including Toll-like receptor signaling, IL-17 signaling, and immune system process and chemokine signaling. 13 hub genes were identified. Infiltration matrix analysis of immune cells showed abundant plasma cells, memory B cells, resting CD4 memory T cells, γδ T cells, M0 and M1 macrophages, and neutrophils in UC intestinal tissues. Correlation analysis revealed 13 hub genes associated with immune-infiltrated cells in UC. 13 hub genes associated with immune-infiltrated cells in UC were identified; they included CXCL13, CXCL10, CXCL9, CXCL8, CCL19, CTLA4, CCR1, CD69, CD163, IL7R, PECAM1, TLR8 and TLR2. These genes could potentially serve as markers for the diagnosis and treatment of UC.
Collapse
Affiliation(s)
- Weitao Hu
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, 362000, Fujian, People's Republic of China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China
| | - Mingxuan Zhou
- Department of General Practice, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China
| | - Xiaoqing Chen
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, 362000, Fujian, People's Republic of China.
| |
Collapse
|
9
|
Ma J, Zhang J, Wang Y, Huang J, Yang X, Ma J, Liu Z, Wang F, Tang X. Modified Gegen Qinlian decoction ameliorates DSS-induced chronic colitis in mice by restoring the intestinal mucus barrier and inhibiting the activation of γδT17 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154660. [PMID: 36681051 DOI: 10.1016/j.phymed.2023.154660] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Current therapeutics for ulcerative colitis (UC) have limitations. Classical Formula Gegen Qinlian decoction (GQD) is derived from Shang Han Lun and has a long history of treating gastrointestinal diseases such as diarrhea and UC. Nevertheless, the exact mechanism of it needs to be further clarified. PURPOSE We aimed to investigate the treatment effects of modified GQD (MGQD) on dextran sodium sulfate (DSS)-induced chronic colitis in mice and conduct further exploration of its underlying mechanisms. METHODS The protective effect of MGQD was estimated in a DSS-induced chronic colitis mouse model. Model evaluation included body weight, disease activity index (DAI) score, colon length and histopathology. Alcian Blue/Phosphoric Acid Schiff (AB/PAS) staining, transmission electron microscopy (TEM), immunofluorescence and real time‒PCR (RT-PCR) were used to assess goblet cell function. ELISA, flow cytometry and immunofluorescence were applied to estimate the immunoinflammatory status. Western blot was performed to test the protein expression levels of relevant pathways and related receptors. All experiments were conducted in duplicate. RESULTS MGQD alleviated DSS‑induced chronic colitis symptoms in mice, protected goblet cell function and restored the intestinal mucus barrier. Furthermore, MGQD efficiently suppressed the abnormal immune inflammatory response and the activate of γδT17 cells and NLRP3 inflammasome. CONCLUSION The mechanisms by which MGQD protects against DSS-induced chronic colitis may involve restoring goblet cell function, repairing the intestinal mucus barrier, and modulating the immune inflammatory response. More importantly, MGQD inhibited NLRP3 inflammasome-associated signaling pathway activation, which consequently reduced the activation of γδT17 cells.
Collapse
Affiliation(s)
- Jing Ma
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jiaqi Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yifan Wang
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), 100091, Beijing, China
| | - Jinke Huang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xuefei Yang
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), 100091, Beijing, China
| | - Jinxin Ma
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), 100091, Beijing, China
| | - Zhihong Liu
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), 100091, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
10
|
Akuzum B, Lee JY. Context-Dependent Regulation of Type17 Immunity by Microbiota at the Intestinal Barrier. Immune Netw 2022; 22:e46. [PMID: 36627936 PMCID: PMC9807962 DOI: 10.4110/in.2022.22.e46] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 12/30/2022] Open
Abstract
T-helper-17 (Th17) cells and related IL-17-producing (type17) lymphocytes are abundant at the epithelial barrier. In response to bacterial and fungal infection, the signature cytokines IL-17A/F and IL-22 mediate the antimicrobial immune response and contribute to wound healing of injured tissues. Despite their protective function, type17 lymphocytes are also responsible for various chronic inflammatory disorders, including inflammatory bowel disease (IBD) and colitis associated cancer (CAC). A deeper understanding of type17 regulatory mechanisms could ultimately lead to the discovery of therapeutic strategies for the treatment of chronic inflammatory disorders and the prevention of cancer. In this review, we discuss the current understanding of the development and function of type17 immune cells at the intestinal barrier, focusing on the impact of microbiota-immune interactions on intestinal barrier homeostasis and disease etiology.
Collapse
Affiliation(s)
- Begum Akuzum
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
11
|
Liu Y, Shi C, Ma S, Ma Y, Lu X, Zhu J, Yang D. The protective role of tissue-resident interleukin 17A-producing gamma delta T cells in Mycobacterium leprae infection. Front Immunol 2022; 13:961405. [PMID: 36389696 PMCID: PMC9644052 DOI: 10.3389/fimmu.2022.961405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/06/2022] [Indexed: 10/18/2023] Open
Abstract
Mycobacterium leprae is a kind of disease-causing bacteria and results in leprosy in human. Gamma delta (γδ) T cell is a T-cell subset that is presented in both human dermis and epidermis. These cells bridge innate and adaptive immune responses and play critical roles in regulating anti-microbial defense, wound healing, and skin inflammation. Here, we investigated skin resident γδ T cells in patients with leprosy. Our data showed that γδ T cells significantly accumulated in skin lesions of leprosy patients with tuberculoid (TT) form. IL-23 can predominantly stimulate dermal γδ T cells to produce interleukin 17 (IL-17), a cytokine which may lead to disease protection. These γδ T cells expressed a specific set of surface molecules, and majority of these cells were Vδ1+. Also, IL-23 can stimulate the expansion of dermal γδ T cells expansion. Moreover, our results revealed that the transcription factor RORγt was responsible for IL-17A expression in leprosy lesion. Therefore, these data indicated that IL-23-responsive dermal γδ T cells were the major resource of IL-17A production in the skin and could be a potential target in the treatment of leprosy.
Collapse
Affiliation(s)
- Yan Liu
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Shi
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Ma
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuelong Ma
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinyuan Lu
- Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jianyu Zhu
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Degang Yang
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Allegra A, Casciaro M, Lo Presti E, Musolino C, Gangemi S. Harnessing Unconventional T Cells and Innate Lymphoid Cells to Prevent and Treat Hematological Malignancies: Prospects for New Immunotherapy. Biomolecules 2022; 12:biom12060754. [PMID: 35740879 PMCID: PMC9221132 DOI: 10.3390/biom12060754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Unconventional T cells and innate lymphoid cells (ILCs) make up a heterogeneous set of cells that characteristically show prompt responses toward specific antigens. Unconventional T cells recognize non-peptide antigens, which are bound and presented by diverse non-polymorphic antigen-presenting molecules and comprise γδ T cells, MR1-restricted mucosal-associated invariant T cells (MAITs), and natural killer T cells (NKTs). On the other hand, ILCs lack antigen-specific receptors and act as the innate counterpart to the T lymphocytes found in the adaptive immune response. The alteration of unconventional T cells and ILCs in frequency and functionality is correlated with the onset of several autoimmune diseases, allergy, inflammation, and tumor. However, depending on the physio-pathological framework, unconventional T cells may exhibit either protective or pathogenic activity in a range of neoplastic diseases. Nonetheless, experimental models and clinical studies have displayed that some unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic markers. In fact, cell-mediated immune response in tumors has become the focus in immunotherapy against neoplastic disease. This review concentrates on the present knowledge concerning the function of unconventional T cell sets in the antitumor immune response in hematological malignancies, such as acute and chronic leukemia, multiple myeloma, and lymphoproliferative disorders. Moreover, we discuss the possibility that modulating the activity of unconventional T cells could be useful in the treatment of hematological neoplasms, in the prevention of specific conditions (such as graft versus host disease), and in the formulation of an effective anticancer vaccine therapy. The exact knowledge of the role of these cells could represent the prerequisite for the creation of a new form of immunotherapy for hematological neoplasms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Marco Casciaro
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-221-2013
| | - Elena Lo Presti
- National Research Council (CNR)—Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy;
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
13
|
Coppo L, Mishra P, Siefert N, Holmgren A, Pääbo S, Zeberg H. A substitution in the glutathione reductase lowers electron leakage and inflammation in modern humans. SCIENCE ADVANCES 2022; 8:eabm1148. [PMID: 34985944 PMCID: PMC8730399 DOI: 10.1126/sciadv.abm1148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Glutathione reductase is a critical enzyme for preventing oxidative stress and maintaining a reduced intracellular environment. Almost all present-day humans carry an amino acid substitution (S232G) in this enzyme relative to apes and Neanderthals. We express the modern human and the ancestral enzymes and show that whereas the activity and stability are unaffected by the amino acid substitution, the ancestral enzyme produces more reactive oxygen species and increases cellular levels of transcripts encoding cytokines. We furthermore show that the ancestral enzyme has been reintroduced into the modern human gene pool by gene flow from Neanderthals and is associated with multiple traits in present-day people, including increased susceptibility for inflammatory-associated disorders and vascular disease.
Collapse
Affiliation(s)
- Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165 Stockholm, Sweden
- Corresponding author. (L.C.); (S.P.); (H.Z.)
| | - Pradeep Mishra
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Nora Siefert
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
- Corresponding author. (L.C.); (S.P.); (H.Z.)
| | - Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
- Department of Neuroscience, Karolinska Institutet, SE-17165 Stockholm, Sweden
- Corresponding author. (L.C.); (S.P.); (H.Z.)
| |
Collapse
|
14
|
Adigbli G, Berlin C, Issa F. Research Highlights. Transplantation 2021; 105:2128-2129. [PMID: 37779312 DOI: 10.1097/tp.0000000000003937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- George Adigbli
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | |
Collapse
|
15
|
Dupraz L, Magniez A, Rolhion N, Richard ML, Da Costa G, Touch S, Mayeur C, Planchais J, Agus A, Danne C, Michaudel C, Spatz M, Trottein F, Langella P, Sokol H, Michel ML. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep 2021; 36:109332. [PMID: 34233192 DOI: 10.1016/j.celrep.2021.109332] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/04/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022] Open
Abstract
Gut interleukin-17A (IL-17)-producing γδ T cells are tissue-resident cells that are involved in both host defense and regulation of intestinal inflammation. However, factors that regulate their functions are poorly understood. In this study, we find that the gut microbiota represses IL-17 production by cecal γδ T cells. Treatment with vancomycin, a Gram-positive bacterium-targeting antibiotic, leads to decreased production of short-chain fatty acids (SCFAs) by the gut microbiota. Our data reveal that these microbiota-derived metabolites, particularly propionate, reduce IL-17 and IL-22 production by intestinal γδ T cells. Propionate acts directly on γδ T cells to inhibit their production of IL-17 in a histone deacetylase-dependent manner. Moreover, the production of IL-17 by human IL-17-producing γδ T cells from patients with inflammatory bowel disease (IBD) is regulated by propionate. These data contribute to a better understanding of the mechanisms regulating gut γδ T cell functions and offer therapeutic perspectives of these cells.
Collapse
Affiliation(s)
- Louise Dupraz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, 75012 Paris, France
| | - Aurélie Magniez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Grégory Da Costa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Sothea Touch
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Camille Mayeur
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Julien Planchais
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Allison Agus
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Camille Danne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Chloé Michaudel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Madeleine Spatz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 9017, University of Lille, CHU Lille, Institut Pasteur de Lille, 59000 Lille, France
| | - Philippe Langella
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Harry Sokol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Marie-Laure Michel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| |
Collapse
|
16
|
Tong X, Zheng Y, Li Y, Xiong Y, Chen D. Soluble ligands as drug targets for treatment of inflammatory bowel disease. Pharmacol Ther 2021; 226:107859. [PMID: 33895184 DOI: 10.1016/j.pharmthera.2021.107859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is characterized by persistent inflammation in a hereditarily susceptible host. In addition to gastrointestinal symptoms, patients with IBD frequently suffer from extra-intestinal complications such as fibrosis, stenosis or cancer. Mounting evidence supports the targeting of cytokines for effective treatment of IBD. Cytokines can be included in a newly proposed classification "soluble ligands" that has become the third major target of human protein therapeutic drugs after enzymes and receptors. Soluble ligands have potential significance for research and development of anti-IBD drugs. Compared with traditional drug targets for IBD treatment, such as receptors, at least three factors contribute to the increasing importance of soluble ligands as drug targets. Firstly, cytokines are the main soluble ligands and targeting of them has demonstrated efficacy in patients with IBD. Secondly, soluble ligands are more accessible than receptors, which are embedded in the cell membrane and have complex tertiary membrane structures. Lastly, certain potential target proteins that are present in membrane-bound forms can become soluble following cleavage, providing further opportunities for intervention in the treatment of IBD. In this review, 49 drugs targeting 25 distinct ligands have been evaluated, including consideration of the characteristics of the ligands and drugs in respect of IBD treatment. In addition to approved drugs targeting soluble ligands, we have also assessed drugs that are in preclinical research and drugs inhibiting ligand-receptor binding. Some new types of targetable soluble ligands/proteins, such as epoxide hydrolase and p-selectin glycoprotein ligand-1, are also introduced. Targeting soluble ligands not only opens a new field of anti-IBD drug development, but the circulating soluble ligands also provide diagnostic insights for early prediction of treatment response. In conclusion, soluble ligands serve as the third-largest protein target class in medicine, with much potential for the drugs targeting them.
Collapse
Affiliation(s)
- Xuhui Tong
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China
| | - Yuanyuan Zheng
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China
| | - Yu Li
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China
| | - Yongjian Xiong
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dapeng Chen
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China.
| |
Collapse
|
17
|
Qi C, Wang Y, Li P, Zhao J. Gamma Delta T Cells and Their Pathogenic Role in Psoriasis. Front Immunol 2021; 12:627139. [PMID: 33732249 PMCID: PMC7959710 DOI: 10.3389/fimmu.2021.627139] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
γδT cells are an unconventional population of T lymphocytes that play an indispensable role in host defense, immune surveillance, and homeostasis of the immune system. They display unique developmental, distributional, and functional patterns and rapidly respond to various insults and contribute to diverse diseases. Although γδT cells make up only a small portion of the total T cell pool, emerging evidence suggest that aberrantly activated γδT cells may play a role in the pathogenesis of psoriasis. Dermal γδT cells are the major IL-17-producing cells in the skin that respond to IL-23 stimulation. Furthermore, γδT cells exhibit memory-cell-like characteristics that mediate repeated episodes of psoriatic inflammation. This review discusses the differentiation, development, distribution, and biological function of γδT cells and the mechanisms by which they contribute to psoriasis. Potential therapeutic approaches targeting these cells in psoriasis have also been detailed.
Collapse
Affiliation(s)
- Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW We performed a literature review of the latest studies on the interactions between the host immune system and microbes in chronic intestinal inflammatory conditions. RECENT FINDINGS The mechanisms leading to celiac disease (CeD) and inflammatory bowel disease (IBD), the most common chronic inflammatory gastrointestinal conditions, are complex. The intestinal homeostasis depends on the interactions between the microbiota, the intestinal mucosa and the host immune system. Failure to achieve or maintain equilibrium between a host and its microbiota has the potential to induce chronic conditions with an underlying inflammatory component. Mechanisms by which intestinal microbes trigger inflammation include the alteration of intestinal permeability, activation of the host immune system and digestion of dietary antigens with a consequent repercussion on tolerance to food. Therefore, therapies modulating gut microbiota, including diet, antibiotics, probiotics and faecal transplantation have a potential in CeD and IBD. Probiotics are effective to treat pouchitis and faecal transplant for ulcerative colitis, but the evidence is less clear in Crohn's disease or CeD. SUMMARY Diverse regulatory mechanisms cooperate to maintain intestinal homeostasis, and a breakdown in these pathways may precipitate inflammation. The role of microbiota inducing immune dysfunction and inflammation supports the therapeutic rationale of manipulating microbiota to treat chronic inflammatory conditions.
Collapse
|
19
|
Ma R, Yuan D, Guo Y, Yan R, Li K. Immune Effects of γδ T Cells in Colorectal Cancer: A Review. Front Immunol 2020; 11:1600. [PMID: 33013819 PMCID: PMC7509400 DOI: 10.3389/fimmu.2020.01600] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Gamma delta (γδ) T cells can effectively recognize and kill colorectal cancer (CRC) cells, thereby suppressing tumor progression via multiple mechanisms. They also have abilities to exert a protumor effect via secreting interleukin-17 (IL-17). γδ T cells have been selected as potential immunocytes for antitumor treatment because of their significant cytotoxic activity. Immunotherapy is another potential anti-CRC strategy after an operation, chemotherapy, and radiotherapy. γδ T cell-based immunotherapy for CRC shows fewer side effects and better toleration. This review will outline the immune functions and the mechanisms of γδ T cells in the growth and progression of CRC in recent years, and summarize the immunotherapies based on γδ T cells, thus providing a direction for future γδ T cells in CRC research.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Colorectal Neoplasms/etiology
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/therapy
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Disease Susceptibility/immunology
- Humans
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Inflammatory Bowel Diseases/complications
- Inflammatory Bowel Diseases/etiology
- Inflammatory Bowel Diseases/metabolism
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Treatment Outcome
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dawei Yuan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yizhan Guo
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Rong Yan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
20
|
Lo Presti E, Dieli F, Fourniè JJ, Meraviglia S. Deciphering human γδ T cell response in cancer: Lessons from tumor-infiltrating γδ T cells. Immunol Rev 2020; 298:153-164. [PMID: 32691450 DOI: 10.1111/imr.12904] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2023]
Abstract
The finding that γδ T cells are present among tumor-infiltrating lymphocytes in humans suggests they participate in tumor immune surveillance, but their relevance is unclear because the relative abundance of tumor-infiltrating γδ T cells correlates with positive or negative, or even do not correlate with prognosis. This likely depends on the fact that tumor-infiltrating γδ T cells may play substantially different effector or regulatory functions, and correlation with patient's prognosis relies on distinct γδ T cell subsets in the context of the tumor. There is interest to exploit γδ T cells in tumor immunotherapy, but to make this approach successful there is urgent need to fully understand the biological functions of γδ T cells and of how they can be manipulated in vivo and ex vivo to safely provide benefit to the host. This review focuses on our previous and ongoing studies of tumor-infiltrating γδ T lymphocytes in different types of human cancer. Moreover, we discuss the interaction of tumor-infiltrating γδ T cells with other cells and molecules present in the tumor microenvironment, and their clinical relevance on the ground, that deep knowledge in this field can be used further for better immunotherapeutic intervention in cancer.
Collapse
Affiliation(s)
- Elena Lo Presti
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Jean Jacques Fourniè
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Toulouse University, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France.,Laboratoire d'Excellence 'TOUCAN', Toulouse, France
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
21
|
Lo Presti E, Mocciaro F, Mitri RD, Corsale AM, Di Simone M, Vieni S, Scibetta N, Unti E, Dieli F, Meraviglia S. Analysis of colon-infiltrating γδ T cells in chronic inflammatory bowel disease and in colitis-associated cancer. J Leukoc Biol 2020; 108:749-760. [PMID: 32202356 DOI: 10.1002/jlb.5ma0320-201rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) remains a global health problem with a significant percentage of patients progressing to chronic inflammation and colitis-associated cancer (CAC). Whether or not γδ T cells contribute to initiation and maintenance of inflammation in IBD and in the development of CAC is not known. We have evaluated the frequency, phenotype, and functions of γδ T cells among tissue-infiltrating lymphocytes in healthy donors and IBD and CAC patients. Results show that Vδ1 T cells are the dominant γδ T-cell population in healthy tissue, whereas Vδ2 T significantly abound in chronic IBD. Vδ2 T cells produce more IFN-γ, TNF-α, and IL-17 than Vδ1 T cells in chronic inflamed IBD. In CAC patients no significant cytokine production was detected in tissue-resident Vδ1 T cells, but Vδ2 T cells produced remarkable amounts of IFN-γ and TNF-α; these data were confirmed by the analysis of an independent cohort of IBD transcriptomes. Moreover, transcriptomes of IBD patients revealed a clear-cut clusterization of genes related with the maintenance of the inflammatory status. In conclusion, our results demonstrating that Vδ2 T cells have a proinflammatory profile in chronic IBD are suggestive of their participation in IBD and CAC pathogenesis.
Collapse
Affiliation(s)
- Elena Lo Presti
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Filippo Mocciaro
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Roberto Di Mitri
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Salvatore Vieni
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Nunzia Scibetta
- Anatomopathology Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Elettra Unti
- Anatomopathology Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
22
|
Liu H, Dasgupta S, Fu Y, Bailey B, Roy C, Lightcap E, Faustin B. Subsets of mononuclear phagocytes are enriched in the inflamed colons of patients with IBD. BMC Immunol 2019; 20:42. [PMID: 31718550 PMCID: PMC6852755 DOI: 10.1186/s12865-019-0322-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myeloid cells, especially mononuclear phagocytes, which include monocytes, macrophages and dendritic cells (DC), play vital roles in innate immunity, and in the initiation and maintenance of adaptive immunity. While T cell-associated activation pathways and cytokines have been identified and evaluated in inflammatory bowel disease (IBD) patients (Neurath, Nat Rev Gastroenterol Hepatol 14:269-78, 1989), the role of mononuclear phagocytes are less understood. Recent reports support the crucial role of DC subsets in the development of acute colitis models (Arimura et al., Mucosal Immunol 10:957-70, 2017), and suggest they may contribute to the pathogenesis of ulcerative colitis (UC) by inducing Th1/Th2/Th17 responses (Matsuno et al., Inflamm Bowel Dis 23:1524-34, 2017). RESULTS We performed in silico analysis and evaluated the enrichment of immune cells, with a focus on mononuclear phagocytes in IBD patient colonic biopsies. Samples were from different gut locations, with different levels of disease severity, and with treatment response to current therapies. We observe enrichment of monocytes, M1 macrophages, activated DCs (aDCs) and plasmacytoid dendritic cells (pDCs) in inflamed tissues from various gut locations. This enrichment correlates with disease severity. Additionally, the same mononuclear phagocytes subsets are among the top enriched cell types in both infliximab and vedolizumab treatment non-responder samples. We further investigated the enrichment of selected DC and monocyte subsets based on gene signatures derived from a DC- and monocyte-focused single cell RNA-seq (scRNA-seq) study (Villani et al., Science 356:eaah4573, 2017), and verified enrichment in both inflamed tissues and those with treatment resistance. Moreover, we validated an increased mononuclear phagocyte subset abundance in a Dextran Sulphate Sodium (DSS) induced colitis model in C57Bl/6 mice representative of chronic inflammation. CONCLUSIONS We conducted an extensive analysis of immune cell populations in IBD patient colonic samples and identified enriched subsets of monocytes, macrophages and dendritic cells in inflamed tissues. Understanding how they interact with other immune cells and other cells in the colonic microenvironment such as epithelial and stromal cells will help us to delineate disease pathogenesis.
Collapse
Affiliation(s)
- Hong Liu
- Immune-Oncology DDU, Takeda Pharmaceuticals, Cambridge, MA USA
| | | | - Yu Fu
- Immune-Oncology DDU, Takeda Pharmaceuticals, Cambridge, MA USA
| | - Brandi Bailey
- Immunology Unit, Takeda California Inc, San Diego, CA USA
| | - Christian Roy
- Immune-Oncology DDU, Takeda Pharmaceuticals, Cambridge, MA USA
| | - Eric Lightcap
- Immune-Oncology DDU, Takeda Pharmaceuticals, Cambridge, MA USA
| | - Benjamin Faustin
- CNRS, UMR 5164, 33000 Bordeaux, France
- Immunology Discovery, Janssen Research and Development, San Diego, CA USA
| |
Collapse
|