1
|
Caballero P, Yap A, Bromley MJ, Haas H. The Transcription Factors AcuK and AcuM Influence Siderophore Biosynthesis of Aspergillus fumigatus. J Fungi (Basel) 2024; 10:327. [PMID: 38786682 PMCID: PMC11121910 DOI: 10.3390/jof10050327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The mold Aspergillus fumigatus employs two high-affinity uptake systems, reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA), for the acquisition of the essential trace element iron. SIA has previously been shown to be crucial for virulence in mammalian hosts. Here, we show that a lack of AcuK or AcuM, transcription factors required for the activation of gluconeogenesis, decreases the production of both extra- and intracellular siderophores in A. fumigatus. The lack of AcuM or AcuK did not affect the expression of genes involved in RIA and SIA, suggesting that these regulators do not directly regulate iron homeostasis genes, but indirectly affect siderophore production through their influence on metabolism. Consistent with this, acetate supplementation reversed the intracellular siderophore production defect of ΔacuM and ΔacuK. Moreover, ΔacuM and ΔacuK displayed a similar growth defect under iron limitation and iron sufficiency, which suggests they have a general role in carbon metabolism apart from gluconeogenesis. In agreement with a potential role of the glyoxylate cycle in adaptation to iron starvation, transcript levels of the malate synthase-encoding acuE were found to be upregulated by iron limitation that is partially dependent on AcuK and AcuM. Together, these data demonstrate the influence of iron availability on carbon metabolism.
Collapse
Affiliation(s)
- Patricia Caballero
- Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (P.C.); (A.Y.)
| | - Annie Yap
- Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (P.C.); (A.Y.)
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, The University of Manchester, Manchester M13 9PL, UK;
| | - Hubertus Haas
- Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (P.C.); (A.Y.)
| |
Collapse
|
2
|
Sun Q, Dong B, Yang D, Yu J, Ren T, Wang T, Yang L, Lu Y, Su C. Zcf24, a zinc-finger transcription factor, is required for lactate catabolism and inhibits commensalism in Candida albicans. Mol Microbiol 2023; 119:112-125. [PMID: 36545847 DOI: 10.1111/mmi.15015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Candida albicans is a normal resident of humans and also a prevalent fungal pathogen. Lactate, a nonfermentative carbon source available in numerous anatomical niches, can be used by C. albicans as a carbon source. However, the key regulator(s) involved in this process remain unknown. Here, through a genetic screen, we report the identification of a transcription factor Zcf24 that is specifically required for lactate utilization in C. albicans. Zcf24 is responsible for the induction of CYB2, a gene encoding lactate dehydrogenase that is essential for lactate catabolism, in response to lactate. Chromatin immunoprecipitation showed a significantly higher signal of Zcf24 on the CYB2 promoter in lactate-grown cells than that in glucose-grown cells. Genome-wide transcription profiling indicates that, in addition to CYB2, Zcf24 regulates genes involved in the β-oxidation of fatty acids, iron transport, and drug transport. Surprisingly, deleting ZCF24 confers enhanced commensal fitness. This could be attributed to Crz1-activated β-glucan masking in the zcf24 mutant. The orthologs of Zcf24 are distributed in species most closely to C. albicans and some filamentous fungal species. Altogether, Zcf24 is the first transcription factor identified to date that regulates lactate catabolism in C. albicans and it is also involved in the regulation of commensalism.
Collapse
Affiliation(s)
- Qiangqiang Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bin Dong
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Dandan Yang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tianhao Ren
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Tianxu Wang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lianjuan Yang
- Shanghai Dermatology Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Lu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Abstract
Aspergillus fumigatus is a major opportunistic fungal pathogen of immunocompromised and immunocompetent hosts. To successfully establish an infection, A. fumigatus needs to use host carbon sources, such as acetate, present in the body fluids and peripheral tissues. However, utilization of acetate as a carbon source by fungi in the context of infection has not been investigated. This work shows that acetate is metabolized via different pathways in A. fumigatus and that acetate utilization is under the regulatory control of a transcription factor (TF), FacB. A. fumigatus acetate utilization is subject to carbon catabolite repression (CCR), although this is only partially dependent on the TF and main regulator of CCR CreA. The available extracellular carbon source, in this case glucose and acetate, significantly affected A. fumigatus virulence traits such as secondary metabolite secretion and cell wall composition, with the latter having consequences for resistance to oxidative stress, antifungal drugs, and human neutrophil-mediated killing. Furthermore, deletion of facB significantly impaired the in vivo virulence of A. fumigatus in both insect and mammalian models of invasive aspergillosis. This is the first report on acetate utilization in A. fumigatus, and this work further highlights the importance of available host-specific carbon sources in shaping fungal virulence traits and subsequent disease outcome, and a potential target for the development of antifungal strategies. IMPORTANCE Aspergillus fumigatus is an opportunistic fungal pathogen in humans. During infection, A. fumigatus is predicted to use host carbon sources, such as acetate, present in body fluids and peripheral tissues, to sustain growth and promote colonization and invasion. This work shows that A. fumigatus metabolizes acetate via different pathways, a process that is dependent on the transcription factor FacB. Furthermore, the type and concentration of the extracellular available carbon source were determined to shape A. fumigatus virulence determinants such as secondary metabolite secretion and cell wall composition. Subsequently, interactions with immune cells are altered in a carbon source-specific manner. FacB is required for A. fumigatus in vivo virulence in both insect and mammalian models of invasive aspergillosis. This is the first report that characterizes acetate utilization in A. fumigatus and highlights the importance of available host-specific carbon sources in shaping virulence traits and potentially subsequent disease outcome.
Collapse
|
4
|
Two homologs of the Cat8 transcription factor are involved in the regulation of ethanol utilization in Komagataella phaffii. Curr Genet 2021; 67:641-661. [PMID: 33725138 PMCID: PMC8254726 DOI: 10.1007/s00294-021-01165-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/26/2022]
Abstract
The transcription factors Cat8 and Sip4 were described in Saccharomyces cerevisiae and Kluyveromyces lactis to have very similar DNA binding domains and to be necessary for derepression of a variety of genes under non-fermentative growth conditions via binding to the carbon source responsive elements (CSREs). The methylotrophic yeast Komagataella phaffii (syn Pichia pastoris) has two transcription factors (TFs), which are putative homologs of Cat8 based on sequence similarity, termed Cat8-1 and Cat8-2. It is yet unclear in which cellular processes they are involved and if one of them is actually the homolog of Sip4. To study the roles of the Cat8 homologs in K. phaffii, overexpression or deletion strains were generated for the two TFs. The ability of these mutant strains to grow on different carbon sources was tested, and transcript levels of selected genes from the carbon metabolism were quantified. Our experiments showed that the TFs are required for the growth of K. phaffii on C2 carbon sources, but not on glucose, glycerol or methanol. K. phaffii deleted for Cat8-1 showed impaired growth on acetate, while both Cat8-1 and Cat8-2 are involved in the growth of K. phaffii on ethanol. Correspondingly, both TFs are participating in the activation of ADH2, ALD4 and ACS1, three genes encoding enzymes important for the assimilation of ethanol. Different from S. cerevisiae and K. lactis, Cat8-1 is not regulating the transcription of the putative Sip4-family member Cat8-2 in K. phaffii. Furthermore, Cat8-1 is necessary for the activation of genes from the glyoxylate cycle, whereas Cat8-2 is necessary for the activation of genes from the carnitine shuttle. Neither Cat8-1 nor Cat8-2 are required for the activation of gluconeogenesis genes. Finally, the CAT8-2 gene is repressed by the Mig1-2 transcription factor on glucose and autorepressed by the Cat8-2 protein on all tested carbon sources. Our study identified the involvement of K. phaffii Cat8-1 and Cat8-2 in C2-metabolism, and highlighted similarities and differences to their homologs in other yeast species.
Collapse
|
5
|
Valente S, Cometto A, Piombo E, Meloni GR, Ballester AR, González-Candelas L, Spadaro D. Elaborated regulation of griseofulvin biosynthesis in Penicillium griseofulvum and its role on conidiation and virulence. Int J Food Microbiol 2020; 328:108687. [PMID: 32474227 DOI: 10.1016/j.ijfoodmicro.2020.108687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/14/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Penicilium griseofulvum, the causal agent of apple blue mold, is able to produce in vitro and on apple a broad spectrum of secondary metabolites (SM), including patulin, roquefortine C and griseofulvin. Among them, griseofulvin is known for its antifungal and antiproliferative activity, and has received interest in many sectors, from medicine to agriculture. The biosynthesis of SM is finely regulated by filamentous fungi and can involve global regulators and pathway specific regulators, which are usually encoded by genes present in the same gene cluster as the backbone gene and tailoring enzymes. In the griseofulvin gene cluster, two putative transcription factors were previously identified, encoded by genes gsfR1 and gsfR2, and their role has been investigated in the present work. Analysis of P. griseofulvum knockout mutants lacking either gene suggest that gsfR2 forms part of a different pathway and gsfR1 exhibits many spectra of action, acting as regulator of griseofulvin and patulin biosynthesis and influencing conidia production and virulence on apple. The analysis of gsfR1 promoter revealed that the regulation of griseofulvin biosynthesis is also controlled by global regulators in response to many environmental stimuli, such as carbon and nitrogen. The influence of carbon and nitrogen on griseofulvin production was further investigated and verified, revealing a complex network of response and confirming the central role of gsfR1 in many processes in P. griseofulvum.
Collapse
Affiliation(s)
- Silvia Valente
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Agnese Cometto
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Edoardo Piombo
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Giovanna Roberta Meloni
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Ana-Rosa Ballester
- IATA-CSIC - Instituto de Agroquímica y Tecnología de Alimentos, Calle Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Luis González-Candelas
- IATA-CSIC - Instituto de Agroquímica y Tecnología de Alimentos, Calle Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Davide Spadaro
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| |
Collapse
|
6
|
Ries LNA, Steenwyk JL, de Castro PA, de Lima PBA, Almeida F, de Assis LJ, Manfiolli AO, Takahashi-Nakaguchi A, Kusuya Y, Hagiwara D, Takahashi H, Wang X, Obar JJ, Rokas A, Goldman GH. Nutritional Heterogeneity Among Aspergillus fumigatus Strains Has Consequences for Virulence in a Strain- and Host-Dependent Manner. Front Microbiol 2019; 10:854. [PMID: 31105662 PMCID: PMC6492530 DOI: 10.3389/fmicb.2019.00854] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/03/2019] [Indexed: 01/09/2023] Open
Abstract
Acquisition and subsequent metabolism of different carbon and nitrogen sources have been shown to play an important role in virulence attributes of the fungal pathogen Aspergillus fumigatus, such as the secretion of host tissue-damaging proteases and fungal cell wall integrity. We examined the relationship between the metabolic processes of carbon catabolite repression (CCR), nitrogen catabolite repression (NCR) and virulence in a variety of A. fumigatus clinical isolates. A considerable amount of heterogeneity with respect to the degree of CCR and NCR was observed and a positive correlation between NCR and virulence in a neutropenic mouse model of pulmonary aspergillosis (PA) was found. Isolate Afs35 was selected for further analysis and compared to the reference strain A1163, with both strains presenting the same degree of virulence in a neutropenic mouse model of PA. Afs35 metabolome analysis in physiological-relevant carbon sources indicated an accumulation of intracellular sugars that also serve as cell wall polysaccharide precursors. Genome analysis showed an accumulation of missense substitutions in the regulator of protease secretion and in genes encoding enzymes required for cell wall sugar metabolism. Based on these results, the virulence of strains Afs35 and A1163 was assessed in a triamcinolone murine model of PA and found to be significantly different, confirming the known importance of using different mouse models to assess strain-specific pathogenicity. These results highlight the importance of nitrogen metabolism for virulence and provide a detailed example of the heterogeneity that exists between A. fumigatus isolates with consequences for virulence in a strain-specific and host-dependent manner.
Collapse
Affiliation(s)
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Fausto Almeida
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Yoko Kusuya
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Xi Wang
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Lebanon, NH, United States
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Lebanon, NH, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Grau MF, Entwistle R, Chiang YM, Ahuja M, Oakley CE, Akashi T, Wang CCC, Todd RB, Oakley BR. Hybrid Transcription Factor Engineering Activates the Silent Secondary Metabolite Gene Cluster for (+)-Asperlin in Aspergillus nidulans. ACS Chem Biol 2018; 13:3193-3205. [PMID: 30339758 DOI: 10.1021/acschembio.8b00679] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fungi are a major source of valuable bioactive secondary metabolites (SMs). These compounds are synthesized by enzymes encoded by genes that are clustered in the genome. The vast majority of SM biosynthetic gene clusters are not expressed under normal growth conditions, and their products are unknown. Developing methods for activation of these silent gene clusters offers the potential for discovering many valuable new fungal SMs. While a number of useful approaches have been developed, they each have limitations, and additional tools are needed. One approach, upregulation of SM gene cluster-specific transcription factors that are associated with many SM gene clusters, has worked extremely well in some cases, but it has failed more often than it has succeeded. Taking advantage of transcription factor domain modularity, we developed a new approach. We fused the DNA-binding domain of a transcription factor associated with a silent SM gene cluster with the activation domain of a robust SM transcription factor, AfoA. Expression of this hybrid transcription factor activated transcription of the genes in the target cluster and production of the antibiotic (+)-asperlin. Deletion of cluster genes confirmed that the cluster is responsible for (+)-asperlin production, and we designate it the aln cluster. Separately, coinduction of expression of two aln cluster genes revealed the pathway intermediate (2 Z,4 Z,6 E)-octa-2,4,6-trienoic acid, a compound with photoprotectant properties. Our findings demonstrate the potential of our novel synthetic hybrid transcription factor strategy to discover the products of other silent fungal SM gene clusters.
Collapse
Affiliation(s)
- Michelle F. Grau
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | - Manmeet Ahuja
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Tomohiro Akashi
- Division of OMICS Analysis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Richard B. Todd
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, Kansas 66506, United States
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
8
|
Transcription Factors Controlling Primary and Secondary Metabolism in Filamentous Fungi: The β-Lactam Paradigm. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Galhano R, Illana A, Ryder LS, Rodríguez-Romero J, Demuez M, Badaruddin M, Martinez-Rocha AL, Soanes DM, Studholme DJ, Talbot NJ, Sesma A. Tpc1 is an important Zn(II)2Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus. PLoS Pathog 2017; 13:e1006516. [PMID: 28742127 PMCID: PMC5542705 DOI: 10.1371/journal.ppat.1006516] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/03/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023] Open
Abstract
The establishment of polarity is a critical process in pathogenic fungi, mediating infection-related morphogenesis and host tissue invasion. Here, we report the identification of TPC1 (Transcription factor for Polarity Control 1), which regulates invasive polarized growth in the rice blast fungus Magnaporthe oryzae. TPC1 encodes a putative transcription factor of the fungal Zn(II)2Cys6 family, exclusive to filamentous fungi. Tpc1-deficient mutants show severe defects in conidiogenesis, infection-associated autophagy, glycogen and lipid metabolism, and plant tissue colonisation. By tracking actin-binding proteins, septin-5 and autophagosome components, we show that Tpc1 regulates cytoskeletal dynamics and infection-associated autophagy during appressorium-mediated plant penetration. We found that Tpc1 interacts with Mst12 and modulates its DNA-binding activity, while Tpc1 nuclear localisation also depends on the MAP kinase Pmk1, consistent with the involvement of Tpc1 in this signalling pathway, which is critical for appressorium development. Importantly, Tpc1 directly regulates NOXD expression, the p22phox subunit of the fungal NADPH oxidase complex via an interaction with Mst12. Tpc1 therefore controls spatial and temporal regulation of cortical F-actin through regulation of the NADPH oxidase complex during appressorium re-polarisation. Consequently, Tpc1 is a core developmental regulator in filamentous fungi, linking the regulated synthesis of reactive oxygen species and the Pmk1 pathway, with polarity control during host invasion. Cellular polarity is an intrinsic feature of filamentous fungal growth and pathogenesis. In this study, we identified a gene required for fungal polar growth and virulence in the rice blast fungus Magnaporthe oryzae. This gene has been named TPC1 (Transcription factor for Polarity Control 1). The Tpc1 protein belongs to the fungal Zn(II)2Cys6 binuclear cluster family. This DNA-binding motif is present exclusively in the fungal kingdom. We have characterised defects associated with lack of Tpc1 in M. oryzae. We show that Tpc1 is involved in polarised growth and virulence. The M. oryzae Δtpc1 mutant shows a delay in glycogen and lipid metabolism, and infection-associated autophagy–processes that regulate appressorium-mediated M. oryzae plant infection. The saprophytic fungus Neurospora crassa contains a Tpc1 homolog (NcTpc1) involved in vegetative growth and sustained tip elongation, suggesting that Tpc1-like proteins act as core regulators of polarised growth and development in filamentous fungi. A comparative transcriptome analysis has allowed us to identify genes regulated by Tpc1 in M. oryzae including NoxD, an important component of the fungal NADPH complex. Significantly, Tpc1 interacts with Mst12, a component of the Pmk1 signalling pathway essential for appressorium development, and modulates Mst12 binding affinity to NOXD promoter region. We conclude that Tpc1 is a key regulator of polarity in M. oryzae that regulates growth, autophagy and septin-mediated reorientation of the F-actin cytoskeleton to facilitate plant cell invasion.
Collapse
Affiliation(s)
- Rita Galhano
- Disease & Stress Biology Dept. John Innes Centre, Norwich, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Adriana Illana
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
| | - Lauren S. Ryder
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Julio Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
| | - Marie Demuez
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
| | - Muhammad Badaruddin
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | | | - Darren M. Soanes
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - David J. Studholme
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Ane Sesma
- Disease & Stress Biology Dept. John Innes Centre, Norwich, United Kingdom
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
- * E-mail:
| |
Collapse
|
10
|
Gressler M, Hortschansky P, Geib E, Brock M. A new high-performance heterologous fungal expression system based on regulatory elements from the Aspergillus terreus terrein gene cluster. Front Microbiol 2015; 6:184. [PMID: 25852654 PMCID: PMC4360782 DOI: 10.3389/fmicb.2015.00184] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/19/2015] [Indexed: 11/13/2022] Open
Abstract
Recently, the Aspergillus terreus terrein gene cluster was identified and selected for development of a new heterologous expression system. The cluster encodes the specific transcription factor TerR that is indispensable for terrein cluster induction. To identify TerR binding sites, different recombinant versions of the TerR DNA-binding domain were analyzed for specific motif recognition. The high affinity consensus motif TCGGHHWYHCGGH was identified from genes required for terrein production and binding site mutations confirmed their essential contribution to gene expression in A. terreus. A combination of TerR with its terA target promoter was tested as recombinant expression system in the heterologous host Aspergillus niger. TerR mediated target promoter activation was directly dependent on its transcription level. Therefore, terR was expressed under control of the regulatable amylase promoter PamyB and the resulting activation of the terA target promoter was compared with activation levels obtained from direct expression of reporters from the strong gpdA control promoter. Here, the coupled system outcompeted the direct expression system. When the coupled system was used for heterologous polyketide synthase expression high metabolite levels were produced. Additionally, expression of the Aspergillus nidulans polyketide synthase gene orsA revealed lecanoric acid rather than orsellinic acid as major polyketide synthase product. Domain swapping experiments assigned this depside formation from orsellinic acid to the OrsA thioesterase domain. These experiments confirm the suitability of the expression system especially for high-level metabolite production in heterologous hosts.
Collapse
Affiliation(s)
- Markus Gressler
- Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena, Germany
| | - Peter Hortschansky
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena, Germany
| | - Elena Geib
- Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena, Germany
| | - Matthias Brock
- Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena, Germany ; Institute for Microbiology, Friedrich Schiller University Jena, Germany
| |
Collapse
|
11
|
Flipphi M, Oestreicher N, Nicolas V, Guitton A, Vélot C. The Aspergillus nidulans acuL gene encodes a mitochondrial carrier required for the utilization of carbon sources that are metabolized via the TCA cycle. Fungal Genet Biol 2014; 68:9-22. [DOI: 10.1016/j.fgb.2014.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
12
|
bin Yusof MT, Kershaw MJ, Soanes DM, Talbot NJ. FAR1 and FAR2 regulate the expression of genes associated with lipid metabolism in the rice blast fungus Magnaporthe oryzae. PLoS One 2014; 9:e99760. [PMID: 24949933 PMCID: PMC4064970 DOI: 10.1371/journal.pone.0099760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/17/2014] [Indexed: 12/02/2022] Open
Abstract
The rice blast fungus Magnaporthe oryzae causes plant disease via specialised infection structures called appressoria. These dome-shaped cells are able to generate enormous internal pressure, which enables penetration of rice tissue by invasive hyphae. Previous studies have shown that mobilisation of lipid bodies and subsequent lipid metabolism are essential pre-requisites for successful appressorium-mediated plant infection, which requires autophagic recycling of the contents of germinated spores and germ tubes to the developing appressorium. Here, we set out to identify putative regulators of lipid metabolism in the rice blast fungus. We report the identification of FAR1 and FAR2, which encode highly conserved members of the Zn2-Cys6 family of transcriptional regulators. We generated Δfar1, Δfar2 and Δfar1Δfar2 double mutants in M. oryzae and show that these deletion mutants are deficient in growth on long chain fatty acids. In addition, Δfar2 mutants are also unable to grow on acetate and short chain fatty acids. FAR1 and FAR2 are necessary for differential expression of genes involved in fatty acid β-oxidation, acetyl-CoA translocation, peroxisomal biogenesis, and the glyoxylate cycle in response to the presence of lipids. Furthermore, FAR2 is necessary for expression of genes associated with acetyl-CoA synthesis. Interestingly, Δfar1, Δfar2 and Δfar1Δfar2 mutants show no observable delay or reduction in lipid body mobilisation during plant infection, suggesting that these transcriptional regulators control lipid substrate utilization by the fungus but not the mobilisation of intracellular lipid reserves during infection-related morphogenesis.
Collapse
Affiliation(s)
- Mohammad Termizi bin Yusof
- School of Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Serdang, Selangor, Malaysia
| | | | - Darren M. Soanes
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
13
|
Downes DJ, Davis MA, Wong KH, Kreutzberger SD, Hynes MJ, Todd RB. Dual DNA binding and coactivator functions ofAspergillus nidulans TamA, a Zn(II)2Cys6 transcription factor. Mol Microbiol 2014; 92:1198-211. [DOI: 10.1111/mmi.12620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Damien J. Downes
- Department of Plant Pathology; Kansas State University; 4024 Throckmorton Plant Sciences Center Manhattan KS 66506 USA
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Meryl A. Davis
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Koon Ho Wong
- Department of Biological Chemistry & Molecular Pharmacology; Harvard Medical School; 240 Longwood Ave, Room C2-325 Boston MA 02115 USA
- Faculty of Health Sciences; University of Macau; Macau SAR China
| | - Sara D. Kreutzberger
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Michael J. Hynes
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Richard B. Todd
- Department of Plant Pathology; Kansas State University; 4024 Throckmorton Plant Sciences Center Manhattan KS 66506 USA
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| |
Collapse
|
14
|
Crespo-Sempere A, Selma-Lázaro C, Martínez-Culebras P, González-Candelas L. Characterization and disruption of the cipC gene in the ochratoxigenic fungus Aspergillus carbonarius. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Suzuki Y, Murray SL, Wong KH, Davis MA, Hynes MJ. Reprogramming of carbon metabolism by the transcriptional activators AcuK and AcuM in Aspergillus nidulans. Mol Microbiol 2012; 84:942-64. [DOI: 10.1111/j.1365-2958.2012.08067.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Barelli L, Padilla-Guerrero IE, Bidochka MJ. Differential expression of insect and plant specific adhesin genes, Mad1 and Mad2, in Metarhizium robertsii. Fungal Biol 2011; 115:1174-85. [PMID: 22036295 DOI: 10.1016/j.funbio.2011.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 11/16/2022]
Abstract
Metarhizium robertsii is an entomopathogenic fungus that is also plant rhizosphere competent. Two adhesin-encoding genes, Metarhizium adhesin-like protein 1 (Mad1) and Mad2, are involved in insect pathogenesis or plant root colonization, respectively. Here we examined the differential expression of the Mad genes when grown on a variety of soluble (carbohydrates and plant root exudate) and insoluble substrates (locust, tobacco hornworm, and cockroach cuticle, chitin, tomato stems, cellulose, and starch) and during insect, Plutella xylostella, infection. On insect cuticles Mad1 was up regulated, whereas bean root exudate and tomato stems resulted in the up regulation of Mad2. During the early stages of insect infection Mad1 was expressed while Mad2 was not expressed until fungal hyphae emerged and conidiated on the insect cadaver. The regulation of Mad2 was compared to that of other stress-related genes (heat shock protein (Hsp)30, Hsp70, and starvation stress gene A (ssgA)). Mad2 was generally up regulated by nutrient starvation (similar to ssgA) but not by pH, temperature, oxidative or osmotic stresses. Whereas Hsp30 and Hsp70 were generally up regulated at 37 °C or by oxidative stress even under nutrient enriched conditions. We fused the promoter of the Mad2 gene to a marker gene (green fluorescent protein (GFP)) and confirmed that Mad2 was up regulated when M. robertsii was grown in the presence of nutrient starvation. Examination of the promoter region of Mad2 revealed that it possessed two copies of a stress-response element (STRE) known to be regulated under the general stress-response pathway.
Collapse
Affiliation(s)
- Larissa Barelli
- Department of Biology, Brock University, St. Catharines, ON L2S3A1, Canada
| | | | | |
Collapse
|
17
|
Cruz AHDS, Brock M, Zambuzzi-Carvalho PF, Santos-Silva LK, Troian RF, Góes AM, Soares CMDA, Pereira M. Phosphorylation is the major mechanism regulating isocitrate lyase activity in Paracoccidioides brasiliensis yeast cells. FEBS J 2011; 278:2318-32. [PMID: 21535474 DOI: 10.1111/j.1742-4658.2011.08150.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glyoxylate cycle plays an essential role for anaplerosis of oxaloacetate during growth of microorganisms on carbon sources such as acetate or fatty acids and has been shown to contribute to virulence of several pathogens. Here, we investigated the transcriptional and post-translational regulation of the glyoxylate cycle key enzyme isocitrate lyase (PbICL) in the human pathogenic fungus Paracoccidioides brasiliensis. Although sequence analyses on fungal isocitrate lyases revealed a high phylogenetic conservation, their regulation seems to differ significantly. Closely related Aspergillus species regulate the glyoxylate cycle at the transcriptional level, whereas Pbicl was constitutively expressed in yeast cells. However, only low PbICL activity was detected when cells were grown in the presence of glucose. Two-dimensional gel analyses with subsequent antibody hybridization revealed constitutive production of PbICL, but low PbICL activity on glucose coincided with extensive protein phosphorylation. Since an in vitro dephosphorylation of PbICL from glucose grown cells strongly increased ICL activity and resembled the phosphorylation pattern of highly active acetate grown cells, post-translational modification seems the main mechanism regulating PbICL activity in yeast cells. In agreement, a transfer of yeast cells from glucose to acetate medium increased PbICL activity without requirement of de novo protein synthesis. Thus, inactivation of PbICL by phosphorylation is reversible, denoting a new strategy for the rapid adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Aline H da Silva Cruz
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gombert AK, Veiga T, Puig-Martinez M, Lamboo F, Nijland JG, Driessen AJM, Pronk JT, Daran JM. Functional characterization of the oxaloacetase encoding gene and elimination of oxalate formation in the β-lactam producer Penicillium chrysogenum. Fungal Genet Biol 2011; 48:831-9. [PMID: 21549851 DOI: 10.1016/j.fgb.2011.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/28/2022]
Abstract
Penicillium chrysogenum is widely used as an industrial antibiotic producer, in particular in the synthesis of ß-lactam antibiotics such as penicillins and cephalosporins. In industrial processes, oxalic acid formation leads to reduced product yields. Moreover, precipitation of calcium oxalate complicates product recovery. We observed oxalate production in glucose-limited chemostat cultures of P. chrysogenum grown with or without addition of adipic acid, side-chain of the cephalosporin precursor adipoyl-6-aminopenicillinic acid (ad-6-APA). Oxalate accounted for up to 5% of the consumed carbon source. In filamentous fungi, oxaloacetate hydrolase (OAH; EC3.7.1.1) is generally responsible for oxalate production. The P. chrysogenum genome harbours four orthologs of the A. niger oahA gene. Chemostat-based transcriptome analyses revealed a significant correlation between extracellular oxalate titers and expression level of the genes Pc18g05100 and Pc22g24830. To assess their possible involvement in oxalate production, both genes were cloned in Saccharomyces cerevisiae, yeast that does not produce oxalate. Only the expression of Pc22g24830 led to production of oxalic acid in S. cerevisiae. Subsequent deletion of Pc22g28430 in P. chrysogenum led to complete elimination of oxalate production, whilst improving yields of the cephalosporin precursor ad-6-APA.
Collapse
Affiliation(s)
- A K Gombert
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Maranhão FC, Silveira HC, Rossi A, Martinez-Rossi NM. Isolation of transcripts overexpressed in the human pathogenTrichophyton rubrumgrown in lipid as carbon source. Can J Microbiol 2011; 57:333-8. [DOI: 10.1139/w11-011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trichophyton rubrum is the most common etiological agent of human dermatophytosis. Despite the incidence and medical importance of this dermatophyte, little is known about the mechanisms of host invasion and pathogenicity. Host invasion depends on the adaptive cellular responses of the pathogen that allow it to penetrate the skin layers, which are mainly composed of proteins and lipids. In this study, we used suppression subtractive hybridization to identify transcripts overexpressed in T. rubrum cultured in lipid as carbon source. Among the subtractive cDNA clones isolated, 85 clones were positively screened by cDNA array dot blotting and were sequenced. The putative proteins encoded by the isolated transcripts showed similarities to fungal proteins involved in metabolism, signaling, defense, and virulence, such as the MDR/ABC transporter, glucan 1,3-β-glucosidase, chitin synthase B, copper-sulfate-regulated protein, and serine/threonine phosphatase (calcineurin A). These results provide the first molecular insight into the genes differentially expressed during the adaptation of T. rubrum to a lipidic carbon source.
Collapse
Affiliation(s)
- Fernanda C.A. Maranhão
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Henrique C.S. Silveira
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Antonio Rossi
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Nilce M. Martinez-Rossi
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
20
|
Role of carnitine acetyltransferases in acetyl coenzyme A metabolism in Aspergillus nidulans. EUKARYOTIC CELL 2011; 10:547-55. [PMID: 21296915 DOI: 10.1128/ec.00295-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flow of carbon metabolites between cellular compartments is an essential feature of fungal metabolism. During growth on ethanol, acetate, or fatty acids, acetyl units must enter the mitochondrion for metabolism via the tricarboxylic acid cycle, and acetyl coenzyme A (acetyl-CoA) in the cytoplasm is essential for the biosynthetic reactions and for protein acetylation. Acetyl-CoA is produced in the cytoplasm by acetyl-CoA synthetase during growth on acetate and ethanol while β-oxidation of fatty acids generates acetyl-CoA in peroxisomes. The acetyl-carnitine shuttle in which acetyl-CoA is reversibly converted to acetyl-carnitine by carnitine acetyltransferase (CAT) enzymes is important for intracellular transport of acetyl units. In the filamentous ascomycete Aspergillus nidulans, a cytoplasmic CAT, encoded by facC, is essential for growth on sources of cytoplasmic acetyl-CoA while a second CAT, encoded by the acuJ gene, is essential for growth on fatty acids as well as acetate. We have shown that AcuJ contains an N-terminal mitochondrial targeting sequence and a C-terminal peroxisomal targeting sequence (PTS) and is localized to both peroxisomes and mitochondria, independent of the carbon source. Mislocalization of AcuJ to the cytoplasm does not result in loss of growth on acetate but prevents growth on fatty acids. Therefore, while mitochondrial AcuJ is essential for the transfer of acetyl units to mitochondria, peroxisomal localization is required only for transfer from peroxisomes to mitochondria. Peroxisomal AcuJ was not required for the import of acetyl-CoA into peroxisomes for conversion to malate by malate synthase (MLS), and export of acetyl-CoA from peroxisomes to the cytoplasm was found to be independent of FacC when MLS was mislocalized to the cytoplasm.
Collapse
|
21
|
Flexible metabolism in Metarhizium anisopliae and Beauveria bassiana: role of the glyoxylate cycle during insect pathogenesis. Microbiology (Reading) 2011; 157:199-208. [DOI: 10.1099/mic.0.042697-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insect pathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have an increasing role in the control of agricultural insect pests and vectors of human diseases. Many of the virulence factors are well studied but less is known of the metabolism of these fungi during the course of insect infection or saprobic growth. Here, we assessed enzyme activity and gene expression in the central carbon metabolic pathway, including isocitrate dehydrogenase, aconitase, citrate synthase, malate synthase (MLS) and isocitrate lyase (ICL), with particular attention to the glyoxylate cycle when M. anisopliae and B. bassiana were grown under various conditions. We observed that ICL and MLS, glyoxylate cycle intermediates, were upregulated during growth on 2-carbon compounds (acetate and ethanol) as well as in insect haemolymph. We fused the promoter of the M. anisopliae ICL gene (Ma-icl) to a marker gene (mCherry) and showed that Ma-icl was upregulated when M. anisopliae was grown in the presence of acetate. Furthermore, Ma-icl was upregulated when fungi were engulfed by insect haemocytes as well as during appressorium formation. Addition of the ICL inhibitor 3-nitroproprionate delayed conidial germination and inhibited appressorium formation. These results show that these insect pathogenic fungi have a flexible metabolism that includes the glyoxylate cycle as an integral part of germination, pathogenesis and saprobic growth.
Collapse
|
22
|
ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. EUKARYOTIC CELL 2010; 9:1039-48. [PMID: 20495057 DOI: 10.1128/ec.00080-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acetyl coenzyme A (CoA) is a central metabolite in carbon and energy metabolism and in the biosynthesis of cellular molecules. A source of cytoplasmic acetyl-CoA is essential for the production of fatty acids and sterols and for protein acetylation, including histone acetylation in the nucleus. In Saccharomyces cerevisiae and Candida albicans acetyl-CoA is produced from acetate by cytoplasmic acetyl-CoA synthetase, while in plants and animals acetyl-CoA is derived from citrate via ATP-citrate lyase. In the filamentous ascomycete Aspergillus nidulans, tandem divergently transcribed genes (aclA and aclB) encode the subunits of ATP-citrate lyase, and we have deleted these genes. Growth is greatly diminished on carbon sources that do not result in cytoplasmic acetyl-CoA, such as glucose and proline, while growth is not affected on carbon sources that result in the production of cytoplasmic acetyl-CoA, such as acetate and ethanol. Addition of acetate restores growth on glucose or proline, and this is dependent on facA, which encodes cytoplasmic acetyl-CoA synthetase, but not on the regulatory gene facB. Transcription of aclA and aclB is repressed by growth on acetate or ethanol. Loss of ATP-citrate lyase results in severe developmental effects, with the production of asexual spores (conidia) being greatly reduced and a complete absence of sexual development. This is in contrast to Sordaria macrospora, in which fruiting body formation is initiated but maturation is defective in an ATP-citrate lyase mutant. Addition of acetate does not repair these defects, indicating a specific requirement for high levels of cytoplasmic acetyl-CoA during differentiation. Complementation in heterokaryons between aclA and aclB deletions for all phenotypes indicates that the tandem gene arrangement is not essential.
Collapse
|
23
|
Roumelioti K, Vangelatos I, Sophianopoulou V. A cryptic role of a glycolytic–gluconeogenic enzyme (aldolase) in amino acid transporter turnover in Aspergillus nidulans. Fungal Genet Biol 2010; 47:254-67. [DOI: 10.1016/j.fgb.2009.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 11/25/2022]
|
24
|
Peres NTA, Sanches PR, Falcão JP, Silveira HCS, Paião FG, Maranhão FCA, Gras DE, Segato F, Cazzaniga RA, Mazucato M, Cursino-Santos JR, Aquino-Ferreira R, Rossi A, Martinez-Rossi NM. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum. BMC Microbiol 2010; 10:39. [PMID: 20144196 PMCID: PMC2831883 DOI: 10.1186/1471-2180-10-39] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 02/08/2010] [Indexed: 01/13/2023] Open
Abstract
Background Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.
Collapse
Affiliation(s)
- Nalu T A Peres
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Silveira HCS, Gras DE, Cazzaniga RA, Sanches PR, Rossi A, Martinez-Rossi NM. Transcriptional profiling reveals genes in the human pathogen Trichophyton rubrum that are expressed in response to pH signaling. Microb Pathog 2009; 48:91-6. [PMID: 19874884 DOI: 10.1016/j.micpath.2009.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 10/19/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
Abstract
Trichophyton rubrum is a dermatophyte that infects human skin and nails. Its growth on keratin as its carbon source shifts the ambient pH from acidic to alkaline, which may be an efficient strategy for its successful infection and maintenance in the host. In this study, we used suppression subtractive hybridization to identify genes preferentially expressed in T. rubrum incubated at either pH 5.0 or pH 8.0. The functional grouping of the 341 overexpressed unigenes indicated proteins putatively involved in diverse cellular processes, such as membrane remodeling, cellular transport, metabolism, cellular protection, fungal pathogenesis, gene regulation, interaction with the environment, and iron uptake. Although the basic metabolic machinery identified under both growth conditions seems to be functionally similar, distinct genes are upregulated at acidic or alkaline pHs. We also isolated a large number of genes of unknown function, probably unique to T. rubrum or dermatophytes. Interestingly, the transcriptional profiling of several genes in a pacC(-) mutant suggests that, in T. rubrum, the transcription factor PacC has a diversity of metabolic functions, in response to either acidic or alkaline ambient pH.
Collapse
Affiliation(s)
- Henrique C S Silveira
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Physiological characterisation of acuB deletion in Aspergillus niger. Appl Microbiol Biotechnol 2009; 84:157-67. [PMID: 19444441 DOI: 10.1007/s00253-009-2027-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 04/27/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
The acuB gene of Aspergillus niger is an ortholog of facB in Aspergillus nidulans. Under carbon-repression conditions, facB is repressed, thereby preventing acetate metabolism when the repressing carbon source is present. Even though facB is reported to be repressed directly by CreA, it is believed that a basal level of FacB activity exists under glucose-repressive conditions. In the present study, the effect of deletion of acuB on the physiology of A. niger was assessed. Differences in organic acid and acetate production, enzyme activities and extracellular amino and non-amino organic acid production were determined under glucose-repressing and -derepressing conditions. Furthermore, consumption of alternative carbon sources (e.g. xylose, citrate, lactate and succinate) was investigated. It was shown that AcuB has pleiotropic effects on the physiology of A. niger. The results indicate that metabolic pathways that are not directly involved in acetate metabolism are influenced by acuB deletion. Clear differences in organic acid consumption and production were detected between the acuB and reference strain. However, the hypothesis that AcuB is responsible for basal AcuA activity necessary for activation of acetate metabolic pathways, even during growth on glucose, could not be confirmed. The experiments demonstrated that also when acuB was deleted, no acetate was formed. Therefore, AcuB cannot be the only activator of AcuA, and another control mechanism has to be available for activating AcuA.
Collapse
|
27
|
Baba S, Kinoshita H, Hosobuchi M, Nihira T. MlcR, a zinc cluster activator protein, is able to bind to a single (A/T)CGG site of cognate asymmetric motifs in the ML-236B (compactin) biosynthetic gene cluster. Mol Genet Genomics 2009; 281:627-34. [PMID: 19266218 DOI: 10.1007/s00438-009-0435-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 02/14/2009] [Indexed: 11/28/2022]
Abstract
All of the binding sequences for MlcR, a transcriptional activator of ML-236B (compactin) biosynthetic genes in Penicillium citrinum, were identified by an in vitro gel-shift assay. All the identified sequences contain an asymmetric direct repeat comprised of conserved tetrad bases (A/T)CGG with a spacer sequence of high similarity; in particular, G at position 2 and T at position 3 in the spacer are well conserved. The first (A/T)CGG repeat was essential for MlcR-binding and MlcR could bind to this monomeric site, probably as a monomer. This binding feature might enable MlcR to tolerate the variation of the spacer length and compositions in vitro. From these data, we propose that the consensus binding motif for MlcR is an asymmetric direct repeat, 5'-(A/T)CGG-NGTN(3-6)-TCGG-3'.
Collapse
Affiliation(s)
- Satoshi Baba
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | | | | | |
Collapse
|
28
|
AcpA, a member of the GPR1/FUN34/YaaH membrane protein family, is essential for acetate permease activity in the hyphal fungus Aspergillus nidulans. Biochem J 2008; 412:485-93. [PMID: 18302536 DOI: 10.1042/bj20080124] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In a previous study, alcS, a gene of the Aspergillus nidulans alc cluster, was shown to encode a protein that belongs to the GPR1/FUN34/YaaH membrane protein family. BLAST screening of the A. nidulans genome data identified additional genes encoding hypothetical proteins that could belong to this family. In this study we report the functional characterization of one of them, AN5226. Its expression is induced by ethanol and ethyl acetate (two inducers of the alc genes) and is mediated by the specific transcriptional activator of genes of the acetate-utilization pathway FacB. Growth of a null mutant (DeltaAN5226) is notably affected when acetate is used as sole carbon source at low concentration and in a high pH medium, i.e. when protonated acetate, the form that can enter the cell by passive diffusion, is present in low amounts. Consistently, expression of AN5226 is also induced by acetate, but only when the latter is present at low concentrations. (14)C-labelled acetate uptake experiments using germinating conidia demonstrate an essential role for AN5226 in mediated acetate transport. To our knowledge this report is the first to provide evidence for the identification of an acetate transporter in filamentous fungi. We have designated AN5226 as acpA (for acetate permease A).
Collapse
|
29
|
Fleck CB, Brock M. Characterization of an acyl-CoA: carboxylate CoA-transferase from Aspergillus nidulans involved in propionyl-CoA detoxification. Mol Microbiol 2008; 68:642-56. [PMID: 18331473 DOI: 10.1111/j.1365-2958.2008.06180.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Filamentous fungi metabolize toxic propionyl-CoA via the methylcitrate cycle. Disruption of the methylcitrate synthase gene leads to an accumulation of propionyl-CoA and attenuates virulence of Aspergillus fumigatus. However, addition of acetate, but not ethanol, to propionate-containing medium strongly reduces the accumulation of propionyl-CoA and restores growth of the methylcitrate synthase mutant. Therefore, the existence of a CoA-transferase was postulated, which transfers the CoASH moiety from propionyl-CoA to acetate and, thereby, detoxifying the cell. In this study, we purified the responsible protein from Aspergillus nidulans and characterized its biochemical properties. The enzyme used succinyl-, propionyl- and acetyl-CoA as CoASH donors and the corresponding acids as acceptor molecules. Although the protein displayed high sequence similarity to acetyl-CoA hydrolases this activity was hardly detectable. We additionally identified and deleted the coding DNA sequence of the CoA-transferase. The mutant displayed weak phenotypes in the presence of propionate and behaved like the wild type when no propionate was present. However, when a double-deletion mutant defective in both methylcitrate synthase and CoA-transferase was constructed, the resulting strain was unable to grow on media containing acetate and propionate as sole carbon sources, which confirmed the in vivo activity of the CoA-transferase.
Collapse
Affiliation(s)
- Christian B Fleck
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans Knoell Institute, Beutenbergstr. 11a, D-07745 Jena, Germany
| | | |
Collapse
|
30
|
Hynes MJ, Szewczyk E, Murray SL, Suzuki Y, Davis MA, Sealy-Lewis HM. Transcriptional control of gluconeogenesis in Aspergillus nidulans. Genetics 2007; 176:139-50. [PMID: 17339216 PMCID: PMC1893031 DOI: 10.1534/genetics.107.070904] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Accepted: 02/16/2007] [Indexed: 11/18/2022] Open
Abstract
Aspergillus nidulans can utilize carbon sources that result in the production of TCA cycle intermediates, thereby requiring gluconeogenesis. We have cloned the acuG gene encoding fructose-1,6 bisphosphatase and found that expression of this gene is regulated by carbon catabolite repression as well as by induction by a TCA cycle intermediate similar to the induction of the previously studied acuF gene encoding phosphoenolpyruvate carboxykinase. The acuN356 mutation results in loss of growth on gluconeogenic carbon sources. Cloning of acuN has shown that it encodes enolase, an enzyme involved in both glycolysis and gluconeogenesis. The acuN356 mutation is a translocation with a breakpoint in the 5' untranslated region resulting in loss of expression in response to gluconeogenic but not glycolytic carbon sources. Mutations in the acuK and acuM genes affect growth on carbon sources requiring gluconeogenesis and result in loss of induction of the acuF, acuN, and acuG genes by sources of TCA cycle intermediates. Isolation and sequencing of these genes has shown that they encode proteins with similar but distinct Zn(2) Cys(6) DNA-binding domains, suggesting a direct role in transcriptional control of gluconeogenic genes. These genes are conserved in other filamentous ascomycetes, indicating their significance for the regulation of carbon source utilization.
Collapse
Affiliation(s)
- Michael J Hynes
- Department of Genetics, University of Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
31
|
David H, Hofmann G, Oliveira AP, Jarmer H, Nielsen J. Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans. Genome Biol 2007; 7:R108. [PMID: 17107606 PMCID: PMC1794588 DOI: 10.1186/gb-2006-7-11-r108] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/25/2006] [Accepted: 11/15/2006] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Aspergillus nidulans (the asexual form of Emericella nidulans) is a model organism for aspergilli, which are an important group of filamentous fungi that encompasses human and plant pathogens as well as industrial cell factories. Aspergilli have a highly diversified metabolism and, because of their medical, agricultural and biotechnological importance, it would be valuable to have an understanding of how their metabolism is regulated. We therefore conducted a genome-wide transcription analysis of A. nidulans grown on three different carbon sources (glucose, glycerol, and ethanol) with the objective of identifying global regulatory structures. Furthermore, we reconstructed the complete metabolic network of this organism, which resulted in linking 666 genes to metabolic functions, as well as assigning metabolic roles to 472 genes that were previously uncharacterized. RESULTS Through combination of the reconstructed metabolic network and the transcription data, we identified subnetwork structures that pointed to coordinated regulation of genes that are involved in many different parts of the metabolism. Thus, for a shift from glucose to ethanol, we identified coordinated regulation of the complete pathway for oxidation of ethanol, as well as upregulation of gluconeogenesis and downregulation of glycolysis and the pentose phosphate pathway. Furthermore, on change in carbon source from glucose to ethanol, the cells shift from using the pentose phosphate pathway as the major source of NADPH (nicotinamide adenine dinucleotide phosphatase, reduced form) for biosynthesis to use of the malic enzyme. CONCLUSION Our analysis indicates that some of the genes are regulated by common transcription factors, making it possible to establish new putative links between known transcription factors and genes through clustering.
Collapse
Affiliation(s)
- Helga David
- Fluxome Sciences A/S, Diplomvej, DK-2800 Kgs, Lyngby, Denmark
| | - Gerald Hofmann
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Ana Paula Oliveira
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Hanne Jarmer
- Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Kemitorvet, DK-2800 Kgs, Lyngby, Denmark
| | - Jens Nielsen
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs, Lyngby, Denmark
| |
Collapse
|
32
|
Cánovas D, Andrianopoulos A. Developmental regulation of the glyoxylate cycle in the human pathogen Penicillium marneffei. Mol Microbiol 2006; 62:1725-38. [PMID: 17427290 DOI: 10.1111/j.1365-2958.2006.05477.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Penicillium marneffei is a thermally dimorphic opportunistic human pathogen with a saprophytic filamentous hyphal form at 25 degrees C and a pathogenic unicellular yeast form at 37 degrees C. During infection. P. marneffei yeast cells exist intracellularly in macrophages. To cope with nutrient deprivation during the infection process, a number of pathogens employ the glyoxylate cycle to utilize fatty acids as carbon sources. The genes which constitute this pathway have been implicated in pathogenesis. To investigate acetate and fatty acid utilization, the acuD gene encoding a key glyoxylate cycle enzyme (isocitrate lyase) was cloned. The acuD gene is regulated by both carbon source and temperature in P. marneffei, being strongly induced at 37 degrees C even in the presence of a repressing carbon source such as glucose. When introduced into the non-pathogenic monomorphic fungus Aspergillus nidulans, the P. marneffei acuD promoter only responds to carbon source. Similarly, when the A. nidulans acuD promoter is introduced into P. marneffei it only responds to carbon source suggesting that P. marneffei possesses both cis elements and trans-acting factors to control acuD by temperature. The Zn(II)2Cys6 DNA binding motif transcriptional activator FacB was cloned and is responsible for carbon source-, but not temperature-, dependent induction of acuD. The expression of acuD at 37 degrees C is induced by AbaA, a key regulator of morphogenesis in P. marneffei, but deletion of abaA does not completely eliminate temperature-dependent induction, suggesting that acuD and the glyoxylate cycle are regulated by a complex network of factors in P. marneffei which may contribute to its pathogenicity.
Collapse
Affiliation(s)
- David Cánovas
- Department of Genetics, University of Melbourne, Vic. 3010, Australia
| | | |
Collapse
|
33
|
MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 2006; 70:583-604. [PMID: 16959962 PMCID: PMC1594591 DOI: 10.1128/mmbr.00015-06] [Citation(s) in RCA: 436] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The trace element zinc is required for proper functioning of a large number of proteins, including various enzymes. However, most zinc-containing proteins are transcription factors capable of binding DNA and are named zinc finger proteins. They form one of the largest families of transcriptional regulators and are categorized into various classes according to zinc-binding motifs. This review focuses on one class of zinc finger proteins called zinc cluster (or binuclear) proteins. Members of this family are exclusively fungal and possess the well-conserved motif CysX(2)CysX(6)CysX(5-12)CysX(2)CysX(6-8)Cys. The cysteine residues bind to two zinc atoms, which coordinate folding of the domain involved in DNA recognition. The first- and best-studied zinc cluster protein is Gal4p, a transcriptional activator of genes involved in the catabolism of galactose in the budding yeast Saccharomyces cerevisiae. Since the discovery of Gal4p, many other zinc cluster proteins have been characterized; they function in a wide range of processes, including primary and secondary metabolism and meiosis. Other roles include regulation of genes involved in the stress response as well as pleiotropic drug resistance, as demonstrated in budding yeast and in human fungal pathogens. With the number of characterized zinc cluster proteins growing rapidly, it is becoming more and more apparent that they are important regulators of fungal physiology.
Collapse
Affiliation(s)
- Sarah MacPherson
- Department of Microbiology and Immunology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada H3A 1A
| | | | | |
Collapse
|
34
|
Stephan S, Heinzle E, Wenzel SC, Krug D, Müller R, Wittmann C. Metabolic physiology of Pseudomonas putida for heterologous production of myxochromide. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Mogensen J, Nielsen HB, Hofmann G, Nielsen J. Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol. Fungal Genet Biol 2006; 43:593-603. [PMID: 16698295 DOI: 10.1016/j.fgb.2006.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/28/2006] [Indexed: 11/27/2022]
Abstract
Here, we describe how the recently published Aspergillus nidulans genome sequence [Galagan, J.E., Calvo, S.E., Cuomo, C., Li-Jun, M., Wortman, J.R., et al., 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438 (7071), 1105-1115] was used to design a high-density oligo array with probes for 3,278 selected genes using the Febit Geniom One array system. For this purpose, the program OligoWiz II was used to design 24,125 probes to cover the 3,278 selected genes. Subsequently, the Febit system was used to investigate carbon catabolite repression by comparing the gene expression of a creA deleted mutant strain with a reference strain grown either with glucose or ethanol as the sole carbon source. In order to identify co-regulated genes and genes influenced by either the carbon source or CreA, the most significantly regulated genes (p<or=0.01) were grouped in eight clusters based on their expression profile. Analysis of the clusters allowed identification of numerous genes that are presumably not regulated by CreA, or alternatively are either directly or indirectly regulated by CreA. Surprisingly, we found evidence that more than 25% of the genes (54 out of the 200 significantly regulated) that are repressed by glucose are not completely de-repressed during growth on ethanol, as deletion of the creA resulted in increased expression of the genes in question even during growth on ethanol. Thus, the expression profiles obtained in the eight clusters indicate that the carbon catabolite repression is not a simple on/off switch but a more complex system not only dependent on the presence or absence of CreA but also on the carbon source.
Collapse
Affiliation(s)
- Jesper Mogensen
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Building 223, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
36
|
Hynes MJ, Murray SL, Duncan A, Khew GS, Davis MA. Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans. EUKARYOTIC CELL 2006; 5:794-805. [PMID: 16682457 PMCID: PMC1459687 DOI: 10.1128/ec.5.5.794-805.2006] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 02/20/2006] [Indexed: 11/20/2022]
Abstract
The catabolism of fatty acids is important in the lifestyle of many fungi, including plant and animal pathogens. This has been investigated in Aspergillus nidulans, which can grow on acetate and fatty acids as sources of carbon, resulting in the production of acetyl coenzyme A (CoA). Acetyl-CoA is metabolized via the glyoxalate bypass, located in peroxisomes, enabling gluconeogenesis. Acetate induction of enzymes specific for acetate utilization as well as glyoxalate bypass enzymes is via the Zn2-Cys6 binuclear cluster activator FacB. However, enzymes of the glyoxalate bypass as well as fatty acid beta-oxidation and peroxisomal proteins are also inducible by fatty acids. We have isolated mutants that cannot grow on fatty acids. Two of the corresponding genes, farA and farB, encode two highly conserved families of related Zn2-Cys6 binuclear proteins present in filamentous ascomycetes, including plant pathogens. A single ortholog is found in the yeasts Candida albicans, Debaryomyces hansenii, and Yarrowia lipolytica, but not in the Ashbya, Kluyveromyces, Saccharomyces lineage. Northern blot analysis has shown that deletion of the farA gene eliminates induction of a number of genes by both short- and long-chain fatty acids, while deletion of the farB gene eliminates short-chain induction. An identical core 6-bp in vitro binding site for each protein has been identified in genes encoding glyoxalate bypass, beta-oxidation, and peroxisomal functions. This sequence is overrepresented in the 5' region of genes predicted to be fatty acid induced in other filamentous ascomycetes, C. albicans, D. hansenii, and Y. lipolytica, but not in the corresponding genes in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Michael J Hynes
- Department of Genetics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
37
|
Tominaga M, Lee YH, Hayashi R, Suzuki Y, Yamada O, Sakamoto K, Gotoh K, Akita O. Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in Aspergillus oryzae RIB strains. Appl Environ Microbiol 2006; 72:484-90. [PMID: 16391082 PMCID: PMC1352174 DOI: 10.1128/aem.72.1.484-490.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To help assess the potential for aflatoxin production by Aspergillus oryzae, the structure of an aflatoxin biosynthesis gene homolog cluster in A. oryzae RIB 40 was analyzed. Although most genes in the corresponding cluster exhibited from 97 to 99% similarity to those of Aspergillus flavus, three genes shared 93% similarity or less. A 257-bp deletion in the aflT region, a frameshift mutation in norA, and a base pair substitution in verA were found in A. oryzae RIB 40. In the aflR promoter, two substitutions were found in one of the three putative AreA binding sites and in the FacB binding site. PCR primers were designed to amplify homologs of aflT, nor-1, aflR, norA, avnA, verB, and vbs and were used to detect these genes in 210 A. oryzae strains. Based on the PCR results, the A. oryzae RIB strains were classified into three groups, although most of them fell into two of the groups. Group 1, in which amplification of all seven genes was confirmed, contained 122 RIB strains (58.1% of examined strains), including RIB 40. Seventy-seven strains (36.7%) belonged to group 2, characterized by having only vbs, verB, and avnA in half of the cluster. Although slight expression of aflR was detected by reverse transcription-PCR in some group 1 strains, including RIB 40, other genes (avnA, vbs, verB, and omtA) related to aflatoxin production were not detected. aflR was not detected in group 2 strains by Southern analysis.
Collapse
Affiliation(s)
- Mihoko Tominaga
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Flaherty JE, Woloshuk CP. Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFR1. Appl Environ Microbiol 2004; 70:2653-9. [PMID: 15128515 PMCID: PMC404460 DOI: 10.1128/aem.70.5.2653-2659.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fusarium verticillioides, a pathogen of maize, produces a class of mycotoxins called fumonisins in infected kernels. In this study, a candidate regulatory gene, ZFR1, was identified in an expressed sequence tag library enriched for transcripts expressed by F. verticillioides during fumonisin B(1) (FB(1)) biosynthesis. ZFR1 deletion mutants exhibited normal growth and development on maize kernels, but fumonisin production was reduced to less than 10% of that of the wild-type strain. ZFR1 encodes a putative protein of 705 amino acids with sequence similarity to the Zn(II)2Cys6 binuclear cluster family that are regulators of both primary and secondary metabolism in fungi. Expression of ZFR1 in colonized germ and degermed kernel tissues correlated with FB(1) levels. Overexpression of ZFR1 in zfr1 mutants restored FB(1) production to wild-type levels; however, FB(1) was not restored in an fcc1 (Fusarium C-type cyclin) mutant by overexpression of ZFR1. The results of this study indicate that ZFR1 is a positive regulator of FB(1) biosynthesis in F. verticillioides and suggest that FCC1 is required for ZFR1 function.
Collapse
Affiliation(s)
- Joseph E Flaherty
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | |
Collapse
|
39
|
Sims AH, Robson GD, Hoyle DC, Oliver SG, Turner G, Prade RA, Russell HH, Dunn-Coleman NS, Gent ME. Use of expressed sequence tag analysis and cDNA microarrays of the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 2004; 41:199-212. [PMID: 14732266 DOI: 10.1016/j.fgb.2003.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The use of microarrays in the analysis of gene expression is becoming widespread for many organisms, including yeast. However, although the genomes of a number of filamentous fungi have been fully or partially sequenced, microarray analysis is still in its infancy in these organisms. Here, we describe the construction and validation of microarrays for the fungus Aspergillus nidulans using PCR products from a 4092 EST conidial germination library. An experiment was designed to validate these arrays by monitoring the expression profiles of known genes following the addition of 1% (w/v) glucose to wild-type A. nidulans cultures grown to mid-exponential phase in Vogel's minimal medium with ethanol as the sole carbon source. The profiles of genes showing statistically significant differential expression following the glucose up-shift are presented and an assessment of the quality and reproducibility of the A. nidulans arrays discussed.
Collapse
Affiliation(s)
- Andrew H Sims
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cziferszky A, Seiboth B, Kubicek CP. The Snf1 kinase of the filamentous fungus Hypocrea jecorina phosphorylates regulation-relevant serine residues in the yeast carbon catabolite repressor Mig1 but not in the filamentous fungal counterpart Cre1. Fungal Genet Biol 2004; 40:166-75. [PMID: 14516769 DOI: 10.1016/s1087-1845(03)00082-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Saccharomyces cerevisiae, the SNF1 gene product phosphorylates the carbon catabolite repressor protein Mig1 under conditions when glucose is limiting, thereby relieving the fungus from catabolite repression. We have investigated whether the corresponding counterpart of filamentous fungi-the Cre1 protein-is also phosphorylated by Snf1. To this end, snf1, an ortholog of SNF1, was isolated from the ascomycete Hypocrea jecorina. The gene encodes a protein with high similarity to Snf1 kinases from other eukaryotes in its N-terminal catalytic domain, but little similarity in the C-terminal half of the protein, albeit some short aa-areas were detected, however, which are conserved in filamentous fungi and in yeast. Expression of snf1 is independent of the carbon source. An overexpressed catalytic domain of H. jecorina Snf1 readily phosphorylated yeast Mig1, but not a Mig1 mutant form, in which all four identified Snf1 phosphorylation sites (Phi XRXXSXXX Phi) had been mutated. The enzyme did neither phosphorylate H. jecorina Cre1 nor histone H3, another substrate of Snf1 kinase in yeast. H. jecorina Snf1 also phosphorylated peptides comprising the strict Snf1 consensus, but notably did not phosphorylate peptides containing the regulatory serine residue in Cre1 (=Ser(241) in H. jecorina Cre1 and Ser(266) in Sclerotinia sclerotiorum CRE1). The use of cell-free extracts of H. jecorina as protein source for Snf1 showed phosphorylation of an unknown 36 kDa protein, which was present only in extracts from glucose-grown mycelia. We conclude that the Snf1 kinase from H. jecorina is not involved in the phosphorylation of Cre1.
Collapse
Affiliation(s)
- Angela Cziferszky
- Division of Applied Biochemistry and Gene Technology, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/166.5, A-1060 Wien, Austria
| | | | | |
Collapse
|
41
|
Schmoll M, Kubicek CP. Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. A review. Acta Microbiol Immunol Hung 2003; 50:125-45. [PMID: 12894484 DOI: 10.1556/amicr.50.2003.2-3.3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present article reviews the current understanding of regulation of cellulase gene transcription in Hypocrea jecorina (= Trichoderma reesei). Special emphasis is put on the mechanism of action of low molecular weight inducers of cellulase formation, the presence and role of recently identified transactivating proteins (Ace1, Ace2, Hap2/3/5), and the role of the carbon catabolite repressor Cre1. We also report on some recent genomic approaches towards understanding how cellulase inducers signal their presence to the transcriptional apparatus.
Collapse
Affiliation(s)
- Monika Schmoll
- Area Molecular Biotechnology, Section Applied Biochemistry and Gene Technology, Institute for Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Wien, Austria
| | | |
Collapse
|
42
|
Schüller HJ. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 2003; 43:139-60. [PMID: 12715202 DOI: 10.1007/s00294-003-0381-8] [Citation(s) in RCA: 334] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Revised: 01/20/2003] [Accepted: 01/21/2003] [Indexed: 11/30/2022]
Abstract
Although sugars are clearly the preferred carbon sources of the yeast Saccharomyces cerevisiae, nonfermentable substrates such as ethanol, glycerol, lactate, acetate or oleate can also be used for the generation of energy and cellular biomass. Several regulatory networks of glucose repression (carbon catabolite repression) are involved in the coordinate biosynthesis of enzymes required for the utilization of nonfermentable substrates. Positively and negatively acting complexes of pleiotropic regulatory proteins have been characterized. The Snf1 (Cat1) protein kinase complex, together with its regulatory subunit Snf4 (Cat3) and alternative beta-subunits Sip1, Sip2 or Gal83, plays an outstanding role for the derepression of structural genes which are repressed in the presence of a high glucose concentration. One molecular function of the Snf1 complex is deactivation by phosphorylation of the general glucose repressor Mig1. In addition to regulation of alternative sugar fermentation, Mig1 also influences activators of respiration and gluconeogenesis, although to a lesser extent. Snf1 is also required for conversion of specific regulatory factors into transcriptional activators. This review summarizes regulatory cis-acting elements of structural genes of the nonfermentative metabolism, together with the corresponding DNA-binding proteins (Hap2-5, Rtg1-3, Cat8, Sip4, Adr1, Oaf1, Pip2), and describes the molecular interactions among general regulators and pathway-specific factors. In addition to the influence of the carbon source at the transcriptional level, mechanisms of post-transcriptional control such as glucose-regulated stability of mRNA are also discussed briefly.
Collapse
Affiliation(s)
- Hans-Joachim Schüller
- Institut für Mikrobiologie, Abteilung Genetik und Biochemie, Ernst-Moritz-Arndt-Universität, Jahnstrasse 15a, 17487 Greifswald, Germany.
| |
Collapse
|
43
|
Bhatnagar D, Ehrlich KC, Cleveland TE. Molecular genetic analysis and regulation of aflatoxin biosynthesis. Appl Microbiol Biotechnol 2003; 61:83-93. [PMID: 12655449 DOI: 10.1007/s00253-002-1199-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Revised: 11/04/2002] [Accepted: 11/08/2002] [Indexed: 11/25/2022]
Abstract
Aflatoxins, produced by some Aspergillus species, are toxic and extremely carcinogenic furanocoumarins. Recent investigations of the molecular mechanism of AFB biosynthesis showed that the genes required for biosynthesis are in a 70 kb gene cluster. They encode a DNA-binding protein functioning in aflatoxin pathway gene regulation, and other enzymes such as cytochrome p450-type monooxygenases, dehydrogenases, methyltransferases, and polyketide and fatty acid synthases. Information gained from these studies has led to a better understanding of aflatoxin biosynthesis by these fungi. The characterization of genes involved in aflatoxin formation affords the opportunity to examine the mechanism of molecular regulation of the aflatoxin biosynthetic pathway, particularly during the interaction between aflatoxin-producing fungi and plants.
Collapse
Affiliation(s)
- D Bhatnagar
- Southern Regional Research Center, ARS, USDA, New Orleans, LA 70124, USA.
| | | | | |
Collapse
|
44
|
Gómez D, Cubero B, Cecchetto G, Scazzocchio C. PrnA, a Zn2Cys6 activator with a unique DNA recognition mode, requires inducer for in vivo binding. Mol Microbiol 2002; 44:585-97. [PMID: 11972793 DOI: 10.1046/j.1365-2958.2002.02939.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The PrnA transcriptional activator of Aspergillus nidulans binds as a dimer to CCGG-N-CCGG inverted repeats and to CCGG-6/7N-CCGG direct repeats. The binding specificity of the PrnA Zn cluster differs from that of the Gal4p/Ppr1p/UaY/Put3p group of proteins. Chimeras with UaY, a protein that strictly recognizes a CGG-6N-CCG motif, show that the recognition of the direct repeats necessitates the PrnA dimerization and linker elements, but the recognition of the CCGG-N-CCGG inverted repeats depends crucially on the PrnA Zn binuclear cluster and/or on residues amino-terminal to it. Three high-affinity sites in two different promoters have been visualized by in vivo methylation protection. Proline induction is essential for in vivo binding to these three sites but, as shown previously, not for nuclear entry. Simultaneous repression by ammonium and glucose does not affect in vivo binding to these high-affinity sites. PrnA differs from the isofunctional Saccharomyces cerevisiae protein Put3p, both in its unique binding specificity and in the requirement of induction for in vivo DNA binding.
Collapse
Affiliation(s)
- Dennis Gómez
- Institut de Génétique et Microbiologie, Université Paris-Sud, Bâtiment 409, UMR 8621 CNRS, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
45
|
Hynes MJ, Draht OW, Davis MA. Regulation of the acuF gene, encoding phosphoenolpyruvate carboxykinase in the filamentous fungus Aspergillus nidulans. J Bacteriol 2002; 184:183-90. [PMID: 11741859 PMCID: PMC134779 DOI: 10.1128/jb.184.1.183-190.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is a key enzyme required for gluconeogenesis when microorganisms grow on carbon sources metabolized via the tricarboxylic acid (TCA) cycle. Aspergillus nidulans acuF mutants isolated by their inability to use acetate as a carbon source specifically lack PEPCK. The acuF gene has been cloned and shown to encode a protein with high similarity to PEPCK from bacteria, plants, and fungi. The regulation of acuF expression has been studied by Northern blotting and by the construction of lacZ fusion reporters. Induction by acetate is abolished in mutants unable to metabolize acetate via the TCA cycle, and induction by amino acids metabolized via 2-oxoglutarate is lost in mutants unable to form 2-oxoglutarate. Induction by acetate and proline is not additive, consistent with a single mechanism of induction. Malate and succinate result in induction, and it is proposed that PEPCK is controlled by a novel mechanism of induction by a TCA cycle intermediate or derivative, thereby allowing gluconeogenesis to occur during growth on any carbon source metabolized via the TCA cycle. It has been shown that the facB gene, which mediates acetate induction of enzymes specifically required for acetate utilization, is not directly involved in PEPCK induction. This is in contrast to Saccharomyces cerevisiae, where Cat8p and Sip4p, homologs of FacB, regulate PEPCK as well as the expression of other genes necessary for growth on nonfermentable carbon sources in response to the carbon source present. This difference in the control of gluconeogenesis reflects the ability of A. nidulans and other filamentous fungi to use a wide variety of carbon sources in comparison with S. cerevisiae. The acuF gene was also found to be subject to activation by the CCAAT binding protein AnCF, a protein homologous to the S. cerevisiae Hap complex and the mammalian NFY complex.
Collapse
Affiliation(s)
- Michael J Hynes
- Department of Genetics, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
46
|
Felenbok B, Flipphi M, Nikolaev I. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:149-204. [PMID: 11550794 DOI: 10.1016/s0079-6603(01)69047-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This article reviews our knowledge of the ethanol utilization pathway (alc system) in the hyphal fungus Aspergillus nidulans. We discuss the progress made over the past decade in elucidating the two regulatory circuits controlling ethanol catabolism at the level of transcription, specific induction, and carbon catabolite repression, and show how their interplay modulates the utilization of nutrient carbon sources. The mechanisms featuring in this regulation are presented and their modes of action are discussed: First, AlcR, the transcriptional activator, which demonstrates quite remarkable structural features and an original mode of action; second, the physiological inducer acetaldehyde, whose intracellular accumulation induces the alc genes and thereby a catabolic flux while avoiding intoxification; third, CreA, the transcriptional repressor mediating carbon catabolite repression in A. nidulans, which acts in different ways on the various alc genes; Fourth, the promoters of the structural genes for alcohol dehydrogenase (alcA) and aldehyde dehydrogenase (aldA) and the regulatory alcR gene, which exhibit exceptional strength compared to other genes of the respective classes. alc gene expression depends on the number and localization of regulatory cis-acting elements and on the particular interaction between the two regulator proteins, AlcR and CreA, binding to them. All these characteristics make the ethanol regulon a suitable system for induced expression of heterologous protein in filamentous fungi.
Collapse
Affiliation(s)
- B Felenbok
- Institut de Génétique et Microbiologie, Université Paris-Sud, Centre Universitaire d'Orsay, France.
| | | | | |
Collapse
|
47
|
Aspergillus nidulans as a model organism for the study of the expression of genes encoding enzymes of relevance in the food industry. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Rahner A, Hiesinger M, Schüller HJ. Deregulation of gluconeogenic structural genes by variants of the transcriptional activator Cat8p of the yeast Saccharomyces cerevisiae. Mol Microbiol 1999; 34:146-56. [PMID: 10540293 DOI: 10.1046/j.1365-2958.1999.01588.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the yeast Saccharomyces cerevisiae, growth with a non-fermentable carbon source requires co-ordinate transcriptional activation of gluconeogenic structural genes by an upstream activation site (UAS) element, designated CSRE (carbon source-responsive element). The zinc cluster protein encoded by CAT8 is necessary for transcriptional derepression mediated by a CSRE. Expression of CAT8 as well as transcriptional activation by Cat8p is regulated by the carbon source, requiring a functional Cat1p (= Snf1p) protein kinase. The importance of both regulatory levels was investigated by construction of CAT8 variants with a constitutive transcriptional activation domain (INO2TAD) and/or a carbon source-independent promoter (MET25 ). Whereas a reporter gene driven by a CSRE-dependent synthetic minimal promoter showed a 40-fold derepression with wild-type CAT8, an almost constitutive expression was found with a MET25-CAT8-INO2TAD fusion construct due to a dramatically increased gene activation under conditions of glucose repression. Similar results were obtained with the mRNA of the isocitrate lyase gene ICL1 and at the level of ICL enzyme activity. Taking advantage of a Cat8p size variant, we demonstrate its binding to the CSRE. Our data show that carbon source-dependent transcriptional activation by Cat8p is the most important mechanism affecting the regulated expression of gluconeogenic structural genes.
Collapse
Affiliation(s)
- A Rahner
- Institut für Genetik und Biochemie, Ernst-Moritz-Arndt Universität Greifswald, F.-L.-Jahnstrasse 15a, D-17487 Greifswald, Germany
| | | | | |
Collapse
|
49
|
Ehrlich KC, Montalbano BG, Cary JW. Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus. Gene 1999; 230:249-57. [PMID: 10216264 DOI: 10.1016/s0378-1119(99)00075-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AFLR is a Zn2Cys6-type sequence-specific DNA-binding protein that is thought to be necessary for expression of most of the genes in the aflatoxin pathway gene cluster in Aspergillus parasiticus and A. flavus, and the sterigmatocystin gene cluster in A. nidulans. However, it was not known whether AFLR bound to the promoter regions of each of the genes in the cluster. Recently, A. nidulans AFLR was shown to bind to the motif 5'-TCGN5CGA-3'. In the present study, we examined the binding of AFLR to promoter regions of 11 genes in the A. parasiticus cluster. Based on electrophoretic mobility shift assays, the genes nor1, pksA, adhA, norA, ver1, omtA, ordA, and, vbs, had at least one 5'-TCGN5CGA-3' binding site within 200bp of the translation start site, and pksA and ver1 had an additional binding site further upstream. Although the promoter region of avnA lacked this motif, AFLR bound weakly to the sequence 5'-TCGCAGCCCGG-3' at -110bp. One region in the promoter of the divergently transcribed genes aflR/aflJ bound weakly to AFLR even though it contained a site with at most only 7bp of the 5'-TCGN5CGA-3' motif. This partial site may be recognized by a monomeric form of AFLR. Based on a comparison of 16 possible sites, the preferred binding sequence was 5'-TCGSWNNSCGR-3'.
Collapse
Affiliation(s)
- K C Ehrlich
- Southern Regional Research Center, USDA, PO Box 19687, New Orleans, LA 70179, USA.
| | | | | |
Collapse
|
50
|
Ehrlich KC, Cary JW, Montalbano BG. Characterization of the promoter for the gene encoding the aflatoxin biosynthetic pathway regulatory protein AFLR. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1444:412-7. [PMID: 10095064 DOI: 10.1016/s0167-4781(99)00022-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most genes in the aflatoxin biosynthetic pathway in Aspergillus parasiticus are regulated by the binuclear zinc cluster DNA-binding protein AFLR. The aflR promoter was analyzed in beta-glucuronidase reporter assays to elucidate some of the elements involved in the gene's transcription control. Truncation at 118 bp upstream of the translational start site increased promoter activity 5-fold, while truncation at -100 reduced activity about 20-fold. These findings indicate the presence of an important positive regulatory element between -100 and -118 and a negative regulatory region further upstream. Electrophoretic mobility shift assays on nuclear extracts from A. parasiticus induced for aflatoxin expression suggest that AFLR and another, possibly more abundant, protein bind to the -100/-118 region. Another protein binds to a sequence at position -159 to -164 that matches the consensus binding site for the transcription factor involved in pH-dependent gene regulation, PACC.
Collapse
Affiliation(s)
- K C Ehrlich
- Southern Regional Research Center, United States Department of Agriculture, PO box 19687, 1100 R.E. Lee Blvd., New Orleans, LA 70179, USA.
| | | | | |
Collapse
|