1
|
Su Y, Zhu K, Wang J, Liu B, Chang Y, Chang D, You Y. Advancing Src kinase inhibition: From structural design to therapeutic innovation - A comprehensive review. Eur J Med Chem 2025; 287:117369. [PMID: 39952096 DOI: 10.1016/j.ejmech.2025.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Src kinase, a non-receptor tyrosine kinase implicated in cellular signaling networks, plays a pivotal role in tumor progression and therapeutic resistance. Despite intensive research efforts spanning decades, no Src-selective kinase inhibitors have yet entered clinical use, highlighting the challenges in developing targeted therapeutics. Here we review recent advances in small-molecule Src inhibitor development, focusing on structural design strategies, binding mechanisms, and therapeutic applications. We analyze emerging approaches including fragment-based drug design, allosteric targeting, and substrate-competitive inhibition that have yielded promising new scaffold classes. Special attention is given to innovations in achieving isozyme selectivity, particularly through exploitation of non-ATP binding pockets and covalent inhibition strategies. Integration of artificial intelligence, living organoid platforms, and targeted protein degradation technologies is accelerating inhibitor optimization. We discuss key challenges in Src inhibitor development, including the need for enhanced selectivity, reduced off-target effects, and improved resistance profiles. Our analysis reveals promising directions for future therapeutic development, emphasizing the importance of rational design principles guided by structural insights and emerging technologies. These findings provide a framework for developing next-generation Src inhibitors with improved clinical potential.
Collapse
Affiliation(s)
- Yifeng Su
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiahao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Boyan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yue Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Degui Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| |
Collapse
|
2
|
Lu P, Yang L, Chen W, Li K, Chen X, Qu S. Four-dimensional trapped ion mobility spectrometry proteomics reveals circulating extracellular vesicles encapsulated drivers of nasopharyngeal carcinoma distant dissemination. Talanta 2025; 282:126907. [PMID: 39341061 DOI: 10.1016/j.talanta.2024.126907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer with a high propensity for early metastatic spread. Emerging evidence shows that extracellular vesicles (EVs) are key players in cancer metastasis, but their role in NPC metastasis remains poorly understood. We here present the first description of the proteomic and functional profiles of serum-derived circulating small EVs in metastatic NPC patients. To enhance the capture of low-abundance signaling proteins in EVs, timsTOF-based four-dimensional label-free quantitative proteomics was employed. We found that metastatic NPC patients (M-NPC-EVs) exhibited the highest serum EV levels compared to locoregional patients (L-NPC-EVs) and healthy subjects (Normal-EVs). The proteome of M-NPC-EVs differed substantially from L-NPC-EVs and was functionally enriched in pathways regulating cell polarity and motility, glucose metabolism, and angiogenesis. Functional assays testing individual EV samples demonstrated that M-NPC-EVs pronouncedly enhanced NPC cell migration, invasion, and the formation of lamellipodia and filopodia in vitro, and promoted angiogenesis in subcutaneous Matrigel plugs in vivo. In silico analyses suggested that PTPRA, TPI1 and GPI highly enriched in M-NPC-EVs were putative drivers underlying the motogenic and angiogenic activities of M-NPC-EVs, and their high expression levels were associated with a poor prognosis of NPC patients. The increased expression of PTPRA, TPI1 and GPI in M-NPC-EVs was then validated in an independent cohort consisting of 175 NPC patients (locoregional n = 114; metastatic n = 61). Together, utilizing patient-derived EVs, we mimicked the potential pro-metastatic functions of EVs in NPC patients in vitro and in vivo and provided novel insights into their bioactive cargoes.
Collapse
Affiliation(s)
- Pingan Lu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Liu Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Weiling Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Kaiguo Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Xuxia Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of High-Incidence Tumor Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Nasopharyngeal Carcinoma Clinical Research Center, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
3
|
Ouyang M, Xing Y, Zhang S, Li L, Pan Y, Deng L. Development of FRET Biosensor to Characterize CSK Subcellular Regulation. BIOSENSORS 2024; 14:206. [PMID: 38667199 PMCID: PMC11048185 DOI: 10.3390/bios14040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
C-terminal Src kinase (CSK) is the major inhibitory kinase for Src family kinases (SFKs) through the phosphorylation of their C-tail tyrosine sites, and it regulates various types of cellular activity in association with SFK function. As a cytoplasmic protein, CSK needs be recruited to the plasma membrane to regulate SFKs' activity. The regulatory mechanism behind CSK activity and its subcellular localization remains largely unclear. In this work, we developed a genetically encoded biosensor based on fluorescence resonance energy transfer (FRET) to visualize the CSK activity in live cells. The biosensor, with an optimized substrate peptide, confirmed the crucial Arg107 site in the CSK SH2 domain and displayed sensitivity and specificity to CSK activity, while showing minor responses to co-transfected Src and Fyn. FRET measurements showed that CSK had a relatively mild level of kinase activity in comparison to Src and Fyn in rat airway smooth muscle cells. The biosensor tagged with different submembrane-targeting signals detected CSK activity at both non-lipid raft and lipid raft microregions, while it showed a higher FRET level at non-lipid ones. Co-transfected receptor-type protein tyrosine phosphatase alpha (PTPα) had an inhibitory effect on the CSK FRET response. The biosensor did not detect obvious changes in CSK activity between metastatic cancer cells and normal ones. In conclusion, a novel FRET biosensor was generated to monitor CSK activity and demonstrated CSK activity existing in both non-lipid and lipid raft membrane microregions, being more present at non-lipid ones.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| | - Yujie Xing
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Shumin Zhang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| | - Liting Li
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yan Pan
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| |
Collapse
|
4
|
EswarKumar N, Yang CH, Tewary S, Peng WH, Chen GC, Yeh YQ, Yang HC, Ho MC. An integrative approach unveils a distal encounter site for rPTPε and phospho-Src complex formation. Structure 2023; 31:1567-1577.e5. [PMID: 37794594 DOI: 10.1016/j.str.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
The structure determination of protein tyrosine phosphatase (PTP): phospho-protein complexes, which is essential to understand how specificity is achieved at the amino acid level, remains a significant challenge for protein crystallography and cryoEM due to the transient nature of binding interactions. Using rPTPεD1 and phospho-SrcKD as a model system, we have established an integrative workflow to address this problem, by means of which we generate a protein:phospho-protein complex model using predetermined protein structures, SAXS and pTyr-tailored MD simulations. Our model reveals transient protein-protein interactions between rPTPεD1 and phospho-SrcKD and is supported by three independent experimental validations. Measurements of the association rate between rPTPεD1 and phospho-SrcKD showed that mutations on the rPTPεD1: SrcKD complex interface disrupts these transient interactions, resulting in a reduction in protein-protein association rate and, eventually, phosphatase activity. This integrative approach is applicable to other PTP: phospho-protein complexes and the characterization of transient protein-protein interface interactions.
Collapse
Affiliation(s)
- Nadendla EswarKumar
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Sunilkumar Tewary
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wen-Hsin Peng
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsin-Chu 300, Taiwan
| | - Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
5
|
Torres AY, Nano M, Campanale JP, Deak S, Montell DJ. Activated Src kinase promotes cell cannibalism in Drosophila. J Cell Biol 2023; 222:e202302076. [PMID: 37747450 PMCID: PMC10518265 DOI: 10.1083/jcb.202302076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Src family kinases (SFKs) are evolutionarily conserved proteins acting downstream of receptors and regulating cellular processes including proliferation, adhesion, and migration. Elevated SFK expression and activity correlate with progression of a variety of cancers. Here, using the Drosophila melanogaster border cells as a model, we report that localized activation of a Src kinase promotes an unusual behavior: engulfment of one cell by another. By modulating Src expression and activity in the border cell cluster, we found that increased Src kinase activity, either by mutation or loss of a negative regulator, is sufficient to drive one cell to engulf another living cell. We elucidate a molecular mechanism that requires integrins, the kinases SHARK and FAK, and Rho family GTPases, but not the engulfment receptor Draper. We propose that cell cannibalism is a result of aberrant phagocytosis, where cells with dysregulated Src activity fail to differentiate between living and dead or self versus non-self, thus driving this malignant behavior.
Collapse
Affiliation(s)
- Alba Yurani Torres
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Joseph P. Campanale
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Sierra Deak
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
6
|
Dang XW, Duan JL, Ye E, Mao ND, Bai R, Zhou X, Ye XY. Recent advances of small-molecule c-Src inhibitors for potential therapeutic utilities. Bioorg Chem 2023; 142:106934. [PMID: 39492169 DOI: 10.1016/j.bioorg.2023.106934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Proto-oncogene tyrosine-protein kinase Src, also known as c-Src, belongs to the family of non-receptor tyrosine protein kinases (TKs) called Src kinases. It plays a crucial role in cell division, motility, adhesion, and survival in both normal cells and cancer cells by activating various signaling pathways mediated by multiple cytokines. Additionally, c-Src kinase has been implicated in osteoclasts and bone loss diseases mediated by inflammation and osteoporosis. In recent years, remarkable advancements have been achieved in the development of c-Src inhibitors, with several candidates progressing to the clinical stage. This review focuses on the research progress in several areas, including the mechanism of action, drug discovery, combination therapy, and clinical research. By presenting this information, we aim to provide researchers with convenient access to valuable insights and inspire new ideas to expedite future drug discovery programs.
Collapse
Affiliation(s)
- Xia-Wen Dang
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ji-Long Duan
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Emily Ye
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Nian-Dong Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - RenRen Bai
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Xinglu Zhou
- Drug Discovery, Hangzhou HealZen Therapeutics Co., Ltd., Hangzhou, Zhejiang 310018, China.
| | - Xiang-Yang Ye
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
7
|
Chien YC, Wang YS, Sridharan D, Kuo CW, Chien CT, Uchihashi T, Kato K, Angata T, Meng TC, Hsu STD, Khoo KH. High Density of N- and O-Glycosylation Shields and Defines the Structural Dynamics of the Intrinsically Disordered Ectodomain of Receptor-type Protein Tyrosine Phosphatase Alpha. JACS AU 2023; 3:1864-1875. [PMID: 37502146 PMCID: PMC10369406 DOI: 10.1021/jacsau.3c00124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/29/2023]
Abstract
The intracellular phosphatase domain of the receptor-type protein tyrosine phosphatase alpha (PTPRA) is known to regulate various signaling pathways related to cell adhesion through c-Src kinase activation. In contrast, the functional significance of its relatively short, intrinsically disordered, and heavily glycosylated ectodomain remains unclear. Through detailed mass spectrometry analyses of a combination of protease and glycosidase digests, we now provide the first experimental evidence for its site-specific glycosylation pattern. This includes the occurrence of O-glycan at the N-glycosylation sequon among the more than 30 O-glycosylation sites confidently identified beside the 7 N-glycosylation sites. The closely spaced N- and O-glycans appear to have mutually limited the extent of further galactosylation and sialylation. An immature smaller form of full-length PTPRA was found to be deficient in O-glycosylation, most likely due to failure to transit the Golgi. N-glycosylation, on the other hand, is dispensable for cell surface expression and contributes less than the extensive O-glycosylation to the overall solution structure of the ectodomain. The glycosylation information is combined with the overall structural features of the ectodomain derived from small-angle X-ray scattering and high-speed atomic force microscopy monitoring to establish a dynamic structural model of the densely glycosylated PTPRA ectodomain. The observed high structural flexibility, as manifested by continuous transitioning from fully to partially extended and fold-back conformations, suggests that the receptor-type phosphatase is anchored to the membrane and kept mostly at a monomeric state through an ectodomain shaped and fully shielded by glycosylation.
Collapse
Affiliation(s)
- Yu-Chun Chien
- Institute
of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
| | - Yong-Sheng Wang
- Institute
of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
| | - Deepa Sridharan
- Institute
of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chu-Wei Kuo
- Institute
of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Ta Chien
- Institute
of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Takayuki Uchihashi
- Department
of Physics, Nagoya University, Nagoya 464-8602, Japan
- Exploratory
Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Koichi Kato
- Exploratory
Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki 444-8787, Japan
- Graduate
School of Pharmaceutical Sciences, Nagoya
City University, Nagoya 467-8603, Japan
| | - Takashi Angata
- Institute
of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
| | - Tzu-Ching Meng
- Institute
of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
| | - Shang-Te Danny Hsu
- Institute
of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
- International
Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima 739-8527, Japan
| | - Kay-Hooi Khoo
- Institute
of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
- Exploratory
Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
8
|
Sendo S, Kiosses WB, Yang S, Wu DJ, Lee DWK, Liu L, Aschner Y, Vela AJ, Downey GP, Santelli E, Bottini N. Clustering of phosphatase RPTPα promotes Src signaling and the arthritogenic action of synovial fibroblasts. Sci Signal 2023; 16:eabn8668. [PMID: 37402225 PMCID: PMC10544828 DOI: 10.1126/scisignal.abn8668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
Receptor-type protein phosphatase α (RPTPα) promotes fibroblast-dependent arthritis and fibrosis, in part, by enhancing the activation of the kinase SRC. Synovial fibroblasts lining joint tissue mediate inflammation and tissue damage, and their infiltration into adjacent tissues promotes disease progression. RPTPα includes an ectodomain and two intracellular catalytic domains (D1 and D2) and, in cancer cells, undergoes inhibitory homodimerization, which is dependent on a D1 wedge motif. Through single-molecule localization and labeled molecule interaction microscopy of migrating synovial fibroblasts, we investigated the role of RPTPα dimerization in the activation of SRC, the migration of synovial fibroblasts, and joint damage in a mouse model of arthritis. RPTPα clustered with other RPTPα and with SRC molecules in the context of actin-rich structures. A known dimerization-impairing mutation in the wedge motif (P210L/P211L) and the deletion of the D2 domain reduced RPTPα-RPTPα clustering; however, it also unexpectedly reduced RPTPα-SRC association. The same mutations also reduced recruitment of RPTPα to actin-rich structures and inhibited SRC activation and cellular migration. An antibody against the RPTPα ectodomain that prevented the clustering of RPTPα also inhibited RPTPα-SRC association and SRC activation and attenuated fibroblast migration and joint damage in arthritic mice. A catalytically inactivating RPTPα-C469S mutation protected mice from arthritis and reduced SRC activation in synovial fibroblasts. We conclude that RPTPα clustering retains it to actin-rich structures to promote SRC-mediated fibroblast migration and can be modulated through the extracellular domain.
Collapse
Affiliation(s)
- Sho Sendo
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - William B. Kiosses
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Shen Yang
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Dennis J. Wu
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Daniel W. K. Lee
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Lin Liu
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Allison J. Vela
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Gregory P. Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Eugenio Santelli
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Nunzio Bottini
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
9
|
Glucose-mediated N-glycosylation of RPTPα affects its subcellular localization and Src activation. Oncogene 2023; 42:1058-1071. [PMID: 36765146 DOI: 10.1038/s41388-023-02622-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Receptor-type protein tyrosine phosphatase α (RPTPα) is one of the typical PTPs that play indispensable roles in many cellular processes associated with cancers. It has been considered as the most powerful regulatory oncogene for Src activation, however it is unclear how its biological function is regulated by post-translational modifications. Here, we show that the extracellular segment of RPTPα is highly N-glycosylated precisely at N21, N36, N68, N80, N86, N104 and N124 sites. Such N-glycosylation modifications mediated by glucose concentration alter the subcellular localization of RPTPα from Golgi apparatus to plasma membrane, enhance the interaction of RPTPα with Src, which in turn enhances the activation of Src and ultimately promotes tumor development. Our results identified the N-glycosylation modifications of RPTPα, and linked it to glucose starvation and Src activation for promoting tumor development, which provides new evidence for the potential antitumor therapy.
Collapse
|
10
|
Hill MA, Bentley SR, Walker TL, Mellick GD, Wood SA, Sykes AM. Does a rare mutation in PTPRA contribute to the development of Parkinson’s disease in an Australian multi-incident family? PLoS One 2022; 17:e0271499. [PMID: 35900966 PMCID: PMC9333306 DOI: 10.1371/journal.pone.0271499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
The genetic study of multi-incident families is a powerful tool to investigate genetic contributions to the development of Parkinson’s disease. In this study, we identified the rare PTPRA p.R223W variant as one of three putative genetic factors potentially contributing to disease in an Australian family with incomplete penetrance. Whole exome sequencing identified these mutations in three affected cousins. The rare PTPRA missense variant was predicted to be damaging and was absent from 3,842 alleles from PD cases. Overexpression of the wild-type RPTPα and R223W mutant in HEK293T cells identified that the R223W mutation did not impair RPTPα expression levels or alter its trafficking to the plasma membrane. The R223W mutation did alter proteolytic processing of RPTPα, resulting in the accumulation of a cleavage product. The mutation also resulted in decreased activation of Src family kinases. The functional consequences of this variant, either alone or in concert with the other identified genetic variants, highlights that even minor changes in normal cellular function may increase the risk of developing PD.
Collapse
Affiliation(s)
- Melissa A. Hill
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Steven R. Bentley
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Tara L. Walker
- Queensland Brain Institute, University of Queensland, St Lucia, Australia
| | - George D. Mellick
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Stephen A. Wood
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Alex M. Sykes
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
- * E-mail:
| |
Collapse
|
11
|
Wan J, Zhao X, Liu J, Chen K, Li C. Src kinase mediates coelomocytes phagocytosis via interacting with focal adhesion kinase in Vibrio splendidus challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:411-420. [PMID: 35462003 DOI: 10.1016/j.fsi.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Immune cells have many efficient ways to participate in the host immunity, including phagocytosis, which is an important pathway to eliminate pathogens. Only β-integrin-mediated phagocytosis pathways have been confirmed in Apostichopus japonicus. The Src family kinases (SFKs), a class of non-receptor tyrosine kinases plays an important role in the regulation of phagocytic signals in invertebrates. However, the SFK-mediated phagocytic mechanism is largely unknown in A. japonicus. In this study, a novel SFK homologue (AjSrc) with a conservative SH3 domain, an SH2 domain, and a tyrosine kinase domain was identified from A. japonicus. Both gene and protein expression of AjSrc and phosphorylation levels increased under Vibrio splendidus challenged, reaching the highest level at 24 h. Knock-down of AjSrc could depress coelomocytes' phagocytosis by 25% compared to the control group. To better understand the mechanism of AjSrc-mediated phagocytosis, focal adhesion kinase (FAK) was identified by a Co-immunoprecipitation experiment to be verified as an interactive protein of AjSrc. The phagocytosis rates of coelomocytes were decreased by 33% and 37% in AjFAK and AjSrc + AjFAK interference groups compared with the control group, respectively. Furthermore, the phosphorylation level of AjFAK was increased and reached the maximum level at 24 h post V. splendidus infection, as the same as that of AjSrc. Our results suggested that AjSrc could mediate V. splendidus-induced coelomocytes' phagocytosis via interacting with AjFAK and co-phosphorylation. This study enriched the mechanism of phagocytosis in echinoderm and provided the new theoretical foundation for disease control of sea cucumber.
Collapse
Affiliation(s)
- Junjie Wan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Kaiyu Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
12
|
Steenkiste EM, Berndt JD, Pilling C, Simpkins C, Cooper JA. A Cas-BCAR3 co-regulatory circuit controls lamellipodia dynamics. eLife 2021; 10:67078. [PMID: 34169835 PMCID: PMC8266394 DOI: 10.7554/elife.67078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Integrin adhesion complexes regulate cytoskeletal dynamics during cell migration. Adhesion activates phosphorylation of integrin-associated signaling proteins, including Cas (p130Cas, BCAR1), by Src-family kinases. Cas regulates leading-edge protrusion and migration in cooperation with its binding partner, BCAR3. However, it has been unclear how Cas and BCAR3 cooperate. Here, using normal epithelial cells, we find that BCAR3 localization to integrin adhesions requires Cas. In return, Cas phosphorylation, as well as lamellipodia dynamics and cell migration, requires BCAR3. These functions require the BCAR3 SH2 domain and a specific phosphorylation site, Tyr 117, that is also required for BCAR3 downregulation by the ubiquitin-proteasome system. These findings place BCAR3 in a co-regulatory positive-feedback circuit with Cas, with BCAR3 requiring Cas for localization and Cas requiring BCAR3 for activation and downstream signaling. The use of a single phosphorylation site in BCAR3 for activation and degradation ensures reliable negative feedback by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Elizabeth M Steenkiste
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Jason D Berndt
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Carissa Pilling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Christopher Simpkins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| |
Collapse
|
13
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
14
|
SRC Signaling in Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:57-71. [PMID: 33123993 DOI: 10.1007/978-3-030-47189-7_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering experiments performed by Harold Varmus and Mike Bishop in 1976 led to one of the most influential discoveries in cancer research and identified the first cancer-causing oncogene called Src. Later experimental and clinical evidence suggested that Src kinase plays a significant role in promoting tumor growth and progression and its activity is associated with poor patient survival. Thus, several Src inhibitors were developed and approved by FDA for treatment of cancer patients. Tumor microenvironment (TME) is a highly complex and dynamic milieu where significant cross-talk occurs between cancer cells and TME components, which consist of tumor-associated macrophages, fibroblasts, and other immune and vascular cells. Growth factors and chemokines activate multiple signaling cascades in TME and induce multiple kinases and pathways, including Src, leading to tumor growth, invasion/metastasis, angiogenesis, drug resistance, and progression. Here, we will systemically evaluate recent findings regarding regulation of Src and significance of targeting Src in cancer therapy.
Collapse
|
15
|
Shaaya M, Fauser J, Zhurikhina A, Conage-Pough JE, Huyot V, Brennan M, Flower CT, Matsche J, Khan S, Natarajan V, Rehman J, Kota P, White FM, Tsygankov D, Karginov AV. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity. eLife 2020; 9:e60647. [PMID: 32965214 PMCID: PMC7577742 DOI: 10.7554/elife.60647] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Engineered allosteric regulation of protein activity provides significant advantages for the development of robust and broadly applicable tools. However, the application of allosteric switches in optogenetics has been scarce and suffers from critical limitations. Here, we report an optogenetic approach that utilizes an engineered Light-Regulated (LightR) allosteric switch module to achieve tight spatiotemporal control of enzymatic activity. Using the tyrosine kinase Src as a model, we demonstrate efficient regulation of the kinase and identify temporally distinct signaling responses ranging from seconds to minutes. LightR-Src off-kinetics can be tuned by modulating the LightR photoconversion cycle. A fast cycling variant enables the stimulation of transient pulses and local regulation of activity in a selected region of a cell. The design of the LightR module ensures broad applicability of the tool, as we demonstrate by achieving light-mediated regulation of Abl and bRaf kinases as well as Cre recombinase.
Collapse
Affiliation(s)
- Mark Shaaya
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Jordan Fauser
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Anastasia Zhurikhina
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of MedicineAtlantaUnited States
| | - Jason E Conage-Pough
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Center for Precision Cancer Medicine, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Vincent Huyot
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Martin Brennan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Cameron T Flower
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Center for Precision Cancer Medicine, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Program in Computational and Systems Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jacob Matsche
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Shahzeb Khan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
- University of Illinois Cancer Center, The University of Illinois at ChicagoChicagoUnited States
- Division of Cardiology, Department of Medicine, The University of Illinois, College of MedicineChicagoUnited States
| | - Pradeep Kota
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North CarolinaChapel HillUnited States
| | - Forest M White
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Center for Precision Cancer Medicine, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Program in Computational and Systems Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of MedicineAtlantaUnited States
| | - Andrei V Karginov
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
- University of Illinois Cancer Center, The University of Illinois at ChicagoChicagoUnited States
| |
Collapse
|
16
|
Aschner Y, Nelson M, Brenner M, Roybal H, Beke K, Meador C, Foster D, Correll KA, Reynolds PR, Anderson K, Redente EF, Matsuda J, Riches DWH, Groshong SD, Pozzi A, Sap J, Wang Q, Rajshankar D, McCulloch CAG, Zemans RL, Downey GP. Protein tyrosine phosphatase-α amplifies transforming growth factor-β-dependent profibrotic signaling in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2020; 319:L294-L311. [PMID: 32491951 PMCID: PMC7473933 DOI: 10.1152/ajplung.00235.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal, fibrosing lung disease for which treatment remains suboptimal. Fibrogenic cytokines, including transforming growth factor-β (TGF-β), are central to its pathogenesis. Protein tyrosine phosphatase-α (PTPα) has emerged as a key regulator of fibrogenic signaling in fibroblasts. We have reported that mice globally deficient in PTPα (Ptpra-/-) were protected from experimental pulmonary fibrosis, in part via alterations in TGF-β signaling. The goal of this study was to determine the lung cell types and mechanisms by which PTPα controls fibrogenic pathways and whether these pathways are relevant to human disease. Immunohistochemical analysis of lungs from patients with IPF revealed that PTPα was highly expressed by mesenchymal cells in fibroblastic foci and by airway and alveolar epithelial cells. To determine whether PTPα promotes profibrotic signaling pathways in lung fibroblasts and/or epithelial cells, we generated mice with conditional (floxed) Ptpra alleles (Ptpraf/f). These mice were crossed with Dermo1-Cre or with Sftpc-CreERT2 mice to delete Ptpra in mesenchymal cells and alveolar type II cells, respectively. Dermo1-Cre/Ptpraf/f mice were protected from bleomycin-induced pulmonary fibrosis, whereas Sftpc-CreERT2/Ptpraf/f mice developed pulmonary fibrosis equivalent to controls. Both canonical and noncanonical TGF-β signaling and downstream TGF-β-induced fibrogenic responses were attenuated in isolated Ptpra-/- compared with wild-type fibroblasts. Furthermore, TGF-β-induced tyrosine phosphorylation of TGF-β type II receptor and of PTPα were attenuated in Ptpra-/- compared with wild-type fibroblasts. The phenotype of cells genetically deficient in PTPα was recapitulated with the use of a Src inhibitor. These findings suggest that PTPα amplifies profibrotic TGF-β-dependent pathway signaling in lung fibroblasts.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Meghan Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Matthew Brenner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Helen Roybal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Keriann Beke
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Carly Meador
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Daniel Foster
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kelly A Correll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Paul R Reynolds
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kelsey Anderson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado
| | - Elizabeth F Redente
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
- Veterans Affairs Eastern Colorado Heath Care System, Denver, Colorado
| | - Jennifer Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - David W H Riches
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
- Veterans Affairs Eastern Colorado Heath Care System, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| | - Steve D Groshong
- Division of Pathology, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Veterans Affairs Medical Center, Nashville, Tennessee
| | - Jan Sap
- Epigenetics and Cell Fate, Université Paris, Paris, France
| | - Qin Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Dhaarmini Rajshankar
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| |
Collapse
|
17
|
Kim E, Jang J, Park JG, Kim KH, Yoon K, Yoo BC, Cho JY. Protein Arginine Methyltransferase 1 (PRMT1) Selective Inhibitor, TC-E 5003, Has Anti-Inflammatory Properties in TLR4 Signaling. Int J Mol Sci 2020; 21:ijms21093058. [PMID: 32357521 PMCID: PMC7246892 DOI: 10.3390/ijms21093058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is the most predominant PRMT and is type I, meaning it generates monomethylarginine and asymmetric dimethylarginine. PRMT1 has functions in oxidative stress, inflammation and cancers, and modulates diverse diseases; consequently, numerous trials to develop PRMT1 inhibitors have been attempted. One selective PRMT1 inhibitor is N,N′-(Sulfonyldi-4,1-phenylene)bis(2-chloroacetamide), also named TC-E 5003 (TC-E). In this study, we investigated whether TC-E regulated inflammatory responses. Nitric oxide (NO) production was evaluated by the Griess assay and the inflammatory gene expression was determined by conducting RT-PCR. Western blot analyzing was carried out for inflammatory signaling exploration. TC-E dramatically reduced lipopolysaccharide (LPS)-induced NO production and the expression of inflammatory genes (inducible NO synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α and interleukin (IL)-6) as determined using RT-PCR. TC-E downregulated the nuclear translocation of the nuclear factor (NF)-κB subunits p65 and p50 and the activator protein (AP)-1 transcriptional factor c-Jun. Additionally, TC-E directly regulated c-Jun gene expression following LPS treatment. In NF-κB signaling, the activation of IκBα and Src was attenuated by TC-E. Taken together, these data show that TC-E modulates the lipopolysaccharide (LPS)-induced AP-1 and NF-κB signaling pathways and could possibly be further developed as an anti-inflammatory compound.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Jiwon Jang
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Jae Gwang Park
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Keejung Yoon
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea;
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
18
|
PTPRA Phosphatase Regulates GDNF-Dependent RET Signaling and Inhibits the RET Mutant MEN2A Oncogenic Potential. iScience 2020; 23:100871. [PMID: 32062451 PMCID: PMC7021549 DOI: 10.1016/j.isci.2020.100871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/15/2020] [Accepted: 01/26/2020] [Indexed: 12/17/2022] Open
Abstract
The RET proto-oncogene encodes receptor tyrosine kinase, expressed primarily in tissues of neural crest origin. De-regulation of RET signaling is implicated in several human cancers. Recent phosphatome interactome analysis identified PTPRA interacting with the neurotrophic factor (GDNF)-dependent RET-Ras-MAPK signaling-axis. Here, by identifying comprehensive interactomes of PTPRA and RET, we reveal their close physical and functional association. The PTPRA directly interacts with RET, and using the phosphoproteomic approach, we identify RET as a direct dephosphorylation substrate of PTPRA both in vivo and in vitro. The protein phosphatase domain-1 is indispensable for the PTPRA inhibitory role on RET activity and downstream Ras-MAPK signaling, whereas domain-2 has only minor effect. Furthermore, PTPRA also regulates the RET oncogenic mutant variant MEN2A activity and invasion capacity, whereas the MEN2B is insensitive to PTPRA. In sum, we discern PTPRA as a novel regulator of RET signaling in both health and cancer. PTPRA inhibits ligand (GDNF-GFRα1)-mediated RET activity on Ras-MAPK signaling axis PTPRA dephosphorylate RET on key functional phosphotyrosine sites PTPRA catalytic (PTPase) domain 1 regulates RET-driven signaling PTPRA suppresses RET oncogenic mutant MEN2A in both Ras-MAPK and cell invasion models
Collapse
|
19
|
Brown AS, Meera P, Quinones G, Magri J, Otis TS, Pulst SM, Oro AE. Receptor protein tyrosine phosphatases control Purkinje neuron firing. Cell Cycle 2020; 19:153-159. [PMID: 31876231 PMCID: PMC6961678 DOI: 10.1080/15384101.2019.1695995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/23/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022] Open
Abstract
Spinocerebellar ataxias (SCA) are a genetically heterogeneous family of cerebellar neurodegenerative diseases characterized by abnormal firing of Purkinje neurons and degeneration. We recently demonstrated the slowed firing rates seen in several SCAs share a common etiology of hyper-activation of the Src family of non-receptor tyrosine kinases (SFKs). However, the lack of clinically available neuroactive SFK inhibitors lead us to investigate alternative mechanisms to modulate SFK activity. Previous studies demonstrate that SFK activity can be enhanced by the removal of inhibitory phospho-marks by receptor-protein-tyrosine phosphatases (RPTPs). In this Extra View we show that MTSS1 inhibits SFK activity through the binding and inhibition of a subset of the RPTP family members, and lowering RPTP activity in cerebellar slices with peptide inhibitors increases the suppressed Purkinje neuron basal firing rates seen in two different SCA models. Together these results identify RPTPs as novel effectors of Purkinje neuron basal firing, extending the MTSS1/SFK regulatory circuit we previously described and expanding the therapeutic targets for SCA patients.
Collapse
Affiliation(s)
- Alexander S. Brown
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pratap Meera
- Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Gabe Quinones
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica Magri
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas S. Otis
- Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Stefan M. Pulst
- Department of Neurology, University of Utah Medical Center, Salt Lake City, UT, USA
| | - Anthony E. Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
20
|
Sun XD, Wang A, Ma P, Gong S, Tao J, Yu XM, Jiang X. Regulation of the firing activity by PKA-PKC-Src family kinases in cultured neurons of hypothalamic arcuate nucleus. J Neurosci Res 2019; 98:384-403. [PMID: 31407399 PMCID: PMC6916362 DOI: 10.1002/jnr.24516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
Abstract
The cAMP‐dependent protein kinase A family (PKAs), protein kinase C family (PKCs), and Src family kinases (SFKs) are found to play important roles in pain hypersensitivity. However, more detailed investigations are still needed in order to understand the mechanisms underlying the actions of PKAs, PKCs, and SFKs. Neurons in the hypothalamic arcuate nucleus (ARC) are found to be involved in the regulation of pain hypersensitivity. Here we report that the action potential (AP) firing activity of ARC neurons in culture was up‐regulated by application of the adenylate cyclase activator forskolin or the PKC activator PMA, and that the forskolin or PMA application‐induced up‐regulation of AP firing activity could be blocked by pre‐application of the SFK inhibitor PP2. SFK activation also up‐regulated the AP firing activity and this effect could be prevented by pre‐application of the inhibitors of PKCs, but not of PKAs. Furthermore, we identified that forskolin or PMA application caused increases in the phosphorylation not only in PKAs at T197 or PKCs at S660 and PKCα/βII at T638/641, but also in SFKs at Y416. The forskolin or PMA application‐induced increase in the phosphorylation of PKAs or PKCs was not affected by pre‐treatment with PP2. The regulations of the SFK and AP firing activities by PKCs were independent upon the translocation of either PKCα or PKCβII. Thus, it is demonstrated that PKAs may act as an upstream factor(s) to enhance SFKs while PKCs and SFKs interact reciprocally, and thereby up‐regulate the AP firing activity in hypothalamic ARC neurons.
Collapse
Affiliation(s)
- Xiao-Dong Sun
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Anqi Wang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Peng Ma
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Shan Gong
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Jin Tao
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xian-Min Yu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xinghong Jiang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2019; 76:2571-2592. [PMID: 30982078 PMCID: PMC11105579 DOI: 10.1007/s00018-019-03095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It is the fourth leading cause of cancer-related death and is associated with a very poor prognosis. KRAS driver mutations occur in approximately 95% of PDAC cases and cause the activation of several signaling pathways such as mitogen-activated protein kinase (MAPK) pathways. Regulation of these signaling pathways is orchestrated by feedback loops mediated by the balance between protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), leading to activation or inhibition of its downstream targets. The human PTPome comprises 125 members, and these proteins are classified into three distinct families according to their structure. Since PTP activity description, it has become clear that they have both inhibitory and stimulatory effects on cancer-associated signaling processes and that deregulation of PTP function is closely associated with tumorigenesis. Several PTPs have displayed either tumor suppressor or oncogenic characteristics during the development and progression of PDAC. In this sense, PTPs have been presented as promising candidates for the treatment of human pancreatic cancer, and many PTP inhibitors have been developed since these proteins were first associated with cancer. Nevertheless, some challenges persist regarding the development of effective and safe methods to target these molecules and deliver these drugs. In this review, we discuss the role of PTPs in tumorigenesis as tumor suppressor and oncogenic proteins. We have focused on the differential expression of these proteins in PDAC, as well as their clinical implications and possible targeting for pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Pamela Viani de Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
22
|
Cai ML, Wang MY, Zhang CH, Wang JX, Liu H, He HW, Zhao WL, Xia GM, Shao RG. Role of co- and post-translational modifications of SFKs in their kinase activation. J Drug Target 2019; 28:23-32. [PMID: 31094236 DOI: 10.1080/1061186x.2019.1616297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and are involved in various cellular functions (proliferation, differentiation, migration, survival and invasion) by regulating downstream pathways. Considerable evidence suggests that co- and post-translational modifications are highly related to the activation of SFKs and their downstream signals. How SFKs are activated and how their subsequent cascades were regulated has been reviewed in previous reports. However, the contribution of co- and post-translational modification to SFKs activation has not been fully elucidated. This review focuses on the effect of these modifications on SFKs activity according to structural and biochemical studies and uncovers the significance of co-and post-translational modifications in the regulation of SFKs activity.
Collapse
Affiliation(s)
- Mei-Lian Cai
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Meng-Yan Wang
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cong-Hui Zhang
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jun-Xia Wang
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Liu
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong-Wei He
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wu-Li Zhao
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gui-Ming Xia
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rong-Guang Shao
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Roth L, Wakim J, Wasserman E, Shalev M, Arman E, Stein M, Brumfeld V, Sagum CA, Bedford MT, Tuckermann J, Elson A. Phosphorylation of the phosphatase PTPROt at Tyr 399 is a molecular switch that controls osteoclast activity and bone mass in vivo. Sci Signal 2019; 12:12/563/eaau0240. [PMID: 30622194 DOI: 10.1126/scisignal.aau0240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bone resorption by osteoclasts is essential for bone homeostasis. The kinase Src promotes osteoclast activity and is activated in osteoclasts by the receptor-type tyrosine phosphatase PTPROt. In other contexts, however, PTPROt can inhibit Src activity. Through in vivo and in vitro experiments, we show that PTPROt is bifunctional and can dephosphorylate Src both at its inhibitory residue Tyr527 and its activating residue Tyr416 Whereas wild-type and PTPROt knockout mice exhibited similar bone masses, mice in which a putative C-terminal phosphorylation site, Tyr399, in endogenous PTPROt was replaced with phenylalanine had increased bone mass and reduced osteoclast activity. Osteoclasts from the knock-in mice also showed reduced Src activity. Experiments in cultured cells and in osteoclasts derived from both mouse strains demonstrated that the absence of phosphorylation at Tyr399 caused PTPROt to dephosphorylate Src at the activating site pTyr416 In contrast, phosphorylation of PTPROt at Tyr399 enabled PTPROt to recruit Src through Grb2 and to dephosphorylate Src at the inhibitory site Tyr527, thus stimulating Src activity. We conclude that reversible phosphorylation of PTPROt at Tyr399 is a molecular switch that selects between its opposing activities toward Src and maintains a coherent signaling output, and that blocking this phosphorylation event can induce physiological effects in vivo. Because most receptor-type tyrosine phosphatases contain potential phosphorylation sites at their C termini, we propose that preventing phosphorylation at these sites or its consequences may offer an alternative to inhibiting their catalytic activity to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Lee Roth
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jean Wakim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elad Wasserman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moran Shalev
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Ari Elson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
24
|
Cohen-Sharir Y, Kuperman Y, Apelblat D, den Hertog J, Spiegel I, Knobler H, Elson A. Protein tyrosine phosphatase alpha inhibits hypothalamic leptin receptor signaling and regulates body weight in vivo. FASEB J 2019; 33:5101-5111. [PMID: 30615487 DOI: 10.1096/fj.201800860rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Understanding how body weight is regulated at the molecular level is essential for treating obesity. We show that female mice genetically lacking protein tyrosine phosphatase (PTP) receptor type α (PTPRA) exhibit reduced weight and adiposity and increased energy expenditure, and are more resistant to diet-induced obesity than matched wild-type control mice. These mice also exhibit reduced levels of circulating leptin and are leptin hypersensitive, suggesting that PTPRA inhibits leptin signaling in the hypothalamus. Male and female PTPRA-deficient mice fed a high-fat diet were leaner and displayed increased metabolic rates and lower circulating leptin levels, indicating that the effects of loss of PTPRA persist in the obese state. Molecularly, PTPRA down-regulates leptin receptor signaling by dephosphorylating the receptor-associated kinase JAK2, with which the phosphatase associates constitutively. In contrast to the closely related tyrosine phosphatase ε, leptin induces only weak phosphorylation of PTPRA at its C-terminal regulatory site Y789, and this does not affect the activity of PTPRA toward JAK2. PTPRA is therefore an inhibitor of hypothalamic leptin signaling in vivo and may prevent premature activation of leptin signaling, as well as return signaling to baseline after exposure to leptin.-Cohen-Sharir, Y., Kuperman, Y., Apelblat, D., den Hertog, J., Spiegel, I., Knobler, H., Elson, A. Protein tyrosine phosphatase alpha inhibits hypothalamic leptin receptor signaling and regulates body weight in vivo.
Collapse
Affiliation(s)
- Yael Cohen-Sharir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Apelblat
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Jeroen den Hertog
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht, The Netherlands.,Institute Biology Leiden, Leiden, The Netherlands; and
| | - Ivo Spiegel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Hilla Knobler
- Diabetes, Endocrinology and Metabolic Institute, Kaplan Medical Center, Rehovot, Israel
| | - Ari Elson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Ba M, Ding W, Guan L, Lv Y, Kong M. S-nitrosylation of Src by NR2B-nNOS signal causes Src activation and NR2B tyrosine phosphorylation in levodopa-induced dyskinetic rat model. Hum Exp Toxicol 2018; 38:303-310. [PMID: 30350722 DOI: 10.1177/0960327118806633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormality in Src PSD-95 NR2B signaling complex assemble occurs in levodopa-induced dyskinesia (LID). N-methyl-D-aspartate receptor (NMDAR) subunit NR2B tyrosine phosphorylation mediated by Src family protein tyrosine kinases is closely associated with dyskinesia. Src autophosphorylation (p-Src) is an important part of Src-catalyzed phosphorylation of NR2B. In addition, the neuronal nitric oxide synthase (nNOS)-derived NO (nNOS/NO) signal which was also involved in dyskinesia recently was proved to participate in the regulation of Src function. Yet, the detailed signal mechanism about the interactions of NR2B, nNOS, and Src is still unknown. In the present study, we investigated the influences of nNOS on Src activation and NR2B tyrosine phosphorylation in dyskinetic rat model by immunoblotting and immunoprecipitation. The results demonstrated that chronic levodopa treatment resulted in downregulation of p-nNOS-S847, one marker of nNOS overactivation. Coinstantaneously, the S-nitrosylation (SNO-Src) and autophosphorylation (p-Src) of Src and NR2B tyrosine phosphorylation were upregulated in dyskinetic rat model. Conversely, administration of 7-NI, one nNOS inhibitor, reversed all these effects of levodopa treatment. Besides, NR2B-containing NMDAR (NR2B/NMDAR) antagonist CP-101,606 could upregulate p-nNOS-S847 and thus attenuate nNOS activation and simultaneously reduce the SNO-Src, p-Src, and NR2B tyrosine phosphorylation. Taken together, the S-nitrosylation of Src is caused by nNOS/NO signal, which is overactivated via Ca2+ influx dependent on NR2B/NMDAR, and subsequently facilitates Src auto-tyrosine phosphorylation and further phosphorylates NR2B. The "NR2B/NMDAR-nNOS/NO-SNO-Src-p-Src-NR2B/NMDAR" signaling cycle may be the molecular basis of NR2B tyrosine phosphorylation upward positive feedback, which demonstrates the possibility as one latent target for dyskinesia therapy.
Collapse
Affiliation(s)
- M Ba
- 1 Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - W Ding
- 2 Department of Health, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - L Guan
- 1 Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Y Lv
- 1 Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - M Kong
- 3 Department of Neurology, Yantaishan Hospital, Yantai City, Shandong, China
| |
Collapse
|
26
|
Ba M, Yu G, Yang H, Wang Y, Yu L, Kong M. Tat-Src reduced NR2B tyrosine phosphorylation and its interaction with NR2B in levodopa-induced dyskinetic rats model. Behav Brain Res 2018; 356:41-45. [PMID: 30130562 DOI: 10.1016/j.bbr.2018.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022]
Abstract
Augmented function of N-methyl-d-aspartate receptor subunit 2B (NR2B) and Src protein tyrosine kinase have been demonstrated to get involved in the pathological mechanisms of dyskinesia. In view of functional interactions between NR2B and Src, we investigated the effects of uncoupling NR2B and Src interactions on dyskinesia by using the Src-derived interfering peptide (Tat-Src). In the present study, valid 6-hydroxydopamine-lesioned parkinsonian rats were treated with levodopa intraperitoneally for 22 days to induce dyskinetic rats model. On day 23, dyskinetic rats received either Tat-Src or Tat-sSrc or vehicle with each levodopa dose. The data showed that in dyskinetic rats model intraperitoneal microinjection of Tat-Src improved dyskinetic behaviors and decreased NR2B tyrosine phosphorylation and the interactions of Src with NR2B induced by chronic levodopa treatment. Besides, Tat-Src also attenuated S-nitrosylation (SNO-Src) and the autophosphorylation (p-Src) of Src, which catalyzed NR2B phosphorylation. These findings suggest that targeting NR2B/Src complexes can be one potential treatment for dyskinesia in Parkinson's disease.
Collapse
Affiliation(s)
- Maowen Ba
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong 264000, PR China
| | - Guoping Yu
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong 264000, PR China
| | - Hongqi Yang
- Department of Neurology, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Ying Wang
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000, PR China
| | - Ling Yu
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000, PR China
| | - Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000, PR China.
| |
Collapse
|
27
|
Nakano M, Yahiro K, Yamasaki E, Kurazono H, Akada J, Yamaoka Y, Niidome T, Hatakeyama M, Suzuki H, Yamamoto T, Moss J, Isomoto H, Hirayama T. Helicobacter pylori VacA, acting through receptor protein tyrosine phosphatase α, is crucial for CagA phosphorylation in human duodenum carcinoma cell line AZ-521. Dis Model Mech 2017; 9:1473-1481. [PMID: 27935824 PMCID: PMC5200893 DOI: 10.1242/dmm.025361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori, a major cause of gastroduodenal diseases, produces vacuolating cytotoxin (VacA) and cytotoxin-associated gene A (CagA), which seem to be involved in virulence. VacA exhibits pleiotropic actions in gastroduodenal disorders via its specific receptors. Recently, we found that VacA induced the phosphorylation of cellular Src kinase (Src) at Tyr418 in AZ-521 cells. Silencing of receptor protein tyrosine phosphatase (RPTP)α, a VacA receptor, reduced VacA-induced Src phosphorylation. Src is responsible for tyrosine phosphorylation of CagA at its Glu-Pro-Ile-Tyr-Ala (EPIYA) variant C (EPIYA-C) motif in Helicobacterpylori-infected gastric epithelial cells, resulting in binding of CagA to SHP-2 phosphatase. Challenging AZ-521 cells with wild-type H. pylori induced phosphorylation of CagA, but this did not occur when challenged with a vacA gene-disrupted mutant strain. CagA phosphorylation was observed in cells infected with a vacA gene-disrupted mutant strain after addition of purified VacA, suggesting that VacA is required for H. pylori-induced CagA phosphorylation. Following siRNA-mediated RPTPα knockdown in AZ-521 cells, infection with wild-type H. pylori and treatment with VacA did not induce CagA phosphorylation. Taken together, these results support our conclusion that VacA mediates CagA phosphorylation through RPTPα in AZ-521 cells. These data indicate the possibility that Src phosphorylation induced by VacA is mediated through RPTPα, resulting in activation of Src, leading to CagA phosphorylation at Tyr972 in AZ-521 cells. Summary: The authors show a newly identified role of VacA in Helicobacter pylori infection through induction of tyrosine phosphorylation of CagA acting through the VacA receptor RPTPα.
Collapse
Affiliation(s)
- Masayuki Nakano
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan .,Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Eiki Yamasaki
- Division of Food Hygiene, Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hisao Kurazono
- Division of Food Hygiene, Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka 1-1, Yufu, Oita 879-5593, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka 1-1, Yufu, Oita 879-5593, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Takuro Niidome
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Hidekazu Suzuki
- Medical Education Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taro Yamamoto
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Toshiya Hirayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
28
|
Elson A. Stepping out of the shadows: Oncogenic and tumor-promoting protein tyrosine phosphatases. Int J Biochem Cell Biol 2017; 96:135-147. [PMID: 28941747 DOI: 10.1016/j.biocel.2017.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022]
Abstract
Protein tyrosine phosphorylation is critical for proper function of cells and organisms. Phosphorylation is regulated by the concerted but generically opposing activities of tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs), which ensure its proper regulation, reversibility, and ability to respond to changing physiological situations. Historically, PTKs have been associated mainly with oncogenic and pro-tumorigenic activities, leading to the generalization that protein dephosphorylation is anti-oncogenic and hence that PTPs are tumor-suppressors. In many cases PTPs do suppress tumorigenesis. However, a growing body of evidence indicates that PTPs act as dominant oncogenes and drive cell transformation in a number of contexts, while in others PTPs support transformation that is driven by other oncogenes. This review summarizes the known transforming and tumor-promoting activities of the classical, tyrosine specific PTPs and highlights their potential as drug targets for cancer therapy.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
29
|
Increasing the GluN2A/GluN2B Ratio in Neurons of the Mouse Basal and Lateral Amygdala Inhibits the Modification of an Existing Fear Memory Trace. J Neurosci 2017; 36:9490-504. [PMID: 27605622 DOI: 10.1523/jneurosci.1743-16.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/28/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Reconsolidation updating is a form of memory modification in which an existing memory can become destabilized upon retrieval and subsequently be modified via protein-synthesis-dependent reconsolidation. However, not all memories appear to destabilize upon retrieval and thus are not modifiable via reconsolidation updating approaches and the neurobiological basis for this remains poorly understood. Here, we report that auditory fear memories created with 10 tone-shock pairings are resistant to retrieval-dependent memory destabilization and are associated with an increase in the synaptic GluN2A/GluN2B ratio in neurons of the basal and lateral amygdala (BLA) compared with weaker fear memories created via one or three tone-shock pairings. To increase the GluN2A/GluN2B ratio after learning, we generated a line of mice that expresses an inducible and doxycycline-dependent GFP-GluN2A transgene specifically in α-CaMKII-positive neurons. Our findings indicate that increasing the GluN2A/GluN2B ratio in BLA α-CaMKII-positive neurons after a weak fear memory has consolidated inhibits retrieval-dependent memory destabilization and modification of the fear memory trace. This was associated with a reduction in retrieval-dependent AMPA receptor trafficking, as evidenced by a reduction in retrieval-dependent phosphorylation of GluR1 at serine-845. In addition, we determined that increasing the GluN2A/GluN2B ratio before fear learning significantly impaired long term memory consolidation, whereas short-term memory remained unaltered. An increase in the GluN2A/GluN2B ratio after fear learning had no influence on fear extinction or expression. Our results underscore the importance of NMDAR subunit composition for memory destabilization and suggest a mechanism for why some memories are resistant to modification. SIGNIFICANCE STATEMENT Memory modification using reconsolidation updating is being examined as one of the potential treatment approaches for attenuating maladaptive memories associated with emotional disorders. However, studies have shown that, whereas weak memories can be modified using reconsolidation updating, strong memories can be resistant to this approach. Therefore, treatments targeting the reconsolidation process are unlikely to be clinically effective unless methods are devised to enhance retrieval-dependent memory destabilization. Currently, little is known about the cellular and molecular events that influence the induction of reconsolidation updating. Here, we determined that an increase in the GluN2A/GluN2B ratio interferes with retrieval-dependent memory destabilization and inhibits the initiation of reconsolidation updating.
Collapse
|
30
|
Regulation of receptor-type protein tyrosine phosphatases by their C-terminal tail domains. Biochem Soc Trans 2017; 44:1295-1303. [PMID: 27911712 DOI: 10.1042/bst20160141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 01/10/2023]
Abstract
Protein tyrosine phosphatases (PTPs) perform specific functions in vivo, despite being vastly outnumbered by their substrates. Because of this and due to the central roles PTPs play in regulating cellular function, PTP activity is regulated by a large variety of molecular mechanisms. We review evidence that indicates that the divergent C-terminal tail sequences (C-terminal domains, CTDs) of receptor-type PTPs (RPTPs) help regulate RPTP function by controlling intermolecular associations in a way that is itself subject to physiological regulation. We propose that the CTD of each RPTP defines an 'interaction code' that helps determine molecules it will interact with under various physiological conditions, thus helping to regulate and diversify PTP function.
Collapse
|
31
|
Yao Z, Darowski K, St-Denis N, Wong V, Offensperger F, Villedieu A, Amin S, Malty R, Aoki H, Guo H, Xu Y, Iorio C, Kotlyar M, Emili A, Jurisica I, Neel BG, Babu M, Gingras AC, Stagljar I. A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome. Mol Cell 2017; 65:347-360. [PMID: 28065597 DOI: 10.1016/j.molcel.2016.12.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/13/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Abstract
Receptor tyrosine kinases (RTKs) and protein phosphatases comprise protein families that play crucial roles in cell signaling. We used two protein-protein interaction (PPI) approaches, the membrane yeast two-hybrid (MYTH) and the mammalian membrane two-hybrid (MaMTH), to map the PPIs between human RTKs and phosphatases. The resulting RTK-phosphatase interactome reveals a considerable number of previously unidentified interactions and suggests specific roles for different phosphatase families. Additionally, the differential PPIs of some protein tyrosine phosphatases (PTPs) and their mutants suggest diverse mechanisms of these PTPs in the regulation of RTK signaling. We further found that PTPRH and PTPRB directly dephosphorylate EGFR and repress its downstream signaling. By contrast, PTPRA plays a dual role in EGFR signaling: besides facilitating EGFR dephosphorylation, it enhances downstream ERK signaling by activating SRC. This comprehensive RTK-phosphatase interactome study provides a broad and deep view of RTK signaling.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Katelyn Darowski
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nicole St-Denis
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai, Toronto, ON M5G 1X5, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | - Shahreen Amin
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Ramy Malty
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Hongbo Guo
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yang Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Caterina Iorio
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Max Kotlyar
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andrew Emili
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovak Republic
| | - Benjamin G Neel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
32
|
Morisot N, Ron D. Alcohol-dependent molecular adaptations of the NMDA receptor system. GENES, BRAIN, AND BEHAVIOR 2017; 16:139-148. [PMID: 27906494 PMCID: PMC5444330 DOI: 10.1111/gbb.12363] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022]
Abstract
Phenotypes such as motivation to consume alcohol, goal-directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N-methyl-d-aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin-dependent protein kinase II (CamKII), the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above-mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol-dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.
Collapse
Affiliation(s)
- N. Morisot
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - D. Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
33
|
β1,6 GlcNAc branches-modified protein tyrosine phosphatase alpha enhances its stability and promotes focal adhesion formation in MCF-7 cells. Biochem Biophys Res Commun 2017; 482:1455-1461. [DOI: 10.1016/j.bbrc.2016.12.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/08/2016] [Indexed: 11/19/2022]
|
34
|
Mei W, Wang K, Huang J, Zheng X. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors. PLoS One 2016; 11:e0166538. [PMID: 27855221 PMCID: PMC5113951 DOI: 10.1371/journal.pone.0166538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022] Open
Abstract
Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.
Collapse
Affiliation(s)
- Wenhan Mei
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Kemin Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
- * E-mail: (JH); (XZ)
| | - Xinmin Zheng
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
- * E-mail: (JH); (XZ)
| |
Collapse
|
35
|
Kim HI, Lee HS, Kim TH, Lee JS, Lee ST, Lee SJ. Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells. Oncotarget 2016; 6:42905-22. [PMID: 26556867 PMCID: PMC4767480 DOI: 10.18632/oncotarget.5466] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) control extracellular matrix (ECM) homeostasis by inhibiting the activity of matrix metalloproteinases (MMPs), which are associated with ECM turnover. Recent studies have revealed that TIMPs are implicated in tumorigenesis in both MMP-dependent and MMP-independent manners. We examined a mechanism by which TIMP-2 stimulated lung adenocarcinoma cell proliferation, independent of MMP inhibition. The stimulation of growth by TIMP-2 in A549 cells required c-Src kinase activation. c-Src kinase activity, induced by TIMP-2, concomitantly increased FAK, phosphoinositide 3-kinase (PI3-kinase)/AKT, and ERK1/2 activation. Selective knockdown of integrin α3β1, known as a TIMP-2 receptor, did not significantly change TIMP-2 growth promoting activity. Furthermore, we showed that high TIMP-2 expression in lung adenocarcinomas is associated with a worse prognosis from multiple cohorts, especially for stage I lung adenocarcinoma. Through integrated analysis of The Cancer Genome Atlas data, TIMP-2 expression was significantly associated with the alteration of driving genes, c-Src activation, and PI3-kinase/AKT pathway activation. Taken together, our results demonstrate that TIMP-2 stimulates lung adenocarcinoma cell proliferation through c-Src, FAK, PI3-kinase/AKT, and ERK1/2 pathway activation in an MMP-independent manner.
Collapse
Affiliation(s)
- Han Ie Kim
- Department of Life Science & Biotechnology, Shingyeong University, Gyeonggi-do, 445-741, Republic of Korea
| | - Hyun-Sung Lee
- Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, U.S.A
| | - Tae Hyun Kim
- Department of Life Science & Biotechnology, Shingyeong University, Gyeonggi-do, 445-741, Republic of Korea
| | - Ju-Seog Lee
- Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, U.S.A
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Seo-Jin Lee
- Department of Life Science & Biotechnology, Shingyeong University, Gyeonggi-do, 445-741, Republic of Korea
| |
Collapse
|
36
|
c- Src and its role in cystic fibrosis. Eur J Cell Biol 2016; 95:401-413. [DOI: 10.1016/j.ejcb.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022] Open
|
37
|
Barabutis N, Verin A, Catravas JD. Regulation of pulmonary endothelial barrier function by kinases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L832-L845. [PMID: 27663990 DOI: 10.1152/ajplung.00233.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
The pulmonary endothelium is the target of continuous physiological and pathological stimuli that affect its crucial barrier function. The regulation, defense, and repair of endothelial barrier function require complex biochemical processes. This review examines the role of endothelial phosphorylating enzymes, kinases, a class with profound, interdigitating influences on endothelial permeability and lung function.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, Georgia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, .,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
38
|
Protein Tyrosine Phosphatase N2 Is a Positive Regulator of Lipopolysaccharide Signaling in Raw264.7 Cell through Derepression of Src Tyrosine Kinase. PLoS One 2016; 11:e0162724. [PMID: 27611995 PMCID: PMC5017706 DOI: 10.1371/journal.pone.0162724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/26/2016] [Indexed: 12/15/2022] Open
Abstract
T cell protein tyrosine phosphatase N2 (PTPN2) is a phosphotyrosine-specific nonreceptor phosphatase and is ubiquitously expressed in tissues. Although PTPN2 functions as an important regulator in different signaling pathways, it is still unclear what is specific target protein of PTPN2 and how is regulated in lipopolysaccharide (LPS)-induced inflammatory signaling pathway. Here, we found that PTPN2 deficiency downregulated the expression of LPS-mediated pro-inflammtory cytokine genes. Conversely, overexpression of PTPN2 in Raw264.7 cells enhanced the expression and secretion of those cytokines. The activation of MAPK and NF-κB signaling pathways by LPS was reduced in PTPN2-knockdowned cells and ectopic expression of PTPN2 reversed these effects. Furthermore, we found that PTNP2 directly interacted with Src and removed the inhibitory Tyr527 phosphorylation of Src to enhance the activatory phosphorylation of Tyr416 residue. These results suggested that PTPN2 is a positive regulator of LPS-induced inflammatory response by enhancing the activity of Src through targeting the inhibitory phosphor-tyrosine527 of Src.
Collapse
|
39
|
Zhao H, Liu X, Zou H, Dai N, Yao L, Zhang X, Gao Q, Liu W, Gu J, Yuan Y, Bian J, Liu Z. Osteoprotegerin disrupts peripheral adhesive structures of osteoclasts by modulating Pyk2 and Src activities. Cell Adh Migr 2016; 10:299-309. [PMID: 26743491 DOI: 10.1080/19336918.2015.1129480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoprotegerin has previously been shown to modulate bone mass by blocking osteoclast maturation and function. The detailed mechanisms of osteoprotegerin-induced disassembly of podosomes, disruption of adhesive structures and modulation of adhesion-related proteins in osteoclasts, however, are not well characterized. In this study, tartrate-resistant acidic phosphatase staining demonstrated that osteoprotegerin inhibited differentiation of osteoclasts. The use of scanning electron microscopy, real-time cell monitoring and confocal microscopy indicated that osteoclasts responded in a time and dose-dependent manner to osteoprotegerin treatments with retraction of peripheral adhesive structures and detachment from the extracellular substrate. Combined imaging and Western blot studies showed that osteoprotegerin induced dephosphorylation of Tyr 402 in Pyk2 and decreased its labeling in peripheral adhesion regions. osteoprotegerin induced increased intracellular labeling of Tyr 402 in Pyk2, Tyr 416 in Src, increased dephosphorylation of Tyr 527 in Src, and increased Pyk2/Src association in the central region of osteoclasts. This evidence suggests that Src may function as an adaptor protein that competes for Pyk2 and relocates it from the peripheral adhesive zone to the central region of osteoclasts in response to osteoprotegerin treatment. Osteoprotegerin may induce podosome reassembly and peripheral adhesive structure detachment by modulating phosphorylation of Pyk2 and Src and their intracellular distribution in osteoclasts.
Collapse
Affiliation(s)
- Hongyan Zhao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Xuezhong Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Hui Zou
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Nannan Dai
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Lulian Yao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Xiao Zhang
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Qian Gao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Wei Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Jianhong Gu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Yan Yuan
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Jianchun Bian
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Zongping Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| |
Collapse
|
40
|
Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration. Sci Rep 2015; 5:18476. [PMID: 26681405 PMCID: PMC4683442 DOI: 10.1038/srep18476] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023] Open
Abstract
Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.
Collapse
|
41
|
Reinecke J, Caplan S. Endocytosis and the Src family of non-receptor tyrosine kinases. Biomol Concepts 2015; 5:143-55. [PMID: 25372749 DOI: 10.1515/bmc-2014-0003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/12/2014] [Indexed: 11/15/2022] Open
Abstract
The regulated intracellular transport of nutrient, adhesion, and growth factor receptors is crucial for maintaining cell and tissue homeostasis. Endocytosis, or endocytic membrane trafficking, involves the steps of intracellular transport that include, but are not limited to, internalization from the plasma membrane, sorting in early endosomes, transport to late endosomes/lysosomes followed by degradation, and/or recycling back to the plasma membrane through tubular recycling endosomes. In addition to regulating the localization of transmembrane receptor proteins, the endocytic pathway also controls the localization of non-receptor molecules. The non-receptor tyrosine kinase c-Src (Src) and its closely related family members Yes and Fyn represent three proteins whose localization and signaling activities are tightly regulated by endocytic trafficking. Here, we provide a brief overview of endocytosis, Src function and its biochemical regulation. We will then concentrate on recent advances in understanding how Src intracellular localization is regulated and how its subcellular localization ultimately dictates downstream functioning. As Src kinases are hyperactive in many cancers, it is essential to decipher the spatiotemporal regulation of this important family of tyrosine kinases.
Collapse
|
42
|
Deneka A, Korobeynikov V, Golemis EA. Embryonal Fyn-associated substrate (EFS) and CASS4: The lesser-known CAS protein family members. Gene 2015; 570:25-35. [PMID: 26119091 DOI: 10.1016/j.gene.2015.06.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 01/15/2023]
Abstract
The CAS (Crk-associated substrate) adaptor protein family consists of four members: CASS1/BCAR1/p130Cas, CASS2/NEDD9/HEF1/Cas-L, CASS3/EFS/Sin and CASS4/HEPL. While CAS proteins lack enzymatic activity, they contain specific recognition and binding sites for assembly of larger signaling complexes that are essential for cell proliferation, survival, migration, and other processes. All family members are intermediates in integrin-dependent signaling pathways mediated at focal adhesions, and associate with FAK and SRC family kinases to activate downstream effectors regulating the actin cytoskeleton. Most studies of CAS proteins to date have been focused on the first two members, BCAR1 and NEDD9, with altered expression of these proteins now appreciated as influencing disease development and prognosis for cancer and other serious pathological conditions. For these family members, additional mechanisms of action have been defined in receptor tyrosine kinase (RTK) signaling, estrogen receptor signaling or cell cycle progression, involving discrete partner proteins such as SHC, NSP proteins, or AURKA. By contrast, EFS and CASS4 have been less studied, although structure-function analyses indicate they conserve many elements with the better-known family members. Intriguingly, a number of recent studies have implicated these proteins in immune system function, and the pathogenesis of developmental disorders, autoimmune disorders including Crohn's disease, Alzheimer's disease, cancer and other diseases. In this review, we summarize the current understanding of EFS and CASS4 protein function in the context of the larger CAS family group.
Collapse
Affiliation(s)
- Alexander Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Kazan Federal University, 420000, Kazan, Russian Federation
| | - Vladislav Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Novosibirsk State University, Medical Department, 630090, Novosibirsk, Russian Federation
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States.
| |
Collapse
|
43
|
Azide-alkyne cycloaddition-mediated cyclization of phosphonopeptides and their evaluation as PTP1B binders and enrichment tools. Bioorg Med Chem 2015; 23:2848-53. [PMID: 25805211 DOI: 10.1016/j.bmc.2015.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/22/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are important enzymes in health and disease, and chemical tools are crucial to understand and modulate their biological roles. PTP1B is involved in diabetes, obesity and cancer. One of the main challenges for the design of chemical tools for PTP1B is the homology to TCPTP, making tool selectivity a highly challenging task. Here, we aimed to study if azide-alkyne cycloaddition-mediated cyclization of a peptide inhibitor could increase its selectivity toward PTP1B over TCPTP, and if cyclic and linear peptide binders can be applied as enrichment tools of endogenous PTP1B. While the cyclization of the peptide binders did not improve the selectivity toward PTP1B over TCPTP, it enhanced strongly the efficiency to co-precipitate endogenous PTP1B out of cell lysates. Our results show that fine-tuning the molecular structure of peptidic pull-down baits can greatly enhance their efficiency compared to the parental peptide sequences.
Collapse
|
44
|
Xu J, Kurup P, Foscue E, Lombroso PJ. Striatal-enriched protein tyrosine phosphatase regulates the PTPα/Fyn signaling pathway. J Neurochem 2015; 134:629-41. [PMID: 25951993 DOI: 10.1111/jnc.13160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/05/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
The tyrosine kinase Fyn has two regulatory tyrosine residues that when phosphorylated either activate (Tyr(420)) or inhibit (Tyr(531)) Fyn activity. Within the central nervous system, two protein tyrosine phosphatases (PTPs) target these regulatory tyrosines in Fyn. PTPα dephosphorylates Tyr(531) and activates Fyn, while STEP (STriatal-Enriched protein tyrosine Phosphatase) dephosphorylates Tyr(420) and inactivates Fyn. Thus, PTPα and STEP have opposing functions in the regulation of Fyn; however, whether there is cross talk between these two PTPs remains unclear. Here, we used molecular techniques in primary neuronal cultures and in vivo to demonstrate that STEP negatively regulates PTPα by directly dephosphorylating PTPα at its regulatory Tyr(789). Dephosphorylation of Tyr(789) prevents the translocation of PTPα to synaptic membranes, blocking its ability to interact with and activate Fyn. Genetic or pharmacologic reduction in STEP61 activity increased the phosphorylation of PTPα at Tyr(789), as well as increased translocation of PTPα to synaptic membranes. Activation of PTPα and Fyn and trafficking of GluN2B to synaptic membranes are necessary for ethanol (EtOH) intake behaviors in rodents. We tested the functional significance of STEP61 in this signaling pathway by EtOH administration to primary cultures as well as in vivo, and demonstrated that the inactivation of STEP61 by EtOH leads to the activation of PTPα, its translocation to synaptic membranes, and the activation of Fyn. These findings indicate a novel mechanism by which STEP61 regulates PTPα and suggest that STEP and PTPα coordinate the regulation of Fyn. STEP61 , PTPα, Fyn, and NMDA receptor (NMDAR) have been implicated in ethanol intake behaviors in the dorsomedial striatum (DMS) in rodents. Here, we report that PTPα is a novel substrate for STEP61. Upon ethanol exposure, STEP61 is phosphorylated and inactivated by protein kinase A (PKA) signaling in the DMS. As a result of STEP61 inhibition, there is an increase in the phosphorylation of PTPα, which translocates to lipid rafts and activates Fyn and subsequent NMDAR signaling. The results demonstrate a synergistic regulation of Fyn-NMDAR signaling by STEP61 and PTPα, which may contribute to the regulation of ethanol-related behaviors. NMDA, N-methyl-D-aspartate; PTPα, receptor-type protein tyrosine phosphatase alpha; STEP, STriatal-Enriched protein tyrosine Phosphatase.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pradeep Kurup
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ethan Foscue
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Paul J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
45
|
Lai X, Chen Q, Zhu C, Deng R, Zhao X, Chen C, Wang Y, Yu J, Huang J. Regulation of RPTPα-c-Src signalling pathway by miR-218. FEBS J 2015; 282:2722-34. [PMID: 25940608 DOI: 10.1111/febs.13314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/28/2015] [Accepted: 04/29/2015] [Indexed: 11/27/2022]
Abstract
Receptor protein tyrosine phosphatase alpha (RPTPα), an activator of Src family kinases, is found significantly overexpressed in human cancer tissues. However, little is known about the regulation of RPTPα expression. miRNAs target multiple genes and play important roles in many cancer processes. Here, we identified a miRNA, miR-218 that binds directly to the 3'-UTR of RPTPα. Ectopic overexpression of miR-218 decreased RPTPα protein leading to decreased dephosphorylation of c-Src and decreased tumour growth in vitro and in vivo. A feedback loop between c-Src and miR-218 was revealed where c-Src inhibits transcription of SLIT2, which intronically hosts miR-218. These results show a novel regulatory pathway for RPTPα-c-Src signalling.
Collapse
Affiliation(s)
- Xueping Lai
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Qin Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Changhong Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Cheng Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
46
|
Chen Q, Zhou Z, Shan L, Zeng H, Hua Y, Cai Z. The importance of Src signaling in sarcoma. Oncol Lett 2015; 10:17-22. [PMID: 26170970 DOI: 10.3892/ol.2015.3184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/22/2015] [Indexed: 12/23/2022] Open
Abstract
Src is a tyrosine kinase that is of significance in tumor biology. The present review focuses on Src, its molecular structure, and role in cancer, in addition to its expression and function in sarcoma. In addition, the feasibility of Src as a potential drug target for the treatment of sarcoma is also discussed. Previous studies have suggested that Src has essential functions in cell proliferation, apoptosis, invasion, metastasis and the tumor microenvironment. Thus, it may be a potential target for cancer therapy. Src has been found to enhance proliferation, reduce apoptosis and promote metastasis in certain subtypes of sarcoma, including osteosarcoma, chondrosarcoma and Ewing's sarcoma. Furthermore, a number of novel effective therapeutic agents, such as SI-83, which target Src have been investigated in vitro and in vivo. Bosutinib and dasatinib, which inhibit Src, have been approved by the U.S. Food and Drug Administration for the treatment of chronic myelogenous leukemia. In addition, vandetanib is approved for the treatment of medullary thyroid cancer. Furthermore, the Src inhibitor, saracatinib, is currently in clinical trials for the treatment of a variety of solid tumors, including breast and lung cancers. Thus, Src is considered to be an important factor in sarcoma progression and may present a novel clinical therapeutic target. This review demonstrates the importance and clinical relevance of Src in sarcoma, and discusses a number of small molecular inhibitors of src kinase, such as dasatinib and sarcatinib, which are currently in clinical trials for the treatment of sarcoma patients.
Collapse
Affiliation(s)
- Quanchi Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Liancheng Shan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hui Zeng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
47
|
Missing-in-Metastasis regulates cell motility and invasion via PTPδ-mediated changes in SRC activity. Biochem J 2015; 465:89-101. [PMID: 25287652 DOI: 10.1042/bj20140573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MIM (Missing-in-Metastasis), also known as MTSS1 (metastasis suppressor 1), is a scaffold protein that is down-regulated in multiple metastatic cancer cell lines compared with non-metastatic counterparts. MIM regulates cytoskeletal dynamics and actin polymerization, and has been implicated in the control of cell motility and invasion. MIM has also been shown to bind to a receptor PTP (protein tyrosine phosphatase), PTPδ, an interaction that may provide a link between tyrosine-phosphorylation-dependent signalling and metastasis. We used shRNA-mediated gene silencing to investigate the consequences of loss of MIM on the migration and invasion of the MCF10A mammary epithelial cell model of breast cancer. We observed that suppression of MIM by RNAi enhanced migration and invasion of MCF10A cells, effects that were associated with increased levels of PTPδ. Furthermore, analysis of human clinical data indicated that PTPδ was elevated in breast cancer samples when compared with normal tissue. We demonstrated that the SRC protein tyrosine kinase is a direct substrate of PTPδ and, upon suppression of MIM, we observed changes in the phosphorylation status of SRC; in particular, the inhibitory site (Tyr527) was hypophosphorylated, whereas the activating autophosphorylation site (Tyr416) was hyperphosphorylated. Thus the absence of MIM led to PTPδ-mediated activation of SRC. Finally, the SRC inhibitor SU6656 counteracted the effects of MIM suppression on cell motility and invasion. The present study illustrates that both SRC and PTPδ have the potential to be therapeutic targets for metastatic tumours associated with loss of MIM.
Collapse
|
48
|
Wang Y, Wang Q, Arora PD, Rajshankar D, McCulloch CA. Cell adhesion proteins: roles in periodontal physiology and discovery by proteomics. Periodontol 2000 2015; 63:48-58. [PMID: 23931053 DOI: 10.1111/prd.12026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2012] [Indexed: 12/29/2022]
Abstract
Adhesion molecules expressed by periodontal connective tissue cells are involved in cell migration, matrix remodeling and inflammatory responses to infection. Currently, the processes by which the biologic activity of these molecules are appropriately regulated in time and space to preserve tissue homeostasis, and to control inflammatory responses and tissue regeneration, are not defined. As cell adhesions are heterogeneous, dynamic, contain a complex group of interacting molecules and are strongly influenced by the type of substrate to which they adhere, we focus on how cell adhesions in periodontal connective tissues contribute to information generation and processing that regulate periodontal structure and function. We also consider how proteomic methods can be applied to discover novel cell-adhesion proteins that could potentially contribute to the form and function of periodontal tissues.
Collapse
|
49
|
Chen KE, Li MY, Chou CC, Ho MR, Chen GC, Meng TC, Wang AJ. Substrate Specificity and Plasticity of FERM-Containing Protein Tyrosine Phosphatases. Structure 2015; 23:653-64. [DOI: 10.1016/j.str.2015.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/18/2015] [Accepted: 01/24/2015] [Indexed: 10/23/2022]
|
50
|
Roskoski R. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res 2015; 94:9-25. [PMID: 25662515 DOI: 10.1016/j.phrs.2015.01.003] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 12/13/2022]
Abstract
The physiological Src proto-oncogene is a protein-tyrosine kinase that plays key roles in cell growth, division, migration, and survival signaling pathways. From the N- to C-terminus, Src contains a unique domain, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a regulatory tail. The chief phosphorylation sites of human Src include an activating pTyr419 that results from phosphorylation in the kinase domain by an adjacent Src molecule and an inhibitory pTyr530 in the regulatory tail that results from phosphorylation by C-terminal Src kinase (Csk) or Chk (Csk homologous kinase). The oncogenic Rous sarcoma viral protein lacks the equivalent of Tyr530 and is constitutively activated. Inactive Src is stabilized by SH2 and SH3 domains on the rear of the kinase domain where they form an immobilizing and inhibitory clamp. Protein kinases including Src contain hydrophobic regulatory and catalytic spines and collateral shell residues that are required to assemble the active enzyme. In the inactive enzyme, the regulatory spine contains a kink or a discontinuity with a structure that is incompatible with catalysis. The conversion of inactive to active Src is accompanied by electrostatic exchanges involving the breaking and making of distinct sets of kinase domain salt bridges and hydrogen bonds. Src-catalyzed protein phosphorylation requires the participation of two Mg(2+) ions. Although nearly all protein kinases possess a common K/E/D/D signature, each enzyme exhibits its unique variations of the protein-kinase reaction template. Bosutinib, dasatinib, and ponatinib are Src/multikinase inhibitors that are approved by the FDA for the treatment of chronic myelogenous leukemia and vandetanib is approved for the treatment of medullary thyroid cancer. The Src and BCR-Abl inhibitors saracatinib and AZD0424, along with the previous four drugs, are in clinical trials for a variety of solid tumors including breast and lung cancers. Both ATP and targeted therapeutic Src protein kinase inhibitors such as dasatinib and ponatinib make hydrophobic contacts with catalytic spine residues and form hydrogen bonds with hinge residues connecting the small and large kinase lobes.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|