1
|
Cambronero-Heinrichs JC, Ranger CM, Santoiemma G, Cavaletto G, Carloni F, Battisti A, Meggio F, Rassati D. Host plant selection and performance of ambrosia beetles in flood-stressed versus ethanol-injected trees provide implications for management strategies. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:253-261. [PMID: 39720995 DOI: 10.1093/jee/toae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024]
Abstract
Ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) are fungus-farming woodborers that can cause damage to the trees they colonize. Some of these beetles target stressed plants that emit ethanol, and management strategies have proposed using ethanol-injected trees as trap trees to monitor or divert dispersing adult females away from valuable crops. In this study, we used container-grown trees from 8 species to compare the effect of ethanol injection versus flooding on ambrosia beetle host selection and colonization success. Our aims were to understand whether ethanol injection is a suitable technique for different ambrosia beetle species and whether its effectiveness varies depending on the tree species used. In addition, we quantified the amount of ethanol in tree tissues to understand whether ethanol concentration could reflect observed differences among treatments and tree species. Our findings demonstrated that ethanol-injected trees were significantly more selected by both Xyleborinus saxesenii and Xylosandrus spp. and that significantly more adult beetles of both taxa emerged from ethanol-injected than flood-stressed trees. In addition, we showed that ethanol injection can trigger attacks by X. saxesenii and Xylosandrus spp. on a variety of deciduous tree species, nullifying the effects of the species-specific characteristics observed on flood-stressed trees, which can only partially be attributed to the amount of ethanol within the plant. This supported the idea that practitioners can potentially select any species of deciduous trees in management programs for ambrosia beetles based on ethanol-injected trees.
Collapse
Affiliation(s)
- Juan Carlos Cambronero-Heinrichs
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, Legnaro (PD), Italy
| | - Christopher M Ranger
- USDA-Agricultural Research Service, Horticultural Insects Research Laboratory, Wooster, OH, USA
| | - Giacomo Santoiemma
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, Legnaro (PD), Italy
| | - Giacomo Cavaletto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, Legnaro (PD), Italy
| | - Francesca Carloni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Andrea Battisti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, Legnaro (PD), Italy
| | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, Legnaro (PD), Italy
| | - Davide Rassati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, Legnaro (PD), Italy
| |
Collapse
|
2
|
Rodríguez-Becerra SH, Vázquez-Rivera R, Ventura-Hernández KI, Pawar TJ, Olivares-Romero JL. The Biology, Impact, and Management of Xyleborus Beetles: A Comprehensive Review. INSECTS 2024; 15:706. [PMID: 39336674 PMCID: PMC11432132 DOI: 10.3390/insects15090706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Xyleborus beetles, a diverse group of ambrosia beetles, present challenges to forestry and agriculture due to their damaging burrowing behavior and symbiotic relationships with fungi. This review synthesizes current knowledge on the biology, ecology, and management of Xyleborus. We explore the beetles' life cycle, reproductive strategies, habitat preferences, and feeding habits, emphasizing their ecological and economic impacts. Control and management strategies, including preventive measures, chemical and biological control, and integrated pest management (IPM), are critically evaluated. Recent advances in molecular genetics and behavioral studies offer insights into genetic diversity, population structure, and host selection mechanisms. Despite progress, managing Xyleborus effectively remains challenging. This review identifies future research needs and highlights innovative control methods, such as biopesticides and pheromone-based trapping systems.
Collapse
Affiliation(s)
- Sared Helena Rodríguez-Becerra
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico
| | - Rafael Vázquez-Rivera
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria, Xalapa 91090, Veracruz, Mexico
| | - Karla Irazú Ventura-Hernández
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico
- Instituto de Química Aplicada, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, Col. Industrial-Animas, Xalapa 91190, Veracruz, Mexico
| | - Tushar Janardan Pawar
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico
| | - José Luis Olivares-Romero
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico
| |
Collapse
|
3
|
Zheng L, Lai S, Zhou Y, Jiang N, Hao D, Dai L. Biology of Euwallacea interjectus, an emerging poplar pest, reared on an ambrosia beetle artificial diet and medium of fungal symbiont. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:405-415. [PMID: 38716670 DOI: 10.1017/s0007485324000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Euwallacea interjectus, a recently discovered pest in poplar plantations, poses a significant economic threat due to its role in causing widespread tree mortality. This pest's cryptic behaviour has hindered research and control efforts, making laboratory rearing a valuable tool for studying its development and biology. We investigated the development period and biological characteristics of E. interjectus using artificial diets and fungal medium. Our findings revealed that the development time for eggs, larvae, and pupae averages approximately 6, 18, and 6 days, respectively. Notably, first and second instar larvae displayed peak moulting periods at 3.45 ± 0.64 SD and 7.92 ± 1.77 SD days, respectively. Furthermore, we measured head capsule widths of postmolt larvae, yielding values of 318.02 ± 7.38 SD μm for first-instar larvae, 403.01 ± 11.08 SD μm for second-instar larvae, and 549.54 ± 20.74 SD μm for third-instar larvae. Our research also uncovered a positive correlation between the number of progeny (eggs, larvae, pupae, and adults) and the mean length of the gallery system. Interestingly, the haplodiploid reproductive strategy did not significantly affect the number of offspring produced by the foundress. Additionally, we observed that foundresses displayed higher fecundity when subjected to nutrient-rich diets as compared to nutrient-poor diets. Our results will deepen our understanding of the biology of E. interjectus and provide criteria for larval instar classification. Additionally, managing nutrient availability within the colony could be considered a viable approach to regulating population size.
Collapse
Affiliation(s)
- Langlang Zheng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China
- College of Forestry, Nanjing Forestry University, Nanjing 210036, China
| | - Shengchang Lai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China
- College of Forestry, Nanjing Forestry University, Nanjing 210036, China
| | - Yang Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China
- College of Forestry, Nanjing Forestry University, Nanjing 210036, China
| | - Nan Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China
- College of Forestry, Nanjing Forestry University, Nanjing 210036, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China
- College of Forestry, Nanjing Forestry University, Nanjing 210036, China
| | - Lulu Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China
- College of Forestry, Nanjing Forestry University, Nanjing 210036, China
| |
Collapse
|
4
|
Fadda LA, Osorio-Olvera L, Ibarra-Juárez LA, Soberón J, Lira-Noriega A. Predicting the dispersal and invasion dynamics of ambrosia beetles through demographic reconstruction and process-explicit modeling. Sci Rep 2024; 14:7561. [PMID: 38555364 PMCID: PMC10981740 DOI: 10.1038/s41598-024-57590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Evaluating potential routes of invasion of pathogens and vectors of sanitary importance is essential for planning and decision-making at multiple scales. An effective tool are process-explicit models that allow coupling environmental, demographic and dispersal information to evaluate population growth and range dynamics as a function of the abiotic conditions in a region. In this work we simulate multiple dispersal/invasion routes in Mexico that could be taken by ambrosia beetles and a specific symbiont, Harringtonia lauricola, responsible for a severe epiphytic of Lauraceae in North America. We used Xyleborus bispinatus Eichhoff 1868 as a study subject and estimated its demography in the laboratory in a temperature gradient (17, 20, 26, 29, 35 °C), which we then used to parameterize a process-based model to estimate its metapopulation dynamics. The maximum intrinsic growth rate of X. bispinatus is 0.13 with a thermal optimum of 26.2 °C. The models suggest important regions for the establishment and dispersal the states of Veracruz, Chiapas and Oaxaca (high host and secondary vectors diversity), the Isthmus of Tehuantepec (connectivity region), and Michoacán and Jalisco (important avocado plantations). The use of hybrid process-based models is a promising tool to refine the predictions applied to the study of biological invasions and species distributions.
Collapse
Affiliation(s)
- Lucas A Fadda
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera antigua a Coatepec 351, El Haya, C. P. 91073, Xalapa, Veracruz, Mexico
| | - Luis Osorio-Olvera
- Laboratorio de Ecoinformática de la Biodiversidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, México.
- Laboratorio Nacional Conahcyt de Biología del Cambio Climático, CONAHCyT, Ciudad de México, México.
| | - Luis A Ibarra-Juárez
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, México
| | - Jorge Soberón
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| | - Andrés Lira-Noriega
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, México.
| |
Collapse
|
5
|
Joseph R, Bansal K, Keyhani NO. Host switching by an ambrosia beetle fungal mutualist: Mycangial colonization of indigenous beetles by the invasive laurel wilt fungal pathogen. Environ Microbiol 2023; 25:1894-1908. [PMID: 37190943 DOI: 10.1111/1462-2920.16401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Ambrosia beetles require their fungal symbiotic partner as their cultivated (farmed) food source in tree galleries. While most fungal-beetle partners do not kill the host trees they inhabit, since their introduction (invasion) into the United states around ~2002, the invasive beetle Xyleborus glabratus has vectored its mutualist partner (but plant pathogenic) fungus, Harringtonia lauricola, resulting in the deaths of over 300 million trees. Concerningly, indigenous beetles have been caught bearing H. lauricola. Here, we show colonization of the mycangia of the indigenous X. affinis ambrosia beetle by H. lauricola. Mycangial colonization occurred within 1 h of feeding, with similar levels seen for H. lauricola as found for the native X. affinis-R. arxii fungal partner. Fungal mycangial occupancy was stable over time and after removal of the fungal source, but showed rapid turnover when additional fungal cells were available. Microscopic visualization revealed two pre-oral mycangial pouches of ~100-200 × 25-50 μm/each, with narrow entry channels of 25-50 × 3-10 μm. Fungi within the mycangia underwent a dimorphic transition from filamentous/blastospore growth to yeast-like budding with alterations to membrane structures. These data identify the characteristics of ambrosia beetle mycangial colonization, implicating turnover as a mechanism for host switching of H. lauricola to other ambrosia beetle species.
Collapse
Affiliation(s)
- Ross Joseph
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Kamaldeep Bansal
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Chavez AV, Duren EB, Avery PB, Pitino M, Duncan RE, Cruz LF, Carrillo D, Cano LM, Cave RD. Evaluation of Spore Acquisition, Spore Production, and Host Survival Time for Tea Shot-Hole Borer, Euwallacea perbrevis, Adults after Exposure to Four Commercial Products Containing Beauveria bassiana. INSECTS 2023; 14:726. [PMID: 37754694 PMCID: PMC10531701 DOI: 10.3390/insects14090726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Euwallacea perbrevis, the tea shot-hole borer (TSHB), is an invasive ambrosia beetle that vectors several fungal pathogens that cause Fusarium branch dieback in avocado trees in southern Florida. This study assessed the potential of four commercial products containing the entomopathogenic fungus Beauveria bassiana (Bb) for managing adult TSHB beetles. Formulated products containing Bb strains to which adult beetles were exposed were BioCeres WP, BotaniGard WP, BotaniGard ES, and Velifer ES. Controls consisted of water only and BotaniGard ES and Velifer ES supernatant with spores removed. Acquisition of spores by adult beetles dipped in product suspensions with 2.5 ± 0.1 × 106 spores/mL was assessed. Survival time of beetles after residual exposure to the Bb-based products in an in vivo avocado bark plug bioassay was determined. Production of Bb spores on beetles after being dipped in product suspensions and placed in a moistened bark-plug assay with water only was assessed. Significantly more spores were acquired by beetles exposed to Velifer ES and BotaniGard ES than beetles exposed to the other fungal products. Beetles exposed to Velifer ES and BotaniGard ES died faster (6-8 days) compared to beetles dipped in the other fungal products (10-11 days) and controls (12 days). Percentage of mycosis was highest with beetles exposed to Velifer ES (63%). Spore production on cadavers of beetles dipped in Velifer ES (20 ± 6.4 × 105 spores/cadaver) was the highest among all treatments, whereas it was the lowest on cadavers of beetles dipped in BotaniGard ES (1 ± 0.2 × 105 spores/cadaver). All Bb-based products, especially Velifer ES, demonstrated potential to manage TSHB populations under laboratory conditions. These Bb-based fungal products should be tested under field conditions to confirm these laboratory results.
Collapse
Affiliation(s)
- Alejandra V. Chavez
- Entomology and Nematology Department, Indian River Research and Education Center, University of Florida, 2199 South Rock Road, Fort Pierce, FL 34945, USA or (A.V.C.); (E.B.D.); (R.D.C.)
| | - Emily B. Duren
- Entomology and Nematology Department, Indian River Research and Education Center, University of Florida, 2199 South Rock Road, Fort Pierce, FL 34945, USA or (A.V.C.); (E.B.D.); (R.D.C.)
| | - Pasco B. Avery
- Entomology and Nematology Department, Indian River Research and Education Center, University of Florida, 2199 South Rock Road, Fort Pierce, FL 34945, USA or (A.V.C.); (E.B.D.); (R.D.C.)
| | - Marco Pitino
- Plant Pathology Department, Indian River Research and Education Center, University of Florida, 2199 South Rock Road, Fort Pierce, FL 34945, USA; (M.P.); (L.M.C.)
| | - Rita E. Duncan
- Entomology and Nematology Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (R.E.D.); (L.F.C.); (D.C.)
| | - Luisa F. Cruz
- Entomology and Nematology Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (R.E.D.); (L.F.C.); (D.C.)
| | - Daniel Carrillo
- Entomology and Nematology Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL 33031, USA; (R.E.D.); (L.F.C.); (D.C.)
| | - Liliana M. Cano
- Plant Pathology Department, Indian River Research and Education Center, University of Florida, 2199 South Rock Road, Fort Pierce, FL 34945, USA; (M.P.); (L.M.C.)
| | - Ronald D. Cave
- Entomology and Nematology Department, Indian River Research and Education Center, University of Florida, 2199 South Rock Road, Fort Pierce, FL 34945, USA or (A.V.C.); (E.B.D.); (R.D.C.)
| |
Collapse
|
7
|
Tani C, Conti B, Bedini S. Biological Insights on the Invasive Fig Pest Aclees taiwanensis Kȏno, 1933 (Coleoptera: Curculionidae). INSECTS 2023; 14:223. [PMID: 36975908 PMCID: PMC10058888 DOI: 10.3390/insects14030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The fig weevil Aclees taiwanensis Kȏno, 1933 (Coleoptera: Curculionidae) is an invasive fig tree pest recently introduced in southern Europe. Reported for the first time in France in 1997 as A. cribratus, and then in Italy in 2005 as A. sp. cf. foveatus, A. taiwanensis is currently threatening fig nurseries, orchards, and wild plants. To date, no control methods have proven to be effective against A. taiwanensis. Although some attempts have been made to describe the insect's biology and behavior, such information is limited to that obtained from adult samples collected in the field. In particular, because of their xylophagous behavior, scarce information is available on the larval stages of the species. The aim of this study, therefore, was to fill these information gaps on the insect biology and behavior by setting up a laboratory protocol suitable for the rearing of A. taiwanensis. Using the developed rearing protocol, we assessed the main fitness parameters of the species including oviposition rate, egg hatchability, embryonic, larval and pupal duration and development, immature survival, pupation behavior, pupal weight, emergence, sex ratio and adult morphological parameters. The proposed rearing procedure allowed us to obtain new information on the main features of the insect's biology that may be useful for setting up strategies for its control.
Collapse
Affiliation(s)
| | - Barbara Conti
- Correspondence: (B.C.); (S.B.); Tel.: +39-2216125 (B.C.); +39-2216115 (S.B.)
| | - Stefano Bedini
- Correspondence: (B.C.); (S.B.); Tel.: +39-2216125 (B.C.); +39-2216115 (S.B.)
| |
Collapse
|
8
|
Menocal O, Cruz LF, Kendra PE, Berto M, Carrillo D. Flexibility in the ambrosia symbiosis of Xyleborus bispinatus. Front Microbiol 2023; 14:1110474. [PMID: 36937297 PMCID: PMC10018145 DOI: 10.3389/fmicb.2023.1110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Ambrosia beetles maintain strict associations with specific lineages of fungi. However, anthropogenic introductions of ambrosia beetles into new ecosystems can result in the lateral transfer of their symbionts to other ambrosia beetles. The ability of a Florida endemic ambrosia beetle, Xyleborus bispinatus, to feed and establish persistent associations with two of its known symbionts (Raffaelea subfusca and Raffaelea arxii) and two other fungi (Harringtonia lauricola and Fusarium sp. nov.), which are primary symbionts of invasive ambrosia beetles, was investigated. Methods The stability of these mutualisms and their effect on the beetle's fitness were monitored over five consecutive generations. Surface-disinfested pupae with non-developed mycangia were reared separately on one of the four fungal symbionts. Non-treated beetles (i.e., lab colony) with previously colonized mycangia were used as a control group. Results Xyleborus bispinatus could exchange its fungal symbionts, survive, and reproduce on different fungal diets, including known fungal associates and phylogenetically distant fungi, which are plant pathogens and primary symbionts of other invasive ambrosia beetles. These changes in fungal diets resulted in persistent mutualisms, and some symbionts even increased the beetle's reproduction. Females that developed on Fusarium sp. nov. had a significantly greater number of female offspring than non-treated beetles. Females that fed solely on Harringtonia or Raffaelea symbionts produced fewer female offspring. Discussion Even though some ambrosia beetles like X. bispinatus can partner with different ambrosia fungi, their symbiosis under natural conditions is modulated by their mycangium and possibly other environmental factors. However, exposure to symbionts of invasive beetles can result in stable partnerships with these fungi and affect the population dynamics of ambrosia beetles and their symbionts.
Collapse
Affiliation(s)
- Octavio Menocal
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
- *Correspondence: Octavio Menocal,
| | - Luisa F. Cruz
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Paul E. Kendra
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States
| | - Marielle Berto
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
- Daniel Carrillo,
| |
Collapse
|
9
|
Thube SH, Pandian RTP, Josephrajkumar A, Bhavishya A, Nirmal Kumar BJ, Firake DM, Shah V, Madhu TN, Ruzzier E. Xylosandrus crassiusculus (Motschulsky) on Cocoa Pods ( Theobroma cacao L.): Matter of Bugs and Fungi. INSECTS 2022; 13:809. [PMID: 36135510 PMCID: PMC9506327 DOI: 10.3390/insects13090809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Exudation of mucilage from pinhead-sized boreholes in cocoa pods was recorded in Karnataka, India, during 2021. Further investigations showed the association of scolytine beetles with infested pods. The identity of the pest, Xylosandrus crassiusculus, was confirmed through morphological characterization and sequencing of the mitochondrial COI gene. We studied the predisposing factors for its infestation, visible and concealed damaging symptoms, and fungal symbionts. In addition to its well-known symbiotic fungus, Ambrosiella roeperi, a new association of yeast, Ambrosiozyma monospora, was discovered. We also traced the possible role of the mirid bug, Helopeltis theivora, in host selection by X. crassiusculus. Overall results indicated that a 'mirid bug-ambrosia beetle-pathogen complex' is responsible for the severe damage to cocoa pods in South India.
Collapse
Affiliation(s)
- Shivaji Hausrao Thube
- ICAR—Central Plantation Crops Research Institute, Regional Station, Vittal 574243, Karnataka, India
- ICAR—Central Institute for Cotton Research, Nagpur 440010, Maharashtra, India
| | - R. Thava Prakasa Pandian
- ICAR—Central Plantation Crops Research Institute, Regional Station, Vittal 574243, Karnataka, India
| | - Arulappan Josephrajkumar
- ICAR—Central Plantation Crops Research Institute, Regional Station, Kayamkulam 690533, Kerala, India
| | - Anthara Bhavishya
- ICAR—Central Plantation Crops Research Institute, Regional Station, Vittal 574243, Karnataka, India
| | - B. J. Nirmal Kumar
- ICAR—Central Plantation Crops Research Institute, Regional Station, Vittal 574243, Karnataka, India
| | | | - Vivek Shah
- ICAR—Central Institute for Cotton Research, Nagpur 440010, Maharashtra, India
| | - T. N. Madhu
- ICAR—Central Institute for Cotton Research, Nagpur 440010, Maharashtra, India
| | - Enrico Ruzzier
- World Biodiversity Association Onlus, c/o Museo Civico di Storia Naturale Lungadige, Porta Vittoria 9, 37129 Verona, Italy
| |
Collapse
|
10
|
Kendra PE, Tabanca N, Cruz LF, Menocal O, Schnell EQ, Carrillo D. Volatile Emissions and Relative Attraction of the Fungal Symbionts of Tea Shot Hole Borer (Coleoptera: Curculionidae). Biomolecules 2022; 12:biom12010097. [PMID: 35053245 PMCID: PMC8773808 DOI: 10.3390/biom12010097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
Euwallacea perbrevis is an ambrosia beetle that vectors fungal pathogens causing Fusarium dieback in Florida avocado trees. Current monitoring lures contain quercivorol, a fungus-produced volatile, but the exact attractant is unknown since lures contain a mixture of p-menth-2-en-1-ol isomers and both α- and β-phellandrene. This study used pure cultures of six symbiotic fungi isolated from E. perbrevis to document volatile emissions and determine the relative attraction of symbionts in binary choice assays. In a comparative test, headspace solid-phase microextraction followed by gas chromatography–mass spectroscopy was used to identify and quantify emissions from 3-week-old cultures. In a temporal study, Super-Q collection followed by gas chromatography–flame ionization detection was used to measure cis- and trans-p-menth-2-en-1-ol emissions for three months. A total of 15 compounds were detected, with monoterpene hydrocarbons and oxygenated monoterpenoids predominating. Only trans-p-menth-2-en-1-ol was common to all six symbionts. Peak levels of both isomers were observed at day 7, then gradually declined over a 90 day period. In choice tests, avocado sawdust disks inoculated with Fusarium sp. nov. were the most attractive. This symbiont produced only two volatiles, trans-p-menth-2-en-1-ol and limonene. The combined results indicate that trans-p-menth-2-en-1-ol is the primary female attractant emitted from symbiotic fungi, but limonene may be a secondary attractant of E. perbrevis.
Collapse
Affiliation(s)
- Paul E. Kendra
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL 33158, USA; (N.T.); (E.Q.S.)
- Correspondence:
| | - Nurhayat Tabanca
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL 33158, USA; (N.T.); (E.Q.S.)
| | - Luisa F. Cruz
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA; (L.F.C.); (O.M.); (D.C.)
| | - Octavio Menocal
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA; (L.F.C.); (O.M.); (D.C.)
| | - Elena Q. Schnell
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL 33158, USA; (N.T.); (E.Q.S.)
| | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA; (L.F.C.); (O.M.); (D.C.)
| |
Collapse
|
11
|
Cruz LF, Menocal O, Kendra PE, Carrillo D. Phoretic and internal transport of Raffaelea lauricola by different species of ambrosia beetle associated with avocado trees. Symbiosis 2021. [DOI: 10.1007/s13199-021-00776-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Fungal mutualisms and pathosystems: life and death in the ambrosia beetle mycangia. Appl Microbiol Biotechnol 2021; 105:3393-3410. [PMID: 33837831 DOI: 10.1007/s00253-021-11268-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
Ambrosia beetles and their microbial communities, housed in specialized structures termed mycangia, represent one of the oldest and most diverse systems of mutualism and parasitism described thus far. Comprised of core filamentous fungal members, but also including bacteria and yeasts, the mycangia represent a unique adaptation that allows beetles to store and transport their source of nutrition. Although perhaps the most ancient of "farmers," the nature of these interactions remains largely understudied, with the exception of a handful of emerging pathosystems, where the fungal partner acts as a potentially devastating tree pathogen. Such virulence is often seen during "invasions," where (invasive) beetles carrying the fungal symbiont/plant pathogen expand into new territories and presumably "naïve" trees. Here, we summarize recent findings on the phylogenetic relationships between beetles and their symbionts and advances in the developmental and genetic characterization of the mechanisms that underlie insect-fungal-plant interactions. Results on genomic, transcriptomic, and metabolomic aspects of these relationships are described. Although many members of the fungal Raffaelea-beetle symbiont genera are relatively harmless to host trees, specialized pathosystems including wilt diseases of laurel and oak, caused by specific subspecies (R. lauricola and R. quercus, in the USA and East Asia, respectively), have emerged as potent plant pathogens capable of killing healthy trees. With the development of genetic tools, coupled to biochemical and microscopic techniques, the ambrosia beetle-fungal symbiont is establishing itself as a unique model system to study the molecular determinants and mechanisms that underlie the convergences of symbioses, mutualism, parasitism, and virulence. KEY POINTS: • Fungal-beetle symbioses are diverse and ancient examples of microbial farming. • The mycangium is a specialized structure on insects that houses microbial symbionts. • Some beetle symbiotic fungi are potent plant pathogens vectored by the insect.
Collapse
|
13
|
Ospina-Garcés SM, Ibarra-Juarez LA, Escobar F, Lira-Noriega A. Growth temperature effect on mandibles' ontogeny and sexual dimorphism in the ambrosia beetle Xyleborus affinis (Curculionidae: Scolytinae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101029. [PMID: 33607463 DOI: 10.1016/j.asd.2021.101029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Ambrosia beetles from the genus Xyleborus are important vectors of fungal pathogens in forest and agricultural systems, yet the influence of temperature on their morphological development has been poorly studied. Because host colonization and ambrosial fungi cultivation is mostly restricted to females, it is possible to speculate on strong sexual dimorphism expression in secondary sexual characters and ecological segregation between sexes. Here, we determined the effect of different growing temperatures (17, 23, 26 and 29 °C) on mandible ontogeny of larvae and adult individuals of X. affinis, and sexual dimorphism in adults, in shape and size variation using geometric morphometrics. Mandible shape change showed significant differences in magnitude and direction through larval ontogeny among temperature treatments. Sexual shape and size dimorphism were found in adult mandibles, and the degree of sexual dimorphism was dependent on growth temperature, with a significant effect of the interaction between temperature and sex on mandible shape and size variation. Higher morphological differences were observed at the base of mandibles among temperature treatments in adults and a gradual narrowing trend with temperature increments. These findings could have consequences on feeding performance and fungus cultivation inside colonies, potentially influencing their ability to establish populations in new geographical areas.
Collapse
Affiliation(s)
- Sandra M Ospina-Garcés
- Instituto de Ecología, A. C., Red de Ecoetología, Carretera antigua a Coatepec 351, El Haya, Xalapa, 91070, México; Museo de Zoología "Alfonso L. Herrera", Facultad de Ciencias, Universidad Nacional Autónoma de México, México
| | - Luis A Ibarra-Juarez
- CONACYT Research Fellow, Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, Carretera antigua a Coatepec 351, El Haya, Xalapa, 91070, México
| | - Federico Escobar
- Instituto de Ecología, A. C., Red de Ecoetología, Carretera antigua a Coatepec 351, El Haya, Xalapa, 91070, México
| | - Andrés Lira-Noriega
- CONACYT Research Fellow, Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, Carretera antigua a Coatepec 351, El Haya, Xalapa, 91070, México.
| |
Collapse
|
14
|
Rivera MJ, Martini X, Conover D, Mafra-Neto A, Carrillo D, Stelinski LL. Evaluation of semiochemical based push-pull strategy for population suppression of ambrosia beetle vectors of laurel wilt disease in avocado. Sci Rep 2020; 10:2670. [PMID: 32060382 PMCID: PMC7021720 DOI: 10.1038/s41598-020-59569-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/29/2020] [Indexed: 11/25/2022] Open
Abstract
Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) bore into tree xylem to complete their life cycle, feeding on symbiotic fungi. Ambrosia beetles are a threat to avocado where they have been found to vector a symbiotic fungus, Raffaelea lauricola, the causal agent of the laurel wilt disease. We assessed the repellency of methyl salicylate and verbenone to two putative laurel wilt vectors in avocado, Xyleborus volvulus (Fabricius) and Xyleborus bispinatus (Eichhoff), under laboratory conditions. Then, we tested the same two chemicals released from SPLAT flowable matrix with and without low-dose ethanol dispensers for manipulation of ambrosia beetle populations occurring in commercial avocado. The potential active space of repellents was assessed by quantifying beetle catch on traps placed ‘close’ (~5–10 cm) and ‘far’ (~1–1.5 m) away from repellent dispensers. Ambrosia beetles collected on traps associated with all in-field treatments were identified to species to assess beetle diversity and community variation. Xyleborus volvulus was not repelled by methyl salicylate (MeSA) or verbenone in laboratory assays, while X. bispinatus was repelled by MeSA but not verbenone. Ambrosia beetle trap catches were reduced in the field more when plots were treated with verbenone dispensers (SPLAT) co-deployed with low-dose ethanol dispensers than when treated with verbenone alone. Beetle diversity was highest on traps deployed with low-dose ethanol lures. The repellent treatments and ethanol lures significantly altered the species composition of beetles captured in experiment plots. Our results indicate that verbenone co-deployed with ethanol lures holds potential for manipulating ambrosia beetle vectors via push-pull management in avocado. This tactic could discourage immigration and/or population establishment of ambrosia beetles in commercial avocado and function as an additional tool for management programs of laurel wilt.
Collapse
Affiliation(s)
- Monique J Rivera
- Department of Entomology, University of California Riverside, Riverside, CA, USA.
| | - Xavier Martini
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | - Derrick Conover
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | | | - Daniel Carrillo
- Department of Entomology, Tropical Research & Education Center, University of Florida, Homestead, FL, USA
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
15
|
Rassati D, Marini L, Malacrinò A. Acquisition of fungi from the environment modifies ambrosia beetle mycobiome during invasion. PeerJ 2019; 7:e8103. [PMID: 31763076 PMCID: PMC6870512 DOI: 10.7717/peerj.8103] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/25/2019] [Indexed: 01/05/2023] Open
Abstract
Microbial symbionts can play critical roles when their host attempts to colonize a new habitat. The lack of symbiont adaptation can in fact hinder the invasion process of their host. This scenario could change if the exotic species are able to acquire microorganisms from the invaded environment. Understanding the ecological factors that influence the take-up of new microorganisms is thus essential to clarify the mechanisms behind biological invasions. In this study, we tested whether different forest habitats influence the structure of the fungal communities associated with ambrosia beetles. We collected individuals of the most widespread exotic (Xylosandrus germanus) and native (Xyleborinus saxesenii) ambrosia beetle species in Europe in several old-growth and restored forests. We characterized the fungal communities associated with both species via metabarcoding. We showed that forest habitat shaped the community of fungi associated with both species, but the effect was stronger for the exotic X. germanus. Our results support the hypothesis that the direct contact with the mycobiome of the invaded environment might lead an exotic species to acquire native fungi. This process is likely favored by the occurrence of a bottleneck effect at the mycobiome level and/or the disruption of the mechanisms sustaining co-evolved insect-fungi symbiosis. Our study contributes to the understanding of the factors affecting insect-microbes interactions, helping to clarify the mechanisms behind biological invasions.
Collapse
Affiliation(s)
- Davide Rassati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Lorenzo Marini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Antonino Malacrinò
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
16
|
Xyleborus volvulus (Coleoptera: Curculionidae): Biology and Fungal Associates. Appl Environ Microbiol 2019; 85:AEM.01190-19. [PMID: 31375485 DOI: 10.1128/aem.01190-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022] Open
Abstract
The ambrosia beetle Xyleborus volvulus Fabricius has been reported as a potential vector of the plant pathogen Raffaelea lauricola T.C. Harr., Fraedrich & Aghayeva that is affecting avocado orchards in South Florida. In this study, we examined its life cycle, process of gallery formation, gallery structure, and fungal associates by rearing one generation on avocado sawdust medium under control conditions. The adult foundress excavated a vertical tunnel that constituted the main gallery with a length of 2.5 cm, followed by the construction of up to six secondary galleries with a total length of 4.4 cm. The time period for one generation (egg to adult) was 28 days. Teneral males emerged 3 days after the emergence of the first females. The F1 generation did not significantly contribute to gallery expansion. Four species of Raffaelea and nine yeast species were recovered from galleries and beetles. Raffaelea arxii and Candida berthetii were the most frequent symbionts recovered from new adults and galleries. Candida berthetii dominated during the early stages of the gallery development, whereas R. arxii was most frequent in later stages. Other Raffaelea species were inconsistently isolated from galleries, which suggests a strong association between Xyleborus volvulus and both R. arxii and C. berthetii These results suggest that R. arxii is the primary nutritional symbiont of X. volvulus and that yeast species may be pioneer colonizers that assist with the growth of fungal symbionts.IMPORTANCE Ambrosia beetles cultivate fungi in tunnels bored into weakened host trees. This obligate interaction is required for their survival as beetles feed on these symbiotic fungi, and the fungi benefit from transportation by the beetles. Xyleborus volvulus carries many nonpathogenic symbionts; however, recently the acquisition of Raffaelea lauricola (the causal agent of a lethal vascular disease of lauraceous trees) by this beetle has altered its status from wood degrader to potential pest in avocado. We conducted a study to understand the relationship of this beetle and its fungal associates. Our results show that X. volvulus has a multipartite flexible association with different Raffaelea species. The lack of fidelity in the mutualistic association may explain the acquisition of R. lauricola Knowing the beetle biology and its mutualistic interactions furthers an understanding of the beetle's role as a potential vector and in disease transmission.
Collapse
|
17
|
Ibarra-Juarez LA, Desgarennes D, Vázquez-Rosas-Landa M, Villafan E, Alonso-Sánchez A, Ferrera-Rodríguez O, Moya A, Carrillo D, Cruz L, Carrión G, López-Buenfil A, García-Avila C, Ibarra-Laclette E, Lamelas A. Impact of Rearing Conditions on the Ambrosia Beetle's Microbiome. Life (Basel) 2018; 8:63. [PMID: 30551580 PMCID: PMC6316638 DOI: 10.3390/life8040063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Ambrosia beetles, along with termites and leafcutter ants, are the only fungus-farming lineages within the tree of life. Bacteria harbored by ambrosia beetles may play an essential role in the nutritional symbiotic interactions with their associated fungi; however, little is known about the impact of rearing conditions on the microbiota of ambrosia beetles. We have used culture-independent methods to explore the effect of rearing conditions on the microbiome associated with Xyleborus affinis, Xyleborus bispinatus, and Xyleborus volvulus, evaluating different media in laboratory-controlled conditions and comparing wild and laboratory conditions. Our results revealed that rearing conditions affected the fungal and bacterial microbiome structure and had a strong influence on bacterial metabolic capacities. We propose that the rearing conditions influence the ambrosia-associated fungal and bacterial communities. Furthermore, bacterial microbiome flexibility may help beetles adapt to different substrates.
Collapse
Affiliation(s)
- Luis Arturo Ibarra-Juarez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa C.P. 91070, Mexico.
- Cátedras CONACyT. Instituto de Ecología, A. C., Carretera Antigua a Coatepec 351, Xalapa C.P. 91070, Mexico.
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa C.P. 91070, Mexico.
| | | | - Emanuel Villafan
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa C.P. 91070, Mexico.
| | | | | | - Andrés Moya
- Joint Unit of Research in Genomics and Health, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO), 46010 Valencia, Spain.
- Institute for Integrative System Biology, University of Valencia-CSIC, 46010 Valencia, Spain.
| | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA.
| | - Luisa Cruz
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA.
| | - Gloria Carrión
- Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa C.P. 91070, Mexico.
| | - Abel López-Buenfil
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Unidad Integral de Diagnóstico, Servicios y Constatación, Tecámac, Estado de Mexico 55740, Mexico.
| | - Clemente García-Avila
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Unidad Integral de Diagnóstico, Servicios y Constatación, Tecámac, Estado de Mexico 55740, Mexico.
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa C.P. 91070, Mexico.
| | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa C.P. 91070, Mexico.
| |
Collapse
|
18
|
Cruz L, Rocio S, Duran L, Menocal O, Garcia-Avila C, Carrillo D. Developmental biology of Xyleborus bispinatus (Coleoptera: Curculionidae) reared on an artificial medium and fungal cultivation of symbiotic fungi in the beetle's galleries. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Avery PB, Bojorque V, Gámez C, Duncan RE, Carrillo D, Cave RD. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi. INSECTS 2018; 9:E49. [PMID: 29693636 PMCID: PMC6023463 DOI: 10.3390/insects9020049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022]
Abstract
Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF) are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus, and potential alternative vectors, Xylosandrus crassiusculus, Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae). Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus, X. volvulus and X. bispinatus. The specific objectives were to determine: (1) the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF (Isaria fumosorosea, Metarhizium brunneum and Beauveria bassiana); and (2) the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 10⁶ viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana, compared to the other fungal treatments. For X. volvulus, the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana. After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests) indicated an impact for each entomopathogenic fungus per beetle species after exposure to a filter paper disk treated at the same fungal suspension concentration. Kaplan⁻Meier analysis (censored at day 7) revealed that each beetle species survived significantly shorter in bioassays containing disks treated with EPF compared to water only. This study demonstrated that ambrosia beetles associated with the laurel wilt pathogen in avocados are susceptible to infection by EPF under laboratory conditions. However, the EPF needs to be tested under field conditions to confirm their efficacy against the beetles.
Collapse
Affiliation(s)
- Pasco B Avery
- Indian River Research and Education Center, IFAS, University of Florida, 2199 South Rock Road, Ft. Pierce, FL 34945, USA.
| | - Verónica Bojorque
- Indian River Research and Education Center, IFAS, University of Florida, 2199 South Rock Road, Ft. Pierce, FL 34945, USA.
- Escuela Agrícola Panamericana, P.O. Box 93 Tegucigalpa, Honduras.
| | - Cecilia Gámez
- Indian River Research and Education Center, IFAS, University of Florida, 2199 South Rock Road, Ft. Pierce, FL 34945, USA.
- Escuela Agrícola Panamericana, P.O. Box 93 Tegucigalpa, Honduras.
| | - Rita E Duncan
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA.
| | - Daniel Carrillo
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA.
| | - Ronald D Cave
- Indian River Research and Education Center, IFAS, University of Florida, 2199 South Rock Road, Ft. Pierce, FL 34945, USA.
| |
Collapse
|
20
|
Menocal O, Cruz LF, Kendra PE, Crane JH, Cooperband MF, Ploetz RC, Carrillo D. Xyleborus bispinatus Reared on Artificial Media in the Presence or Absence of the Laurel Wilt Pathogen (Raffaelea lauricola). INSECTS 2018; 9:E30. [PMID: 29495585 PMCID: PMC5872295 DOI: 10.3390/insects9010030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/12/2018] [Accepted: 02/24/2018] [Indexed: 11/16/2022]
Abstract
Like other members of the tribe Xyleborini, Xyleborus bispinatus Eichhoff can cause economic damage in the Neotropics. X. bispinatus has been found to acquire the laurel wilt pathogen Raffaelea lauricola (T. C. Harr., Fraedrich & Aghayeva) when breeding in a host affected by the pathogen. Its role as a potential vector of R. lauricola is under investigation. The main objective of this study was to evaluate three artificial media, containing sawdust of avocado (Persea americana Mill.) and silkbay (Persea humilis Nash.), for rearing X. bispinatus under laboratory conditions. In addition, the media were inoculated with R. lauricola to evaluate its effect on the biology of X. bispinatus. There was a significant interaction between sawdust species and R. lauricola for all media. Two of the media supported the prolific reproduction of X. bispinatus, but the avocado-based medium was generally more effective than the silkbay-based medium, regardless whether or not it was inoculated with R. lauricola. R. lauricola had a neutral or positive effect on beetle reproduction. The pathogen was frequently recovered from beetle galleries, but only from a few individuals which were reared on inoculated media, and showed limited colonization of the beetle's mycangia. Two media with lower water content were most effective for rearing X. bispinatus.
Collapse
Affiliation(s)
- Octavio Menocal
- Tropical Research & Education Center, University of Florida 18905 SW 280th St, Homestead, FL 33031, USA.
| | - Luisa F Cruz
- Tropical Research & Education Center, University of Florida 18905 SW 280th St, Homestead, FL 33031, USA.
| | - Paul E Kendra
- Subtropical Horticulture Research Station, USDA-ARS, 13601 Old Cutler Rd., Miami, FL 33158, USA.
| | - Jonathan H Crane
- Tropical Research & Education Center, University of Florida 18905 SW 280th St, Homestead, FL 33031, USA.
| | - Miriam F Cooperband
- Otis Laboratory, USDA-APHIS-PPQ-CPHST, 1398 W. Truck Road, Buzzards Bay, MA 02542, USA.
| | - Randy C Ploetz
- Tropical Research & Education Center, University of Florida 18905 SW 280th St, Homestead, FL 33031, USA.
| | - Daniel Carrillo
- Tropical Research & Education Center, University of Florida 18905 SW 280th St, Homestead, FL 33031, USA.
| |
Collapse
|
21
|
Nutritional symbionts of a putative vector, Xyleborus bispinatus, of the laurel wilt pathogen of avocado, Raffaelea lauricola. Symbiosis 2017. [DOI: 10.1007/s13199-017-0514-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|