1
|
Khera R, Asnani AH, Krive J, Addison D, Zhu H, Vasbinder A, Fleming MR, Arnaout R, Razavi P, Okwuosa TM. Artificial Intelligence to Enhance Precision Medicine in Cardio-Oncology: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2025; 18:e000097. [PMID: 39989357 DOI: 10.1161/hcg.0000000000000097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Artificial intelligence is poised to transform cardio-oncology by enabling personalized care for patients with cancer, who are at a heightened risk of cardiovascular disease due to both the disease and its treatments. The rising prevalence of cancer and the availability of multiple new therapeutic options has resulted in improved survival among patients with cancer and has expanded the scope of cardio-oncology to not only short-term but also long-term cardiovascular risks resulting from both cancer and its treatments. However, there is considerable heterogeneity in cardiovascular risk, driven by the nature of the malignancy as well as each individual's unique characteristics. The use of novel therapies, such as targeted therapies and immune checkpoint inhibitors, across multiple cancer groups has also broadened the populations among which cardiotoxicity has become an important consideration of therapy. Therefore, the ability to understand and personalize cardiovascular risk management in patients with cancer is a key target for artificial intelligence, which can deduce and respond to complex patterns within the data. These advances necessitate an overview of established biomarkers of risk, spanning advanced imaging, diagnostic testing, and multi-omics, the evidence supporting their use, and the proven and proposed role of artificial intelligence in refining this risk to attain greater precision in risk prediction and management in cardio-oncologic care.
Collapse
|
2
|
Kwon D, Kang H, Lee D, Kim YC. Deep learning-based prediction of atrial fibrillation from polar transformed time-frequency electrocardiogram. PLoS One 2025; 20:e0317630. [PMID: 40063554 PMCID: PMC11892834 DOI: 10.1371/journal.pone.0317630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/31/2024] [Indexed: 05/13/2025] Open
Abstract
Portable and wearable electrocardiogram (ECG) devices are increasingly utilized in healthcare for monitoring heart rhythms and detecting cardiac arrhythmias or other heart conditions. The integration of ECG signal visualization with AI-based abnormality detection empowers users to independently and confidently assess their physiological signals. In this study, we investigated a novel method for visualizing ECG signals using polar transformations of short-time Fourier transform (STFT) spectrograms and evaluated the performance of deep convolutional neural networks (CNNs) in predicting atrial fibrillation from these polar transformed spectrograms. The ECG data, which are available from the PhysioNet/CinC Challenge 2017, were categorized into four classes: normal sinus rhythm, atrial fibrillation, other rhythms, and noise. Preprocessing steps included ECG signal filtering, STFT-based spectrogram generation, and reverse polar transformation to generate final polar spectrogram images. These images were used as inputs for deep CNN models, where three pre-trained deep CNNs were used for comparisons. The results demonstrated that deep learning-based predictions using polar transformed spectrograms were comparable to existing methods. Furthermore, the polar transformed images offer a compact and intuitive representation of rhythm characteristics in ECG recordings, highlighting their potential for wearable applications.
Collapse
Affiliation(s)
- Daehyun Kwon
- Medical Artificial Intelligence Laboratory, Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Republic of Korea
| | - Hanbit Kang
- Medical Artificial Intelligence Laboratory, Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Republic of Korea
| | - Dongwoo Lee
- Medical Artificial Intelligence Laboratory, Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Republic of Korea
| | - Yoon-Chul Kim
- Medical Artificial Intelligence Laboratory, Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
3
|
Huang JT, Tseng CH, Huang WM, Yu WC, Cheng HM, Chao HL, Chiang CE, Chen CH, Yang AC, Sung SH. Comparison of machine learning and conventional criteria in detecting left ventricular hypertrophy and prognosis with electrocardiography. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2025; 6:252-260. [PMID: 40110220 PMCID: PMC11914727 DOI: 10.1093/ehjdh/ztaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 03/22/2025]
Abstract
Aims Left ventricular hypertrophy (LVH) is clinically important; current electrocardiography (ECG) diagnostic criteria are inadequate for early detection. This study aimed to develop an artificial intelligence (AI)-based algorithm to improve the accuracy and prognostic value of ECG criteria for LVH detection. Methods and results A total of 42 016 patients (64.3 ± 16.5 years, 55.3% male) were enrolled. LV mass index was calculated from echocardiographic measurements. Left ventricular hypertrophy screening utilized ECG criteria, including Sokolow-Lyon, Cornell product, Cornell/strain index, Framingham criterion, and Peguero-Lo Presti. An AI algorithm using CatBoost was developed and validated (training dataset 80% and testing dataset 20%). F1 scores, reflecting the harmonic mean of precision and recall, were calculated. Mortality data were obtained through linkage with the National Death Registry. The CatBoost-based AI algorithm outperformed conventional ECG criteria in detecting LVH, achieving superior sensitivity, specificity, positive predictive value, F1 score, and area under curve. Significant features to predict LVH involved QRS and P-wave morphology. During a median follow-up duration of 10.1 years, 1655 deaths occurred in the testing dataset. Cox regression analyses showed that LVH identified by AI algorithm (hazard ratio and 95% confidence interval: 1.587, 1.309-1.924), Sokolow-Lyon (1.19, 1.038-1.365), Cornell product (1.301, 1.124-1.505), Cornell/strain index (1.306, 1.185-1.439), Framingham criterion (1.174, 1.062-1.298), and echocardiography-confirmed LVH (1.124, 1.019-1.239) were all significantly associated with mortality. Notably, AI-diagnosed LVH was more predictive of mortality than echocardiography-confirmed LVH. Conclusion Artificial intelligence-based LVH diagnosis outperformed conventional ECG criteria and was a superior predictor of mortality compared to echocardiography-confirmed LVH.
Collapse
Affiliation(s)
- Jui-Tzu Huang
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei 112, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
| | - Chih-Hsueh Tseng
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei 112, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
| | - Wei-Ming Huang
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei 112, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
- Department of Medicine, Kinmen Hospital, Ministry of Health and Welfare, No. 2, Fuxing Rd., Jinhu Township, Kinmen County 891, Taiwan
| | - Wen-Chung Yu
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei 112, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
| | - Hao-Min Cheng
- Department of Internal Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
| | - Hsi-Lu Chao
- Department of Computer Science, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
| | - Chern-En Chiang
- Department of Internal Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
- General Clinical Research Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei 112, Taiwan
| | - Chen-Huan Chen
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei 112, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
| | - Albert C Yang
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
| | - Shih-Hsien Sung
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei 112, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
- General Clinical Research Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei 112, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
| |
Collapse
|
4
|
Fang Y, Wu Y, Gao L. Machine learning-based myocardial infarction bibliometric analysis. Front Med (Lausanne) 2025; 12:1477351. [PMID: 39981082 PMCID: PMC11839716 DOI: 10.3389/fmed.2025.1477351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Purpose This study analyzed the research trends in machine learning (ML) pertaining to myocardial infarction (MI) from 2008 to 2024, aiming to identify emerging trends and hotspots in the field, providing insights into the future directions of research and development in ML for MI. Additionally, it compared the contributions of various countries, authors, and agencies to the field of ML research focused on MI. Method A total of 1,036 publications were collected from the Web of Science Core Collection database. CiteSpace 6.3.R1, Bibliometrix, and VOSviewer were utilized to analyze bibliometric characteristics, determining the number of publications, countries, institutions, authors, keywords, and cited authors, documents, and journals in popular scientific fields. CiteSpace was used for temporal trend analysis, Bibliometrix for quantitative country and institutional analysis, and VOSviewer for visualization of collaboration networks. Results Since the emergence of research literature on medical imaging and machine learning (ML) in 2008, interest in this field has grown rapidly, particularly since the pivotal moment in 2016. The ML and MI domains, represented by China and the United States, have experienced swift development in research after 2015, albeit with the United States significantly outperforming China in research quality (as evidenced by the higher impact factors of journals and citation counts of publications from the United States). Institutional collaborations have formed, notably between Harvard Medical School in the United States and Capital Medical University in China, highlighting the need for enhanced cooperation among domestic and international institutions. In the realm of MI and ML research, cooperative teams led by figures such as Dey, Damini, and Berman, Daniel S. in the United States have emerged, indicating that Chinese scholars should strengthen their collaborations and focus on both qualitative and quantitative development. The overall direction of MI and ML research trends toward Medicine, Medical Sciences, Molecular Biology, and Genetics. In particular, publications in "Circulation" and "Computers in Biology and Medicine" from the United States hold prominent positions in this study. Conclusion This paper presents a comprehensive exploration of the research hotspots, trends, and future directions in the field of MI and ML over the past two decades. The analysis reveals that deep learning is an emerging research direction in MI, with neural networks playing a crucial role in early diagnosis, risk assessment, and rehabilitation therapy.
Collapse
Affiliation(s)
- Ying Fang
- Xiaoshan District Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | | | | |
Collapse
|
5
|
Zhang L, Liu B, Li S, Wang J, Mu Y, Zhou X, Sheng L. Deep learning-based measurement of echocardiographic data and its application in the diagnosis of sudden cardiac death. Biotechnol Genet Eng Rev 2024; 40:4466-4478. [PMID: 37179495 DOI: 10.1080/02648725.2023.2213041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
This study aimed to evaluate the potential of deep learning applied to the measurement of echocardiographic data in patients with sudden cardiac death (SCD). 320 SCD patients who met the inclusion and exclusion criteria underwent clinical evaluation, including age, sex, BMI, hypertension, diabetes, cardiac function classification, and echocardiography. The diagnostic value of deep learning model was observed by dividing the patients into two groups: training group (n=160) and verification group (n=160), as well as two groups of healthy volunteers (n=200 for each group) during the same period. Logistic regression analysis showed that MLVWT, LVEDD, LVEF, LVOT-PG, LAD, E/e' were all risk factors for SCD. Subsequently, a deep learning-based model was trained using the collected images of the training group. The optimal model was selected based on the identification accuracy of the validation group and showed an accuracy of 91.8%, sensitivity of 80.00%, and specificity of 91.90% in the training group. The AUC value of the ROC curve of the model was 0.877 for the training group and 0.995 for the validation groups. This approach demonstrates high diagnostic value and accuracy in predicting SCD, which is clinically important for the early detection and diagnosis of SCD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bohan Liu
- Department of cardiovascular Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sulei Li
- Department of cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Cardiovascular Department, the 6th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Mu
- Cardiovascular Department, the 6th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuan Zhou
- Department of cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Li Sheng
- Department of cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Echefu G, Shah R, Sanchez Z, Rickards J, Brown SA. Artificial intelligence: Applications in cardio-oncology and potential impact on racial disparities. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 48:100479. [PMID: 39582990 PMCID: PMC11583718 DOI: 10.1016/j.ahjo.2024.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Numerous cancer therapies have detrimental cardiovascular effects on cancer survivors. Cardiovascular toxicity can span the course of cancer treatment and is influenced by several factors. To mitigate these risks, cardio-oncology has evolved, with an emphasis on prevention and treatment of cardiovascular complications resulting from the presence of cancer and cancer therapy. Artificial intelligence (AI) holds multifaceted potential to enhance cardio-oncologic outcomes. AI algorithms are currently utilizing clinical data input to identify patients at risk for cardiac complications. Additional application opportunities for AI in cardio-oncology involve multimodal cardiovascular imaging, where algorithms can also utilize imaging input to generate predictive risk profiles for cancer patients. The impact of AI extends to digital health tools, playing a pivotal role in the development of digital platforms and wearable technologies. Multidisciplinary teams have been formed to implement and evaluate the efficacy of these technologies, assessing AI-driven clinical decision support tools. Other avenues similarly support practical application of AI in clinical practice, such as incorporation into electronic health records (EHRs) to detect patients at risk for cardiovascular diseases. While these AI applications may help improve preventive measures and facilitate tailored treatment to patients, they are also capable of perpetuating and exacerbating healthcare disparities, if trained on limited, homogenous datasets. However, if trained and operated appropriately, AI holds substantial promise in positively influencing clinical practice in cardio-oncology. In this review, we explore the impact of AI on cardio-oncology care, particularly regarding predicting cardiotoxicity from cancer treatments, while addressing racial and ethnic biases in algorithmic implementation.
Collapse
Affiliation(s)
- Gift Echefu
- Division of Cardiovascular Medicine, University of Tennessee, Memphis, TN, USA
| | - Rushabh Shah
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zanele Sanchez
- School for Advanced Studies, Miami, FL, USA
- Miami Dade College, Miami, FL, USA
| | - John Rickards
- Mercer University School of Medicine, Macon, GA, USA
| | - Sherry-Ann Brown
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Heart Innovation and Equity Research (HIER) Group, Miami, FL, USA
| |
Collapse
|
7
|
Armoundas AA, Narayan SM, Arnett DK, Spector-Bagdady K, Bennett DA, Celi LA, Friedman PA, Gollob MH, Hall JL, Kwitek AE, Lett E, Menon BK, Sheehan KA, Al-Zaiti SS. Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement From the American Heart Association. Circulation 2024; 149:e1028-e1050. [PMID: 38415358 PMCID: PMC11042786 DOI: 10.1161/cir.0000000000001201] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A major focus of academia, industry, and global governmental agencies is to develop and apply artificial intelligence and other advanced analytical tools to transform health care delivery. The American Heart Association supports the creation of tools and services that would further the science and practice of precision medicine by enabling more precise approaches to cardiovascular and stroke research, prevention, and care of individuals and populations. Nevertheless, several challenges exist, and few artificial intelligence tools have been shown to improve cardiovascular and stroke care sufficiently to be widely adopted. This scientific statement outlines the current state of the art on the use of artificial intelligence algorithms and data science in the diagnosis, classification, and treatment of cardiovascular disease. It also sets out to advance this mission, focusing on how digital tools and, in particular, artificial intelligence may provide clinical and mechanistic insights, address bias in clinical studies, and facilitate education and implementation science to improve cardiovascular and stroke outcomes. Last, a key objective of this scientific statement is to further the field by identifying best practices, gaps, and challenges for interested stakeholders.
Collapse
|
8
|
Moreno-Sánchez PA, García-Isla G, Corino VDA, Vehkaoja A, Brukamp K, van Gils M, Mainardi L. ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review. Comput Biol Med 2024; 172:108235. [PMID: 38460311 DOI: 10.1016/j.compbiomed.2024.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/11/2024]
Abstract
Cardiovascular diseases (CVD) are a leading cause of death globally, and result in significant morbidity and reduced quality of life. The electrocardiogram (ECG) plays a crucial role in CVD diagnosis, prognosis, and prevention; however, different challenges still remain, such as an increasing unmet demand for skilled cardiologists capable of accurately interpreting ECG. This leads to higher workload and potential diagnostic inaccuracies. Data-driven approaches, such as machine learning (ML) and deep learning (DL) have emerged to improve existing computer-assisted solutions and enhance physicians' ECG interpretation of the complex mechanisms underlying CVD. However, many ML and DL models used to detect ECG-based CVD suffer from a lack of explainability, bias, as well as ethical, legal, and societal implications (ELSI). Despite the critical importance of these Trustworthy Artificial Intelligence (AI) aspects, there is a lack of comprehensive literature reviews that examine the current trends in ECG-based solutions for CVD diagnosis or prognosis that use ML and DL models and address the Trustworthy AI requirements. This review aims to bridge this knowledge gap by providing a systematic review to undertake a holistic analysis across multiple dimensions of these data-driven models such as type of CVD addressed, dataset characteristics, data input modalities, ML and DL algorithms (with a focus on DL), and aspects of Trustworthy AI like explainability, bias and ethical considerations. Additionally, within the analyzed dimensions, various challenges are identified. To these, we provide concrete recommendations, equipping other researchers with valuable insights to understand the current state of the field comprehensively.
Collapse
Affiliation(s)
| | - Guadalupe García-Isla
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Italy
| | - Valentina D A Corino
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Italy
| | - Antti Vehkaoja
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Luca Mainardi
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Italy
| |
Collapse
|
9
|
Raileanu G, de Jong JSSG. Electrocardiogram Interpretation Using Artificial Intelligence: Diagnosis of Cardiac and Extracardiac Pathologic Conditions. How Far Has Machine Learning Reached? Curr Probl Cardiol 2024; 49:102097. [PMID: 37739276 DOI: 10.1016/j.cpcardiol.2023.102097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Artificial intelligence (AI) is already widely used in different fields of medicine, making possible the integration of the paraclinical exams with the clinical findings in patients, for a more accurate and rapid diagnosis and treatment decision. The electrocardiogram remains one of the most important, fastest, cheapest, and noninvasive methods of diagnosis in cardiology, despite the rapid development and progression of the technology. Even if studied a long time ago, it still has a lot of less understood features that, with a better understanding, can give more clues to a correct and prompt diagnosis in a short time. The use of AI in the interpretation of the ECG improved the accuracy and the time to diagnosis in different cardiovascular diseases, and more than this, explaining the decision to make AI diagnosis improved the human understanding of the different features of the ECG that might be considered for a more accurate diagnosis. The purpose of this article is to provide an overview of the most recently published articles about the use of AI in ECG interpretation.
Collapse
Affiliation(s)
- Gabriela Raileanu
- Department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands.
| | - Jonas S S G de Jong
- Department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Kolasa K, Admassu B, Hołownia-Voloskova M, Kędzior KJ, Poirrier JE, Perni S. Systematic reviews of machine learning in healthcare: a literature review. Expert Rev Pharmacoecon Outcomes Res 2024; 24:63-115. [PMID: 37955147 DOI: 10.1080/14737167.2023.2279107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION The increasing availability of data and computing power has made machine learning (ML) a viable approach to faster, more efficient healthcare delivery. METHODS A systematic literature review (SLR) of published SLRs evaluating ML applications in healthcare settings published between1 January 2010 and 27 March 2023 was conducted. RESULTS In total 220 SLRs covering 10,462 ML algorithms were reviewed. The main application of AI in medicine related to the clinical prediction and disease prognosis in oncology and neurology with the use of imaging data. Accuracy, specificity, and sensitivity were provided in 56%, 28%, and 25% SLRs respectively. Internal and external validation was reported in 53% and less than 1% of the cases respectively. The most common modeling approach was neural networks (2,454 ML algorithms), followed by support vector machine and random forest/decision trees (1,578 and 1,522 ML algorithms, respectively). EXPERT OPINION The review indicated considerable reporting gaps in terms of the ML's performance, both internal and external validation. Greater accessibility to healthcare data for developers can ensure the faster adoption of ML algorithms into clinical practice.
Collapse
Affiliation(s)
- Katarzyna Kolasa
- Division of Health Economics and Healthcare Management, Kozminski University, Warsaw, Poland
| | - Bisrat Admassu
- Division of Health Economics and Healthcare Management, Kozminski University, Warsaw, Poland
| | | | | | | | | |
Collapse
|
11
|
Kumari V, Kumar N, Kumar K S, Kumar A, Skandha SS, Saxena S, Khanna NN, Laird JR, Singh N, Fouda MM, Saba L, Singh R, Suri JS. Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look. J Cardiovasc Dev Dis 2023; 10:485. [PMID: 38132653 PMCID: PMC10743870 DOI: 10.3390/jcdd10120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND MOTIVATION Coronary artery disease (CAD) has the highest mortality rate; therefore, its diagnosis is vital. Intravascular ultrasound (IVUS) is a high-resolution imaging solution that can image coronary arteries, but the diagnosis software via wall segmentation and quantification has been evolving. In this study, a deep learning (DL) paradigm was explored along with its bias. METHODS Using a PRISMA model, 145 best UNet-based and non-UNet-based methods for wall segmentation were selected and analyzed for their characteristics and scientific and clinical validation. This study computed the coronary wall thickness by estimating the inner and outer borders of the coronary artery IVUS cross-sectional scans. Further, the review explored the bias in the DL system for the first time when it comes to wall segmentation in IVUS scans. Three bias methods, namely (i) ranking, (ii) radial, and (iii) regional area, were applied and compared using a Venn diagram. Finally, the study presented explainable AI (XAI) paradigms in the DL framework. FINDINGS AND CONCLUSIONS UNet provides a powerful paradigm for the segmentation of coronary walls in IVUS scans due to its ability to extract automated features at different scales in encoders, reconstruct the segmented image using decoders, and embed the variants in skip connections. Most of the research was hampered by a lack of motivation for XAI and pruned AI (PAI) models. None of the UNet models met the criteria for bias-free design. For clinical assessment and settings, it is necessary to move from a paper-to-practice approach.
Collapse
Affiliation(s)
- Vandana Kumari
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Naresh Kumar
- Department of Applied Computational Science and Engineering, G L Bajaj Institute of Technology and Management, Greater Noida 201310, India
| | - Sampath Kumar K
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Ashish Kumar
- School of CSET, Bennett University, Greater Noida 201310, India;
| | - Sanagala S. Skandha
- Department of CSE, CMR College of Engineering and Technology, Hyderabad 501401, India;
| | - Sanjay Saxena
- Department of Computer Science and Engineering, IIT Bhubaneswar, Bhubaneswar 751003, India;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era, Deemed to be University, Dehradun 248002, India;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy;
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India;
| | - Jasjit S. Suri
- Stroke Diagnostics and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Science & Engineering, Graphic Era, Deemed to be University, Dehradun 248002, India
- Monitoring and Diagnosis Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
12
|
Chen SF, Loguercio S, Chen KY, Lee SE, Park JB, Liu S, Sadaei HJ, Torkamani A. Artificial Intelligence for Risk Assessment on Primary Prevention of Coronary Artery Disease. CURRENT CARDIOVASCULAR RISK REPORTS 2023; 17:215-231. [DOI: 10.1007/s12170-023-00731-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 01/04/2025]
Abstract
Abstract
Purpose of Review
Coronary artery disease (CAD) is a common and etiologically complex disease worldwide. Current guidelines for primary prevention, or the prevention of a first acute event, include relatively simple risk assessment and leave substantial room for improvement both for risk ascertainment and selection of prevention strategies. Here, we review how advances in big data and predictive modeling foreshadow a promising future of improved risk assessment and precision medicine for CAD.
Recent Findings
Artificial intelligence (AI) has improved the utility of high dimensional data, providing an opportunity to better understand the interplay between numerous CAD risk factors. Beyond applications of AI in cardiac imaging, the vanguard application of AI in healthcare, recent translational research is also revealing a promising path for AI in multi-modal risk prediction using standard biomarkers, genetic and other omics technologies, a variety of biosensors, and unstructured data from electronic health records (EHRs). However, gaps remain in clinical validation of AI models, most notably in the actionability of complex risk prediction for more precise therapeutic interventions.
Summary
The recent availability of nation-scale biobank datasets has provided a tremendous opportunity to richly characterize longitudinal health trajectories using health data collected at home, at laboratories, and through clinic visits. The ever-growing availability of deep genotype-phenotype data is poised to drive a transition from simple risk prediction algorithms to complex, “data-hungry,” AI models in clinical decision-making. While AI models provide the means to incorporate essentially all risk factors into comprehensive risk prediction frameworks, there remains a need to wrap these predictions in interpretable frameworks that map to our understanding of underlying biological mechanisms and associated personalized intervention. This review explores recent advances in the role of machine learning and AI in CAD primary prevention and highlights current strengths as well as limitations mediating potential future applications.
Collapse
|
13
|
Zworth M, Kareemi H, Boroumand S, Sikora L, Stiell I, Yadav K. Machine learning for the diagnosis of acute coronary syndrome using a 12-lead ECG: a systematic review. CAN J EMERG MED 2023; 25:818-827. [PMID: 37665551 DOI: 10.1007/s43678-023-00572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVES Prompt diagnosis of acute coronary syndrome (ACS) using a 12-lead electrocardiogram (ECG) is a critical task for emergency physicians. While computerized algorithms for ECG interpretation are limited in their accuracy, machine learning (ML) models have shown promise in several areas of clinical medicine. We performed a systematic review to compare the performance of ML-based ECG analysis to clinician or non-ML computerized ECG interpretation in the diagnosis of ACS for emergency department (ED) or prehospital patients. METHODS We searched Medline, Embase, Cochrane Central, and CINAHL databases from inception to May 18, 2022. We included studies that compared ML algorithms to either clinicians or non-ML based software in their ability to diagnose ACS using only a 12-lead ECG, in adult patients experiencing chest pain or symptoms concerning for ACS in the ED or prehospital setting. We used QUADAS-2 for risk of bias assessment. Prospero registration CRD42021264765. RESULTS Our search yielded 1062 abstracts. 10 studies met inclusion criteria. Five model types were tested, including neural networks, random forest, and gradient boosting. In five studies with complete performance data, ML models were more sensitive but less specific (sensitivity range 0.59-0.98, specificity range 0.44-0.95) than clinicians (sensitivity range 0.22-0.93, specificity range 0.63-0.98) in diagnosing ACS. In four studies that reported it, ML models had better discrimination (area under ROC curve range 0.79-0.98) than clinicians (area under ROC curve 0.67-0.78). Heterogeneity in both methodology and reporting methods precluded a meta-analysis. Several studies had high risk of bias due to patient selection, lack of external validation, and unreliable reference standards for ACS diagnosis. CONCLUSIONS ML models have overall higher discrimination and sensitivity but lower specificity than clinicians and non-ML software in ECG interpretation for the diagnosis of ACS. ML-based ECG interpretation could potentially serve a role as a "safety net", alerting emergency care providers to a missed acute MI when it has not been diagnosed. More rigorous primary research is needed to definitively demonstrate the ability of ML to outperform clinicians at ECG interpretation.
Collapse
Affiliation(s)
- Max Zworth
- Department of Emergency Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Hashim Kareemi
- Department of Emergency Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Suzanne Boroumand
- Department of Family Medicine, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
| | - Lindsey Sikora
- Health Sciences Library, University of Ottawa, Ottawa, ON, Canada
| | - Ian Stiell
- Department of Emergency Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Krishan Yadav
- Department of Emergency Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Panjiyar BK, Davydov G, Nashat H, Ghali S, Afifi S, Suryadevara V, Habab Y, Hutcheson A, Arcia Franchini AP. A Systematic Review: Do the Use of Machine Learning, Deep Learning, and Artificial Intelligence Improve Patient Outcomes in Acute Myocardial Ischemia Compared to Clinician-Only Approaches? Cureus 2023; 15:e43003. [PMID: 37674942 PMCID: PMC10478604 DOI: 10.7759/cureus.43003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023] Open
Abstract
Cardiovascular diseases (CVDs) present a significant global health challenge and remain a primary cause of death. Early detection and intervention are crucial for improved outcomes in acute coronary syndrome (ACS), particularly acute myocardial infarction (AMI) cases. Artificial intelligence (AI) can detect heart disease early by analyzing patient information and electrocardiogram (ECG) data, providing invaluable insights into this critical health issue. However, the imbalanced nature of ECG and patient data presents challenges for traditional machine learning (ML) algorithms in performing unbiasedly. Investigators have proposed various data-level and algorithm-level solutions to overcome these challenges. In this study, we used a systematic literature review (SLR) approach to give an overview of the current literature and to highlight the difficulties of utilizing ML, deep learning (DL), and AI algorithms in predicting, diagnosing, and prognosis of heart diseases. We reviewed 181 articles from reputable journals published between 2013 and June 15, 2023, focusing on eight selected papers for in-depth analysis. The analysis considered factors such as heart disease type, algorithms used, applications, and proposed solutions and compared the benefits of algorithms combined with clinicians versus clinicians alone. This systematic review revealed that the current ML-based diagnostic approaches face several open problems and issues when implementing ML, DL, and AI in real-life settings. Although these algorithms show higher sensitivities, specificities, and accuracies in detecting heart disease, we must address the ethical concerns while implementing these models into clinical practice. The transparency of how these algorithms operate remains a challenge. Nevertheless, further exploration and research in ML, DL, and AI are necessary to overcome these challenges and fully harness their potential to improve health outcomes for patients with AMI.
Collapse
Affiliation(s)
- Binay K Panjiyar
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Gershon Davydov
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hiba Nashat
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sally Ghali
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shadin Afifi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vineet Suryadevara
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Yaman Habab
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Alana Hutcheson
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ana P Arcia Franchini
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
15
|
Bhagawati M, Paul S, Agarwal S, Protogeron A, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Tomazu O, Turk M, Faa G, Tsoulfas G, Laird JR, Rathore V, Johri AM, Viskovic K, Kalra M, Balestrieri A, Nicolaides A, Singh IM, Chaturvedi S, Paraskevas KI, Fouda MM, Saba L, Suri JS. Cardiovascular disease/stroke risk stratification in deep learning framework: a review. Cardiovasc Diagn Ther 2023; 13:557-598. [PMID: 37405023 PMCID: PMC10315429 DOI: 10.21037/cdt-22-438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/17/2023] [Indexed: 07/06/2023]
Abstract
The global mortality rate is known to be the highest due to cardiovascular disease (CVD). Thus, preventive, and early CVD risk identification in a non-invasive manner is vital as healthcare cost is increasing day by day. Conventional methods for risk prediction of CVD lack robustness due to the non-linear relationship between risk factors and cardiovascular events in multi-ethnic cohorts. Few recently proposed machine learning-based risk stratification reviews without deep learning (DL) integration. The proposed study focuses on CVD risk stratification by the use of techniques mainly solo deep learning (SDL) and hybrid deep learning (HDL). Using a PRISMA model, 286 DL-based CVD studies were selected and analyzed. The databases included were Science Direct, IEEE Xplore, PubMed, and Google Scholar. This review is focused on different SDL and HDL architectures, their characteristics, applications, scientific and clinical validation, along with plaque tissue characterization for CVD/stroke risk stratification. Since signal processing methods are also crucial, the study further briefly presented Electrocardiogram (ECG)-based solutions. Finally, the study presented the risk due to bias in AI systems. The risk of bias tools used were (I) ranking method (RBS), (II) region-based map (RBM), (III) radial bias area (RBA), (IV) prediction model risk of bias assessment tool (PROBAST), and (V) risk of bias in non-randomized studies-of interventions (ROBINS-I). The surrogate carotid ultrasound image was mostly used in the UNet-based DL framework for arterial wall segmentation. Ground truth (GT) selection is vital for reducing the risk of bias (RoB) for CVD risk stratification. It was observed that the convolutional neural network (CNN) algorithms were widely used since the feature extraction process was automated. The ensemble-based DL techniques for risk stratification in CVD are likely to supersede the SDL and HDL paradigms. Due to the reliability, high accuracy, and faster execution on dedicated hardware, these DL methods for CVD risk assessment are powerful and promising. The risk of bias in DL methods can be best reduced by considering multicentre data collection and clinical evaluation.
Collapse
Affiliation(s)
- Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA, USA
- Department of Computer Science Engineering, PSIT, Kanpur, India
| | - Athanasios Protogeron
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - George D. Kitas
- Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester, UK
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | | | - Aditya M. Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Omerzu Tomazu
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | - Gavino Faa
- Department of Pathology, A.O.U., di Cagliari -Polo di Monserrato s.s, Cagliari, Italy
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, Thessaloniki, Greece
| | - John R. Laird
- Cardiology Department, St. Helena Hospital, St. Helena, CA, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, Canada
| | | | - Manudeep Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia, Cyprus
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA
| | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, N. Iraklio, Athens, Greece
| | | | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
16
|
Choi SH, Lee HG, Park SD, Bae JW, Lee W, Kim MS, Kim TH, Lee WK. Electrocardiogram-based deep learning algorithm for the screening of obstructive coronary artery disease. BMC Cardiovasc Disord 2023; 23:287. [PMID: 37286945 DOI: 10.1186/s12872-023-03326-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Information on electrocardiogram (ECG) has not been quantified in obstructive coronary artery disease (ObCAD), despite the deep learning (DL) algorithm being proposed as an effective diagnostic tool for acute myocardial infarction (AMI). Therefore, this study adopted a DL algorithm to suggest the screening of ObCAD from ECG. METHODS ECG voltage-time traces within a week from coronary angiography (CAG) were extracted for the patients who received CAG for suspected CAD in a single tertiary hospital from 2008 to 2020. After separating the AMI group, those were classified into ObCAD and non-ObCAD groups based on the CAG results. A DL-based model adopting ResNet was built to extract information from ECG data in the patients with ObCAD relative to those with non-ObCAD, and compared the performance with AMI. Moreover, subgroup analysis was conducted using ECG patterns of computer-assisted ECG interpretation. RESULTS The DL model demonstrated modest performance in suggesting the probability of ObCAD but excellent performance in detecting AMI. The AUC of the ObCAD model adopting 1D ResNet was 0.693 and 0.923 in detecting AMI. The accuracy, sensitivity, specificity, and F1 score of the DL model for screening ObCAD were 0.638, 0.639, 0.636, and 0.634, respectively, while the figures were up to 0.885, 0.769, 0.921, and 0.758 for detecting AMI, respectively. Subgroup analysis showed that the difference between normal and abnormal/borderline ECG groups was not notable. CONCLUSIONS ECG-based DL model showed fair performance for assessing ObCAD and it may serve as an adjunct to the pre-test probability in patients with suspected ObCAD during the initial evaluation. With further refinement and evaluation, ECG coupled with the DL algorithm may provide potential front-line screening support in the resource-intensive diagnostic pathways.
Collapse
Affiliation(s)
- Seong Huan Choi
- Department of Cardiology, School of Medicine, Inha University Hospital, Inha University, Incheon, Korea
| | - Hyun-Gye Lee
- School of Medicine, Inha University, Incheon, Korea
| | - Sang-Don Park
- Department of Cardiology, School of Medicine, Inha University Hospital, Inha University, Incheon, Korea
| | - Jang-Whan Bae
- Division of Cardiology, Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Woojoo Lee
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Mi-Sook Kim
- Division of Clinical Epidemiology, Medical Research Collaborating Center, Biomedical Research Institution, Seoul National University Hospital, Seoul, Korea
| | - Tae-Hun Kim
- Department of Artificial Intelligence, Inha University, Incheon, Korea
| | - Won Kyung Lee
- Department of Prevention and Management, School of Medicine, Inha University Hospital, Inha University, 27 Inhang-Ro, Jung-Gu, Incheon, Korea.
| |
Collapse
|
17
|
Sakhnova TA, Blinova EV, Yurasova ES, Uskach TM, Blinova NV, Aidu EA, Trunov VG, Saidova MA. [Features of vectorcardiograms in patients with hypertension complicated by chronic heart failure with reduced left ventricle ejection fraction]. TERAPEVT ARKH 2022; 94:1067-1071. [PMID: 36286757 DOI: 10.26442/00403660.2022.09.201843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 06/16/2023]
Abstract
AIM To explore the features of vectorcardiograms (VCG) of patients with essential hypertension complicated by chronic heart failure with reduced left ventricular ejection fraction (CHFrLVEF). MATERIALS AND METHODS We analyzed VCGs of 70 hypertensive patients with CHFrLVEF and 275 hypertensive patients without clinical signs of CHF and with LVEF50%. We assessed the presence of rhythm and conduction disturbances, and the parameters of the synthesized VCG, i.e., module of the maximum QRS vector, planarity index of the spatial QRS loop (P/S), and spatial angle between the integral QRS and T vectors (sQRS-Ta). RESULTS In hypertensive patients with CHF, certain conditions were detected more often as compared with hypertensive patients without CHF, i.e., atrial fibrillation (AF) in 52.9% vs 5.1%; p0.0001, and left bundle branch block (LBBB) in 38.6% vs 0.4%; p0.0001. The module of the maximum QRS vector and sQRS-Ta were significantly greater and P/S was significantly less in VCGs of patients with CHF. ROC-analysis showed that the presence of AF and LBBB just as VCG parameters assessed in this study provide clear discrimination between hypertensive patients with or without CHF both in the group as a whole and in the subgroups (1) without LBBB, (2) with sinus rhythm, and (3) with AF. sQRS-Ta was the most informative parameter (threshold 137, sensitivity 91%, specificity 92%). The P/S indicator at the optimal threshold value 0.92 was characterized by lower specificity (68%) with rather high sensitivity (79%). CONCLUSION AF, LBBB, increased module of the maximum QRS vector and sQRS-Ta, and decreased P/S index are present in hypertensive patients with CHFrLVEF as compared with patients without CHF.
Collapse
Affiliation(s)
- T A Sakhnova
- Chazov National Medical Research Center of Cardiology
| | - E V Blinova
- Chazov National Medical Research Center of Cardiology
| | - E S Yurasova
- Chazov National Medical Research Center of Cardiology
| | - T M Uskach
- Chazov National Medical Research Center of Cardiology
| | - N V Blinova
- Chazov National Medical Research Center of Cardiology
| | - E A Aidu
- Kharkevich Institute for Information Transmission Problems
| | - V G Trunov
- Kharkevich Institute for Information Transmission Problems
| | - M A Saidova
- Chazov National Medical Research Center of Cardiology
| |
Collapse
|
18
|
Huang JD, Wang J, Ramsey E, Leavey G, Chico TJA, Condell J. Applying Artificial Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8002. [PMID: 36298352 PMCID: PMC9610988 DOI: 10.3390/s22208002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 06/06/2023]
Abstract
Cardiovascular disease (CVD) is the world's leading cause of mortality. There is significant interest in using Artificial Intelligence (AI) to analyse data from novel sensors such as wearables to provide an earlier and more accurate prediction and diagnosis of heart disease. Digital health technologies that fuse AI and sensing devices may help disease prevention and reduce the substantial morbidity and mortality caused by CVD worldwide. In this review, we identify and describe recent developments in the application of digital health for CVD, focusing on AI approaches for CVD detection, diagnosis, and prediction through AI models driven by data collected from wearables. We summarise the literature on the use of wearables and AI in cardiovascular disease diagnosis, followed by a detailed description of the dominant AI approaches applied for modelling and prediction using data acquired from sensors such as wearables. We discuss the AI algorithms and models and clinical applications and find that AI and machine-learning-based approaches are superior to traditional or conventional statistical methods for predicting cardiovascular events. However, further studies evaluating the applicability of such algorithms in the real world are needed. In addition, improvements in wearable device data accuracy and better management of their application are required. Lastly, we discuss the challenges that the introduction of such technologies into routine healthcare may face.
Collapse
Affiliation(s)
- Jian-Dong Huang
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Jinling Wang
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Elaine Ramsey
- Department of Global Business & Enterprise, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Gerard Leavey
- School of Psychology, Ulster University at Coleraine, Londonderry BT52 1SA, UK
| | - Timothy J. A. Chico
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Joan Condell
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| |
Collapse
|
19
|
Siva Kumar S, Al-Kindi S, Tashtish N, Rajagopalan V, Fu P, Rajagopalan S, Madabhushi A. Machine learning derived ECG risk score improves cardiovascular risk assessment in conjunction with coronary artery calcium scoring. Front Cardiovasc Med 2022; 9:976769. [PMID: 36277775 PMCID: PMC9580025 DOI: 10.3389/fcvm.2022.976769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Precision estimation of cardiovascular risk remains the cornerstone of atherosclerotic cardiovascular disease (ASCVD) prevention. While coronary artery calcium (CAC) scoring is the best available non-invasive quantitative modality to evaluate risk of ASCVD, it excludes risk related to prior myocardial infarction, cardiomyopathy, and arrhythmia which are implicated in ASCVD. The high-dimensional and inter-correlated nature of ECG data makes it a good candidate for analysis using machine learning techniques and may provide additional prognostic information not captured by CAC. In this study, we aimed to develop a quantitative ECG risk score (eRiS) to predict major adverse cardiovascular events (MACE) alone, or when added to CAC. Further, we aimed to construct and validate a novel nomogram incorporating ECG, CAC and clinical factors for ASCVD. Methods We analyzed 5,864 patients with at least 1 cardiovascular risk factor who underwent CAC scoring and a standard ECG as part of the CLARIFY study (ClinicalTrials.gov Identifier: NCT04075162). Events were defined as myocardial infarction, coronary revascularization, stroke or death. A total of 649 ECG features, consisting of measurements such as amplitude and interval measurements from all deflections in the ECG waveform (53 per lead and 13 overall) were automatically extracted using a clinical software (GE Muse™ Cardiology Information System, GE Healthcare). The data was split into 4 training (Str) and internal validation (Sv) sets [Str (1): Sv (1): 50:50; Str (2): Sv (2): 60:40; Str (3): Sv (3): 70:30; Str (4): Sv (4): 80:20], and the results were compared across all the subsets. We used the ECG features derived from Str to develop eRiS. A least absolute shrinkage and selection operator-Cox (LASSO-Cox) regularization model was used for data dimension reduction, feature selection, and eRiS construction. A Cox-proportional hazards model was used to assess the benefit of using an eRiS alone (Mecg), CAC alone (Mcac) and a combination of eRiS and CAC (Mecg+cac) for MACE prediction. A nomogram (Mnom) was further constructed by integrating eRiS with CAC and demographics (age and sex). The primary endpoint of the study was the assessment of the performance of Mecg, Mcac, Mecg+cac and Mnom in predicting CV disease-free survival in ASCVD. Findings Over a median follow-up of 14 months, 494 patients had MACE. The feature selection strategy preserved only about 18% of the features that were consistent across the various strata (Str). The Mecg model, comprising of eRiS alone was found to be significantly associated with MACE and had good discrimination of MACE (C-Index: 0.7, p = <2e-16). eRiS could predict time-to MACE (C-Index: 0.6, p = <2e-16 across all Sv). The Mecg+cac model was associated with MACE (C-index: 0.71). Model comparison showed that Mecg+cac was superior to Mecg (p = 1.8e-10) or Mcac (p < 2.2e-16) alone. The Mnom, comprising of eRiS, CAC, age and sex was associated with MACE (C-index 0.71). eRiS had the most significant contribution, followed by CAC score and other clinical variables. Further, Mnom was able to identify unique patient risk-groups based on eRiS, CAC and clinical variables. Conclusion The use of ECG features in conjunction with CAC may allow for improved prognostication and identification of populations at risk. Future directions will involve prospective validation of the risk score and the nomogram across diverse populations with a heterogeneity of treatment effects.
Collapse
Affiliation(s)
- Shruti Siva Kumar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Shruti Siva Kumar
| | - Sadeer Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, United States,School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Nour Tashtish
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, United States,School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Varun Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, United States,School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, United States,School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Anant Madabhushi
- Wallace H. Coulter Department of Biomedical Engineering, Radiology and Imaging Sciences, Biomedical Informatics (BMI) and Pathology, Georgia Institute of Technology and Emory University, Research Health Scientist, Atlanta Veterans Administration Medical Center, Atlanta, GA, United States
| |
Collapse
|
20
|
Guasti L, Dilaveris P, Mamas MA, Richter D, Christodorescu R, Lumens J, Schuuring MJ, Carugo S, Afilalo J, Ferrini M, Asteggiano R, Cowie MR. Digital health in older adults for the prevention and management of cardiovascular diseases and frailty. A clinical consensus statement from the ESC Council for Cardiology Practice/Taskforce on Geriatric Cardiology, the ESC Digital Health Committee and the ESC Working Group on e-Cardiology. ESC Heart Fail 2022; 9:2808-2822. [PMID: 35818770 PMCID: PMC9715874 DOI: 10.1002/ehf2.14022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Digital health technology is receiving increasing attention in cardiology. The rise of accessibility of digital health tools including wearable technologies and smart phone applications used in medical practice has created a new era in healthcare. The coronavirus pandemic has provided a new impetus for changes in delivering medical assistance across the world. This Consensus document discusses the potential implementation of digital health technology in older adults, suggesting a practical approach to general cardiologists working in an ambulatory outpatient clinic, highlighting the potential benefit and challenges of digital health in older patients with, or at risk of, cardiovascular disease. Advancing age may lead to a progressive loss of independence, to frailty, and to increasing degrees of disability. In geriatric cardiology, digital health technology may serve as an additional tool both in cardiovascular prevention and treatment that may help by (i) supporting self-caring patients with cardiovascular disease to maintain their independence and improve the management of their cardiovascular disease and (ii) improving the prevention, detection, and management of frailty and supporting collaboration with caregivers. Digital health technology has the potential to be useful for every field of cardiology, but notably in an office-based setting with frequent contact with ambulatory older adults who may be pre-frail or frail but who are still able to live at home. Cardiologists and other healthcare professionals should increase their digital health skills and learn how best to apply and integrate new technologies into daily practice and how to engage older people and their caregivers in a tailored programme of care.
Collapse
Affiliation(s)
- Luigina Guasti
- University of Insubria ‐ Department of Medicine and Surgery; ASST‐settelaghiVareseItaly
| | - Polychronis Dilaveris
- First Department of Cardiology, Hippokration HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Mamas A. Mamas
- Keele Cardiovascular Research Group, Centre for Prognosis ResearchKeele UniversityKeeleUK
| | | | | | - Joost Lumens
- CARIM School for Cardiovascular DiseasesMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Mark J. Schuuring
- Department of Cardiology, Amsterdam UMC location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Stefano Carugo
- University of Milan, Cardiology, Policlinico di MilanoMilanItaly
| | - Jonathan Afilalo
- Division of Experimental Medicine, McGill University; Centre for Clinical Epidemiology, Jewish General Hospital; Division of Cardiology, Jewish General Hospital, McGill University; Research InstituteMcGill University Health CentreMontrealQuebecCanada
| | | | - Riccardo Asteggiano
- University of Insubria ‐ Department of Medicine and Surgery; ASST‐settelaghiVareseItaly
- LARC (Laboratorio Analisi e Ricerca Clinica)TurinItaly
| | - Martin R. Cowie
- Royal Brompton Hospital (Guy's& St Thomas' NHS Foundation Trust) & Faculty of Lifesciences & MedicineKing's College LondonLondonUK
| |
Collapse
|
21
|
Al-Zaiti S, Macleod R, Dam PV, Smith SW, Birnbaum Y. Emerging ECG methods for acute coronary syndrome detection: Recommendations & future opportunities. J Electrocardiol 2022; 74:65-72. [PMID: 36027675 PMCID: PMC11867304 DOI: 10.1016/j.jelectrocard.2022.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
Abstract
Despite being the mainstay for the initial noninvasive assessment of patients with symptomatic coronary artery disease, the 12‑lead ECG remains a suboptimal diagnostic tool for myocardial ischemia detection with only acceptable sensitivity and specificity scores. Although myocardial ischemia affects the configuration of the QRS complex and the STT waveform, current guidelines primarily focus on ST segment amplitude, which constitutes a missed opportunity and may explain the suboptimal diagnostic performance of the ECG. This possible opportunity and the low cost and ease of use of the ECG provide compelling motivation to enhance the diagnostic accuracy of the ECG to ischemia detection. This paper describes numerous computational ECG methods and approaches that have been shown to dramatically increase ECG sensitivity to ischemia detection. Briefly, these emerging approaches can be conceptually grouped into one of the following four approaches: (1) leveraging novel ECG waveform features and signatures indicative of ischemic injury other than the classical ST-T amplitude measures; (2) applying body surface potentials mapping (BSPM)-based approaches to enhance the spatial coverage of the surface ECG to detecting ischemia; (3) developing an inverse ECG solution to reconstruct anatomical models of activation and recovery pathways to detect and localize injury currents; and (4) exploring artificial intelligence (AI)-based techniques to harvest ECG waveform signatures of ischemia. We present recent advances, shortcomings, and future opportunities for each of these emerging ECG methods. Future research should focus on the prospective clinical testing of these approaches to establish clinical utility and to expedite potential translation into clinical practice.
Collapse
Affiliation(s)
- Salah Al-Zaiti
- Department of Acute & Tertiary Care, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Robert Macleod
- Department of Biomedical Engineering, University of Utah, Salt Lake, UT, USA
| | - Peter Van Dam
- Department of Cardiology, University Medical Center Utrecht, the Netherlands
| | - Stephen W Smith
- Department of Emergency Medicine, Hennepin Healthcare and University of Minnesota, Minneapolis, MN, USA
| | - Yochai Birnbaum
- Division of Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Stracina T, Ronzhina M, Redina R, Novakova M. Golden Standard or Obsolete Method? Review of ECG Applications in Clinical and Experimental Context. Front Physiol 2022; 13:867033. [PMID: 35547589 PMCID: PMC9082936 DOI: 10.3389/fphys.2022.867033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular system and its functions under both physiological and pathophysiological conditions have been studied for centuries. One of the most important steps in the cardiovascular research was the possibility to record cardiac electrical activity. Since then, numerous modifications and improvements have been introduced; however, an electrocardiogram still represents a golden standard in this field. This paper overviews possibilities of ECG recordings in research and clinical practice, deals with advantages and disadvantages of various approaches, and summarizes possibilities of advanced data analysis. Special emphasis is given to state-of-the-art deep learning techniques intensely expanded in a wide range of clinical applications and offering promising prospects in experimental branches. Since, according to the World Health Organization, cardiovascular diseases are the main cause of death worldwide, studying electrical activity of the heart is still of high importance for both experimental and clinical cardiology.
Collapse
Affiliation(s)
- Tibor Stracina
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marina Ronzhina
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Richard Redina
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Marie Novakova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
23
|
Xiong P, Lee SMY, Chan G. Deep Learning for Detecting and Locating Myocardial Infarction by Electrocardiogram: A Literature Review. Front Cardiovasc Med 2022; 9:860032. [PMID: 35402563 PMCID: PMC8990170 DOI: 10.3389/fcvm.2022.860032] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
Myocardial infarction is a common cardiovascular disorder caused by prolonged ischemia, and early diagnosis of myocardial infarction (MI) is critical for lifesaving. ECG is a simple and non-invasive approach in MI detection, localization, diagnosis, and prognosis. Population-based screening with ECG can detect MI early and help prevent it but this method is too labor-intensive and time-consuming to carry out in practice unless artificial intelligence (AI) would be able to reduce the workload. Recent advances in using deep learning (DL) for ECG screening might rekindle this hope. This review aims to take stock of 59 major DL studies applied to the ECG for MI detection and localization published in recent 5 years, covering convolutional neural network (CNN), long short-term memory (LSTM), convolutional recurrent neural network (CRNN), gated recurrent unit (GRU), residual neural network (ResNet), and autoencoder (AE). In this period, CNN obtained the best popularity in both MI detection and localization, and the highest performance has been obtained from CNN and ResNet model. The reported maximum accuracies of the six different methods are all beyond 97%. Considering the usage of different datasets and ECG leads, the network that trained on 12 leads ECG data of PTB database has obtained higher accuracy than that on smaller number leads data of other datasets. In addition, some limitations and challenges of the DL techniques are also discussed in this review.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
24
|
Suri JS, Bhagawati M, Paul S, Protogerou AD, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S, Faa G, Laird JR, Johri AM, Kalra MK, Paraskevas KI, Saba L. A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review. Diagnostics (Basel) 2022; 12:722. [PMID: 35328275 PMCID: PMC8947682 DOI: 10.3390/diagnostics12030722] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India; (M.B.); (S.P.)
| | - Athanasios D. Protogerou
- Research Unit Clinic, Laboratory of Pathophysiology, Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 11527 Athens, Greece;
| | - George D. Kitas
- Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester 46962, UK;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110020, India;
| | - Zoltan Ruzsa
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary;
| | - Aditya M. Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhubaneswar 751003, India;
| | - Gavino Faa
- Department of Pathology, A.O.U., di Cagliari-Polo di Monserrato s.s., 09045 Cagliari, Italy;
| | - John R. Laird
- Cardiology Department, St. Helena Hospital, St. Helena, CA 94574, USA;
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, N. Iraklio, 14122 Athens, Greece;
| | - Luca Saba
- Department of Radiology, A.O.U., di Cagliari-Polo di Monserrato s.s., 09045 Cagliari, Italy;
| |
Collapse
|
25
|
Martinez DSL, Noseworthy PA, Akbilgic O, Herrmann J, Ruddy KJ, Hamid A, Maddula R, Singh A, Davis R, Gunturkun F, Jefferies JL, Brown SA. Artificial intelligence opportunities in cardio-oncology: Overview with spotlight on electrocardiography. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 15:100129. [PMID: 35721662 PMCID: PMC9202996 DOI: 10.1016/j.ahjo.2022.100129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/21/2023]
Abstract
Cardiovascular disease is a leading cause of death among cancer survivors, second only to cancer recurrence or development of new tumors. Cardio-oncology has therefore emerged as a relatively new specialty focused on prevention and management of cardiovascular consequences of cancer therapies. Yet challenges remain regarding precision and accuracy with predicting individuals at highest risk for cardiotoxicity. Barriers such as access to care also limit screening and early diagnosis to improve prognosis. Thus, developing innovative approaches for prediction and early detection of cardiovascular illness in this population is critical. In this review, we provide an overview of the present state of machine learning applications in cardio-oncology. We begin by outlining some factors that should be considered while utilizing machine learning algorithms. We then examine research in which machine learning has been applied to improve prediction of cardiac dysfunction in cancer survivors. We also highlight the use of artificial intelligence (AI) in conjunction with electrocardiogram (ECG) to predict cardiac malfunction and also atrial fibrillation (AF), and we discuss the potential role of wearables. Additionally, the article summarizes future prospects and critical takeaways for the application of machine learning in cardio-oncology. This study is the first in a series on artificial intelligence in cardio-oncology, and complements our manuscript on echocardiography and other forms of imaging relevant to cancer survivors cared for in cardiology clinical practice.
Collapse
Affiliation(s)
- Daniel Sierra-Lara Martinez
- Coronary Care Unit, National Institute of Cardiology/Instituto Nacional de Cardiologia, Ciudad de Mexico, Mexico
| | | | - Oguz Akbilgic
- Department of Health Informatics and Data Science, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Wake Forest, NC, USA
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Ashima Singh
- Institute of Health and Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Davis
- Center for Biomedical Informatics, University of Tennessee Health Sciences Center, USA
| | - Fatma Gunturkun
- Center for Biomedical Informatics, University of Tennessee Health Sciences Center, USA
| | - John L. Jefferies
- Division of Cardiovascular Diseases, University of Tennessee Health Sciences Center, USA
- Department of Epidemiology, St. Jude Children's Research Hospital, USA
| | - Sherry-Ann Brown
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
26
|
de Jaegere P, Lumens J, Bruining N. The 1-year anniversary of the European Heart Journal - Digital Health. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2021; 2:548-549. [PMID: 36713098 PMCID: PMC9707898 DOI: 10.1093/ehjdh/ztab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Peter de Jaegere
- Department of Cardiology, Erasmus MC, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Joost Lumens
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nico Bruining
- Department of Cardiology, Erasmus MC, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
27
|
de Jaegere P, Lumens J, Bruining N. The 12-lead surface electrocardiogram: a sheet of paper or a realm of concealed information asking for deep learning analysis. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2021; 2:356-357. [PMID: 36713605 PMCID: PMC9708034 DOI: 10.1093/ehjdh/ztab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 02/01/2023]
Affiliation(s)
- Peter de Jaegere
- Department of Cardiology, Erasmus MC, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Joost Lumens
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nico Bruining
- Department of Cardiology, Erasmus MC, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|