1
|
Zhao J, Liang T, Song M, Ye Y, Guo B, Yan X, Qi P. McFerritin cooperates with McNrf2 to attenuate benzo[a]pyrene-induced oxidative stress in the thick-shell mussel Mytilus coruscus. Int J Biol Macromol 2025; 311:144065. [PMID: 40348216 DOI: 10.1016/j.ijbiomac.2025.144065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/28/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Benzo[a]pyrene (B[a]P), a pervasive polycyclic aromatic hydrocarbon (PAH), induces oxidative stress and cellular damage in marine organisms, posing significant ecological risks. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator of antioxidant defenses, yet its interaction with ferritin-a critical iron storage protein-remains poorly understood in mollusks. Here, we identified a novel ferritin homolog, McFerritin, in the thick-shelled mussel Mytilus coruscus and investigated its role in B[a]P-induced oxidative stress. Quantitative PCR revealed that McFerritin expression in the adductor muscle was 4.37-fold higher than in the gills, with 5.58 to 9.11-fold upregulation observed in the digestive glands and mantles post-B[a]P exposure. GST pull-down assays confirmed the direct interaction of McFerritin with McNrf2. RNAi experiments demonstrated reciprocal regulation: knockdown of McFerritin increased McNrf2 expression by 1.55-fold and 1.70-fold, while silencing McNrf2 elevated McFerritin levels by 1.30-fold and 1.34-fold in DMSO-treated samples. Silencing either gene resulted in increased apoptosis rates (5.1 % and 13.2 %), enhanced reactive oxygen species (ROS) accumulation (1.26- and 1.79-fold), and decreased activities of antioxidant enzymes (T-AOC, SOD, CAT), underscoring their synergistic role in oxidative stress mitigation. This study elucidates the protective role of Ferritin in M. coruscus, confirming the interaction between McFerritin and McNrf2 in mediating defense mechanisms against oxidative stress, thereby advancing understanding of oxidative stress regulation in marine invertebrates and emphasizing their potential as biomarkers for assessing PAH toxicity in coastal ecosystems.
Collapse
Affiliation(s)
- Jiemei Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China; Zhoushan Fishery Breeding and Hatching Innovation Center, Zhoushan, Zhejiang 316004, PR China
| | - Tianyi Liang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China; Zhoushan Fishery Breeding and Hatching Innovation Center, Zhoushan, Zhejiang 316004, PR China
| | - Mingshan Song
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China; Zhoushan Fishery Breeding and Hatching Innovation Center, Zhoushan, Zhejiang 316004, PR China
| | - Yingying Ye
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China; Zhoushan Fishery Breeding and Hatching Innovation Center, Zhoushan, Zhejiang 316004, PR China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China; Zhoushan Fishery Breeding and Hatching Innovation Center, Zhoushan, Zhejiang 316004, PR China
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China; Zhoushan Fishery Breeding and Hatching Innovation Center, Zhoushan, Zhejiang 316004, PR China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China; Zhoushan Fishery Breeding and Hatching Innovation Center, Zhoushan, Zhejiang 316004, PR China.
| |
Collapse
|
2
|
Cardoso DN, Duarte RMBO, Silva ARR, Prodana M, Góis A, Silva PV, Mostafaie A, Pinto J, Brandão PF, Lopes IG, Brooks BW, Loureiro S. Edible insects: Understanding benzo(a)pyrene toxicokinetics in yellow mealworms for safe and sustainable consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174164. [PMID: 38909798 DOI: 10.1016/j.scitotenv.2024.174164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The global interest in edible insects as sustainable protein sources raises concerns about the bioaccumulation of contaminants, including polycyclic aromatic hydrocarbons (PAHs), to problematic levels. Understanding the accumulation dynamics of PAHs in edible insects is highly relevant due to the widespread sources and toxicological profiles; however, the bioaccumulative potential of PAHs in edible insects is unexplored. This study examined the uptake and elimination dynamics of benzo(a)pyrene (B(a)P), a representative and carcinogenic PAH, in yellow mealworm larvae (YMW, Tenebrio molitor). Larvae were exposed to feeding substrate with varying B(a)P concentrations (0.03, 0.3, and 3 mg kg-1), and uptake (21 days in B(a)P-contaminated substrate) and elimination (21 days in B(a)P-free substrate) kinetics were subsequently assessed. The results showed that YMW can eliminate B(a)P, revealing dose-dependent B(a)P bioaccumulation in these insects. Larvae fed on a substrate with 0.03 mg kg-1 accumulated B(a)P over 21 days, presenting values of 0.049 (Standard deviation - 0.011) mg kg-1 and a kinetic-based (BAFkinetic) of 1.93 g substrate g organism-1, exceeding the EU regulatory limits for food. However, with a B(a)P half-life (DT50) of 4.19 days in the larvae, an EU legislation safety criterion was met after a 13-day depuration period in clean substrate. Larvae exposed to substrates with 0.3 and 3 mg kg-1 showed B(a)P accumulation, with BAFkinetic values of 3.27 and 2.09 g substrate g organism-1, respectively, not meeting the current legal standards for food consumption at the end of the exposure to B(a)P. Although the B(a)P half-life values after 35 days were 4.30 and 10.22 days (DT50s), the larvae retained B(a)P levels exceeding permitted food safety limits. These findings highlight a significant oversight in regulating PAHs in animal feed and the need for comprehensive safety evaluations of PAH hazards in edible insects for improved PAH feeding guidelines.
Collapse
Affiliation(s)
- Diogo N Cardoso
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Regina M B O Duarte
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Rita R Silva
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marija Prodana
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Góis
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Patricia V Silva
- CICECO - Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro, Portugal
| | - Amid Mostafaie
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F Brandão
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ivã G Lopes
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, United States of America
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Gwenzi W, Gufe C, Alufasi R, Makuvara Z, Marumure J, Shanmugam SR, Selvasembian R, Halabowski D. Insects to the rescue? Insights into applications, mechanisms, and prospects of insect-driven remediation of organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171116. [PMID: 38382596 DOI: 10.1016/j.scitotenv.2024.171116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, 18A Bevan Building, Borrowdale Road, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | | | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| |
Collapse
|
4
|
Mrdaković M, Filipović A, Ilijin L, Grčić A, Matić D, Vlahović M, Todorović D, Perić-Mataruga V. Effects of dietary fluoranthene on tissue-specific responses of carboxylesterases, acetylcholinesterase and heat shock protein 70 in two forest lepidopteran species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114937. [PMID: 37094482 DOI: 10.1016/j.ecoenv.2023.114937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
In this study, responses of carboxylesterases, acetylcholinesterase, and stress protein Hsp70 were examined in the midgut and midgut tissue, and brain of fifth instar larvae of Lymantria dispar L. and Euproctis chrysorrhoea L. following chronic exposure to dietary fluoranthene. Specific carboxylesterase activity increased significantly in the midgut tissue of E. chrysorrhoea larvae treated with a lower fluoranthene concentration. The specific patterns of isoforms expression, recorded in larvae of both species, enable efficient carboxylesterase activity as a significant part of defense mechanisms. Increased Hsp70 concentration in the brain of L. dispar larvae points to a response to the proteotoxic effects of a lower fluoranthene concentration. Decreased Hsp70 in the brain of E. chrysorrhoea larvae in both treated groups can suggest induction of other mechanisms of defense. The results indicate the importance of the examined parameters in larvae of both species exposed to the pollutant, as well as their potential as biomarkers.
Collapse
Affiliation(s)
- Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia.
| | - Aleksandra Filipović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Anja Grčić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dragana Matić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| |
Collapse
|
5
|
Gao M, Yang ZB, Xu XX, Xian JR, Yang YX, Yang S, Man YB, Cheng Z. Using fly larvae to convert food waste for growing Oujiang color common carps: health risk assessment of polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43496-43504. [PMID: 36656472 DOI: 10.1007/s11356-023-25372-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The present study used Chrysomya megacephala larvae (CML) to transform food waste into safe and high-quality fish feed to substitute fish meal as a source of protein for growing Oujiang color common carps followed by a human health risk assessment of polycyclic aromatic hydrocarbons (PAHs). The results showed the ∑PAH concentration in the CML fed with food waste ranged from 50 to 370 μg kg-1, and the most abundant PAH compound in the CML was BaP, contributing 59-84% of ∑PAHs. The Pearson correlation analysis results indicated no correlation between the ∑PAH concentrations and the culture substrate ratio (p > 0.05). Concentrations of BaP in the CML decreased with the increase of breeding density (p < 0.01). The residues as organic fertilizers have no potential ecological risk for PAHs. The biotransformed larva meal was used to partially or completely replace the fish meal as supplementary protein in the experimental feeds (T0, 0%; T50, 50%; T100, 100%). No significant difference (p < 0.05) of survival rate, lipid, and protein content in Oujiang color common carp was noted among T0, T50, and T100 fish feeds. Concentrations of ∑PAHs in Oujiang color common carp fed with the CML fish feeds all met the food safety standards in the European Union (EU). Furthermore, the consumption of Oujiang color common carps fed with the CML feed does not pose any health risks of PAHs for humans.
Collapse
Affiliation(s)
- Meng Gao
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhan-Biao Yang
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Xun Xu
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun-Ren Xian
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuan-Xiang Yang
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yu-Bon Man
- Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, Consortium on Health, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
6
|
Kaczor M, Bulak P, Proc-Pietrycha K, Kirichenko-Babko M, Bieganowski A. The Variety of Applications of Hermetia illucens in Industrial and Agricultural Areas-Review. BIOLOGY 2022; 12:25. [PMID: 36671718 PMCID: PMC9855018 DOI: 10.3390/biology12010025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Hermetia illucens (Diptera: Stratiomyidae, Linnaeus, 1978), commonly known as the black soldier fly (BSF), is a saprophytic insect, which in recent years has attracted significant attention from both the scientific community and industry. The unrestrained appetite of the larvae, the ability to forage on various organic waste, and the rapid growth and low environmental impact of its breeding has made it one of the insect species bred on an industrial scale, in the hope of producing fodder or other ingredients for various animals. The variety of research related to this insect has shown that feed production is not the only benefit of its use. H. illucens has many features and properties that could be of interest from the point of view of many other industries. Biomass utilization, chitin and chitosan source, biogas, and biodiesel production, entomoremediation, the antimicrobial properties of its peptides, and the fertilizer potential of its wastes, are just some of its potential uses. This review brings together the work of four years of study into H. illucens. It summarizes the current state of knowledge and introduces the characteristics of this insect that may be helpful in managing its breeding, as well as its use in agro-industrial fields. Knowledge gaps and under-studied areas were also highlighted, which could help identify future research directions.
Collapse
Affiliation(s)
- Monika Kaczor
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Piotr Bulak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Kinga Proc-Pietrycha
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Marina Kirichenko-Babko
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, B. Khmelnitsky 15, 01030 Kyiv, Ukraine
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
7
|
Esmaeilbeigi M, Kalbassi MR, Seyedi J, Tayemeh MB, Moghaddam JA. Intra and extracellular effects of benzo [α] pyrene on liver, gill and blood of Caspian White fish (Rutilus frissi kutum): Cyto-genotoxicity and histopathology approach. MARINE POLLUTION BULLETIN 2021; 163:111942. [PMID: 33422829 DOI: 10.1016/j.marpolbul.2020.111942] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Southern parts of the Caspian Sea have been faced with a diverse range of oil pollutants. Therefore, this study was designed to evaluate the effects of relevant environmental concentrations of benzo[α]pyrene (BαP) on liver, gill, and blood of Caspian White fish. To this end, 150 fingerling fish (6.5 ± 0.8 g) were exposed to under, near and over environmental concentrations of BαP (i.e. 50, 100, and 200 ppb, respectively) and two control groups for 21 days. Following exposure to BαP, generally, DNA damage increased in the liver and gill cells as well as the frequency of micro- and bi-nucleated erythrocytes in a time and concentration-dependent pattern. In addition, the liver and gill tissues displayed several histopathological lesions. Together, the findings are warning the health status of the Caspian Sea due to an ever-increasing concentration of BαP through using Caspian White fish as an ecological model.
Collapse
Affiliation(s)
- Milad Esmaeilbeigi
- Department of Marine Sciences, Tarbiat Modares University, Mazandaran, Noor, Iran
| | | | - Javad Seyedi
- Department of Marine Sciences, Tarbiat Modares University, Mazandaran, Noor, Iran
| | | | - Jamshid Amiri Moghaddam
- Leibniz Institute for Natural Product Research and Infection Biology e.V. Hans-Knöll-Institute (HKI), Jena, Germany
| |
Collapse
|