1
|
Hoshino M, Hoek R, Jukema RA, Dahdal J, van Diemen P, Raijmakers P, Driessen R, Twisk J, Danad I, Kakuta T, Knuuti J, Knaapen P. Homogeneity of the Coronary Microcirculation in Angina with Non-Obstructive Coronary Artery Disease. Eur Heart J Cardiovasc Imaging 2025:jeaf101. [PMID: 40126977 DOI: 10.1093/ehjci/jeaf101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/07/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
AIMS The homogeneity of coronary microcirculatory dysfunction (CMD) across different myocardial territories in angina with non-obstructive coronary artery disease (ANOCA) patients is scarcely explored. This study investigates the variability in microvascular resistance reserve (MRR) across the 3 main perfusion territories of the coronary circulation to investigate the homogeneity or dishomogeneity of microcirculatory function. METHODS AND RESULTS This post-hoc analysis of the PACIFIC trials included symptomatic ANOCA patients with [15O]H2O positron emission tomography (PET) and three-vessel invasive fractional flow reserve (FFR). MRR was computed in the three main coronary branches by integrating PET-derived coronary flow reserve and invasive FFR. A total of 155 patients (50% male, age 59 ± 10 years) and 465 vessels (MRR: 3.92 ± 1.21) were included. There were no significant differences in MRR among the three coronary branches. Correlations in MRR among the three coronary branches were good (r = 0.76 to 0.86). The mean difference between MRR measurements in different arteries was small (2.4 to 7.5%), without any consistent directional bias. The overall intraclass correlation coefficient for absolute agreement was 0.80 (95% CI: 0.74-0.85), indicating good single-measure reliability. Approximately 80% (123/155) of patients showed diagnostic concordance of CMD (MRR ≤3.0) across the three vessels. CONCLUSION In most ANOCA patients, microvascular function is homogeneously distributed across the three major coronary territories. Single-artery testing may suffice in many cases, aligning with guidelines. However, some patients exhibit notable inter-territorial variation, suggesting that multivessel evaluation may be prudent in borderline scenarios.
Collapse
Affiliation(s)
- Masahiro Hoshino
- Departments of Cardiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Roel Hoek
- Departments of Cardiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ruurt A Jukema
- Departments of Cardiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jorge Dahdal
- Departments of Cardiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Cardiology, Hospital Del Salvador, Santiago, Chile
| | - Pepijn van Diemen
- Departments of Cardiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter Raijmakers
- Radiology, Nuclear Medicine & PET Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Roel Driessen
- Departments of Cardiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jos Twisk
- Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ibrahim Danad
- Departments of Cardiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Tsunekazu Kakuta
- Department of Cardiology, Tsuchiura Kyodo General Hospital, Japan
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku 20520, Finland
- Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital and University of Turku, Turku 20520, Finland
| | - Paul Knaapen
- Departments of Cardiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Slart RHJA, Martinez-Lucio TS, Boersma HH, Borra RH, Cornelissen B, Dierckx RAJO, Dobrolinska M, Doorduin J, Erba PA, Glaudemans AWJM, Giacobbo BL, Luurtsema G, Noordzij W, van Sluis J, Tsoumpas C, Lammertsma AA. [ 15O]H 2O PET: Potential or Essential for Molecular Imaging? Semin Nucl Med 2024; 54:761-773. [PMID: 37640631 DOI: 10.1053/j.semnuclmed.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Imaging water pathways in the human body provides an excellent way of measuring accurately the blood flow directed to different organs. This makes it a powerful diagnostic tool for a wide range of diseases that are related to perfusion and oxygenation. Although water PET has a long history, its true potential has not made it into regular clinical practice. The article highlights the potential of water PET in molecular imaging and suggests its prospective role in becoming an essential tool for the 21st century precision medicine in different domains ranging from preclinical to clinical research and practice. The recent technical advances in high-sensitivity PET imaging can play a key accelerating role in empowering this technique, though there are still several challenges to overcome.
Collapse
Affiliation(s)
- Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - T Samara Martinez-Lucio
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrikus H Boersma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald H Borra
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart Cornelissen
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Magdalena Dobrolinska
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paola A Erba
- Department of Medicine and Surgery, University of Milan Bicocca, and Nuclear Medicine Unit ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Lima Giacobbo
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Di Carli MF, Gormsen LC, Chareonthaitawee P, Johnson GB, Beanlands R, DeKemp R, Schindler T, Gropler R, Kulkarni H, McNeely P, Soman P, Oz O, Zaha V, Sorensen J, Harms H, Orlandi C, Vandenbroucke E, Udelson J. Rationale and design of the RAPID-WATER-FLOW trial: Radiolabeled perfusion to identify coronary artery disease using water to evaluate responses of myocardial FLOW. J Nucl Cardiol 2024; 31:101779. [PMID: 38215598 DOI: 10.1016/j.nuclcard.2023.101779] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
OBJECTIVES The objective of this study was to determine the diagnostic performance of 15O-water positron emission tomography (PET) myocardial perfusion imaging to detect coronary artery disease (CAD) using the truth-standard of invasive coronary angiography (ICA) with fractional flow reserve (FFR) or instantaneous wave-Free Ratio (iFR) or coronary computed tomography angiogram (CCTA). BACKGROUND 15O-water has a very high first-pass extraction that allows accurate quantification of myocardial blood flow and detection of flow-limiting CAD. However, the need for an on-site cyclotron and lack of automated production at the point of care and relatively complex image analysis protocol has limited its clinical use to date. METHODS The RAPID WATER FLOW study is an open-label, multicenter, prospective investigation of the accuracy of 15O-water PET to detect obstructive angiographic and physiologically significant stenosis in patients with suspected CAD. The study will include the use of an automated system for producing, dosing, and injecting 15O-water and enrolling approximately 215 individuals with suspected CAD at approximately 10 study sites in North America and Europe. The primary endpoint of the study is the diagnostic sensitivity and specificity of the 15O-water PET study using the truth-standard of ICA with FFR or iFR to determine flow-limiting stenosis, or CCTA to rule out CAD and incorporating a quantitative analytic platform developed for the 15O-water PET acquisitions. Sensitivity and specificity are to be considered positive if the lower bound of the 95% confidence interval is superior to the threshold of 60% for both, consistent with prior registration studies. Subgroup analyses include assessments of diagnostic sensitivity, specificity, and accuracy in female, obese, and diabetic individuals, as well as in those with multivessel disease. All enrolled individuals will be followed for adverse and serious adverse events for up to 32 hours after the index PET scan. The study will have >90% power (one-sided test, α = 0.025) to test the hypothesis that sensitivity and specificity of 15O-water PET are both >60%. CONCLUSIONS The RAPID WATER FLOW study is a prospective, multicenter study to determine the diagnostic sensitivity and specificity of 15O-water PET as compared to ICA with FFR/iFR or CCTA. This study will introduce several novel aspects to imaging registration studies, including a more relevant truth standard incorporating invasive physiologic indexes, coronary CTA to qualify normal individuals for eligibility, and a more quantitative approach to image analysis than has been done in prior pivotal studies. CLINICAL TRIAL REGISTRATION INFORMATION Clinical-Trials.gov (#NCT05134012).
Collapse
Affiliation(s)
- Marcelo F Di Carli
- Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lars C Gormsen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Denmark
| | | | | | - Rob Beanlands
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
| | - Rob DeKemp
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
| | - Thomas Schindler
- Department of Radiology, Washington University, St Louis, MO, USA
| | - Robert Gropler
- Department of Radiology, Washington University, St Louis, MO, USA
| | | | - Parren McNeely
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Prem Soman
- Departments of Medicine and Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Orhan Oz
- Department of Radiology, UT Southwestern, Dallas, TX, USA
| | - Vlad Zaha
- Department of Radiology, UT Southwestern, Dallas, TX, USA
| | - Jens Sorensen
- PET Center, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | - James Udelson
- Division of Cardiology and the CardioVascular Center, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Mallet F, Poitrasson-Rivière A, Mariano-Goulart D, Agostini D, Manrique A. Measuring myocardial blood flow using dynamic myocardial perfusion SPECT: artifacts and pitfalls. J Nucl Cardiol 2023; 30:2006-2017. [PMID: 36598748 DOI: 10.1007/s12350-022-03165-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/09/2022] [Indexed: 01/05/2023]
Abstract
Dynamic acquisition allows absolute quantification of myocardial perfusion and flow reserve, offering an alternative to overcome the potential limits of relative quantification, especially in patients with balanced multivessel coronary artery disease. SPECT myocardial perfusion is widely available, at lower cost than PET. Dynamic cardiac SPECT is now feasible and has the potential to be the next step of comprehensive perfusion imaging. In order to help nuclear cardiologists potentially interested in using dynamic perfusion SPECT, we sought to review the different steps of acquisition, processing, and reporting of dynamic SPECT studies in order to enlighten the potentially critical pitfalls and artifacts. Both patient-related and technical artifacts are discussed. Key parameters of the acquisition include pharmacological stress, radiopharmaceuticals, and injection device. When it comes to image processing, attention must be paid to image-derived input function, patient motion, and extra-cardiac activity. This review also mentions compartment models, cameras, and attenuation correction. Finally, published data enlighten some facets of dynamic cardiac SPECT while several issues remain. Harmonizing acquisition and quality control procedures will likely improve its performance and clinical strength.
Collapse
Affiliation(s)
- Florian Mallet
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Univ, UNICAEN UR 4650 PSIR, 14000, Caen, France
- Department of Nuclear Medicine, Jean Perrin Cancer Center, Clermont-Ferrand, France
| | | | - Denis Mariano-Goulart
- Department of Nuclear Medicine, CHU of Montpellier, PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Denis Agostini
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Univ, UNICAEN UR 4650 PSIR, 14000, Caen, France
| | - Alain Manrique
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Univ, UNICAEN UR 4650 PSIR, 14000, Caen, France.
- GIP Cyceron, Campus Jules Horowitz, Boulevard Henri Becquerel, BP 5229, 14074, Caen, France.
| |
Collapse
|
5
|
Jukema R, Maaniitty T, van Diemen P, Berkhof H, Raijmakers PG, Sprengers R, Planken RN, Knaapen P, Saraste A, Danad I, Knuuti J. Warranty period of coronary computed tomography angiography and [15O]H2O positron emission tomography in symptomatic patients. Eur Heart J Cardiovasc Imaging 2023; 24:304-311. [PMID: 36585755 DOI: 10.1093/ehjci/jeac258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/19/2022] [Indexed: 01/01/2023] Open
Abstract
AIMS Data on the warranty period of coronary computed tomography angiography (CTA) and combined coronary CTA/positron emission tomography (PET) are scarce. The present study aimed to determine the event-free (warranty) period after coronary CTA and the potential additional value of PET. METHOD AND RESULTS Patients with suspected but not previously diagnosed coronary artery disease (CAD) who underwent coronary CTA and/or [15O]H2O PET were categorized based upon coronary CTA as no CAD, non-obstructive CAD, or obstructive CAD. A hyperaemic myocardial blood flow (MBF) ≤ 2.3 mL/min/g was considered abnormal. The warranty period was defined as the time for which the cumulative event rate of death and non-fatal myocardial infarction (MI) was below 5%. Of 2575 included patients (mean age 61.4 ± 9.9 years, 41% male), 1319 (51.2%) underwent coronary CTA only and 1237 (48.0%) underwent combined coronary CTA/PET. During a median follow-up of 7.0 years 163 deaths and 68 MIs occurred. The warranty period for patients with no CAD on coronary CTA was ≥10 years, whereas patients with non-obstructive CAD had a 5-year warranty period. Patients with obstructive CAD and normal hyperaemic MBF had a 2-year longer warranty period compared to patients with obstructive CAD and abnormal MBF (3 years vs. 1 year). CONCLUSION As standalone imaging, the warranty period for normal coronary CTA is ≥10 years, whereas patients with non-obstructive CAD have a warranty period of 5 years. Normal PET yielded a 2-year longer warranty period in patients with obstructive CAD.
Collapse
Affiliation(s)
- Ruurt Jukema
- Department of Cardiology, Nuclear Medicine & PET Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital and University of Turku, Turku 20520, Finland.,Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital and University of Turku, Turku 20520, Finland
| | - Pepijn van Diemen
- Department of Cardiology, Nuclear Medicine & PET Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Hans Berkhof
- Department of Epidemiology & Data Science, Nuclear Medicine & PET Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Pieter G Raijmakers
- Department of Radiology, Nuclear Medicine & PET Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ralf Sprengers
- Department of Radiology, Nuclear Medicine & PET Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - R Nils Planken
- Department of Radiology, Nuclear Medicine & PET Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Paul Knaapen
- Department of Cardiology, Nuclear Medicine & PET Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku 20520, Finland.,Heart Center, Turku University Hospital, Turku 20520, Finland
| | - Ibrahim Danad
- Department of Cardiology, Nuclear Medicine & PET Research, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.,Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku 20520, Finland.,Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital and University of Turku, Turku 20520, Finland
| |
Collapse
|
6
|
Zhang X, Sun T, Liu E, Xu W, Wang S, Wang Q. Development and evaluation of a radiomics model of resting 13N-ammonia positron emission tomography myocardial perfusion imaging to predict coronary artery stenosis in patients with suspected coronary heart disease. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1167. [PMID: 36467349 PMCID: PMC9708489 DOI: 10.21037/atm-22-4692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2023]
Abstract
BACKGROUND Coronary angiography (CAG) is usually performed in patients with coronary heart disease (CHD) to evaluate the coronary artery stenosis. However, patients with iodine allergy and renal dysfunction are not suitable for CAG. We try to develop a radiomics machine learning model based on rest 13N-ammonia (13N-NH3) positron emission tomography (PET) myocardial perfusion imaging (MPI) to predict coronary stenosis. METHODS Eighty-four patients were included with the inclusion criteria: adult patients; suspected CHD; resting MPI and CAG were performed; and complete data. Coronary artery stenosis >75% were considered to be significant stenosis. Patients were randomly divided into a training group and a testing group with a ratio of 1:1. Myocardial blood flow (MBF), perfusion defect extent (EXT), total perfusion deficit (TPD), and summed rest score (SRS) were obtained. Myocardial static images of the left ventricular (LV) coronary segments were segmented, and radiomics features were extracted. In the training set, the conventional parameter (MPI model) and radiomics (Rad model) models were constructed using the machine learning method and were combined to construct a nomogram. The models' performance was evaluated by area under the curve (AUC), accuracy, sensitivity, specificity, decision analysis curve (DCA), and calibration curves. Testing and subgroup analysis were performed. RESULTS MPI model was composed of MBF and EXT, and Rad model was composed of 12 radiomics features. In the training set, the AUC/accuracy/sensitivity/specificity of the MPI model, Rad model, and the nomogram were 0.795/0.778/0.937/0.511, 0.912/0.825/0.760/0.936 and 0.911/0.865/0.924/0.766 respectively. In the testing set, the AUC/accuracy/sensitivity/specificity of the MPI model, Rad model, and the nomogram were 0.798/0.722/0.659/0.841, 0.887/0.810/0.744/0.932 and 0.900/0.849/0.854/0.841 respectively. The AUC of Rad model and nomogram were significantly higher than that of MPI model. The DCA curve also showed that the clinical net benefit of the Rad model and nomogram was similar but greater than that of MPI model. The calibration curve showed good agreement between the observed and predicted values of the Rad model. In the subgroup analysis of Rad model, there was no significant difference in AUC between subgroups. CONCLUSIONS The Rad model is more accurate than the MPI model in predicting coronary stenosis. This noninvasive technique could help improve risk stratification and had good generalization ability.
Collapse
Affiliation(s)
- Xiaochun Zhang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Taotao Sun
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Entao Liu
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weiping Xu
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuxia Wang
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Quanshi Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Lammertsma AA. Accurate quantification of myocardial perfusion. J Nucl Cardiol 2022; 29:1973-1975. [PMID: 34173215 DOI: 10.1007/s12350-021-02703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Adriaan A Lammertsma
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Karam M, Fahs D, Maatouk B, Safi B, Jaffa AA, Mhanna R. Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects. Mater Today Bio 2022; 14:100249. [PMID: 35434594 PMCID: PMC9006854 DOI: 10.1016/j.mtbio.2022.100249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Despite extensive efforts to provide early diagnosis and adequate treatment regimens, detection of MI still faces major limitations and pathological MI complications continue to threaten the recovery of survivors. Polymeric nanoparticles (NPs) represent novel noninvasive drug delivery systems for the diagnosis and treatment of MI and subsequent prevention of fatal heart failure. In this review, we cover the recent advances in polymeric NP-based diagnostic and therapeutic approaches for MI and their application as multifunctional theranostic tools. We also discuss the in vivo behavior and toxicity profile of polymeric NPs, their application in noninvasive imaging, passive, and active drug delivery, and use in cardiac regenerative therapy. We conclude with the challenges faced with polymeric nanosystems and suggest future efforts needed for clinical translation.
Collapse
Affiliation(s)
- Mia Karam
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Duaa Fahs
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Batoul Maatouk
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Brouna Safi
- Department of Chemical Engineering, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| |
Collapse
|
9
|
Harms HJ, Lubberink M. Cardiac software repeatability beyond correlations: Clinical outcomes matter. J Nucl Cardiol 2021; 28:2758-2760. [PMID: 32424680 DOI: 10.1007/s12350-020-02194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Affiliation(s)
- H J Harms
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Aarhus, Denmark.
| | - M Lubberink
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Grönman M, Tarkia M, Stark C, Vähäsilta T, Kiviniemi T, Lubberink M, Halonen P, Kuivanen A, Saunavaara V, Tolvanen T, Teuho J, Teräs M, Savunen T, Pietilä M, Ylä-Herttuala S, Roivainen A, Knuuti J, Saraste A. Assessment of myocardial viability with [ 15O]water PET: A validation study in experimental myocardial infarction. J Nucl Cardiol 2021; 28:1271-1280. [PMID: 31317328 PMCID: PMC8421281 DOI: 10.1007/s12350-019-01818-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/10/2019] [Indexed: 12/04/2022]
Abstract
BACKGROUND Assessment of myocardial viability is often needed in patients with chest pain and reduced ejection fraction. We evaluated the performance of reduced resting MBF, perfusable tissue fraction (PTF), and perfusable tissue index (PTI) in the assessment of myocardial viability in a pig model of myocardial infarction (MI). METHODS AND RESULTS Pigs underwent resting [15O]water PET perfusion study 12 weeks after surgical (n = 16) or 2 weeks after catheter-based (n = 4) occlusion of the proximal left anterior descending coronary artery. MBF, PTF, and PTI were compared with volume fraction of MI in matched segments as assessed by triphenyl tetrazolium chloride staining of LV slices. MBF and PTF were lower in infarcted than non-infarcted segments. Segmental analysis of MBF showed similar area under the curve (AUC) of 0.85, 0.86, and 0.90 with relative MBF, PTF, and PTI for the detection of viable myocardium defined as infarct volume fraction of < 75%. Cut-off values of relative MBF of ≥ 67% and PTF of ≥ 66% resulted in accuracies of 90% and 81%, respectively. CONCLUSIONS Our results indicate that resting MBF, PTF, and PTI based on [15O]water PET perfusion imaging are useful for the assessment of myocardial viability.
Collapse
Affiliation(s)
- Maria Grönman
- Turku PET Centre, University of Turku, Turku, Finland
| | - Miikka Tarkia
- Turku PET Centre, University of Turku, Turku, Finland
| | - Christoffer Stark
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Tommi Vähäsilta
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Tuomas Kiviniemi
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Paavo Halonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Antti Kuivanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tuula Tolvanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Mika Teräs
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Timo Savunen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Mikko Pietilä
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Clinical Medicine, University of Turku, Turku, Finland
| |
Collapse
|
11
|
EANM procedural guidelines for PET/CT quantitative myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2020; 48:1040-1069. [PMID: 33135093 PMCID: PMC7603916 DOI: 10.1007/s00259-020-05046-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
The use of cardiac PET, and in particular of quantitative myocardial perfusion PET, has been growing during the last years, because scanners are becoming widely available and because several studies have convincingly demonstrated the advantages of this imaging approach. Therefore, there is a need of determining the procedural modalities for performing high-quality studies and obtaining from this demanding technique the most in terms of both measurement reliability and clinical data. Although the field is rapidly evolving, with progresses in hardware and software, and the near perspective of new tracers, the EANM Cardiovascular Committee found it reasonable and useful to expose in an updated text the state of the art of quantitative myocardial perfusion PET, in order to establish an effective use of this modality and to help implementing it on a wider basis. Together with the many steps necessary for the correct execution of quantitative measurements, the importance of a multiparametric approach and of a comprehensive and clinically useful report have been stressed.
Collapse
|
12
|
Zuo Y, Badawi RD, Foster CC, Smith T, López JE, Wang G. Multiparametric Cardiac 18F-FDG PET in Humans: Kinetic Model Selection and Identifiability Analysis. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020; 4:759-767. [PMID: 33778234 DOI: 10.1109/trpms.2020.3031274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiac 18F-FDG PET has been used in clinics to assess myocardial glucose metabolism. Its ability for imaging myocardial glucose transport, however, has rarely been exploited in clinics. Using the dynamic FDG-PET scans of ten patients with coronary artery disease, we investigate in this paper appropriate dynamic scan and kinetic modeling protocols for efficient quantification of myocardial glucose transport. Three kinetic models and the effect of scan duration were evaluated by using statistical fit quality, assessing the impact on kinetic quantification, and analyzing the practical identifiability. The results show that the kinetic model selection depends on the scan duration. The reversible two-tissue model was needed for a one-hour dynamic scan. The irreversible two-tissue model was optimal for a scan duration of around 10-15 minutes. If the scan duration was shortened to 2-3 minutes, a one-tissue model was the most appropriate. For global quantification of myocardial glucose transport, we demonstrated that an early dynamic scan with a duration of 10-15 minutes and irreversible kinetic modeling was comparable to the full one-hour scan with reversible kinetic modeling. Myocardial glucose transport quantification provides an additional physiological parameter on top of the existing assessment of glucose metabolism and has the potential to enable single tracer multiparametric imaging in the myocardium.
Collapse
Affiliation(s)
- Yang Zuo
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA 9817
| | - Ramsey D Badawi
- Department of Radiology and Department of Biomedical Engineering, University of California Davis Medical Center, Sacramento, CA 9817
| | - Cameron C Foster
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA 9817
| | - Thomas Smith
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 9817
| | - Javier E López
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 9817
| | - Guobao Wang
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA 9817
| |
Collapse
|
13
|
Saari TJ, Raiko J, U-Din M, Niemi T, Taittonen M, Laine J, Savisto N, Haaparanta-Solin M, Nuutila P, Virtanen KA. Basal and cold-induced fatty acid uptake of human brown adipose tissue is impaired in obesity. Sci Rep 2020; 10:14373. [PMID: 32873825 PMCID: PMC7463032 DOI: 10.1038/s41598-020-71197-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Fatty acids (FA) are important substrates for brown adipose tissue (BAT) metabolism, however, it remains unclear whether there exists a difference in FA metabolism of BAT between lean and obese healthy humans. In this study we evaluated supraclavicular BAT fatty acid uptake (FAU) along with blood perfusion in lean and obese subjects during cold exposure and at room temperature using positron emission tomography (PET)/computed tomography (CT). Additionally, tissue samples were taken from supraclavicular region (typical BAT region) from a subset of subjects to evaluate histological presence of BAT. Non-shivering cold stress elevated FAU and perfusion of BAT in lean, but not in obese subjects. Lean subjects had greater FAU in BAT compared to obese subjects during cold exposure and interestingly also at room temperature. The higher BAT FAU was related to younger age and several indicators of superior systemic metabolic health. The subjects who manifested BAT histologically had several folds higher BAT FAU compared to subjects with no such histological manifestation. Together, obese subjects have less active tissue in supraclavicular region both in basal and cold-activated state and the FA metabolism of BAT is blunted in obesity.
Collapse
Affiliation(s)
- T J Saari
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.,Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - J Raiko
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - M U-Din
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.,Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - T Niemi
- Department of Surgery, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - M Taittonen
- Department of Anesthesiology, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - J Laine
- Department of Pathology, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - N Savisto
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - M Haaparanta-Solin
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland.,MediCity Research Laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - P Nuutila
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.,Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - K A Virtanen
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland. .,Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland. .,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PL 1627, 70211, Kuopio, Finland.
| |
Collapse
|
14
|
Monroy-Gonzalez AG, Juarez-Orozco LE, Han C, Vedder IR, García DV, Borra R, Slomka PJ, Nesterov SV, Knuuti J, Slart RHJA, Alexanderson-Rosas E. Software reproducibility of myocardial blood flow and flow reserve quantification in ischemic heart disease: A 13N-ammonia PET study. J Nucl Cardiol 2020; 27:1225-1233. [PMID: 30903608 DOI: 10.1007/s12350-019-01620-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/13/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND We explored agreement in the quantification of myocardial perfusion by cross-comparison of implemented software packages (SPs) in three distinguishable patient profile populations. METHODS We studied 91 scans of patients divided into 3 subgroups based on their semi-quantitative perfusion findings: patients with normal perfusion, with reversible perfusion defects, and with fixed perfusion defects. Rest myocardial blood flow (MBF), stress MBF, and myocardial flow reserve (MFR) were obtained with QPET, SyngoMBF, and Carimas. Agreement between SPs was considered adequate when a pairwise standardized difference was found to be < 0.20 and its corresponding intraclass correlation coefficient was ≥ 0.75. RESULTS In patients with normal perfusion, two out of three comparisons of global stress MBF quantifications were outside the limits of agreement. In ischemic patients, all comparisons of global stress MBF and MFR were outside the limits of established agreement. In patients with fixed perfusion defects, all SP comparisons of perfusion quantifications were within the limit of agreement. Regionally, agreement of these perfusion estimates was mostly found for the left anterior descending artery vascular territory. CONCLUSION Reversible defects demonstrated the worst agreement in global stress MBF and MFR and discrepancies showed to be regional dependent. Reproducibility between SPs should not be assumed.
Collapse
Affiliation(s)
- Andrea G Monroy-Gonzalez
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Chunlei Han
- Turku PET Centre, University of Turku, Turku, Finland
| | - Issi R Vedder
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David Vállez García
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald Borra
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Piotr J Slomka
- Departments of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sergey V Nesterov
- Turku PET Centre, University of Turku, Turku, Finland
- Institute of Evolutionary Physiology and Biochemistry, RAS, St. Petersburg, Russia
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland
| | - Riemer H J A Slart
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Biomedical Photonic Imaging, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Erick Alexanderson-Rosas
- Department of Physiology, National Autonomous University of Mexico, Mexico City, Mexico.
- National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico.
| |
Collapse
|
15
|
Velasco C, Mota-Cobián A, Mota RA, Pellico J, Herranz F, Galán-Arriola C, Ibáñez B, Ruiz-Cabello J, Mateo J, España S. Quantitative assessment of myocardial blood flow and extracellular volume fraction using 68Ga-DOTA-PET: A feasibility and validation study in large animals. J Nucl Cardiol 2020; 27:1249-1260. [PMID: 30927149 DOI: 10.1007/s12350-019-01694-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Here we evaluated the feasibility of PET with Gallium-68 (68Ga)-labeled DOTA for non-invasive assessment of myocardial blood flow (MBF) and extracellular volume fraction (ECV) in a pig model of myocardial infarction. We also aimed to validate MBF measurements using microspheres as a gold standard in healthy pigs. METHODS 8 healthy pigs underwent three sequential 68Ga-DOTA-PET/CT scans at rest and during pharmacological stress with simultaneous injection of fluorescent microspheres to validate MBF measurements. Myocardial infarction was induced in 5 additional pigs, which underwent 68Ga-DOTA-PET/CT examinations 7-days after reperfusion. Dynamic PET images were reconstructed and fitted to obtain MBF and ECV parametric maps. RESULTS MBF assessed with 68Ga-DOTA-PET showed good correlation (y = 0.96x + 0.11, r = 0.91) with that measured with microspheres. MBF values obtained with 68Ga-DOTA-PET in the infarcted area (LAD, left anterior descendant) were significantly reduced in comparison to remote ones LCX (left circumflex artery, P < 0.0001) and RCA (right coronary artery, P < 0.0001). ECV increased in the infarcted area (P < 0.0001). CONCLUSION 68Ga-DOTA-PET allowed non-invasive assessment of MBF and ECV in pigs with myocardial infarction and under rest-stress conditions. This technique could provide wide access to quantitative measurement of both MBF and ECV with PET imaging.
Collapse
Affiliation(s)
- Carlos Velasco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Adriana Mota-Cobián
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén A Mota
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
- Charles River Laboratories España, Cerdanyola, Spain
| | - Juan Pellico
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Fernando Herranz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
- CIBER de enfermedades Cardiovasculares, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
- CIBER de enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Jesús Ruiz-Cabello
- Universidad Complutense de Madrid, Madrid, Spain
- CIC biomaGUNE, San Sebastian-Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Jesús Mateo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Samuel España
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
16
|
Schindler TH, Valenta I. Relative disagreement among different software packages in PET-flow quantitation: An appeal for consistency. J Nucl Cardiol 2020; 27:1234-1236. [PMID: 30903607 DOI: 10.1007/s12350-019-01633-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Thomas H Schindler
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA.
| | - Ines Valenta
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| |
Collapse
|
17
|
Moody JB, Ficaro EP, Murthy VL. Simplified quantification of PET myocardial blood flow: The need for technical standardization. J Nucl Cardiol 2020; 27:829-832. [PMID: 30397868 PMCID: PMC6500765 DOI: 10.1007/s12350-018-01497-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Jonathan B Moody
- INVIA Medical Imaging Solutions, 3025 Boardwalk Street, Suite 200, Ann Arbor, MI, 40108, USA.
| | - Edward P Ficaro
- INVIA Medical Imaging Solutions, 3025 Boardwalk Street, Suite 200, Ann Arbor, MI, 40108, USA
- Cardiac Imaging Program, University of Michigan, Ann Arbor, MI, USA
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Venkatesh L Murthy
- Cardiac Imaging Program, University of Michigan, Ann Arbor, MI, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Maaniitty T, Knuuti J, Saraste A. 15O-Water PET MPI: Current Status and Future Perspectives. Semin Nucl Med 2020; 50:238-247. [PMID: 32284110 DOI: 10.1053/j.semnuclmed.2020.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myocardial perfusion imaging with 15O-water positron emission tomography (PET) is a validated tool for quantitative measurement of myocardial blood flow (MBF) and myocardial flow reserve (MFR). Current scanner and software technology enable quantification of global and regional MBF in clinical PET myocardial perfusion imaging studies. Reduced stress MBF or MFR measured by 15O-water PET accurately detects hemodynamically significant coronary artery stenosis defined by intracoronary fractional flow reserve (FFR) measurement in patients with suspected obstructive coronary artery disease (CAD). Furthermore, MBF and MFR provide prognostic information on mortality and risk of myocardial infarction. Clinical experience in some centers indicates that clinical application of 15O-water PET in evaluation of CAD is feasible and guides management decisions on revascularization. This review discusses basic concepts of measuring MBF with 15O-water PET and reviews clinical studies on its application in evaluation of obstructive CAD.
Collapse
Affiliation(s)
- Teemu Maaniitty
- Turku PET Centre, University of Turku, Turku, Finland; Department of Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland.
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland; Department of Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland; Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
19
|
Abstract
Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality.
Collapse
|
20
|
Myocardial perfusion reserve of kidney transplant patients is well preserved. EJNMMI Res 2020; 10:9. [PMID: 32040792 PMCID: PMC7010868 DOI: 10.1186/s13550-020-0606-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/03/2020] [Indexed: 01/19/2023] Open
Abstract
Background Chronic kidney disease (CKD) is associated with endothelial dysfunction and increased cardiovascular mortality. Endothelial dysfunction can be studied measuring myocardial perfusion reserve (MPR). MPR is the ratio of stress and rest myocardial perfusion (MP) and reflects the capacity of vascular bed to increase perfusion and microvascular responsiveness. In this pilot study, our aim was to assess MPR of 19 patients with kidney transplant (CKD stages 2–3) and of ten healthy controls with quantitative [15O]H2O positron emission tomography (PET) method. Results Basal MP was statistically significantly higher at rest in the kidney transplant patients than in the healthy controls [1.3 (0.4) ml/min/g and 1.0 (0.2) ml/min/g, respectively, p = 0.0015]. After correction of basal MP by cardiac workload [MPcorr = basal MP/individual rate pressure product (RPP) × average RPP of the healthy controls], the difference between the groups disappeared [0.9 (0.2) ml/min/g and 1.0 (0.3) ml/min/g, respectively, p = 0.55)]. There was no difference in stress MP between the kidney transplant patients and the healthy subjects [3.8 (1.0) ml/min/g and 4.0 (0.9) ml/min/g, respectively, p = 0.53]. Although MPR was reduced, MPRcorr (stress MP/basal MPcorr) did not differ between the kidney transplant patients and the healthy controls [4.1 (1.1) and 4.3 (1.6), respectively, p = 0.8]. Conclusions MP during stress is preserved in kidney transplant patients with CKD stage 2–3. The reduced MPR appears to be explained by increased resting MP. This is likely linked with increased cardiac workload due to sympathetic overactivation in kidney transplant patients.
Collapse
|
21
|
Rischpler C, Nekolla SG. Lost in quantification…: The influence of different software packages on flow quantification measures. J Nucl Cardiol 2019; 26:1255-1257. [PMID: 29340987 DOI: 10.1007/s12350-017-1159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
Affiliation(s)
- C Rischpler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - S G Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
22
|
Queern SL, Cardman R, Loveless CS, Shepherd MR, Lapi SE. Production of 15O for Medical Applications via the 16O(γ,n) 15O Reaction. J Nucl Med 2018; 60:424-428. [PMID: 30237213 DOI: 10.2967/jnumed.118.215681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/05/2018] [Indexed: 11/16/2022] Open
Abstract
15O (half-life, 122 s) is a useful radionuclide for PET applications. Current production of 15O typically makes use of the 14N(d,n)15O, 15N(p,n)15O, or 16O(p,pn)15O reactions using an accelerator. A novel approach for the production of 15O is via the 16O(γ,n)15O reaction using an electron linear accelerator. Photonuclear reactions using an electron linear accelerator may allow for feasible and economical production of 15O compared with the current methods. Methods: In this work, experiments using a repurposed Clinac were conducted using oxygen-containing alumina as a target material to study the production rate of 15O. Additional studies were conducted using a water target cell. Simulations using Geant4 were conducted to predict the activity and power dissipation in the target. Results: Bremsstrahlung radiation from the electron beam, and consequently 15O production via photonuclear reactions, is enhanced when a high-Z material, tungsten, is placed in front of the target. The alumina irradiations provided preliminary data to optimize the beam parameters and target configuration. The optimal thickness of tungsten was 1.4 mm for both the simulated and the measured studies of alumina. Simulations of irradiated water targets showed that tungsten thicker than 1.4 mm resulted in fewer photons available to activate the water; thus, a higher current was required to achieve a fixed dose. Alternatively, for a constant tungsten thickness, more power was deposited in the target with increasing beam energy, requiring a lower current to achieve a fixed dose. Actual irradiations of a water target yielded a quantity of 15O in the water that was consistent with expectations based on irradiations of alumina. Conclusion: Several parameters should be considered regarding the photonuclear production of 15O for an average patient dose of 1,850 MBq (50 mCi) in 10 mL. This work illustrates a variety of machine parameters capable of achieving a reasonable patient dose. Our simulations show that the power deposited in the target for these parameters is less than that in commercially operated cyclotron targets for the production of 18F. Thus, this work demonstrates that the photonuclear production of 15O may be a new production path for this useful radionuclide.
Collapse
Affiliation(s)
- Stacy L Queern
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri; and
| | - Ryan Cardman
- Department of Physics, Indiana University, Bloomington, Indiana
| | - Christopher S Loveless
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri; and
| | | | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama .,Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri; and
| |
Collapse
|
23
|
15-O-water myocardial flow reserve PET and CT angiography by full hybrid PET/CT as a potential alternative to invasive angiography. Int J Cardiovasc Imaging 2018; 34:2011-2022. [PMID: 30066164 DOI: 10.1007/s10554-018-1420-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/23/2018] [Indexed: 01/14/2023]
Abstract
Combined myocardial flow reserve (MFR) by PET and CT coronary angiography (CTA) is a promising tool for assessment of coronary artery disease. Prior analyses of MFR/CTA has been performed as side-by-side interpretation, not as volume rendered, full hybrid analysis, with fused MFR/CTA. We aimed to: (i) establish a method for full hybrid analysis of MFR/CTA, (ii) validate the inter- and intra-observer reproducibility of MFR values, and (iii) determine the diagnostic value of side-by-side versus full hybrid MFR/CTA with 15-O-water PET. Forty-four outpatients scheduled for invasive coronary angiography (ICA) were enrolled prospectively. All underwent rest/stress 15-O-water PET/CTA with ICA as reference. Within two observers of different experience, the Pearson r at global and territorial level exceeded 0.953 for rest, stress, and MFR values, as determined by Carimas software. Within and between observers, the mean differences between rest, stress, and MFR values were close to zero and the confidence intervals for 95% limits of agreement were narrow. The diagnostic performance of full hybrid PET/CTA did not outperform the side-by-side approach, but performed better than MFR without CTA at vessel level: specificity 93% (95% confidence limits: 89-97%) versus 76% (64-88%), p = 0.0004; positive predictive value 71% (55-86%) versus 51% (37-65%), p = 0.0001; accuracy 90% (84-95%) versus 77% (69-84%), p = 0.0009. MFR showed high reproducibility within and between observers of different experience. The full hybrid model was not superior to side-by-side interpretation of MFR/CTA, but proved better than MFR alone at vessel level with regard to specificity, positive predictive value, and accuracy.
Collapse
|
24
|
PET myocardial perfusion quantification: anatomy of a spreading functional technique. Clin Transl Imaging 2018. [DOI: 10.1007/s40336-018-0263-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Papanastasiou G, Williams MC, Dweck MR, Mirsadraee S, Weir N, Fletcher A, Lucatelli C, Patel D, van Beek EJR, Newby DE, Semple SIK. Multimodality quantitative assessments of myocardial perfusion using dynamic contrast enhanced magnetic resonance and 15O-labelled water positron emission tomography imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018; 2:259-271. [PMID: 30003181 DOI: 10.1109/trpms.2018.2796626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kinetic modelling of myocardial perfusion imaging data allows the absolute quantification of myocardial blood flow (MBF) and can improve the diagnosis and clinical assessment of coronary artery disease (CAD). Positron emission tomography (PET) imaging is considered the reference standard technique for absolute quantification, whilst oxygen-15 (15O)-water has been extensively implemented for MBF quantification. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has also been used for MBF quantification and showed comparable diagnostic performance against (15O)-water PET studies. We investigated for the first time the diagnostic performance of two different PET MBF analysis softwares PMOD and Carimas, for obstructive CAD detection against invasive clinical standard methods in 20 patients with known or suspected CAD. Fermi and distributed parameter modelling-derived MBF quantification from DCE-MRI was also compared against (15O)-water PET, in a subgroup of 6 patients. The sensitivity and specificity for PMOD was significantly superior for obstructive CAD detection in both per vessel (0.83, 0.90) and per patient (0.86, 0.75) analysis, against Carimas (0.75, 0.65), (0.81, 0.70), respectively. We showed strong, significant correlations between MR and PET MBF quantifications (r=0.83-0.92). However, DP and PMOD analysis demonstrated comparable and higher haemodynamic differences between obstructive versus (no, minor or non)-obstructive CAD, against Fermi and Carimas analysis. Our MR method assessments against the optimum PET reference standard technique for perfusion analysis showed promising results in per segment level and can support further multi-modality assessments in larger patient cohorts. Further MR against PET assessments may help to determine their comparative diagnostic performance for obstructive CAD detection.
Collapse
Affiliation(s)
- G Papanastasiou
- Edinburgh Imaging facility QMRI (EIf-QMRI) and the Centre for Cardiovascular Science, Edinburgh, EH16 4TJ, UK
| | - M C Williams
- Edinburgh Imaging facility QMRI (EIf-QMRI) and the Centre for Cardiovascular Science, Edinburgh, EH16 4TJ, UK
| | - M R Dweck
- Edinburgh Imaging facility QMRI (EIf-QMRI) and the Centre for Cardiovascular Science, Edinburgh, EH16 4TJ, UK
| | - S Mirsadraee
- EIf-QMRI and is now with the Royal Brompton and Harefield Hospitals NHS Trust, London, SW3 6NP, UK
| | | | | | | | - D Patel
- Department of Radiology, Royal Infirmary of Edinburgh, EH16 4SA, UK
| | | | - D E Newby
- Edinburgh Imaging facility QMRI (EIf-QMRI) and the Centre for Cardiovascular Science, Edinburgh, EH16 4TJ, UK
| | - S I K Semple
- Edinburgh Imaging facility QMRI (EIf-QMRI) and the Centre for Cardiovascular Science, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
26
|
O' Doherty J, Chalampalakis Z, Schleyer P, Nazir MS, Chiribiri A, Marsden PK. The effect of high count rates on cardiac perfusion quantification in a simultaneous PET-MR system using a cardiac perfusion phantom. EJNMMI Phys 2017; 4:31. [PMID: 29230607 PMCID: PMC5725400 DOI: 10.1186/s40658-017-0199-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PET-MRI is under investigation as a new strategy for quantitative myocardial perfusion imaging. Consideration is required as to the maximum scanner count rate in order to limit dead-time losses resulting from administered activity in the scanner field of view during the first pass of the radiotracer. RESULTS We performed a decaying-source experiment to investigate the high count-rate performance of a PET-MR system (Siemens mMR) over the expected range of activities during a clinical study. We also performed imaging of a cardiac perfusion phantom, which provides an experimental simulation of clinical transit of a simultaneous radiotracer (phantom injected activities range 252 to 997 MBq) and gadolinium-based contrast agent (GBCA). Time-activity and time-intensity curves of the aorta and myocardium compartments from PET and MR images were determined, and quantification of perfusion was then performed using a standard cardiac kinetic model. The decaying-source experiment showed a maximum noise equivalent count rate (NECRmax) of 286 kcps at a singles rate of 47.1 Mcps. NECR was maintained within 5% (NECR95%) of the NECRmax with a singles rate of 34.1 Mcps, corresponding to 310 MBq in the phantom. Count-rate performance was degraded above the singles rate of 64.9 Mcps due to the number of detection events impacting the quantitative accuracy of reconstructed images. A 10% bias in image activity concentration was observed between singles rates of 78.2 and 82.9 Mcps. Perfusion phantom experiments showed that image-based activity concentration and quantified values of perfusion were affected by count losses when the total singles rate was greater than 64.9 Mcps. This occurred during the peak arterial input function (AIF) phase of imaging for injected activities to the phantom of 600 MBq and greater. CONCLUSIONS Care should be taken to avoid high count-rate losses in simultaneous PET-MRI studies. Based on our results in phantoms, bias in reconstructed images should be avoided by adhering to a singles rate lower than 64.9 Mcps on the mMR system. Quantification of perfusion values using singles rates higher than 64.9 Mcps on this system may be compromised and should be avoided.
Collapse
Affiliation(s)
- Jim O' Doherty
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London, UK.
- Department of Molecular Imaging, Sidra Medical and Research Center, Al Luqta St, Doha, Qatar.
| | - Zacharias Chalampalakis
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London, UK
| | | | - Muhummad Sohaib Nazir
- BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Amedeo Chiribiri
- BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Paul K Marsden
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London, UK
| |
Collapse
|
27
|
Williams MC, Mirsadraee S, Dweck MR, Weir NW, Fletcher A, Lucatelli C, MacGillivray T, Golay SK, Cruden NL, Henriksen PA, Uren N, McKillop G, Lima JAC, Reid JH, van Beek EJR, Patel D, Newby DE. Computed tomography myocardial perfusion vs 15O-water positron emission tomography and fractional flow reserve. Eur Radiol 2016; 27:1114-1124. [PMID: 27334015 PMCID: PMC5306314 DOI: 10.1007/s00330-016-4404-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 11/25/2022]
Abstract
Objectives Computed tomography (CT) can perform comprehensive cardiac imaging. We compared CT coronary angiography (CTCA) and CT myocardial perfusion (CTP) with 15O-water positron emission tomography (PET) and invasive coronary angiography (ICA) with fractional flow reserve (FFR). Methods 51 patients (63 (61–65) years, 80 % male) with known/suspected coronary artery disease (CAD) underwent 320-multidetector CTCA followed by “snapshot” adenosine stress CTP. Of these 22 underwent PET and 47 ICA/FFR. Obstructive CAD was defined as CTCA stenosis >50 % and CTP hypoperfusion, ICA stenosis >70 % or FFR <0.80. Results PET hyperaemic myocardial blood flow (MBF) was lower in obstructive than non-obstructive territories defined by ICA/FFR (1.76 (1.32–2.20) vs 3.11 (2.44–3.79) mL/(g/min), P < 0.001) and CTCA/CTP (1.76 (1.32–2.20) vs 3.12 (2.44–3.79) mL/(g/min), P < 0.001). Baseline and hyperaemic CT attenuation density was lower in obstructive than non-obstructive territories (73 (71–76) vs 86 (84–88) HU, P < 0.001 and 101 (96–106) vs 111 (107–114) HU, P 0.001). PET hyperaemic MBF corrected for rate pressure product correlated with CT attenuation density (r = 0.579, P < 0.001). There was excellent per-patient sensitivity (96 %), specificity (85 %), negative predictive value (90 %) and positive predictive value (94 %) for CTCA/CTP vs ICA/FFR. Conclusion CT myocardial attenuation density correlates with 15O-water PET MBF. CTCA and CTP can accurately identify obstructive CAD. Key Points •CT myocardial perfusion can aid the assessment of suspected coronary artery disease. • CT attenuation density from “snapshot” imaging is a marker of myocardial perfusion. • CT myocardial attenuation density correlates with15O-water PET myocardial blood flow. • CT attenuation density is lower in obstructive territories defined by invasive angiography. • Diagnostic accuracy of CTCA+CTP is comparable to invasive angiography + fractional flow reserve. Electronic supplementary material The online version of this article (doi:10.1007/s00330-016-4404-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle C Williams
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK, EH16 4SB.
| | - Saeed Mirsadraee
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - Marc R Dweck
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK, EH16 4SB
| | - Nicholas W Weir
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - Alison Fletcher
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | | | - Tom MacGillivray
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK, EH16 4SB
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - Saroj K Golay
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK, EH16 4SB
| | | | | | - Neal Uren
- Edinburgh Heart Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Graham McKillop
- Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - João A C Lima
- Departments of Medicine and Radiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - John H Reid
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - Edwin J R van Beek
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK, EH16 4SB
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - Dilip Patel
- Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - David E Newby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK, EH16 4SB
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
28
|
Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease. Circulation 2016; 133:2180-96. [DOI: 10.1161/circulationaha.115.018089] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Abstract
Routine use of cardiac positron emission tomography (PET) applications has been increasing but has not replaced cardiac single-photon emission computerized tomography (SPECT) studies yet. The majority of cardiac PET tracers, with the exception of fluorine-18 fluorodeoxyglucose (18F-FDG), are not widely available, as they require either an onsite cyclotron or a costly generator for their production. 18F-FDG PET imaging has high sensitivity for the detection of hibernating/viable myocardium and has replaced Tl-201 SPECT imaging in centers equipped with a PET/CT camera. PET myocardial perfusion imaging with various tracers such as Rb-82, N-13 ammonia, and O-15 H2O has higher sensitivity and specificity than myocardial perfusion SPECT for the detection of coronary artery disease (CAD). In particular, quantitative PET measurements of myocardial perfusion help identify subclinical coronary stenosis, better define the extent and severity of CAD, and detect ischemia when there is balanced reduction in myocardial perfusion due to three-vessel or main stem CAD. Fusion images of PET perfusion and CT coronary artery calcium scoring or CT coronary angiography provide additional complementary information and improve the detection of CAD. PET studies with novel 18F-labeled perfusion tracers such as 18F-flurpiridaz and 18F-FBnTP have yielded high sensitivity and specificity in the diagnosis of CAD. These tracers are still being tested in humans, and, if approved for clinical use, they will be commercially and widely available. In addition to viability studies, 18F-FDG PET can also be utilized to detect inflammation/infection in various conditions such as endocarditis, sarcoidosis, and atherosclerosis. Some recent series have obtained encouraging results for the detection of endocarditis in patients with intracardiac devices and prosthetic valves. PET tracers for cardiac neuronal imaging, such as C-11 HED, help assess the severity of heart failure and post-transplant cardiac reinnervation, and understand the pathogenesis of arrhytmias. The other uncommon applications of cardiac PET include NaF imaging to identify calcium deposition in atherosclerotic plaques and β-amyloid imaging to diagnose cardiac amyloid involvement. 18F-FDG imaging with a novel PET/MR camera has been reported to be very sensitive and specific for the differentiation between malignant and nonmalignant cardiac masses. The other potential applications of PET/MR are cardiac infectious/inflammatory conditions such as endocarditis.
Collapse
|
30
|
Berti V, Sciagrà R, Neglia D, Pietilä M, Scholte AJ, Nekolla S, Rouzet F, Pupi A, Knuuti J. Segmental quantitative myocardial perfusion with PET for the detection of significant coronary artery disease in patients with stable angina. Eur J Nucl Med Mol Imaging 2016; 43:1522-9. [DOI: 10.1007/s00259-016-3362-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/07/2016] [Indexed: 12/21/2022]
|
31
|
Clinical use of quantitative cardiac perfusion PET: rationale, modalities and possible indications. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging 2016; 43:1530-45. [PMID: 26846913 DOI: 10.1007/s00259-016-3317-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 02/06/2023]
Abstract
Until recently, PET was regarded as a luxurious way of performing myocardial perfusion scintigraphy, with excellent image quality and diagnostic capabilities that hardly justified the additional cost and procedural effort. Quantitative perfusion PET was considered a major improvement over standard qualitative imaging, because it allows the measurement of parameters not otherwise available, but for many years its use was confined to academic and research settings. In recent years, however, several factors have contributed to the renewal of interest in quantitative perfusion PET, which has become a much more readily accessible technique due to progress in hardware and the availability of dedicated and user-friendly platforms and programs. In spite of this evolution and of the growing evidence that quantitative perfusion PET can play a role in the clinical setting, there are not yet clear indications for its clinical use. Therefore, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, decided to examine the current literature on quantitative perfusion PET to (1) evaluate the rationale for its clinical use, (2) identify the main methodological requirements, (3) identify the remaining technical difficulties, (4) define the most reliable interpretation criteria, and finally (5) tentatively delineate currently acceptable and possibly appropriate clinical indications. The present position paper must be considered as a starting point aiming to promote a wider use of quantitative perfusion PET and to encourage the conception and execution of the studies needed to definitely establish its role in clinical practice.
Collapse
|
32
|
Estimating coronary blood flow using CT transluminal attenuation flow encoding: Formulation, preclinical validation, and clinical feasibility. J Cardiovasc Comput Tomogr 2015; 9:559-66.e1. [DOI: 10.1016/j.jcct.2015.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/03/2015] [Accepted: 03/30/2015] [Indexed: 11/18/2022]
|
33
|
Harms HJ, Lubberink M, de Haan S, Knaapen P, Huisman MC, Schuit RC, Windhorst AD, Allaart CP, Lammertsma AA. Use of a Single 11C-Meta-Hydroxyephedrine Scan for Assessing Flow–Innervation Mismatches in Patients with Ischemic Cardiomyopathy. J Nucl Med 2015; 56:1706-11. [DOI: 10.2967/jnumed.115.154377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/16/2015] [Indexed: 11/16/2022] Open
|
34
|
Bakkum MJ, Danad I, Romijn MAJ, Stuijfzand WJA, Leonora RM, Tulevski II, Somsen GA, Lammertsma AA, van Kuijk C, van Rossum AC, Raijmakers PG, Knaapen P. The impact of obesity on the relationship between epicardial adipose tissue, left ventricular mass and coronary microvascular function. Eur J Nucl Med Mol Imaging 2015; 42:1562-73. [PMID: 26054890 PMCID: PMC4521095 DOI: 10.1007/s00259-015-3087-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Purpose Epicardial adipose tissue (EAT) has been linked to coronary artery disease (CAD) and coronary microvascular dysfunction. However, its injurious effect may also impact the underlying myocardium. This study aimed to determine the impact of obesity on the quantitative relationship between left ventricular mass (LVM), EAT and coronary microvascular function. Methods A total of 208 (94 men, 45 %) patients evaluated for CAD but free of coronary obstructions underwent quantitative [15O]H2O hybrid positron emission tomography (PET)/CT imaging. Coronary microvascular resistance (CMVR) was calculated as the ratio of mean arterial pressure to hyperaemic myocardial blood flow. Results Obese patients [body mass index (BMI) > 25, n = 133, 64 % of total] had more EAT (125.3 ± 47.6 vs 93.5 ± 42.1 cc, p < 0.001), a higher LVM (130.1 ± 30.4 vs 114.2 ± 29.3 g, p < 0.001) and an increased CMVR (26.6 ± 9.1 vs 22.3 ± 8.6 mmHg×ml−1×min−1×g−1, p < 0.01) as compared to nonobese patients. Male gender (β = 40.7, p < 0.001), BMI (β = 1.61, p < 0.001), smoking (β = 6.29, p = 0.03) and EAT volume (β = 0.10, p < 0.01) were identified as independent predictors of LVM. When grouped according to BMI status, EAT was only independently associated with LVM in nonobese patients. LVM, hypercholesterolaemia and coronary artery calcium score were independent predictors of CMVR. Conclusion EAT volume is associated with LVM independently of BMI and might therefore be a better predictor of cardiovascular risk than BMI. However, EAT volume was not related to coronary microvascular function after adjustments for LVM and traditional risk factors. Electronic supplementary material The online version of this article (doi:10.1007/s00259-015-3087-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M. J. Bakkum
- />Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - I. Danad
- />Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - M. A. J. Romijn
- />Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - W. J. A. Stuijfzand
- />Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - R. M. Leonora
- />Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - I. I. Tulevski
- />Cardiology Centers of the Netherlands, Amsterdam, The Netherlands
| | - G. A. Somsen
- />Cardiology Centers of the Netherlands, Amsterdam, The Netherlands
| | - A. A. Lammertsma
- />Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - C. van Kuijk
- />Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - A. C. van Rossum
- />Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - P. G. Raijmakers
- />Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - P. Knaapen
- />Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Thomassen A, Petersen H, Johansen A, Braad PE, Diederichsen ACP, Mickley H, Jensen LO, Gerke O, Simonsen JA, Thayssen P, Høilund-Carlsen PF. Quantitative myocardial perfusion by O-15-water PET: individualized vs. standardized vascular territories. Eur Heart J Cardiovasc Imaging 2015; 16:970-6. [PMID: 25944051 DOI: 10.1093/ehjci/jev111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022] Open
Abstract
AIMS Reporting of quantitative myocardial blood flow (MBF) is typically performed in standard coronary territories. However, coronary anatomy and myocardial vascular territories vary among individuals, and a coronary artery may erroneously be deemed stenosed or not if territorial demarcation is incorrect. So far, the diagnostic consequences of calculating individually vs. standardly assessed MBF values have not been reported. We examined whether individual reassignment of vascular territories would improve the diagnostic accuracy of MBF with regard to the detection of significant coronary artery disease (CAD). METHODS AND RESULTS Forty-four patients with suspected CAD were included prospectively and underwent coronary CT-angiography and quantitative MBF assessment with O-15-water PET followed by invasive, quantitative coronary angiography, which served as reference. MBF was calculated in the vascular territories during adenosine stress according to a standardized 17-segment American Heart Association model and an individualized model, using CT-angiography to adjust the coronary territories to their feeding vessels. Individually defined territories deviated from standard territories in 52% of patients. However, MBF in the three coronary territories defined by standard and individualized models did not differ significantly, except in one patient, in whom the MBF of an individualized coronary territory deviated sufficiently as to change the test from a false positive to a true negative result in this particular territory. CONCLUSION Disparity between standardized and individualized vascular territories was present in half of the patients, but had little clinical impact. Still, caution should be taken not always to rely on standard territories, as this may at times cause misinterpretation.
Collapse
Affiliation(s)
- Anders Thomassen
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Henrik Petersen
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Allan Johansen
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Poul-Erik Braad
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | | | - Hans Mickley
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | | | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark Centre of Health Economics Research, University of Southern Denmark, Odense, Denmark
| | - Jane Angel Simonsen
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Per Thayssen
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
36
|
Incremental Value of Hybrid PET/CT in Patients with Coronary Artery Disease. CURRENT CARDIOVASCULAR IMAGING REPORTS 2015. [DOI: 10.1007/s12410-014-9312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Abstract
Positron-emitting myocardial flow radiotracers such as (15)O-water, (13)N-ammonia and (82)Rubidium in conjunction with positron-emission-tomography (PET) are increasingly applied in clinical routine for coronary artery disease (CAD) detection, yielding high diagnostic accuracy, while providing valuable information on cardiovascular (CV) outcome. Owing to a cyclotron dependency of (15)O-water and (13)N-ammonia, their clinical use for PET myocardial perfusion imaging is limited to a few centers. This limitation could be overcome by the increasing use of (82)Rubidium as it can be eluted from a commercially available (82)Strontium generator and, thus, is independent of a nearby cyclotron. Another novel F-18-labeled myocardial flow radiotracer is flurpiridaz which has attracted increasing interest due to its excellent radiotracer characteristics for perfusion and flow imaging with PET. In particular, the relatively long half-life of 109 minutes of flurpiridaz may afford a general application of this radiotracer for PET perfusion imaging comparable to technetium-99m-labeled single-photon emission computed tomography (SPECT). The ability of PET in conjunction with several radiotracers to assess myocardial blood flow (MBF) in ml/g/min at rest and during vasomotor stress has contributed to unravel pathophysiological mechanisms underlying coronary artery disease (CAD), to improve the detection and characterization of CAD burden in multivessel disease, and to provide incremental prognostic information in individuals with subclinical and clinically-manifest CAD. The concurrent evaluation of myocardial perfusion and MBF may lead to a new era of a personalized, image-guided therapy approach that may offer potential to further improve clinical outcome in CV disease patients but needing validation in large-scale clinical trials.
Collapse
Affiliation(s)
- Thomas H Schindler
- Division of Nuclear Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Stuijfzand WJ, Uusitalo V, Kero T, Danad I, Rijnierse MT, Saraste A, Raijmakers PG, Lammertsma AA, Harms HJ, Heymans MW, Huisman MC, Marques KM, Kajander SA, Pietilä M, Sörensen J, Royen NV, Knuuti J, Knaapen P. Relative Flow Reserve Derived From Quantitative Perfusion Imaging May Not Outperform Stress Myocardial Blood Flow for Identification of Hemodynamically Significant Coronary Artery Disease. Circ Cardiovasc Imaging 2015; 8:CIRCIMAGING.114.002400. [DOI: 10.1161/circimaging.114.002400] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wijnand J. Stuijfzand
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Valtteri Uusitalo
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Tanja Kero
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Ibrahim Danad
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Mischa T. Rijnierse
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Antti Saraste
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Pieter G. Raijmakers
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Adriaan A. Lammertsma
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Hans J. Harms
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Martijn W. Heymans
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Marc C. Huisman
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Koen M. Marques
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Sami A. Kajander
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Mikko Pietilä
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Jens Sörensen
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Niels van Royen
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Juhani Knuuti
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| | - Paul Knaapen
- From the Departments of Cardiology (W.J.S., I.D., M.T.R., K.M.M., N.v.R., P.K.), Radiology and Nuclear Medicine (P.G.R., A.A.L, H.J.H., M.C.H.), Department of Epidemiology and Biostatistics (M.W.H.), VU University Medical Center, Amsterdam, The Netherlands; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland (V.U., A.S., S.A.K, M.P., J.K.); and Department of Nuclear Medicine and PET, Institution of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala
| |
Collapse
|
39
|
Quantitative Assessment of Myocardial Perfusion in the Detection of Significant Coronary Artery Disease. J Am Coll Cardiol 2014; 64:1464-75. [DOI: 10.1016/j.jacc.2014.05.069] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023]
|
40
|
Danad I, Raijmakers PG, Harms HJ, Heymans MW, van Royen N, Lubberink M, Boellaard R, van Rossum AC, Lammertsma AA, Knaapen P. Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: a [15O]H2O PET study. Eur Heart J 2014; 35:2094-105. [PMID: 24780500 DOI: 10.1093/eurheartj/ehu170] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Myocardial ischaemia occurs principally in the subendocardial layer, whereas conventional myocardial perfusion imaging provides no information on the transmural myocardial blood flow (MBF) distribution. Subendocardial perfusion measurements and quantification of the transmural perfusion gradient (TPG) could be more sensitive and specific for the detection of coronary artery disease (CAD). The current study aimed to determine the impact of lesion severity as assessed by the fractional flow reserve (FFR) on subendocardial perfusion and the TPG using [(15)O]H2O positron emission tomography (PET) imaging in patients evaluated for CAD. METHODS AND RESULTS Sixty-six patients with anginal chest pain were prospectively enrolled and underwent [(15)O]H2O myocardial perfusion PET imaging. Subsequently, invasive coronary angiography was performed and FFR obtained in all coronary arteries irrespective of the PET imaging results. Thirty (45%) patients were diagnosed with significant CAD (i.e. FFR ≤0.80), whereas on a per vessel analysis (n = 198), 53 (27%) displayed a positive FFR. Transmural hyperaemic MBF decreased significantly from 3.09 ± 1.16 to 1.67 ± 0.57 mL min(-1) g(-1) (P < 0.001) in non-ischaemic and ischaemic myocardium, respectively. The TPG decreased during hyperaemia when compared with baseline (1.20 ± 0.14 vs. 0.94 ± 0.17, P < 0.001), and was lower in arteries with a positive FFR (0.97 ± 0.16 vs. 0.88 ± 0.18, P < 0.01). A TPG threshold of 0.94 yielded an accuracy to detect CAD of 59%, which was inferior to transmural MBF with an optimal cutoff of 2.20 mL min(-1) g(-1) and an accuracy of 85% (P < 0.001). Diagnostic accuracy of subendocardial perfusion measurements was comparable with transmural MBF (83 vs. 85%, respectively, P = NS). CONCLUSION Cardiac [(15)O]H2O PET imaging is able to distinguish subendocardial from subepicardial perfusion in the myocardium of normal dimensions. Hyperaemic TPG is significantly lower in ischaemic myocardium. This technique can potentially be employed to study subendocardial perfusion impairment in more detail. However, the diagnostic accuracy of subendocardial hyperaemic perfusion and TPG appears to be limited compared with quantitative transmural MBF, warranting further study.
Collapse
Affiliation(s)
- Ibrahim Danad
- Department of Cardiology, VU University Medical Center, Amsterdam, De Boelelaan 1117, 1081 HV, The Netherlands
| | - Pieter G Raijmakers
- Department of Nuclear Medicine & PET Research and Radiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Hendrik J Harms
- Department of Nuclear Medicine & PET Research and Radiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Martijn W Heymans
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, De Boelelaan 1117, 1081 HV, The Netherlands
| | - Mark Lubberink
- Uppsala University PET Center, Uppsala University Hospital, Uppsala, Sweden
| | - Ronald Boellaard
- Department of Nuclear Medicine & PET Research and Radiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology, VU University Medical Center, Amsterdam, De Boelelaan 1117, 1081 HV, The Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine & PET Research and Radiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Knaapen
- Department of Cardiology, VU University Medical Center, Amsterdam, De Boelelaan 1117, 1081 HV, The Netherlands
| |
Collapse
|