1
|
Siler J, Guo N, Liu Z, Qin Y, Bi X. γH2A/γH2AX Mediates DNA Damage-Specific Control of Checkpoint Signaling in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:2462. [PMID: 38473708 DOI: 10.3390/ijms25052462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
DNA lesions trigger DNA damage checkpoint (DDC) signaling which arrests cell cycle progression and promotes DNA damage repair. In Saccharomyces cerevisiae, phosphorylation of histone H2A (γH2A, equivalent to γH2AX in mammals) is an early chromatin mark induced by DNA damage that is recognized by a group of DDC and DNA repair factors. We find that γH2A negatively regulates the G2/M checkpoint in response to the genotoxin camptothecin, which is a DNA topoisomerase I poison. γH2A also suppresses DDC signaling induced by the DNA alkylating agent methyl methanesulfonate. These results differ from prior findings, which demonstrate positive or no roles of γH2A in DDC in response to other DNA damaging agents such as phleomycin and ionizing radiation, which suggest that γH2A has DNA damage-specific effects on DDC signaling. We also find evidence supporting the notion that γH2A regulates DDC signaling by mediating the competitive recruitment of the DDC mediator Rad9 and the DNA repair factor Rtt107 to DNA lesions. We propose that γH2A/γH2AX serves to create a dynamic balance between DDC and DNA repair that is influenced by the nature of DNA damage.
Collapse
Affiliation(s)
- Jasmine Siler
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Na Guo
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
- College of Food Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhengfeng Liu
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Yuhua Qin
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Xin Bi
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
2
|
Pizzul P, Casari E, Gnugnoli M, Rinaldi C, Corallo F, Longhese MP. The DNA damage checkpoint: A tale from budding yeast. Front Genet 2022; 13:995163. [PMID: 36186482 PMCID: PMC9520983 DOI: 10.3389/fgene.2022.995163] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Studies performed in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have led the way in defining the DNA damage checkpoint and in identifying most of the proteins involved in this regulatory network, which turned out to have structural and functional equivalents in humans. Subsequent experiments revealed that the checkpoint is an elaborate signal transduction pathway that has the ability to sense and signal the presence of damaged DNA and transduce this information to influence a multifaceted cellular response that is essential for cancer avoidance. This review focuses on the work that was done in Saccharomyces cerevisiae to articulate the checkpoint concept, to identify its players and the mechanisms of activation and deactivation.
Collapse
|
3
|
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5:60. [PMID: 32355263 PMCID: PMC7192953 DOI: 10.1038/s41392-020-0150-x] [Citation(s) in RCA: 649] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Collapse
Affiliation(s)
- Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, People's Republic of China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850, Beijing, People's Republic of China.
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|
4
|
Ma M, Rodriguez A, Sugimoto K. Activation of ATR-related protein kinase upon DNA damage recognition. Curr Genet 2019; 66:327-333. [PMID: 31624858 DOI: 10.1007/s00294-019-01039-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Chromosomes are constantly damaged by exogenous and endogenous factors. To cope with DNA damage, eukaryotic cells are equipped with three phosphatidylinositol 3-kinase-related kinases (PIKKs), such as ATM, ATR, and DNA-PK. PIKKs are structurally related to phosphatidylinositol 3-kinase (lipid kinase), however possess protein kinase activities. The Mre11-Rad50-Nbs1 and the Ku complex interact with and activate ATM and DNA-PKcs at double-stranded DNA breaks (DSBs), respectively. In contrast, ATR responds to various types of DNA lesions by interacting with replication protein A (RPA)-covered single-stranded DNA (ssDNA). Several lines of evidence have established a model in which ATR is activated by interacting with ATR activating proteins including TopBP1 and ETAA1 at DNA lesions in humans, yet the interaction of ATR with RPA-covered ssDNA does not result in ATR activation. In budding yeast, the Mec1-Ddc2 complex (Mec1-Ddc2) corresponds to ATR-ATRIP. Similar to ATR, Mec1 activation is accomplished by interactions with Mec1 activating proteins, which are Ddc1, Dpb11 (TopBP1 homolog) and Dna2. However, recent studies provide results supporting the idea that Mec1ATR is also activated by interacting with RPA-covered ssDNA tracts. These observations suggest that all the ATM, ATR, DNA-PK family proteins can be activated immediately upon DNA damage recognition.
Collapse
Affiliation(s)
- Minh Ma
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Anibian Rodriguez
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
5
|
A Humanized Yeast Phenomic Model of Deoxycytidine Kinase to Predict Genetic Buffering of Nucleoside Analog Cytotoxicity. Genes (Basel) 2019; 10:genes10100770. [PMID: 31575041 PMCID: PMC6826991 DOI: 10.3390/genes10100770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Knowledge about synthetic lethality can be applied to enhance the efficacy of anticancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities by systematic, comprehensive, and quantitative assessment of drug–gene interaction for gemcitabine and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures yet distinct antitumor efficacy. Human deoxycytidine kinase (dCK) was conditionally expressed in the Saccharomyces cerevisiae genomic library of knockout and knockdown (YKO/KD) strains, to globally and quantitatively characterize differential drug–gene interaction for gemcitabine and cytarabine. Pathway enrichment analysis revealed that autophagy, histone modification, chromatin remodeling, and apoptosis-related processes influence gemcitabine specifically, while drug–gene interaction specific to cytarabine was less enriched in gene ontology. Processes having influence over both drugs were DNA repair and integrity checkpoints and vesicle transport and fusion. Non-gene ontology (GO)-enriched genes were also informative. Yeast phenomic and cancer cell line pharmacogenomics data were integrated to identify yeast–human homologs with correlated differential gene expression and drug efficacy, thus providing a unique resource to predict whether differential gene expression observed in cancer genetic profiles are causal in tumor-specific responses to cytotoxic agents.
Collapse
|
6
|
Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 2019; 38:e101801. [PMID: 31393028 PMCID: PMC6745504 DOI: 10.15252/embj.2019101801] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Diego Dibitetto
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
7
|
Biswas H, Goto G, Wang W, Sung P, Sugimoto K. Ddc2ATRIP promotes Mec1ATR activation at RPA-ssDNA tracts. PLoS Genet 2019; 15:e1008294. [PMID: 31369547 PMCID: PMC6692047 DOI: 10.1371/journal.pgen.1008294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 08/13/2019] [Accepted: 07/07/2019] [Indexed: 11/19/2022] Open
Abstract
The DNA damage checkpoint response is controlled by the phosphatidylinositol 3-kinase-related kinases (PIKK), including ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR). ATR forms a complex with its partner ATRIP. In budding yeast, ATR and ATRIP correspond to Mec1 and Ddc2, respectively. ATRIP/Ddc2 interacts with replication protein A-bound single-stranded DNA (RPA-ssDNA) and recruits ATR/Mec1 to sites of DNA damage. Mec1 is stimulated by the canonical activators including Ddc1, Dpb11 and Dna2. We have characterized the ddc2-S4 mutation and shown that Ddc2 not only recruits Mec1 to sites of DNA damage but also stimulates Mec1 kinase activity. However, the underlying mechanism of Ddc2-dependent Mec1 activation remains to be elucidated. Here we show that Ddc2 promotes Mec1 activation independently of Ddc1/Dpb11/Dna2 function in vivo and through ssDNA recognition in vitro. The ddc2-S4 mutation diminishes damage-induced phosphorylation of the checkpoint mediators, Rad9 and Mrc1. Rad9 controls checkpoint throughout the cell-cycle whereas Mrc1 is specifically required for the S-phase checkpoint. Notably, S-phase checkpoint signaling is more defective in ddc2-S4 mutants than in cells where the Mec1 activators (Ddc1/Dpb11 and Dna2) are dysfunctional. To understand a role of Ddc2 in Mec1 activation, we reconstituted an in vitro assay using purified Mec1-Ddc2 complex, RPA and ssDNA. Whereas ssDNA stimulates kinase activity of the Mec1-Ddc2 complex, RPA does not. However, RPA can promote ssDNA-dependent Mec1 activation. Neither ssDNA nor RPA-ssDNA efficiently stimulates the Mec1-Ddc2 complex containing Ddc2-S4 mutant. Together, our data support a model in which Ddc2 promotes Mec1 activation at RPA-ssDNA tracts.
Collapse
Affiliation(s)
- Himadri Biswas
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Greicy Goto
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
8
|
Saatchi F, Kirchmaier AL. Tolerance of DNA Replication Stress Is Promoted by Fumarate Through Modulation of Histone Demethylation and Enhancement of Replicative Intermediate Processing in Saccharomyces cerevisiae. Genetics 2019; 212:631-654. [PMID: 31123043 PMCID: PMC6614904 DOI: 10.1534/genetics.119.302238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Fumarase is a well-characterized TCA cycle enzyme that catalyzes the reversible conversion of fumarate to malate. In mammals, fumarase acts as a tumor suppressor, and loss-of-function mutations in the FH gene in hereditary leiomyomatosis and renal cell cancer result in the accumulation of intracellular fumarate-an inhibitor of α-ketoglutarate-dependent dioxygenases. Fumarase promotes DNA repair by nonhomologous end joining in mammalian cells through interaction with the histone variant H2A.Z, and inhibition of KDM2B, a H3 K36-specific histone demethylase. Here, we report that Saccharomyces cerevisiae fumarase, Fum1p, acts as a response factor during DNA replication stress, and fumarate enhances survival of yeast lacking Htz1p (H2A.Z in mammals). We observed that exposure to DNA replication stress led to upregulation as well as nuclear enrichment of Fum1p, and raising levels of fumarate in cells via deletion of FUM1 or addition of exogenous fumarate suppressed the sensitivity to DNA replication stress of htz1Δ mutants. This suppression was independent of modulating nucleotide pool levels. Rather, our results are consistent with fumarate conferring resistance to DNA replication stress in htz1Δ mutants by inhibiting the H3 K4-specific histone demethylase Jhd2p, and increasing H3 K4 methylation. Although the timing of checkpoint activation and deactivation remained largely unaffected by fumarate, sensors and mediators of the DNA replication checkpoint were required for fumarate-dependent resistance to replication stress in the htz1Δ mutants. Together, our findings imply metabolic enzymes and metabolites aid in processing replicative intermediates by affecting chromatin modification states, thereby promoting genome integrity.
Collapse
Affiliation(s)
- Faeze Saatchi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| | - Ann L Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
9
|
Villa M, Cassani C, Gobbini E, Bonetti D, Longhese MP. Coupling end resection with the checkpoint response at DNA double-strand breaks. Cell Mol Life Sci 2016; 73:3655-63. [PMID: 27141941 PMCID: PMC11108263 DOI: 10.1007/s00018-016-2262-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/08/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
DNA double-strand breaks (DSBs) are a nasty form of damage that needs to be repaired to ensure genome stability. The DSB ends can undergo a strand-biased nucleolytic processing (resection) to generate 3'-ended single-stranded DNA (ssDNA) that channels DSB repair into homologous recombination. Generation of ssDNA also triggers the activation of the DNA damage checkpoint, which couples cell cycle progression with DSB repair. The checkpoint response is intimately linked to DSB resection, as some checkpoint proteins regulate the resection process. The present review will highlight recent works on the mechanism and regulation of DSB resection and its interplays with checkpoint activation/inactivation in budding yeast.
Collapse
Affiliation(s)
- Matteo Villa
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Diego Bonetti
- Institute of Molecular Biology gGmbH (IMB), 55128, Mainz, Germany
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
10
|
Sawicka M, Wanrooij PH, Darbari VC, Tannous E, Hailemariam S, Bose D, Makarova AV, Burgers PM, Zhang X. The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization. J Biol Chem 2016; 291:13436-47. [PMID: 27129217 PMCID: PMC4919432 DOI: 10.1074/jbc.m115.708263] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 12/21/2022] Open
Abstract
The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form.
Collapse
Affiliation(s)
- Marta Sawicka
- From the Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Paulina H Wanrooij
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Vidya C Darbari
- From the Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Elias Tannous
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sarem Hailemariam
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Daniel Bose
- From the Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Alena V Makarova
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Peter M Burgers
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Xiaodong Zhang
- From the Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| |
Collapse
|
11
|
Ngo GHP, Lydall D. The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks. Nucleic Acids Res 2015; 43:5017-32. [PMID: 25925573 PMCID: PMC4446447 DOI: 10.1093/nar/gkv409] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/16/2015] [Indexed: 11/13/2022] Open
Abstract
DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.
Collapse
Affiliation(s)
- Greg H P Ngo
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
12
|
Gallego-Sánchez A, Ufano S, Andrés S, Bueno A. Analysis of the tolerance to DNA alkylating damage in MEC1 and RAD53 checkpoint mutants of Saccharomyces cerevisiae. PLoS One 2013; 8:e81108. [PMID: 24260543 PMCID: PMC3834268 DOI: 10.1371/journal.pone.0081108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/18/2013] [Indexed: 01/04/2023] Open
Abstract
Checkpoint response, tolerance and repair are three major pathways that eukaryotic cells evolved independently to maintain genome stability and integrity. Here, we studied the sensitivity to DNA damage in checkpoint-deficient budding yeast cells and found that checkpoint kinases Mec1 and Rad53 may modulate the balance between error-free and error-prone branches of the tolerance pathway. We have consistently observed that mutation of the RAD53 counterbalances error-free and error-prone branches upon exposure of cells to DNA damage induced either by MMS alkylation or by UV-radiation. We have also found that the potential Mec1/Rad53 balance modulation is independent from Rad6/Rad18-mediated PCNA ubiquitylation, as mec1Δ or rad53Δ mutants show no defects in the modification of the sliding clamp, therefore, we infer that it is likely exerted by acting on TLS polymerases and/or template switching targets.
Collapse
Affiliation(s)
- Alfonso Gallego-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Sandra Ufano
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Sonia Andrés
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Universidad de Salamanca/CSIC, Salamanca, Spain
- * E-mail:
| |
Collapse
|
13
|
Replication checkpoint: tuning and coordination of replication forks in s phase. Genes (Basel) 2013; 4:388-434. [PMID: 24705211 PMCID: PMC3924824 DOI: 10.3390/genes4030388] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 12/01/2022] Open
Abstract
Checkpoints monitor critical cell cycle events such as chromosome duplication and segregation. They are highly conserved mechanisms that prevent progression into the next phase of the cell cycle when cells are unable to accomplish the previous event properly. During S phase, cells also provide a surveillance mechanism called the DNA replication checkpoint, which consists of a conserved kinase cascade that is provoked by insults that block or slow down replication forks. The DNA replication checkpoint is crucial for maintaining genome stability, because replication forks become vulnerable to collapse when they encounter obstacles such as nucleotide adducts, nicks, RNA-DNA hybrids, or stable protein-DNA complexes. These can be exogenously induced or can arise from endogenous cellular activity. Here, we summarize the initiation and transduction of the replication checkpoint as well as its targets, which coordinate cell cycle events and DNA replication fork stability.
Collapse
|
14
|
Novel checkpoint pathway organization promotes genome stability in stationary-phase yeast cells. Mol Cell Biol 2012; 33:457-72. [PMID: 23149941 DOI: 10.1128/mcb.05831-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most DNA alterations occur during DNA replication in the S phase of the cell cycle. However, the majority of eukaryotic cells exist in a nondividing, quiescent state. Little is known about the factors involved in preventing DNA instability within this stationary-phase cell population. Previously, we utilized a unique assay system to identify mutations that increased minisatellite alterations specifically in quiescent cells in Saccharomyces cerevisiae. Here we conducted a modified version of synthetic genetic array analysis to determine if checkpoint signaling components play a role in stabilizing minisatellites in stationary-phase yeast cells. Our results revealed that a subset of checkpoint components, specifically MRC1, CSM3, TOF1, DDC1, RAD17, MEC3, TEL1, MEC1, and RAD53, prevent stationary-phase minisatellite alterations within the quiescent cell subpopulation of stationary-phase cells. Pathway analysis revealed at least three pathways, with MRC1, CSM3, and TOF1 acting in a pathway independent of MEC1 and RAD53. Overall, our data indicate that some well-characterized checkpoint components maintain minisatellite stability in stationary-phase cells but are regulated differently in those cells than in actively growing cells. For the MRC1-dependent pathway, the checkpoint itself may not be the important element; rather, it may be loss of the checkpoint proteins' other functions that contributes to DNA instability.
Collapse
|
15
|
Finn K, Lowndes NF, Grenon M. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 2012; 69:1447-73. [PMID: 22083606 PMCID: PMC11115150 DOI: 10.1007/s00018-011-0875-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term "checkpoint" was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in Saccharomyces cerevisiae, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.
Collapse
Affiliation(s)
- Karen Finn
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
16
|
Berens TJ, Toczyski DP. Colocalization of Mec1 and Mrc1 is sufficient for Rad53 phosphorylation in vivo. Mol Biol Cell 2012; 23:1058-67. [PMID: 22298423 PMCID: PMC3302733 DOI: 10.1091/mbc.e11-10-0852] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the DNA damage checkpoint, the sensor kinase Mec1 must be activated by Ddc1 or Dpb11. However, Ddc1 and Dpb11 are dispensable for the related replication checkpoint. Instead, colocalization of Mec1 and the replisome component Mrc1 is the minimal signal required to activate the replication checkpoint and allow survival of replication stress. When DNA is damaged or DNA replication goes awry, cells activate checkpoints to allow time for damage to be repaired and replication to complete. In Saccharomyces cerevisiae, the DNA damage checkpoint, which responds to lesions such as double-strand breaks, is activated when the lesion promotes the association of the sensor kinase Mec1 and its targeting subunit Ddc2 with its activators Ddc1 (a member of the 9-1-1 complex) and Dpb11. It has been more difficult to determine what role these Mec1 activators play in the replication checkpoint, which recognizes stalled replication forks, since Dpb11 has a separate role in DNA replication itself. Therefore we constructed an in vivo replication-checkpoint mimic that recapitulates Mec1-dependent phosphorylation of the effector kinase Rad53, a crucial step in checkpoint activation. In the endogenous replication checkpoint, Mec1 phosphorylation of Rad53 requires Mrc1, a replisome component. The replication-checkpoint mimic requires colocalization of Mrc1-LacI and Ddc2-LacI and is independent of both Ddc1 and Dpb11. We show that these activators are also dispensable for Mec1 activity and cell survival in the endogenous replication checkpoint but that Ddc1 is absolutely required in the absence of Mrc1. We propose that colocalization of Mrc1 and Mec1 is the minimal signal required to activate the replication checkpoint.
Collapse
Affiliation(s)
- Theresa J Berens
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
17
|
Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X. Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell 2012; 45:422-32. [PMID: 22285753 DOI: 10.1016/j.molcel.2011.11.028] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/18/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
The cellular response to DNA damage employs multiple dynamic protein modifications to exert rapid and adaptable effects. Substantial work has detailed the roles of canonical checkpoint-mediated phosphorylation in this program. Recent studies have also implicated sumoylation in the DNA damage response; however, a systematic view of the contribution of sumoylation to replication and repair and its interplay with checkpoints is lacking. Here, using a biochemical screen in yeast, we establish that DNA damage-induced sumoylation occurs on a large scale. We identify MRX (Mre11-Rad50-Xrs2) as a positive regulator of this induction for a subset of repair targets. In addition, we find that defective sumoylation results in failure to complete replication of a damaged genome and impaired DNA end processing, highlighting the importance of the SUMO-mediated response in genome integrity. We also show that DNA damage-induced sumoylation does not require Mec1 checkpoint signaling, and the presence of both enables optimal DNA damage resistance.
Collapse
Affiliation(s)
- Catherine A Cremona
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
18
|
Sukhanova MV, D'Herin C, van der Kemp PA, Koval VV, Boiteux S, Lavrik OI. Ddc1 checkpoint protein and DNA polymerase ɛ interact with nick-containing DNA repair intermediate in cell free extracts of Saccharomyces cerevisiae. DNA Repair (Amst) 2011; 10:815-25. [PMID: 21601535 DOI: 10.1016/j.dnarep.2011.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/12/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
Abstract
To characterize proteins that interact with base excision/single-strand interruption repair DNA intermediates in cell free extracts of Saccharomyces cerevisiae, we used a combination of photoaffinity labeling with the protein identification by MALDI-TOF-MS peptide mapping. Photoreactive analogue of dCTP, namely exo-N-[4-(4-azido-2,3,5,6,-tetrafluorobenzylidenehydrazinocarbonyl)-butylcarbamoyl]-2'-deoxycytidine-5'-triphosphate, and [(32)P]-labeled DNA duplex containing one nucleotide gap were used to generate nick-containing DNA with a photoreactive dCMP residue at the 3'-margin of the nick. This photoreactive DNA derivative was incubated with the yeast cell extract and after UV irradiation a number of proteins were labeled. Two of the crosslinked proteins were identified as the catalytic subunit of DNA polymerase ɛ and Ddc1 checkpoint protein. Labeling of DNA polymerase ɛ catalytic subunit with the nick-containing DNA repair intermediate indicates that the DNA polymerase is involved in the DNA repair synthesis in yeast, at least at DNA single-strand interruptions. Crosslinking of Ddc1 to DNA nicks took place independently of the other components of checkpoint clamp, Mec3 and Rad17, suggesting that the protein alone is able to recognize DNA single-strand breaks. Indeed, purified GST-tagged Ddc1 protein was efficiently crosslinked to nick-containing DNA. The interaction of Ddc1 with DNA nicks may provide a link between the DNA damage checkpoint and DNA base excision/single-strand breaks repair pathways in yeast. In addition, we found that absence of Ddc1 protein greatly influences the overall pattern of other proteins crosslinked to DNA nick. We suggested that this last effect of Ddc1 is at least partially due to its capacity to prevent proteolytic degradation of the DNA-protein adducts.
Collapse
Affiliation(s)
- Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine Siberian Division of the Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk 630090, Russia
| | | | | | | | | | | |
Collapse
|
19
|
Yue M, Singh A, Wang Z, Xu YJ. The phosphorylation network for efficient activation of the DNA replication checkpoint in fission yeast. J Biol Chem 2011; 286:22864-74. [PMID: 21561865 DOI: 10.1074/jbc.m111.236687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein phosphorylation is the hallmark of checkpoint activation. Hundreds of targets of checkpoint kinases have been identified recently by genome-wide investigations. However, the complete picture of a phosphorylation network required for activation of a checkpoint pathway has not been available. The DNA replication checkpoint in Schizosaccharomyces pombe contains two major protein kinases, the sensor kinase Rad3 and the effector kinase Cds1, with the latter mediating most of the checkpoint functions. We show here that when DNA replication is arrested, efficient activation of Cds1 requires five phosphorylations that cooperate in a parallel or a sequential manner. Phosphorylation of a threonine residue (Thr(11)) in Cds1 by Rad3 occurs at a basal level in the absence of three other parallel Rad3-dependent phosphorylations on the mediator Mrc1 and Rad9 in the checkpoint clamp complex. However, the three parallel Rad3-dependent phosphorylations are all required for efficient phosphorylation of Thr(11) in Cds1 by Rad3. Phosphorylation of Thr(11) has been shown previously to promote autophosphorylation of Thr(328) in the kinase domain of Cds1, which directly activates the enzyme, leading to full activation of the checkpoint pathway. Interestingly, phosphorylation of Mrc1 by Rad3 does not require the phosphorylation of Rad9, suggesting that activation of the sensor kinase Rad3 in the replication checkpoint of fission yeast may involve a different mechanism.
Collapse
Affiliation(s)
- Ming Yue
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | |
Collapse
|
20
|
Clelland BW, Schultz MC. Genome stability control by checkpoint regulation of tRNA gene transcription. Transcription 2010; 1:115-125. [PMID: 21326884 DOI: 10.4161/trns.1.3.13735] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 08/31/2010] [Accepted: 09/23/2010] [Indexed: 12/21/2022] Open
Abstract
The RNA polymerase III pre-initiation complex (PIC) assembled on yeast tRNA genes naturally causes replication fork pausing that contributes to genome instability. Mechanistic coupling of the fork pausing activity of tRNA genes to replication has long been considered likely, but only recently demonstrated. In contrast to the expectation that this coupling might occur by a passive mechanism such as direct disruption of transcription factor-DNA complexes by a component of the replisome, it turns out that disassembly of the RNA polymerase III PIC is actively controlled by the replication stress checkpoint signal transduction pathway. This advance supports a new model in which checkpoint-dependent disassembly of the transcription machinery at tRNA genes is a vital component of an overall system of genome stability control that also targets replication and DNA repair proteins.
Collapse
Affiliation(s)
- Brett W Clelland
- Department of Biochemistry; School of Molecular and Systems Medicine; University of Alberta; Edmonton, AB Canada
| | | |
Collapse
|
21
|
Dynamics of Rad9 chromatin binding and checkpoint function are mediated by its dimerization and are cell cycle-regulated by CDK1 activity. PLoS Genet 2010; 6. [PMID: 20700441 PMCID: PMC2916856 DOI: 10.1371/journal.pgen.1001047] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 07/02/2010] [Indexed: 12/21/2022] Open
Abstract
Saccharomyces cerevisiae Rad9 is required for an effective DNA damage response throughout the cell cycle. Assembly of Rad9 on chromatin after DNA damage is promoted by histone modifications that create docking sites for Rad9 recruitment, allowing checkpoint activation. Rad53 phosphorylation is also dependent upon BRCT-directed Rad9 oligomerization; however, the crosstalk between these molecular determinants and their functional significance are poorly understood. Here we report that, in the G1 and M phases of the cell cycle, both constitutive and DNA damage-dependent Rad9 chromatin association require its BRCT domains. In G1 cells, GST or FKBP dimerization motifs can substitute to the BRCT domains for Rad9 chromatin binding and checkpoint function. Conversely, forced Rad9 dimerization in M phase fails to promote its recruitment onto DNA, although it supports Rad9 checkpoint function. In fact, a parallel pathway, independent on histone modifications and governed by CDK1 activity, allows checkpoint activation in the absence of Rad9 chromatin binding. CDK1-dependent phosphorylation of Rad9 on Ser11 leads to specific interaction with Dpb11, allowing Rad53 activation and bypassing the requirement for the histone branch. In response to DNA damage all eukaryotic cells activate a surveillance mechanism, known as the DNA damage checkpoint, which delays cell cycle progression and modulates DNA repair. Yeast RAD9 was the first DNA damage checkpoint gene identified. The genetic tools available in this model system allow to address relevant questions to understand the molecular mechanisms underlying the Rad9 biological function. By chromatin-binding and domain-swapping experiments, we found that Rad9 is recruited into DNA both in unperturbed and in DNA–damaging conditions, and we identified the molecular determinants required for such interaction. Moreover, the extent of chromatin-bound Rad9 is regulated during the cell cycle and influences its role in checkpoint activation. In fact, the checkpoint function of Rad9 in G1 cells is solely mediated by its interaction with modified histones, while in M phase it occurs through an additional scaffold protein, named Dpb11. Productive Rad9-Dpb11 interaction in M phase requires Rad9 phosphorylation by CDK1, and we identified the Ser11 residue as the major CDK1 target. The model of Rad9 action that we are presenting can be extended to other eukaryotic organisms, since Rad9 and Dpb11 have been conserved through evolution from yeast to mammalian cells.
Collapse
|
22
|
Janke R, Herzberg K, Rolfsmeier M, Mar J, Bashkirov VI, Haghnazari E, Cantin G, Yates JR, Heyer WD. A truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae. Nucleic Acids Res 2010; 38:2302-13. [PMID: 20061370 PMCID: PMC2853130 DOI: 10.1093/nar/gkp1222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo, activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR activation. Here, we identify serine 378 of the Rad55 recombination protein as a direct target site of Mec1. Rad55-S378 phosphorylation leads to an electrophoretic mobility shift of the protein and acts as a sentinel for Mec1 activation in vivo. A single double-stranded break (DSB) in G1-arrested cells causes phosphorylation of Rad55-S378, indicating activation of Mec1 kinase. However, Rad53 kinase is not detectably activated under these conditions. This response required Mec1-Ddc2 and loading of the 9-1-1 clamp by Rad24-RFC, but not Rad9 or Mrc1. In addition to Rad55–S378, two additional direct Mec1 kinase targets are phosphorylated, the middle subunit of the ssDNA-binding protein RPA, RPA2 and histone H2A (H2AX). These data suggest the existence of a truncated signaling pathway in response to a single DSB in G1-arrested cells that activates Mec1 without eliciting a full DDR involving the entire signaling pathway including the effector kinases.
Collapse
Affiliation(s)
- Ryan Janke
- Department of Microbiology, University of California, Davis, CA 95616-8665, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Navadgi-Patil VM, Burgers PM. A tale of two tails: activation of DNA damage checkpoint kinase Mec1/ATR by the 9-1-1 clamp and by Dpb11/TopBP1. DNA Repair (Amst) 2009; 8:996-1003. [PMID: 19464966 PMCID: PMC2725207 DOI: 10.1016/j.dnarep.2009.03.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 03/25/2009] [Indexed: 12/22/2022]
Abstract
The DNA damage and replication checkpoint kinase Mec1/ATR is a member of the PI3-kinase related kinases that function in response to various genotoxic stresses. The checkpoint clamp 9-1-1 (Rad9-Rad1-Hus1 in S. pombe and mammals; Ddc1-Rad17-Mec3 in S. cerevisiae) executes two distinct checkpoint functions. In S. cerevisiae, DNA-bound 9-1-1 directly activates Mec1 kinase activity, a function that has not been demonstrated in other organisms. A second, conserved activity of 9-1-1 is that of TopBP1/Cut5/Dpb11 recruitment to stalled replication sites; subsequent activation of Mec1/ATR is carried out by TopBP1/Cut5/Dpb11. Biochemical studies indicate that the mode of Mec1/ATR activation by S. cerevisiae 9-1-1 is analogous to activation by S. cerevisiae Dpb11 or by vertebrate TopBP1: activation is mediated by the intrinsically disordered C-terminal tail of each activator. The relative contributions made by multiple activators of Mec1/ATR are discussed.
Collapse
Affiliation(s)
- Vasundhara M. Navadgi-Patil
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Peter M. Burgers
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
24
|
Humpal SE, Robinson DA, Krebs JE. Marks to stop the clock: histone modifications and checkpoint regulation in the DNA damage response. Biochem Cell Biol 2009; 87:243-53. [PMID: 19234538 DOI: 10.1139/o08-109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA damage from endogenous and exogenous sources occurs throughout the cell cycle. In response to this damage, cells have developed a series of biochemical responses that allow them to recover from DNA damage and prevent mutations from being passed on to daughter cells. An important part of the DNA damage response is the ability to halt the progression of the cell cycle, allowing damaged DNA to be repaired. The cell cycle can be halted at semi-discrete times, called checkpoints, which occur at critical stages during the cell cycle. Recent work in our laboratory and by others has shown the importance of post-translational histone modifications in the DNA damage response. While many histone modifications have been identified that appear to facilitate repair per se, there have been surprisingly few links between these modifications and DNA damage checkpoints. Here, we review how modifications to histone H2A serine 129 (HSA129) and histone H3 lysine 79 (H3K79) contribute to the stimulation of the G1/S checkpoint. We also discuss recent findings that conflict with the current model of the way methylated H3K79 interacts with the checkpoint adaptor protein Rad9.
Collapse
Affiliation(s)
- Stephen E Humpal
- Department of Biological Sciences, University of Alaska-Anchorage, 3211 Providence Drive, Anchorage, AK99508, USA
| | | | | |
Collapse
|
25
|
di Domenico EG, Auriche C, Viscardi V, Longhese MP, Gilson E, Ascenzioni F. The Mec1p and Tel1p checkpoint kinases allow humanized yeast to tolerate chronic telomere dysfunctions by suppressing telomere fusions. DNA Repair (Amst) 2008; 8:209-18. [PMID: 19007917 DOI: 10.1016/j.dnarep.2008.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 09/01/2008] [Accepted: 10/10/2008] [Indexed: 01/23/2023]
Abstract
In this work we report that budding yeasts carrying human-type telomeric repeats at their chromosome termini show a chronic activation of the Rad53-dependent DNA damage checkpoint pathway and a G2/M cell cycle delay. Furthermore, in the absence of either TEL1/ATM or MEC1/ATR genes, which encodes phosphatidylinositol 3-kinase-related kinases (PIKKs), we detected telomere fusions, whose appearance correlates with a reduced cell viability and a high rate of genome instability. Based on sequence analysis, telomere fusions occurred primarily between ultrashort telomeres. Microcolony formation assays argue against the possibility that fusion-containing cells are eliminated by PIKK-dependent signalling. These findings reveal that humanized telomeres in yeast cells are sensed as a chronically damaged DNA but do not greatly impair cell viability as long as the cells have a functional DNA damage checkpoint.
Collapse
Affiliation(s)
- Enea Gino di Domenico
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma "La Sapienza", Roma, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Puddu F, Granata M, Di Nola L, Balestrini A, Piergiovanni G, Lazzaro F, Giannattasio M, Plevani P, Muzi-Falconi M. Phosphorylation of the budding yeast 9-1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint. Mol Cell Biol 2008; 28:4782-93. [PMID: 18541674 PMCID: PMC2493362 DOI: 10.1128/mcb.00330-08] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/26/2008] [Accepted: 05/27/2008] [Indexed: 11/20/2022] Open
Abstract
Following genotoxic insults, eukaryotic cells trigger a signal transduction cascade known as the DNA damage checkpoint response, which involves the loading onto DNA of an apical kinase and several downstream factors. Chromatin modifications play an important role in recruiting checkpoint proteins. In budding yeast, methylated H3-K79 is bound by the checkpoint factor Rad9. Loss of Dot1 prevents H3-K79 methylation, leading to a checkpoint defect in the G(1) phase of the cell cycle and to a reduction of checkpoint activation in mitosis, suggesting that another pathway contributes to Rad9 recruitment in M phase. We found that the replication factor Dpb11 is the keystone of this second pathway. dot1Delta dpb11-1 mutant cells are sensitive to UV or Zeocin treatment and cannot activate Rad53 if irradiated in M phase. Our data suggest that Dpb11 is held in proximity to damaged DNA through an interaction with the phosphorylated 9-1-1 complex, leading to Mec1-dependent phosphorylation of Rad9. Dpb11 is also phosphorylated after DNA damage, and this modification is lost in a nonphosphorylatable ddc1-T602A mutant. Finally, we show that, in vivo, Dpb11 cooperates with Dot1 in promoting Rad9 phosphorylation but also contributes to the full activation of Mec1 kinase.
Collapse
Affiliation(s)
- Fabio Puddu
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Longhese MP, Guerini I, Baldo V, Clerici M. Surveillance mechanisms monitoring chromosome breaks during mitosis and meiosis. DNA Repair (Amst) 2008; 7:545-57. [DOI: 10.1016/j.dnarep.2007.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 09/13/2007] [Indexed: 01/05/2023]
|
28
|
Skibbens RV. Mechanisms of sister chromatid pairing. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:283-339. [PMID: 18779060 DOI: 10.1016/s1937-6448(08)01005-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The continuance of life through cell division requires high fidelity DNA replication and chromosome segregation. During DNA replication, each parental chromosome is duplicated exactly and one time only. At the same time, the resulting chromosomes (called sister chromatids) become tightly paired along their length. This S-phase pairing, or cohesion, identifies chromatids as sisters over time. During mitosis in most eukaryotes, sister chromatids bi-orient to the mitotic spindle. After each chromosome pair is properly oriented, the cohesion established during S phase is inactivated in a tightly regulated fashion, allowing sister chromatids to segregate away from each other. Recent findings of cohesin structure and enzymology provide new insights into cohesion, while many critical facets of cohesion (how cohesins tether together sister chromatids and how those tethers are established) remain actively debated.
Collapse
Affiliation(s)
- Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
29
|
Dominant TEL1-hy mutations compensate for Mec1 lack of functions in the DNA damage response. Mol Cell Biol 2007; 28:358-75. [PMID: 17954565 DOI: 10.1128/mcb.01214-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic genome integrity is safeguarded by two highly conserved protein kinases that are called ATR and ATM for humans and Mec1 and Tel1 for Saccharomyces cerevisiae. Although they share sequence similarities and substrates, these protein kinases perform different specialized functions. In particular, Mec1 plays a key role in the DNA damage checkpoint response, whereas Tel1 primarily is involved in telomere homeostasis, and its checkpoint function is masked by the prevailing activity of Mec1. In order to understand how this specificity is achieved, we searched for TEL1 mutations able to compensate for the lack of Mec1 functions. Here, we describe seven independent dominant TEL1-hy alleles that are able to suppress, to different extents, both the hypersensitivity to genotoxic agents and the checkpoint defects of Mec1-deficient cells. Most of these alleles also cause telomere overelongation. In vitro kinase activity was increased compared to that of wild-type Tel1 in the Tel1-hy385, Tel1-hy394, Tel1-hy680, and Tel1-hy909 variants, but its activity was not affected by the TEL1-hy184 and TEL1-hy628 mutations and was slightly reduced by the TEL1-hy544 mutation. Thus, the phenotypes caused by at least some Tel1-hy variants are not simply the consequence of improved catalytic activity. Further characterization shows that Tel1-hy909 not only can sense and signal a single double-stranded DNA break, unlike wild-type Tel1, but also contributes more efficiently than Tel1 to single-stranded DNA accumulation at double-strand ends, thus enhancing Mec1 signaling activity. Moreover, it causes unscheduled checkpoint activation in unperturbed conditions and upregulates the checkpoint response to small amounts of DNA lesions. Finally, Tel1-hy544 can activate the checkpoint more efficiently than wild-type Tel1, while it causes telomere shortening, indicating that the checkpoint and telomeric functions of Tel1 can be separable.
Collapse
|
30
|
Majka J, Niedziela-Majka A, Burgers PMJ. The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol Cell 2006; 24:891-901. [PMID: 17189191 PMCID: PMC1850967 DOI: 10.1016/j.molcel.2006.11.027] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/17/2006] [Accepted: 11/30/2006] [Indexed: 11/22/2022]
Abstract
Yeast Mec1/Ddc2 protein kinase, the ortholog of human ATR/ATRIP, plays a central role in the DNA damage checkpoint. The PCNA-like clamp Rad17/Mec3/Ddc1 (the 9-1-1 complex in human) and its loader Rad24-RFC are also essential components of this signal transduction pathway. Here we have studied the role of the clamp in regulating Mec1, and we delineate how the signal generated by DNA lesions is transduced to the Rad53 effector kinase. The checkpoint clamp greatly activates the kinase activity of Mec1, but only if the clamp is appropriately loaded upon partial duplex DNA. Activated Mec1 phosphorylates the Ddc1 and Mec3 subunits of the clamp, the Rad24 subunit of the loader, and the Rpa1 and Rpa2 subunits of RPA. Phosphorylation of Rad53, and of human PHAS-1, a nonspecific target, also requires a properly loaded clamp. Phosphorylation and binding studies with individual clamp subunits indicate that the Ddc1 subunit mediates the functional interactions with Mec1.
Collapse
Affiliation(s)
- Jerzy Majka
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis, MO 63110, USA
| | - Anita Niedziela-Majka
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis, MO 63110, USA
| | - Peter M. J. Burgers
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis, MO 63110, USA
| |
Collapse
|
31
|
Ide S, Watanabe K, Watanabe H, Shirahige K, Kobayashi T, Maki H. Abnormality in initiation program of DNA replication is monitored by the highly repetitive rRNA gene array on chromosome XII in budding yeast. Mol Cell Biol 2006; 27:568-78. [PMID: 17101800 PMCID: PMC1800804 DOI: 10.1128/mcb.00731-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown previously that perturbation of origin firing in chromosome replication causes DNA lesions and triggers DNA damage checkpoint control, which ensures genomic integrity by stopping cell cycle progression until the lesions are repaired or by inducing cell death if they are not properly repaired. This was based on the observation that the temperature-sensitive phenotype of orc1-4 and orc2-1 mutants required a programmed action of the RAD9-dependent DNA damage checkpoint. Here, we report that DNA lesions in the orc mutants are induced much more quickly and frequently within the rRNA gene (rDNA) locus than at other chromosomal loci upon temperature shift. orc mutant cells with greatly reduced rDNA copy numbers regained the ability to grow at restrictive temperatures, and the checkpoint response after the temperature shift became weak in these cells. In orc2-1 cells, completion of chromosomal duplication was delayed specifically on chromosome XII, where the rDNA array is located, and the delay was partially suppressed when the rDNA copy number was reduced. These results suggest that the rDNA locus primarily signals abnormalities in the initiation program to the DNA damage checkpoint and that the rDNA copy number modulates the sensitivity of this monitoring function.
Collapse
Affiliation(s)
- Satoru Ide
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama-cho 8916-5, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Cardone JM, Revers LF, Machado RM, Bonatto D, Brendel M, Henriques JAP. Psoralen-sensitive mutant pso9-1 of Saccharomyces cerevisiae contains a mutant allele of the DNA damage checkpoint gene MEC3. DNA Repair (Amst) 2005; 5:163-71. [PMID: 16202664 DOI: 10.1016/j.dnarep.2005.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 08/03/2005] [Accepted: 08/30/2005] [Indexed: 11/23/2022]
Abstract
Complementation analysis of the pso9-1 yeast mutant strain sensitive to photoactivated mono- and bifunctional psoralens, UV-light 254 nm, and nitrosoguanidine, with pso1 to pso8 mutants, confirmed that it contains a novel pso mutation. Molecular cloning via the reverse genetics complementation approach using a yeast genomic library suggested pso9-1 to be a mutant allele of the DNA damage checkpoint control gene MEC3. Non-complementation of several sensitivity phenotypes in pso9-1/mec3Delta diploids confirmed allelism. The pso9-1 mutant allele contains a -1 frameshift mutation (deletion of one A) at nucleotide position 802 (802delA), resulting in nine different amino acid residues from that point and a premature termination. This mutation affected the binding properties of Pso9-1p, abolishing its interactions with both Rad17p and Ddc1p. Further interaction assays employing mec3 constructions lacking the last 25 and 75 amino acid carboxyl termini were also not able to maintain stable interactions. Moreover, the pso9-1 mutant strain could no longer sense DNA damage since it continued in the cell cycle after 8-MOP + UVA treatment. Taken together, these observations allowed us to propose a model for checkpoint activation generated by photo-induced adducts.
Collapse
Affiliation(s)
- J M Cardone
- Universidade Federal do Rio Grande do Sul, Department de Biofísica/Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9.500, Agronomia CEP, 91501 970 Porto Alegre, RS, Brasil
| | | | | | | | | | | |
Collapse
|
33
|
Lee W, St.Onge RP, Proctor M, Flaherty P, Jordan MI, Arkin AP, Davis RW, Nislow C, Giaever G. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet 2005; 1:e24. [PMID: 16121259 PMCID: PMC1189734 DOI: 10.1371/journal.pgen.0010024] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 07/01/2005] [Indexed: 11/18/2022] Open
Abstract
The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of approximately 4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups.
Collapse
Affiliation(s)
- William Lee
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Michael Proctor
- Department of Biochemistry, Stanford University School of Medicine, Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Patrick Flaherty
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Michael I Jordan
- Division of Computer Science, Department of Statistics, University of California, Berkeley, California, United States of America
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Howard Hughes Medical Institute, Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Ronald W Davis
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Corey Nislow
- Department of Biochemistry, Stanford University School of Medicine, Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Guri Giaever
- Department of Biochemistry, Stanford University School of Medicine, Stanford Genome Technology Center, Palo Alto, California, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Aroya SB, Kupiec M. The Elg1 replication factor C-like complex: a novel guardian of genome stability. DNA Repair (Amst) 2005; 4:409-17. [PMID: 15725622 DOI: 10.1016/j.dnarep.2004.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 08/17/2004] [Indexed: 02/07/2023]
Abstract
The remarkable stability of the eukaryotic genome is achieved by the activity of many overlapping surveillance and repair mechanism. Two protein complexes with resemblance to replication factor C (RFC) have been recently described, that play important roles in maintaining the stability of the genome. These RFC-like complexes (RLCs) share four common subunits (Rfc2-5) and each carry a unique large subunit (Rad24 or Ctf18) replacing the Rfc1 subunit of the replication complex. Work in several laboratories has recently uncovered a novel yeast gene, ELG1, which seems to play a central role in keeping the genome stable. elg1 mutants exhibit increased rates of spontaneous recombination and gross chromosomal rearrangements during vegetative growth. In addition, they lose chromosomes at an enhanced rate, show hyper-transposition of natural repeated elements and exhibit elongated telomeres. The Elg1 protein also associates with the Rfc2-5 subunits of replication factor C (RFC) to form a third RFC-like complex (RLC). Genetic and biochemical data indicate that the Elg1, Ctf18 and Rad24 RLCs work in three separate pathways important for maintaining the integrity of the genome and for coping with various genomic stresses. ELG1 is evolutionarily conserved and may play an important role in preventing the onset of cancer in humans. The Elg1 function is thus clearly required for maintaining genome stability during normal growth, and its absence has severe genetic consequences.
Collapse
Affiliation(s)
- Shay Ben Aroya
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
35
|
Viscardi V, Clerici M, Cartagena-Lirola H, Longhese MP. Telomeres and DNA damage checkpoints. Biochimie 2004; 87:613-24. [PMID: 15989978 DOI: 10.1016/j.biochi.2004.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
In all eukaryotic organisms, interruptions in duplex DNA molecules elicit a DNA damage response, which includes activation of DNA repair machineries and surveillance mechanisms, known as DNA damage checkpoints. Telomeres and double-strand breaks (DSBs) share the common feature of being physical ends of chromosomes. However, unlike DSBs, telomeres do not activate the DNA damage checkpoints and are usually protected from end-to-end fusions and other processing events that normally promote repair of DNA breaks. This indicates that they are shielded from being recognized and processed as DSBs. On the other hand, chromosome ends resemble damaged DNA, as several factors required for DNA repair and checkpoint networks play important roles in telomere length maintenance. Due to the critical role of both DNA damage checkpoints and telomere homeostasis in maintaining genetic stability and in counteracting cancer development, the knowledge of their interconnections is essential for our understanding of these key cellular controls.
Collapse
Affiliation(s)
- Valeria Viscardi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | |
Collapse
|
36
|
Clerici M, Baldo V, Mantiero D, Lottersberger F, Lucchini G, Longhese MP. A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1. Mol Cell Biol 2004; 24:10126-44. [PMID: 15542824 PMCID: PMC529042 DOI: 10.1128/mcb.24.23.10126-10144.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Revised: 08/10/2004] [Accepted: 09/07/2004] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, Mec1/ATR plays a primary role in sensing and transducing checkpoint signals in response to different types of DNA lesions, while the role of the Tel1/ATM kinase in DNA damage checkpoints is not as well defined. We found that UV irradiation in G(1) in the absence of Mec1 activates a Tel1/MRX-dependent checkpoint, which specifically inhibits the metaphase-to-anaphase transition. Activation of this checkpoint leads to phosphorylation of the downstream checkpoint kinases Rad53 and Chk1, which are required for Tel1-dependent cell cycle arrest, and their adaptor Rad9. The spindle assembly checkpoint protein Mad2 also partially contributes to the G(2)/M arrest of UV-irradiated mec1Delta cells independently of Rad53 phosphorylation and activation. The inability of UV-irradiated mec1Delta cells to undergo anaphase can be relieved by eliminating the anaphase inhibitor Pds1, whose phosphorylation and stabilization in these cells depend on Tel1, suggesting that Pds1 persistence may be responsible for the inability to undergo anaphase. Moreover, while UV irradiation can trigger Mec1-dependent Rad53 phosphorylation and activation in G(1)- and G(2)-arrested cells, Tel1-dependent checkpoint activation requires entry into S phase independently of the cell cycle phase at which cells are UV irradiated, and it is decreased when single-stranded DNA signaling is affected by the rfa1-t11 allele. This indicates that UV-damaged DNA molecules need to undergo structural changes in order to activate the Tel1-dependent checkpoint. Active Clb-cyclin-dependent kinase 1 (CDK1) complexes also participate in triggering this checkpoint and are required to maintain both Mec1- and Tel1-dependent Rad53 phosphorylation, suggesting that they may provide critical phosphorylation events in the DNA damage checkpoint cascade.
Collapse
Affiliation(s)
- Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, P. zza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Jia X, Weinert T, Lydall D. Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 2004; 166:753-64. [PMID: 15020465 PMCID: PMC1470748 DOI: 10.1534/genetics.166.2.753] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we examine the roles of budding-yeast checkpoint proteins in regulating degradation of dsDNA to ssDNA at unprotected telomeres (in Cdc13 telomere-binding protein defective strains). We find that Rad17, Mec3, as well as Rad24, members of the putative checkpoint clamp loader (Rad24) and sliding clamp (Rad17, Mec3) complexes, are important for promoting degradation of dsDNA in and near telomere repeats. We find that Mec1, Rad53, as well as Rad9, have the opposite role: they inhibit degradation. Downstream checkpoint kinases Chk1 and Dun1 play no detectable role in either promoting degradation or inhibiting it. These data suggest, first, that the checkpoint sliding clamp regulates and/or recruits some nucleases for degradation, and, second, that Mec1 activates Rad9 to activate Rad53 to inhibit degradation. Further analysis shows that Rad9 inhibits ssDNA generation by both Mec1/Rad53-dependent and -independent pathways. Exo1 appears to be targeted by the Mec1/Rad53-dependent pathway. Finally, analysis of double mutants suggests a minor role for Mec1 in promoting Rad24-dependent degradation of dsDNA. Thus, checkpoint proteins orchestrate carefully ssDNA production at unprotected telomeres.
Collapse
Affiliation(s)
- Xindan Jia
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
38
|
Richardson C, Horikoshi N, Pandita TK. The role of the DNA double-strand break response network in meiosis. DNA Repair (Amst) 2004; 3:1149-64. [PMID: 15279804 DOI: 10.1016/j.dnarep.2004.05.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organisms with sexual reproduction have two homologous copies of each chromosome. Meiosis is characterized by two successive cell divisions that result in four haploid sperms or eggs, each carrying a single copy of homologous chromosome. This process requires a coordinated reorganization of chromatin and a complex network of meiotic-specific signaling cascades. At the beginning of meiosis, each chromosome must recognize its homolog, then the two become intimately aligned along their entire lengths which allows the exchange of DNA strands between homologous sequences to generate genetic diversity. DNA double-strand breaks (DSBs) initiate meiotic recombination in a variety of organisms. Numerous studies have identified both the genomic loci of the initiating DSBs and the proteins involved in their formation. This review will summarize the activation and signaling networks required for the DSB response in meiosis.
Collapse
Affiliation(s)
- Christine Richardson
- College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
39
|
Baroni E, Viscardi V, Cartagena-Lirola H, Lucchini G, Longhese MP. The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol Cell Biol 2004; 24:4151-65. [PMID: 15121837 PMCID: PMC400471 DOI: 10.1128/mcb.24.10.4151-4165.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA damage checkpoint pathways sense DNA lesions and transduce the signals into appropriate biological responses, including cell cycle arrest, induction of transcriptional programs, and modification or activation of repair factors. Here we show that the Saccharomyces cerevisiae Sae2 protein, known to be involved in processing meiotic and mitotic double-strand breaks, is required for proper recovery from checkpoint-mediated cell cycle arrest after DNA damage and is phosphorylated periodically during the unperturbed cell cycle and in response to DNA damage. Both cell cycle- and DNA damage-dependent Sae2 phosphorylation requires the main checkpoint kinase, Mec1, and the upstream components of its pathway, Ddc1, Rad17, Rad24, and Mec3. Another pathway, involving Tel1 and the MRX complex, is also required for full DNA damage-induced Sae2 phosphorylation, that is instead independent of the downstream checkpoint transducers Rad53 and Chk1, as well as of their mediators Rad9 and Mrc1. Mutations altering all the favored ATM/ATR phosphorylation sites of Sae2 not only abolish its in vivo phosphorylation after DNA damage but also cause hypersensitivity to methyl methanesulfonate treatment, synthetic lethality with RAD27 deletion, and decreased rates of mitotic recombination between inverted Alu repeats, suggesting that checkpoint-mediated phosphorylation of Sae2 is important to support its repair and recombination functions.
Collapse
Affiliation(s)
- Enrico Baroni
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | | | | | | | | |
Collapse
|
40
|
Aylon Y, Kupiec M. New insights into the mechanism of homologous recombination in yeast. Mutat Res 2004; 566:231-48. [PMID: 15082239 DOI: 10.1016/j.mrrev.2003.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 10/02/2003] [Indexed: 01/09/2023]
Abstract
Genome stability is of primary importance for the survival and proper functioning of all organisms. Double-strand breaks (DSBs) arise spontaneously during growth, or can be created by external insults. Repair of DSBs by homologous recombination provides an efficient and fruitful pathway to restore chromosomal integrity. Exciting new work in yeast has lately provided insights into this complex process. Many of the proteins involved in recombination have been isolated and the details of the repair mechanism are now being unraveled at the molecular level. In this review, we focus on recent studies which dissect the recombinational repair of a single broken chromosome. After DSB formation, a decision is made regarding the mechanism of repair (recombination or non-homologous end-joining). This decision is under genetic control. Once committed to the recombination pathway, the broken chromosomal ends are resected by a still unclear mechanism in which the DNA damage checkpoint protein Rad24 participates. At this stage several proteins are recruited to the broken ends, including Rad51p, Rad52p, Rad55p, Rad57p, and possibly Rad54p. A genomic search for homology ensues, followed by strand invasion, promoted by the Rad51 filament with the participation of Rad55p, Rad57p and Rad54p. DNA synthesis then takes place, restoring the resected ends. Crossing-over formation depends on the length of the homologous recombining sequences, and is usually counteracted by the activity of the mismatch repair system. Given the conservation of the repair mechanisms and genes throughout evolution, these studies have profound implications for other eukaryotic organisms.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
41
|
Jia X, Weinert T, Lydall D. Mec1 and Rad53 Inhibit Formation of Single-Stranded DNA at Telomeres of Saccharomyces cerevisiae cdc13-1 Mutants. Genetics 2004. [DOI: 10.1093/genetics/166.2.753] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Here we examine the roles of budding-yeast checkpoint proteins in regulating degradation of dsDNA to ssDNA at unprotected telomeres (in Cdc13 telomere-binding protein defective strains). We find that Rad17, Mec3, as well as Rad24, members of the putative checkpoint clamp loader (Rad24) and sliding clamp (Rad17, Mec3) complexes, are important for promoting degradation of dsDNA in and near telomere repeats. We find that Mec1, Rad53, as well as Rad9, have the opposite role: they inhibit degradation. Downstream checkpoint kinases Chk1 and Dun1 play no detectable role in either promoting degradation or inhibiting it. These data suggest, first, that the checkpoint sliding clamp regulates and/or recruits some nucleases for degradation, and, second, that Mec1 activates Rad9 to activate Rad53 to inhibit degradation. Further analysis shows that Rad9 inhibits ssDNA generation by both Mec1/Rad53-dependent and -independent pathways. Exo1 appears to be targeted by the Mec1/Rad53-dependent pathway. Finally, analysis of double mutants suggests a minor role for Mec1 in promoting Rad24-dependent degradation of dsDNA. Thus, checkpoint proteins orchestrate carefully ssDNA production at unprotected telomeres.
Collapse
Affiliation(s)
- Xindan Jia
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ted Weinert
- Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - David Lydall
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
42
|
Giannattasio M, Lazzaro F, Longhese MP, Plevani P, Muzi-Falconi M. Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint. EMBO J 2004; 23:429-38. [PMID: 14726955 PMCID: PMC1271758 DOI: 10.1038/sj.emboj.7600051] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 11/25/2003] [Indexed: 11/09/2022] Open
Abstract
The mechanisms used by checkpoints to identify DNA lesions are poorly understood and may involve the function of repair proteins. Looking for mutants specifically defective in activating the checkpoint following UV lesions, but proficient in the response to methyl methane sulfonate and double-strand breaks, we isolated cdu1-1, which is allelic to RAD14, the homolog of human XPA, involved in lesion recognition during nucleotide excision repair (NER). Rad14 was also isolated as a partner of the Ddc1 checkpoint protein in a two-hybrid screening, and physical interaction was proven by co-immunoprecipitation. We show that lesion recognition is not sufficient for checkpoint activation, but processing, carried out by repair factors, is required for recruiting checkpoint proteins to damaged DNA. Mutations affecting the core NER machinery abolish G1 and G2 checkpoint responses to UV, preventing activation of the Mec1 kinase and its binding to chromosomes. Conversely, elimination of transcription-coupled or global genome repair alone does not affect checkpoints, suggesting a possible interpretation for the heterogeneity in cancer susceptibility observed in different NER syndrome patients.
Collapse
Affiliation(s)
- Michele Giannattasio
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Federico Lazzaro
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Paolo Plevani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy. Tel.: +39 02 5031 5034; Fax: +39 02 5031 5044; E-mail:
| | - Marco Muzi-Falconi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy. Tel.: +39 02 5031 5034; Fax: +39 02 5031 5044; E-mail:
| |
Collapse
|
43
|
Majka J, Burgers PMJ. The PCNA-RFC families of DNA clamps and clamp loaders. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:227-60. [PMID: 15210332 DOI: 10.1016/s0079-6603(04)78006-x] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The proliferating cell nuclear antigen PCNA functions at multiple levels in directing DNA metabolic pathways. Unbound to DNA, PCNA promotes localization of replication factors with a consensus PCNA-binding domain to replication factories. When bound to DNA, PCNA organizes various proteins involved in DNA replication, DNA repair, DNA modification, and chromatin modeling. Its modification by ubiquitin directs the cellular response to DNA damage. The ring-like PCNA homotrimer encircles double-stranded DNA and slides spontaneously across it. Loading of PCNA onto DNA at template-primer junctions is performed in an ATP-dependent process by replication factor C (RFC), a heteropentameric AAA+ protein complex consisting of the Rfc1, Rfc2, Rfc3, Rfc4, and Rfc5 subunits. Loading of yeast PCNA (POL30) is mechanistically distinct from analogous processes in E. coli (beta subunit by the gamma complex) and bacteriophage T4 (gp45 by gp44/62). Multiple stepwise ATP-binding events to RFC are required to load PCNA onto primed DNA. This stepwise mechanism should permit editing of this process at individual steps and allow for divergence of the default process into more specialized modes. Indeed, alternative RFC complexes consisting of the small RFC subunits together with an alternative Rfc1-like subunit have been identified. A complex required for the DNA damage checkpoint contains the Rad24 subunit, a complex required for sister chromatid cohesion contains the Ctf18 subunit, and a complex that aids in genome stability contains the Elg1 subunit. Only the RFC-Rad24 complex has a known associated clamp, a heterotrimeric complex consisting of Rad17, Mec3, and Ddc1. The other putative clamp loaders could either act on clamps yet to be identified or act on the two known clamps.
Collapse
Affiliation(s)
- Jerzy Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
44
|
Abstract
Replication protein A (RPA) is a conserved single-stranded DNA (ssDNA) binding protein with well-characterized roles in DNA metabolism. RPA is phosphorylated in response to genotoxic stress and is required for efficient checkpoint function, although these aspects of RPA function are not well understood. We have investigated the association between RPA and the checkpoint kinase Mec1 in yeast. RPA and Mec1 were found to be physically associated during unperturbed cell growth and in response to DNA damage. Using a Mec1 immunoprecipitate (IP)-kinase assay, we show that the two large subunits, RPA1 and RPA2, are good substrates for Mec1 kinase. The major phosphorylation site of RPA1 was further investigated as it was found to be localized to its amino terminus (RPA1N), which is a non-ssDNA binding domain implicated in regulatory function. This phosphorylation site mapped to serine 178 and phosphorylation-defective mutant protein, expressed from rfa1-S178A, showed reduced physical interaction with Mec1. Phenotypic analysis in vivo revealed that the rfa1-S178A mutation affected the kinetics of RPA1 and Rad53 phosphorylation but did not otherwise affect the checkpoint response. We suggest that phosphorylation of RPA1N by Mec1 may function together with other checkpoint events to regulate the checkpoint response.
Collapse
Affiliation(s)
- Hee-Sook Kim
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
45
|
Ellison V, Stillman B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. PLoS Biol 2003; 1:E33. [PMID: 14624239 PMCID: PMC261875 DOI: 10.1371/journal.pbio.0000033] [Citation(s) in RCA: 274] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Accepted: 08/23/2003] [Indexed: 11/18/2022] Open
Abstract
The cellular pathways involved in maintaining genome stability halt cell cycle progression in the presence of DNA damage or incomplete replication. Proteins required for this pathway include Rad17, Rad9, Hus1, Rad1, and Rfc-2, Rfc-3, Rfc-4, and Rfc-5. The heteropentamer replication factor C (RFC) loads during DNA replication the homotrimer proliferating cell nuclear antigen (PCNA) polymerase clamp onto DNA. Sequence similarities suggest the biochemical functions of an RSR (Rad17–Rfc2–Rfc3–Rfc4–Rfc5) complex and an RHR heterotrimer (Rad1–Hus1–Rad9) may be similar to that of RFC and PCNA, respectively. RSR purified from human cells loads RHR onto DNA in an ATP-, replication protein A-, and DNA structure-dependent manner. Interestingly, RSR and RFC differed in their ATPase activities and displayed distinct DNA substrate specificities. RSR preferred DNA substrates possessing 5′ recessed ends whereas RFC preferred 3′ recessed end DNA substrates. Characterization of the biochemical loading reaction executed by the checkpoint clamp loader RSR suggests new insights into the mechanisms underlying recognition of damage-induced DNA structures and signaling to cell cycle controls. The observation that RSR loads its clamp onto a 5′ recessed end supports a potential role for RHR and RSR in diverse DNA metabolism, such as stalled DNA replication forks, recombination-linked DNA repair, and telomere maintenance, among other processes. A cell cycle checkpoint complex is shown to bind preferentially to DNA with 5'recessed ends. This activity suggests that the complex might be involved in various DNA maintenance pathways
Collapse
Affiliation(s)
- Viola Ellison
- 1Cold Spring Harbor Laboratory, Cold Spring HarborNew YorkUnited States of America
| | - Bruce Stillman
- 1Cold Spring Harbor Laboratory, Cold Spring HarborNew YorkUnited States of America
| |
Collapse
|
46
|
Pike BL, Yongkiettrakul S, Tsai MD, Heierhorst J. Diverse but overlapping functions of the two forkhead-associated (FHA) domains in Rad53 checkpoint kinase activation. J Biol Chem 2003; 278:30421-4. [PMID: 12805372 DOI: 10.1074/jbc.c300227200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Forkhead-associated (FHA) domains are phosphothreonine-binding modules prevalent in proteins with important cell cycle and DNA damage response functions. The yeast checkpoint kinase Rad53 is unique in containing two FHA domains. We have generated novel recessive rad53 alleles with abolished FHA domain functions resulting from Ala substitution of the critical phosphothreonine-binding residues Arg70 and Arg605. In asynchronous cells, inactivation of the N-terminal FHA1 domain did not impair Rad53 activation and downstream functions, whereas inactivation of the C-terminal FHA2 domain led to reduced Rad53 activation and significantly increased DNA damage sensitivity. Simultaneous inactivation of both FHA domains abolished Rad53 activation and all downstream functions and dramatically increased the sensitivity to DNA damage and replication blocks similar to kinase-defective and rad53 null alleles, but did not compromise the essential viability function of Rad53. Interestingly, in G2/M synchronized cells, mutation of either FHA domain prevented Rad53 activation and impaired the cell cycle arrest checkpoint. Our data demonstrate that both FHA domains are required for normal Rad53 functions and indicate that the two FHA domains have differential but partially overlapping roles in Rad53 activation and downstream signaling.
Collapse
Affiliation(s)
- Brietta L Pike
- St. Vincent's Institute of Medical Research, and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | | | | | | |
Collapse
|
47
|
Scott KL, Plon SE. Loss of Sin3/Rpd3 histone deacetylase restores the DNA damage response in checkpoint-deficient strains of Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:4522-31. [PMID: 12808094 PMCID: PMC164854 DOI: 10.1128/mcb.23.13.4522-4531.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that expression of the human forkhead/winged helix transcription factor, CHES1 (checkpoint suppressor 1; FOXN3), suppresses sensitivity to DNA damage and restores damage-induced G(2)/M arrest in checkpoint-deficient strains of Saccharomyces cerevisiae. We find that a functional glutathione S-transferase-Ches1 fusion protein binds in vivo to Sin3, a component of the S. cerevisiae Sin3/Rpd3 histone deacetylase complex. Checkpoint mutant strains with SIN3 deleted show increased resistance to UV irradiation, which is not further enhanced by CHES1 expression. Conversely, overexpression of SIN3 blocks the Ches1-mediated G(2)/M delay in response to DNA damage, which is consistent with Ches1 acting by inhibiting the Sin3/Rpd3 complex. Deletion of either SIN3 or RPD3 in rad9 or mec1 checkpoint mutant strains suppresses sensitivity to replication blocks and DNA damage resulting from Cdc9 ligase deficiency and UV irradiation. SIN3 or RPD3 deletions also restored G(2)/M arrest after DNA damage without concomitant Rad53 phosphorylation in mec1 mutant strains. This DNA damage response is absent in mad1 spindle checkpoint mutants. These data suggest that modulation of chromatin structure may regulate checkpoint responses in S. cerevisiae. Inhibition of histone deacetylation results in a DNA damage checkpoint response mediated by the spindle checkpoint pathway that compensates for loss of the primary DNA damage checkpoint pathway.
Collapse
Affiliation(s)
- Kenneth L Scott
- Department of Molecular and Human Genetics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
48
|
Giannattasio M, Sabbioneda S, Minuzzo M, Plevani P, Muzi-Falconi M. Correlation between checkpoint activation and in vivo assembly of the yeast checkpoint complex Rad17-Mec3-Ddc1. J Biol Chem 2003; 278:22303-8. [PMID: 12672803 DOI: 10.1074/jbc.m301260200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad17-Mec3-Ddc1 forms a proliferating cell nuclear antigen-like complex that is required for the DNA damage response in Saccharomyces cerevisiae and acts at an early step of the signal transduction cascade activated by DNA lesions. We used the mec3-dn allele, which causes a dominant negative checkpoint defect in G1 but not in G2, to test the stability of the complex in vivo and to correlate its assembly and disassembly with the mechanisms controlling checkpoint activation. Under physiological conditions, the mutant complex is formed both in G1 and G2, although the mutant phenotype is detectable only in G1, suggesting that is not the presence of the mutant complex per se to cause a checkpoint defect. Our data indicate that the Rad17-Mec3-Ddc1 complex is very stable, and it takes several hours to replace Mec3 with Mec3-dn within a wild type complex. On the other hand, the mutant complex is rapidly assembled when starting from a condition where the complex is not pre-assembled, indicating that the critical factor for the substitution is the disassembly step rather than complex formation. Moreover, the kinetics of mutant complex assembly, starting from conditions in which the wild type form is present, parallels the kinetics of checkpoint inactivation, suggesting that the complex acts in a stoichiometric way, rather than catalytically.
Collapse
Affiliation(s)
- Michele Giannattasio
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
49
|
Foss EJ. Is Rad9p upstream or downstream from Mec1p? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:347-51. [PMID: 12760049 DOI: 10.1101/sqb.2000.65.347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- E J Foss
- Division of Human Biology, C3-168, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| |
Collapse
|
50
|
Weinert T, Little E, Shanks L, Admire A, Gardner R, Putnam C, Michelson R, Nyberg K, Sundareshan P. Details and concerns regarding the G2/M DNA damage checkpoint in budding yeast. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:433-41. [PMID: 12760059 DOI: 10.1101/sqb.2000.65.433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- T Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|