1
|
Minichromosome Maintenance Proteins Cooperate with LANA during the G 1/S Phase of the Cell Cycle To Support Viral DNA Replication. J Virol 2019; 93:JVI.02256-18. [PMID: 30651368 DOI: 10.1128/jvi.02256-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
Abstract
Latency-associated nuclear antigen (LANA) is essential for maintaining the viral genome by regulating replication and segregation of the viral episomes. The virus maintains 50 to 100 episomal copies during latency and replicates in synchrony with the cellular DNA of the infected cells. Since virus lacks its own replication machinery, it utilizes the cellular proteins for replication and maintenance, and LANA has been shown to make many of these proteins available for replication by directly recruiting them to the viral origin of replication within the terminal repeat (TR) region. Our studies identified members of the minichromosome maintenance (MCM) complex as potential LANA-interacting proteins. Here, we show that LANA specifically interacts with the components of the MCM complex, primarily during the G1/S phase of the cell cycle. MCM3 and -4 of the MCM complex specifically bound to the amino-terminal domain, while MCM6 bound to both the amino- and carboxyl-terminal domains of LANA. The MCM binding region in the N-terminal domain mapped to the chromatin binding domain (CBD). LANA with point mutations in the carboxyl-terminal domain identified an MCM6 binding domain, and overexpression of that domain (amino acids [aa] 1100 to 1150) abolished TR replication. Introduction of a peptide encompassing the LANA aa 1104 to 1123 reduced MCM6 association with LANA and TR replication. Moreover, a recombinant Kaposi's sarcoma-associated herpesvirus (KSHV) expressing LANA with a deletion of aa 1100 to 1150 (BAC16Δ1100-1150, where BAC is bacmid) showed reduced replication and persistence of viral genome copies compared to levels with the wild-type BAC16. Additionally, the role of MCMs in viral replication was confirmed by depleting MCMs and assaying transient and long-term maintenance of the viral episomes. The recruitment of MCMs to the replication origins through LANA was demonstrated through chromatin immunoprecipitation and isolation of proteins on nascent replicated DNA (iPOND). These data clearly show the role of MCMs in latent DNA replication and the potential for targeting the C-terminal domain of LANA to block viral persistence.IMPORTANCE LANA-mediated latent DNA replication is essential for efficient maintenance of KSHV episomes in the host. During latency, virus relies on the host cellular machinery for replication, which occurs in synchrony with the cellular DNA. LANA interacts with the components of multiple cellular pathways, including cellular replication machinery, and recruits them to the viral origin for DNA replication. In this study, we characterize the interactions between LANA and minichromosome maintenance (MCM) proteins, members of the cellular replication complex. We demonstrated a cell cycle-dependent interaction between LANA and MCMs and determined their importance for viral genome replication and maintenance through biochemical assays. In addition, we mapped a 50-amino acid region in LANA which was capable of abrogating the association of MCM6 with LANA and blocking DNA replication. We also detected LANA along with MCMs at the replication forks using a novel approach, isolation of proteins on nascent DNA (iPOND).
Collapse
|
2
|
Bøe CA, Håland TW, Boye E, Syljuåsen RG, Grallert B. A novel role for ATR/Rad3 in G1 phase. Sci Rep 2018; 8:6880. [PMID: 29720710 PMCID: PMC5931961 DOI: 10.1038/s41598-018-25238-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/12/2018] [Indexed: 12/29/2022] Open
Abstract
Checkpoint kinases are important in cellular surveillance pathways that help cells to cope with DNA damage and protect their genomes. In cycling cells, DNA replication is one of the most sensitive processes and therefore all organisms carefully regulate replication initiation and progression. The checkpoint kinase ATR plays important roles both in response to DNA damage and replication stress, and ATR inhibitors are currently in clinical trials for cancer treatment. Therefore, it is important to understand the roles of ATR in detail. Here we show that the fission yeast homologue Rad3 and the human ATR regulate events also in G1 phase in an unperturbed cell cycle. Rad3Δ mutants or human cells exposed to ATR inhibitor in G1 enter S phase prematurely, which results in increased DNA damage. Furthermore, ATR inhibition in a single G1 reduces clonogenic survival, demonstrating that long-term effects of ATR inhibition during G1 are deleterious for the cell. Interestingly, ATR inhibition through G1 and S phase reduces survival in an additive manner, strongly arguing that different functions of ATR are targeted in the different cell-cycle phases. We propose that potential effects of ATR inhibitors in G1 should be considered when designing future treatment protocols with such inhibitors.
Collapse
Affiliation(s)
- Cathrine A Bøe
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tine W Håland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Erik Boye
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Randi G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Abstract
Chromatin-associated proteins play critical roles in many cellular processes, including gene expression, epigenetic regulation, DNA repair, recombination, and replication. Especially, epigenetic landscape, shaped by a variety of chromatin-binding proteins, is dynamic and regulated in a context-dependent manner. In situ chromatin-binding assay is a powerful but simple tool to investigate how proteins, such as epigenetic components, associate with chromatin. This approach relies on the fact that chromatin bound proteins are more resistant to detergent extraction. Here, we describe a protocol for the in situ chromatin-binding assay used in Schizosaccaromyces pombe.
Collapse
|
4
|
Aoki K, Niki H. Release of condensin from mitotic chromosomes requires the Ran-GTP gradient in the reorganized nucleus. Biol Open 2017; 6:1614-1628. [PMID: 28954740 PMCID: PMC5703609 DOI: 10.1242/bio.027193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After mitosis, nuclear reorganization occurs together with decondensation of mitotic chromosomes and reformation of the nuclear envelope, thereby restoring the Ran-GTP gradient between the nucleus and cytoplasm. The Ran-GTP gradient is dependent on Pim1/RCC1. Interestingly, a defect in Pim1/RCC1 in Schizosaccharomyces pombe causes postmitotic condensation of chromatin, namely hypercondensation, suggesting a relationship between the Ran-GTP gradient and chromosome decondensation. However, how Ran-GTP interacts with chromosome decondensation is unresolved. To examine this interaction, we used Schizosaccharomyces japonicus, which is known to undergo partial breakdown of the nuclear membrane during mitosis. We found that Pim1/RCC1 was localized on nuclear pores, but this localization failed in a temperature-sensitive mutant of Pim1/RCC1. The mutant cells exhibited hypercondensed chromatin after mitosis due to prolonged association of condensin on the chromosomes. Conceivably, a condensin-dephosphorylation defect might cause hypercondensed chromatin, since chromosomal localization of condensin is dependent on phosphorylation by cyclin-dependent kinase (CDK). Indeed, CDK-phospho-mimic mutation of condensin alone caused untimely condensin localization, resulting in hypercondensed chromatin. Together, these results suggest that dephosphorylation of CDK sites of condensin might require the Ran-GTP gradient produced by nuclear pore-localized Pim1/RCC1. Summary: A mutant of Pim1/RCC1 caused hypercondensed chromatin after mitosis due to prolonged association of condensin on chromosomes, suggesting that dephosphorylation of CDK sites of condensin might require Ran-GTP after mitosis.
Collapse
Affiliation(s)
- Keita Aoki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan .,Department of Genetics, SOKENDAI, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
5
|
Anda S, Zach R, Grallert B. Activation of Gcn2 in response to different stresses. PLoS One 2017; 12:e0182143. [PMID: 28771613 PMCID: PMC5542535 DOI: 10.1371/journal.pone.0182143] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
All organisms have evolved pathways to respond to different forms of cellular stress. The Gcn2 kinase is best known as a regulator of translation initiation in response to starvation for amino acids. Work in budding yeast has showed that the molecular mechanism of GCN2 activation involves the binding of uncharged tRNAs, which results in a conformational change and GCN2 activation. This pathway requires GCN1, which ensures delivery of the uncharged tRNA onto GCN2. However, Gcn2 is activated by a number of other stresses which do not obviously involve accumulation of uncharged tRNAs, raising the question how Gcn2 is activated under these conditions. Here we investigate the requirement for ongoing translation and tRNA binding for Gcn2 activation after different stresses in fission yeast. We find that mutating the tRNA-binding site on Gcn2 or deleting Gcn1 abolishes Gcn2 activation under all the investigated conditions. These results suggest that tRNA binding to Gcn2 is required for Gcn2 activation not only in response to starvation but also after UV irradiation and oxidative stress.
Collapse
Affiliation(s)
- Silje Anda
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Róbert Zach
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
6
|
Abstract
Cyclin Dependent Kinases (CDKs) are important regulators of DNA replication. In this work we have investigated the consequences of increasing or decreasing the CDK activity in S phase. To this end we identified S-phase regulators of the fission yeast CDK, Cdc2, and used appropriate mutants to modulate Cdc2 activity. In fission yeast Mik1 has been thought to be the main regulator of Cdc2 activity in S phase. However, we find that Wee1 has a major function in S phase and thus we used wee1 mutants to investigate the consequences of increased Cdc2 activity. These wee1 mutants display increased replication stress and, particularly in the absence of the S-phase checkpoint, accumulate DNA damage. Notably, more cells incorporate EdU in a wee1(-) strain as compared to wildtype, suggesting altered regulation of DNA replication. In addition, a higher number of cells contain chromatin-bound Cdc45, an indicator of active replication forks. In addition, we found that Cdc25 is required to activate Cdc2 in S phase and used a cdc25 mutant to explore a situation where Cdc2 activity is reduced. Interestingly, a cdc25 mutant has a higher tolerance for replication stress than wild-type cells, suggesting that reduced CDK activity in S phase confers resistance to at least some forms of replication stress.
Collapse
Affiliation(s)
- Silje Anda
- a Department of Radiation Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Montebello , Norway
| | - Christiane Rothe
- a Department of Radiation Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Montebello , Norway
| | - Erik Boye
- a Department of Radiation Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Montebello , Norway
| | - Beáta Grallert
- a Department of Radiation Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Montebello , Norway
| |
Collapse
|
7
|
Hagan IM, Grallert A, Simanis V. Analysis of the Schizosaccharomyces pombe Cell Cycle. Cold Spring Harb Protoc 2016; 2016:2016/9/pdb.top082800. [PMID: 27587785 DOI: 10.1101/pdb.top082800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Schizosaccharomyces pombe cells are rod shaped, and they grow by tip elongation. Growth ceases during mitosis and cell division; therefore, the length of a septated cell is a direct measure of the timing of mitotic commitment, and the length of a wild-type cell is an indicator of its position in the cell cycle. A large number of documented stage-specific changes can be used as landmarks to characterize cell cycle progression under specific experimental conditions. Conditional mutations can permanently or transiently block the cell cycle at almost any stage. Large, synchronously dividing cell populations, essential for the biochemical analysis of cell cycle events, can be generated by induction synchrony (arrest-release of a cell cycle mutant) or selection synchrony (centrifugal elutriation or lactose-gradient centrifugation). Schizosaccharomyces pombe cell cycle studies routinely combine particular markers, mutants, and synchronization procedures to manipulate the cycle. We describe these techniques and list key landmarks in the fission yeast mitotic cell division cycle.
Collapse
Affiliation(s)
- Iain M Hagan
- CRUK Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Agnes Grallert
- CRUK Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Juríková M, Danihel Ľ, Polák Š, Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem 2016; 118:544-52. [PMID: 27246286 DOI: 10.1016/j.acthis.2016.05.002] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/05/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
Abstract
The proliferative activity of tumour cells represents an important prognostic marker in the diagnosis of cancer. One of the methods for assessing the proliferative activity of cells is the immunohistochemical detection of cell cycle-specific antigens. For example, Ki67, proliferating cell nuclear antigen (PCNA), and minichromosome maintenance (MCM) proteins are standard markers of proliferation that are commonly used to assess the growth fraction of a cell population. The function of Ki67, the widely used marker of proliferation, still remains unclear. In contrast, PCNA and MCM proteins have been identified as important participants of DNA replication. All three proteins only manifest their expression during the cell division of normal and neoplastic cells. Since the expression of these proliferative markers was confirmed in several malignant tumours, their prognostic and predictive values have been evaluated to determine their significance in the diagnosis of cancer. This review offers insight into the discovery of the abovementioned proteins, as well as their current molecular and biological importance. In addition, the functions and properties of all three proteins and their use as markers of proliferation in the diagnosis of breast cancer are described. This work also reveals new findings about the role of Ki67 during the mitotic phase of the cell cycle. Finally, information is provided about the advantages and disadvantages of using all three antigens in the diagnosis of cancer.
Collapse
Affiliation(s)
- Miroslava Juríková
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia.
| | - Ľudovít Danihel
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| |
Collapse
|
9
|
Zhan Y, Kost-Alimova M, Shi X, Leo E, Bardenhagen JP, Shepard HE, Appikonda S, Vangamudi B, Zhao S, Tieu TN, Jiang S, Heffernan TP, Marszalek JR, Toniatti C, Draetta G, Tyler J, Barton M, Jones P, Palmer WS, Geck Do MK, Andersen JN. Development of novel cellular histone-binding and chromatin-displacement assays for bromodomain drug discovery. Epigenetics Chromatin 2015; 8:37. [PMID: 26396593 PMCID: PMC4578755 DOI: 10.1186/s13072-015-0026-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023] Open
Abstract
Background Proteins that ‘read’ the histone code are central elements in epigenetic control and bromodomains, which bind acetyl-lysine motifs, are increasingly recognized as potential mediators of disease states. Notably, the first BET bromodomain-based therapies have entered clinical trials and there is a broad interest in dissecting the therapeutic relevance of other bromodomain-containing proteins in human disease. Typically, drug development is facilitated and expedited by high-throughput screening, where assays need to be sensitive, robust, cost-effective and scalable. However, for bromodomains, which lack catalytic activity that otherwise can be monitored (using classical enzymology), the development of cell-based, drug-target engagement assays has been challenging. Consequently, cell biochemical assays have lagged behind compared to other protein families (e.g., histone deacetylases and methyltransferases). Results Here, we present a suite of novel chromatin and histone-binding assays using AlphaLISA, in situ cell extraction and fluorescence-based, high-content imaging. First, using TRIM24 as an example, the homogenous, bead-based AlphaScreen technology was modified from a biochemical peptide-competition assay to measure binding of the TRIM24 bromodomain to endogenous histone H3 in cells (AlphaLISA). Second, a target agnostic, high-throughput imaging platform was developed to quantify the ability of chemical probes to dissociate endogenous proteins from chromatin/nuclear structures. While overall nuclear morphology is maintained, the procedure extracts soluble, non-chromatin-bound proteins from cells with drug-target displacement visualized by immunofluorescence (IF) or microscopy of fluorescent proteins. Pharmacological evaluation of these assays cross-validated their utility, sensitivity and robustness. Finally, using genetic and pharmacological approaches, we dissect domain contribution of TRIM24, BRD4, ATAD2 and SMARCA2 to chromatin binding illustrating the versatility/utility of the in situ cell extraction platform. Conclusions In summary, we have developed two novel complementary and cell-based drug-target engagement assays, expanding the repertoire of pharmacodynamic assays for bromodomain tool compound development. These assays have been validated through a successful TRIM24 bromodomain inhibitor program, where a micromolar lead molecule (IACS-6558) was optimized using cell-based assays to yield the first single-digit nanomolar TRIM24 inhibitor (IACS-9571). Altogether, the assay platforms described herein are poised to accelerate the discovery and development of novel chemical probes to deliver on the promise of epigenetic-based therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0026-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanai Zhan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Maria Kost-Alimova
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Xi Shi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Elisabetta Leo
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Jennifer P Bardenhagen
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Hannah E Shepard
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Srikanth Appikonda
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Bhavatarini Vangamudi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Shuping Zhao
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Trang N Tieu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Shiming Jiang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Timothy P Heffernan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Joseph R Marszalek
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Carlo Toniatti
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Giulio Draetta
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Jessica Tyler
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Michelle Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Wylie S Palmer
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Mary K Geck Do
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Jannik N Andersen
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA.,XTuit Pharmaceuticals, 700 Main Street, Cambridge, MA 02139 USA
| |
Collapse
|
10
|
Uchiyama M, Terunuma J, Hanaoka F. The Protein Level of Rev1, a TLS Polymerase in Fission Yeast, Is Strictly Regulated during the Cell Cycle and after DNA Damage. PLoS One 2015; 10:e0130000. [PMID: 26147350 PMCID: PMC4493104 DOI: 10.1371/journal.pone.0130000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/15/2015] [Indexed: 11/19/2022] Open
Abstract
Translesion DNA synthesis provides an alternative DNA replication mechanism when template DNA is damaged. In fission yeast, Eso1 (polη), Kpa1/DinB (polκ), Rev1, and Polζ (a complex of Rev3 and Rev7) have been identified as translesion synthesis polymerases. The enzymatic characteristics and protein-protein interactions of these polymerases have been intensively characterized; however, how these proteins are regulated during the cell cycle remains unclear. Therefore, we examined the cell cycle oscillation of translesion polymerases. Interestingly, the protein levels of Rev1 peaked during G1 phase and then decreased dramatically at the entry of S phase; this regulation was dependent on the proteasome. Temperature-sensitive proteasome mutants, such as mts2-U31 and mts3-U32, stabilized Rev1 protein when the temperature was shifted to the restrictive condition. In addition, deletion of pop1 or pop2, subunits of SCF ubiquitin ligase complexes, upregulated Rev1 protein levels. Besides these effects during the cell cycle, we also observed upregulation of Rev1 protein upon DNA damage. This upregulation was abolished when rad3, a checkpoint protein, was deleted or when the Rev1 promoter was replaced with a constitutive promoter. From these results, we hypothesize that translesion DNA synthesis is strictly controlled through Rev1 protein levels in order to avoid unwanted mutagenesis.
Collapse
Affiliation(s)
- Masashi Uchiyama
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Junko Terunuma
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Fumio Hanaoka
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Green MD, Sabatinos SA, Forsburg SL. Microscopy techniques to examine DNA replication in fission yeast. Methods Mol Biol 2015; 1300:13-41. [PMID: 25916703 DOI: 10.1007/978-1-4939-2596-4_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Temporal and spatial visualization of replication proteins and associated structures within the narrow confines of a yeast nucleus is technically challenging. Choosing the appropriate method depends upon the parameters of the experiment, the nature of the molecules to be observed, and the hypothesis to be tested. In this chapter, we review three broad types of visualization: whole-cell fluorescence or immunofluorescence, which is useful for questions of timing and chromatin association; nuclear spreads, which provide greater resolution within the chromatin for co-localization and region-specific effects; and chromatin fibers, which allow observation of labeled proteins and newly synthesized DNA on a linear chromosome. We also suggest a mounting procedure for live fission yeast with fluorescent proteins. We discuss applications of these protocols and some considerations for choosing methods and fluorophores.
Collapse
Affiliation(s)
- Marc D Green
- Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, RRI 108, Los Angeles, CA, 90089-2910, USA,
| | | | | |
Collapse
|
12
|
Uzunova SD, Zarkov AS, Ivanova AM, Stoynov SS, Nedelcheva-Veleva MN. The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence. Cell Div 2014; 9:4. [PMID: 25379053 PMCID: PMC4221646 DOI: 10.1186/1747-1028-9-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/17/2014] [Indexed: 01/22/2023] Open
Abstract
Background The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. Findings This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. Conclusions In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle.
Collapse
Affiliation(s)
- Sonya Dimitrova Uzunova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | - Alexander Stefanov Zarkov
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | - Anna Marianova Ivanova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | - Stoyno Stefanov Stoynov
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | | |
Collapse
|
13
|
Etheridge TJ, Boulineau RL, Herbert A, Watson AT, Daigaku Y, Tucker J, George S, Jönsson P, Palayret M, Lando D, Laue E, Osborne MA, Klenerman D, Lee SF, Carr AM. Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy. Nucleic Acids Res 2014; 42:e146. [PMID: 25106872 PMCID: PMC4231725 DOI: 10.1093/nar/gku726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/09/2014] [Accepted: 07/28/2014] [Indexed: 12/25/2022] Open
Abstract
Development of single-molecule localization microscopy techniques has allowed nanometre scale localization accuracy inside cells, permitting the resolution of ultra-fine cell structure and the elucidation of crucial molecular mechanisms. Application of these methodologies to understanding processes underlying DNA replication and repair has been limited to defined in vitro biochemical analysis and prokaryotic cells. In order to expand these techniques to eukaryotic systems, we have further developed a photo-activated localization microscopy-based method to directly visualize DNA-associated proteins in unfixed eukaryotic cells. We demonstrate that motion blurring of fluorescence due to protein diffusivity can be used to selectively image the DNA-bound population of proteins. We designed and tested a simple methodology and show that it can be used to detect changes in DNA binding of a replicative helicase subunit, Mcm4, and the replication sliding clamp, PCNA, between different stages of the cell cycle and between distinct genetic backgrounds.
Collapse
Affiliation(s)
- Thomas J Etheridge
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Rémi L Boulineau
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Alex Herbert
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Adam T Watson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Yasukazu Daigaku
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Jem Tucker
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Sophie George
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Peter Jönsson
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - David Lando
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ernest Laue
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mark A Osborne
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| |
Collapse
|
14
|
Abstract
The centromere is a specific chromosomal locus that organizes the assembly of the kinetochore. It plays a fundamental role in accurate chromosome segregation. In most eukaryotic organisms, each chromosome contains a single centromere the position and function of which are epigenetically specified. Occasionally, centromeres form at ectopic loci, which can be detrimental to the cell. However, the mechanisms that protect the cell against ectopic centromeres (neocentromeres) remain poorly understood. Centromere protein-A (CENP-A), a centromere-specific histone 3 (H3) variant, is found in all centromeres and is indispensable for centromere function. Here we report that the overexpression of CENP-A(Cnp1) in fission yeast results in the assembly of CENP-A(Cnp1) at noncentromeric chromatin during mitosis and meiosis. The noncentromeric CENP-A preferentially assembles near heterochromatin and is capable of recruiting kinetochore components. Consistent with this, cells overexpressing CENP-A(Cnp1) exhibit severe chromosome missegregation and spindle microtubule disorganization. In addition, pulse induction of CENP-A(Cnp1) overexpression reveals that ectopic CENP-A chromatin can persist for multiple generations. Intriguingly, ectopic assembly of CENP-A(cnp1) is suppressed by overexpression of histone H3 or H4. Finally, we demonstrate that deletion of the N-terminal domain of CENP-A(cnp1) results in an increase in the number of ectopic CENP-A sites and provide evidence that the N-terminal domain of CENP-A prevents CENP-A assembly at ectopic loci via the ubiquitin-dependent proteolysis. These studies expand our current understanding of how noncentromeric chromatin is protected from mistakenly assembling CENP-A.
Collapse
|
15
|
Ding L, Laor D, Weisman R, Forsburg SL. Rapid regulation of nuclear proteins by rapamycin-induced translocation in fission yeast. Yeast 2014; 31:253-64. [PMID: 24733494 DOI: 10.1002/yea.3014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 11/10/2022] Open
Abstract
Genetic analysis of protein function requires a rapid means of inactivating the gene under study. Typically, this exploits temperature-sensitive mutations or promoter shut-off techniques. We report the adaptation to Schizosaccharomyces pombe of the anchor-away technique, originally designed in budding yeast by Laemmli lab. This method relies on a rapamycin-mediated interaction between the FRB- and FKBP12-binding domains to relocalize nuclear proteins of interest to the cytoplasm. We demonstrate a rapid nuclear depletion of abundant proteins as proof of principle.
Collapse
Affiliation(s)
- Lin Ding
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
16
|
Belfield C, Queenan C, Rao H, Kitamura K, Walworth NC. The oxidative stress responsive transcription factor Pap1 confers DNA damage resistance on checkpoint-deficient fission yeast cells. PLoS One 2014; 9:e89936. [PMID: 24587136 PMCID: PMC3934961 DOI: 10.1371/journal.pone.0089936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/28/2014] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cells invoke mechanisms to promote survival when confronted with cellular stress or damage to the genome. The protein kinase Chk1 is an integral and conserved component of the DNA damage response pathway. Mutation or inhibition of Chk1 results in mitotic death when cells are exposed to DNA damage. Oxidative stress activates a pathway that results in nuclear accumulation of the bZIP transcription factor Pap1. We report the novel finding that fission yeast Pap1 confers resistance to drug- and non-drug-induced DNA damage even when the DNA damage checkpoint is compromised. Multi-copy expression of Pap1 restores growth to chk1-deficient cells exposed to camptothecin or hydroxyurea. Unexpectedly, increased Pap1 expression also promotes survival of chk1-deficient cells with mutations in genes encoding DNA ligase (cdc17) or DNA polymerase δ (cdc6), but not DNA replication initiation mutants. The ability of Pap1 to confer resistance to DNA damage was not specific to chk1 mutants, as it also improved survival of rad1- and rad9-deficient cells in the presence of CPT. To confer resistance to DNA damage Pap1 must localize to the nucleus and be transcriptionally active.
Collapse
Affiliation(s)
- Carrie Belfield
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers Graduate School of Biomedical Sciences, Piscataway, New Jersey, United States of America
| | - Craig Queenan
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Hui Rao
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Kenji Kitamura
- Center for Gene Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Nancy C. Walworth
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers Graduate School of Biomedical Sciences, Piscataway, New Jersey, United States of America
- Member, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
17
|
Tay YD, Patel A, Kaemena DF, Hagan IM. Mutation of a conserved residue enhances the sensitivity of analogue-sensitised kinases to generate a novel approach to the study of mitosis in fission yeast. J Cell Sci 2013; 126:5052-61. [PMID: 23986474 DOI: 10.1242/jcs.135301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemical genetic strategy in which mutational enlargement of the ATP-binding site sensitises of a protein kinase to bulky ATP analogues has proved to be an elegant tool for the generation of conditional analogue-sensitive kinase alleles in a variety of model organisms. Here, we describe a novel substitution mutation in the kinase domain that can enhance the sensitivity of analogue-sensitive kinases. Substitution of a methionine residue to phenylalanine in the +2 position after HRDLKxxN motif of the subdomain VIb within the kinase domain markedly increased the sensitivities of the analogue-sensitive kinases to ATP analogues in three out of five S. pombe kinases (i.e. Plo1, Orb5 and Wee1) that harbor this conserved methionine residue. Kinome alignment established that a methionine residue is found at this site in 5-9% of kinases in key model organisms, suggesting that a broader application of this structural modification may enhance ATP analogue sensitivity of analogue-sensitive kinases in future studies. We also show that the enhanced sensitivity of the wee1.as8 allele in a cdc25.22 background can be exploited to generate highly synchronised mitotic and S phase progression at 36°C. Proof-of-principle experiments show how this novel synchronisation technique will prove of great use in the interrogation of the mitotic or S-phase functions through temperature sensitivity mutation of molecules of interest in fission yeast.
Collapse
Affiliation(s)
- Ye-Dee Tay
- CRUK Cell Division Group, Paterson Institute for Cancer Research, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | |
Collapse
|
18
|
Jansson K, Alao JP, Viktorsson K, Warringer J, Lewensohn R, Sunnerhagen P. A role for Myh1 in DNA repair after treatment with strand-breaking and crosslinking chemotherapeutic agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:327-337. [PMID: 23677513 DOI: 10.1002/em.21784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 04/16/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
The highly conserved DNA glycosylase MutY is implicated in repair of oxidative DNA damage, in particular in removing adenines misincorporated opposite 7,8-dihydro-8-oxoguanine (8-oxo-G). The MutY homologues (MutYH) physically associate with proteins implicated in replication, DNA repair, and checkpoint signaling, specifically with the DNA damage sensor complex 9-1-1 proteins. Here, we ask whether MutYH could have a broader function in sensing and repairing different types of DNA damage induced by conventional chemotherapeutics. Thus, we examined if deletion of the Schizosaccharomyces pombe MutY homologue, Myh1, alone or in combination with deletion of either component of the 9-1-1 sensor complex, influences survival after exposure to different classes of DNA damaging chemotherapeutics that do not act primarily by causing 8-oxoG lesions. We show that Myh1 contributes to survival on genotoxic stresses induced by the oxidizing, DNA double strand break-inducing, bleomycins, or the DNA crosslinking platinum compounds, particularly in a rad1 mutant background. Exposure of cells to cisplatin leads to a moderate overall accumulation of Myh1 protein. Interestingly, we found that DNA damage induced by phleomycin results in increased chromatin association of Myh1. Further, we demonstrate that Myh1 relocalizes to the nucleus after exposure to hydrogen peroxide or chemotherapeutics, most prominently seen after phleomycin treatment. These observations indicate a wider role of Myh1 in DNA repair and DNA damage-induced checkpoint activation than previously thought.
Collapse
Affiliation(s)
- Kristina Jansson
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, SE-405 30, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Hua H, Namdar M, Ganier O, Gregan J, Méchali M, Kearsey SE. Sequential steps in DNA replication are inhibited to ensure reduction of ploidy in meiosis. Mol Biol Cell 2013; 24:578-87. [PMID: 23303250 PMCID: PMC3583662 DOI: 10.1091/mbc.e12-11-0825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reduction in ploidy in meiosis is assumed to be due to a block to the licensing step (Mcm helicase association with replication origins). When the licensing block is subverted, replication is still only partial due to inefficient elongation replication forks. This might constitute an additional level of replication regulation. Meiosis involves two successive rounds of chromosome segregation without an intervening S phase. Exit from meiosis I is distinct from mitotic exit, in that replication origins are not licensed by Mcm2-7 chromatin binding, but spindle disassembly occurs during a transient interphase-like state before meiosis II. The absence of licensing is assumed to explain the block to DNA replication, but this has not been formally tested. Here we attempt to subvert this block by expressing the licensing control factors Cdc18 and Cdt1 during the interval between meiotic nuclear divisions. Surprisingly, this leads only to a partial round of DNA replication, even when these factors are overexpressed and effect clear Mcm2-7 chromatin binding. Combining Cdc18 and Cdt1 expression with modulation of cyclin-dependent kinase activity, activation of Dbf4-dependent kinase, or deletion of the Spd1 inhibitor of ribonucleotide reductase has little additional effect on the extent of DNA replication. Single-molecule analysis indicates this partial round of replication results from inefficient progression of replication forks, and thus both initiation and elongation replication steps may be inhibited in late meiosis. In addition, DNA replication or damage during the meiosis I–II interval fails to arrest meiotic progress, suggesting absence of checkpoint regulation of meiosis II entry.
Collapse
Affiliation(s)
- Hui Hua
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Bøe CA, Knutsen JHJ, Boye E, Grallert B. Hpz1 modulates the G1-S transition in fission yeast. PLoS One 2012; 7:e44539. [PMID: 22970243 PMCID: PMC3435320 DOI: 10.1371/journal.pone.0044539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/03/2012] [Indexed: 11/29/2022] Open
Abstract
Here we characterize a novel protein in S. pombe. It has a high degree of homology with the Zn-finger domain of the human Poly(ADP-ribose) polymerase (PARP). Surprisingly, the gene for this protein is, in many fungi, fused with and in the same reading frame as that encoding Rad3, the homologue of the human ATR checkpoint protein. We name the protein Hpz1 (Homologue of PARP-type Zn-finger). Hpz1 does not possess PARP activity, but is important for resistance to ultraviolet light in the G1 phase and to treatment with hydroxyurea, a drug that arrests DNA replication forks in the S phase. However, we find no evidence of a checkpoint function of Hpz1. Furthermore, absence of Hpz1 results in an advancement of S-phase entry after a G1 arrest as well as earlier recovery from a hydroxyurea block. The hpz1 gene is expressed mainly in the G1 phase and Hpz1 is localized to the nucleus. We conclude that Hpz1 regulates the initiation of the S phase and may cooperate with Rad3 in this function.
Collapse
Affiliation(s)
- Cathrine A. Bøe
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Jon Halvor J. Knutsen
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Beáta Grallert
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
- * E-mail:
| |
Collapse
|
21
|
Abstract
Entry into S phase is carefully regulated and, in most organisms, under the control of a G(1)-S checkpoint. We have previously described a G(1)-S checkpoint in fission yeast that delays formation of the prereplicative complex at chromosomal replication origins after exposure to UV light (UVC). This checkpoint absolutely depends on the Gcn2 kinase. Here, we explore the signal for activation of the Gcn2-dependent G(1)-S checkpoint in fission yeast. If some form of DNA damage can activate the checkpoint, deficient DNA repair should affect the length of the checkpoint-induced delay. We find that the cell-cycle delay differs in repair-deficient mutants from that in wild-type cells. However, the duration of the delay depends not only on the repair capacity of the cells, but also on the nature of the repair deficiency. First, the delay is abolished in cells that are deficient in the early steps of repair. Second, the delay is prolonged in repair mutants that fail to complete repair after the incision stage. We conclude that the G(1)-S delay depends on damage to the DNA and that the activating signal derives not from the initial DNA damage, but from a repair intermediate(s). Surprisingly, we find that activation of Gcn2 does not depend on the processing of DNA damage and that activated Gcn2 alone is not sufficient to delay entry into S phase in UVC-irradiated cells. Thus, the G(1)-S delay depends on at least two different inputs.
Collapse
|
22
|
Abstract
The origin recognition complex (ORC) was first discovered in the baker's yeast in 1992. Identification of ORC opened up a path for subsequent molecular level investigations on how eukaryotic cells initiate and control genome duplication each cell cycle. Twenty years after the first biochemical isolation, ORC is now taking on a three-dimensional shape, although a very blurry shape at the moment, thanks to the recent electron microscopy and image reconstruction efforts. In this chapter, we outline the current biochemical knowledge about ORC from several eukaryotic systems, with emphasis on the most recent structural and biochemical studies. Despite many species-specific properties, an emerging consensus is that ORC is an ATP-dependent machine that recruits other key proteins to form pre-replicative complexes (pre-RCs) at many origins of DNA replication, enabling the subsequent initiation of DNA replication in S phase.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA, And, Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA, , Tel: 631-344-2931, Fax: 631-344-3407
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, , Tel: 516-367-8383
| |
Collapse
|
23
|
Ding L, Forsburg SL. Schizosaccharomyces pombe minichromosome maintenance-binding protein (MCM-BP) antagonizes MCM helicase. J Biol Chem 2011; 286:32918-30. [PMID: 21813639 DOI: 10.1074/jbc.m111.282541] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The minichromosome maintenance (MCM) complex, a replicative helicase, is a heterohexamer essential for DNA duplication and genome stability. We identified Schizosaccharomyces pombe mcb1(+) (Mcm-binding protein 1), an apparent orthologue of the human MCM-binding protein that associates with a subset of MCM complex proteins. mcb1(+) is an essential gene. Deletion of mcb1(+) caused cell cycle arrest after several generations with a cdc phenotype and disrupted nuclear structure. Mcb1 is an abundant protein, constitutively present across the cell cycle. It is widely distributed in cytoplasm and nucleoplasm and bound to chromatin. Co-immunoprecipitation suggested that Mcb1 interacts robustly with Mcm3-7 but not Mcm2. Overproduction of Mcb1 disrupted the association of Mcm2 with other MCM proteins, resulting in inhibition of DNA replication, DNA damage, and activation of the checkpoint kinase Chk1. Thus, Mcb1 appears to antagonize the function of MCM helicase.
Collapse
Affiliation(s)
- Lin Ding
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089-2910, USA
| | | |
Collapse
|
24
|
Knutsen JHJ, Rein ID, Rothe C, Stokke T, Grallert B, Boye E. Cell-cycle analysis of fission yeast cells by flow cytometry. PLoS One 2011; 6:e17175. [PMID: 21386895 PMCID: PMC3046126 DOI: 10.1371/journal.pone.0017175] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/24/2011] [Indexed: 11/29/2022] Open
Abstract
The cell cycle of the fission yeast, Schizosaccharomyces pombe, does not easily lend itself to analysis by flow cytometry, mainly because cells in G(1) and G(2) phase contain the same amount of DNA. This occurs because fission yeast cells under standard growth conditions do not complete cytokinesis until after G(1) phase. We have devised a flow cytometric method exploiting the fact that cells in G(1) phase contain two nuclei, whereas cells in G(2) are mononuclear. Measurements of the width as well as the total area of the DNA-associated fluorescence signal allows the discrimination between cells in G(1) and in G(2) phase and the cell-cycle progression of fission yeast can be followed in detail by flow cytometry. Furthermore, we show how this method can be used to monitor the timing of cell entry into anaphase. Fission yeast cells tend to form multimers, which represents another problem of flow cytometry-based cell-cycle analysis. Here we present a method employing light-scatter measurements to enable the exclusion of cell doublets, thereby further improving the analysis of fission yeast cells by flow cytometry.
Collapse
Affiliation(s)
| | - Idun Dale Rein
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Christiane Rothe
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute for Molecular Bioscience, University of Oslo, Oslo, Norway
| | - Trond Stokke
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Beáta Grallert
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute for Molecular Bioscience, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Núñez A, Franco A, Soto T, Vicente J, Gacto M, Cansado J. Fission yeast receptor of activated C kinase (RACK1) ortholog Cpc2 regulates mitotic commitment through Wee1 kinase. J Biol Chem 2010; 285:41366-73. [PMID: 20974849 DOI: 10.1074/jbc.m110.173815] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, Wee1-dependent inhibitory phosphorylation of the highly conserved Cdc2/Cdk1 kinase determines the mitotic onset when cells have reached a defined size. The receptor of activated C kinase (RACK1) is a scaffolding protein strongly conserved among eukaryotes which binds to other proteins to regulate multiple processes in mammalian cells, including the modulation of cell cycle progression during G(1)/S transition. We have recently described that Cpc2, the fission yeast ortholog to RACK1, controls from the ribosome the activation of MAPK cascades and the cellular defense against oxidative stress by positively regulating the translation of specific genes whose products participate in the above processes. Intriguingly, mutants lacking Cpc2 display an increased cell size at division, suggesting the existence of a specific cell cycle defect at the G(2)/M transition. In this work we show that protein levels of Wee1 mitotic inhibitor are increased in cells devoid of Cpc2, whereas the levels of Cdr2, a Wee1 inhibitor, are down-regulated in the above mutant. On the contrary, the kinetics of G(1)/S transition was virtually identical both in control and Cpc2-less strains. Thus, our results suggest that in fission yeast Cpc2/RACK1 positively regulates from the ribosome the mitotic onset by modulating both the protein levels and the activity of Wee1. This novel mechanism of translational control of cell cycle progression might be conserved in higher eukaryotes.
Collapse
Affiliation(s)
- Andrés Núñez
- Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Dolan WP, Le AH, Schmidt H, Yuan JP, Green M, Forsburg SL. Fission yeast Hsk1 (Cdc7) kinase is required after replication initiation for induced mutagenesis and proper response to DNA alkylation damage. Genetics 2010; 185:39-53. [PMID: 20176980 PMCID: PMC2870973 DOI: 10.1534/genetics.109.112284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/16/2010] [Indexed: 11/18/2022] Open
Abstract
Genome stability in fission yeast requires the conserved S-phase kinase Hsk1 (Cdc7) and its partner Dfp1 (Dbf4). In addition to their established function in the initiation of DNA replication, we show that these proteins are important in maintaining genome integrity later in S phase and G2. hsk1 cells suffer increased rates of mitotic recombination and require recombination proteins for survival. Both hsk1 and dfp1 mutants are acutely sensitive to alkylation damage yet defective in induced mutagenesis. Hsk1 and Dfp1 are associated with the chromatin even after S phase, and normal response to MMS damage correlates with the maintenance of intact Dfp1 on chromatin. A screen for MMS-sensitive mutants identified a novel truncation allele, rad35 (dfp1-(1-519)), as well as alleles of other damage-associated genes. Although Hsk1-Dfp1 functions with the Swi1-Swi3 fork protection complex, it also acts independently of the FPC to promote DNA repair. We conclude that Hsk1-Dfp1 kinase functions post-initiation to maintain replication fork stability, an activity potentially mediated by the C terminus of Dfp1.
Collapse
Affiliation(s)
- William P. Dolan
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Anh-Huy Le
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Henning Schmidt
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Ji-Ping Yuan
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Marc Green
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| | - Susan L. Forsburg
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, Division of Biology, University of California, San Diego, California 92093 and Institut für Genetik, TU Braunschweig, D-38106 Braunschweig, Germany
| |
Collapse
|
27
|
|
28
|
Shimmoto M, Matsumoto S, Odagiri Y, Noguchi E, Russell P, Masai H. Interactions between Swi1-Swi3, Mrc1 and S phase kinase, Hsk1 may regulate cellular responses to stalled replication forks in fission yeast. Genes Cells 2009; 14:669-82. [PMID: 19422421 PMCID: PMC2837079 DOI: 10.1111/j.1365-2443.2009.01300.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Swi1-Swi3 replication fork protection complex and Mrc1 protein are required for stabilization of stalled replication forks in fission yeast. Hsk1 kinase also plays roles in checkpoint responses elicited by arrested replication forks. We show that both Swi1 and Swi3, the abundance of which are interdependent, are required for chromatin association of Mrc1. Co-immunoprecipitation experiments show the interactions of Swi1-Swi3, Mrc1 and Hsk1. Mrc1 interacts with Swi3 and Hsk1 proteins through its central segment (378-879) containing a SQ/TQ cluster, and this segment is sufficient for checkpoint reaction. The SQ/TQ cluster segment (536-673) is essential but not sufficient for the interactions and for resistance to replication inhibitor hydroxyurea. Mrc1 protein level is increased in hsk1-89 cells due to apparent stabilization, and we have identified a potential phosphodegron sequence. These results suggest that interactions of the Swi1-Swi3 complex and Hsk1 kinase with Mrc1 may play a role in cellular responses to stalled replication forks in fission yeast.
Collapse
Affiliation(s)
- Michie Shimmoto
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | - Seiji Matsumoto
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | - Yukari Odagiri
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - Paul Russell
- Departments of Molecular Biology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| |
Collapse
|
29
|
Abstract
We discuss the mechanisms regulating entry into and progression through S phase in eukaryotic cells. Methods to study the G1/S transition are briefly reviewed and an overview of G1/S-checkpoints is given, with particular emphasis on fission yeast. Thereafter we discuss different aspects of the intra-S checkpoint and introduce the main molecular players and mechanisms.
Collapse
Affiliation(s)
- Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | | | | |
Collapse
|
30
|
Rapp JB, Ansbach AB, Noguchi C, Noguchi E. Chromatin immunoprecipitation of replication factors moving with the replication fork. Methods Mol Biol 2009; 521:191-202. [PMID: 19563107 PMCID: PMC3571701 DOI: 10.1007/978-1-60327-815-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Replication of chromosomes involves a variety of replication proteins including DNA polymerases, DNA helicases, and other accessory factors. Many of these proteins are known to localize at replication forks and travel with them as components of the replisome complex. Other proteins do not move with replication forks but still play an essential role in DNA replication. Therefore, in order to understand the mechanisms of DNA replication and its controls, it is important to examine localization of each replication factor. Here we describe a chromatin immunoprecipitation (ChIP) method to locate a replication factor at the replication fork. Defining the localization of replication proteins should provide important insight into mechanistic understanding of the regulation of the DNA replication process.
Collapse
Affiliation(s)
- Jordan B Rapp
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
31
|
Green MD, Sabatinos SA, Forsburg SL. Microscopy techniques to examine DNA replication in fission yeast. Methods Mol Biol 2009; 521:463-82. [PMID: 19563123 DOI: 10.1007/978-1-60327-815-7_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Temporal and spatial visualization of replication proteins and associated structures within the narrow confines of a yeast nucleus is technically challenging. Choosing the appropriate method depends upon the parameters of the experiment, the nature of the molecules to be observed, and the hypothesis to be tested. In this chapter, we review three broad types of visualization: whole cell fluorescence or immunofluorescence, which is useful for questions of timing and chromatin association; nuclear spreads, which provide greater resolution within the chromatin for colocalization and region-specific effects; and chromatin fibers, which allow observation of labeled proteins and newly synthesized DNA on a linear chromosome. We discuss applications of these protocols and some considerations for choosing methods and fluorophores.
Collapse
Affiliation(s)
- Marc D Green
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
32
|
Pai CC, García I, Wang SW, Cotterill S, Macneill SA, Kearsey SE. GINS inactivation phenotypes reveal two pathways for chromatin association of replicative alpha and epsilon DNA polymerases in fission yeast. Mol Biol Cell 2008; 20:1213-22. [PMID: 19109429 DOI: 10.1091/mbc.e08-04-0429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The tetrameric GINS complex, consisting of Sld5-Psf1-Psf2-Psf3, plays an essential role in the initiation and elongation steps of eukaryotic DNA replication, although its biochemical function is unclear. Here we investigate the function of GINS in fission yeast, using fusion of Psf1 and Psf2 subunits to a steroid hormone-binding domain (HBD) to make GINS function conditional on the presence of beta-estradiol. We show that inactivation of Psf1-HBD causes a tight but rapidly reversible DNA replication arrest phenotype. Inactivation of Psf2-HBD similarly blocks premeiotic DNA replication and leads to loss of nuclear localization of another GINS subunit, Psf3. Inactivation of GINS has distinct effects on the replication origin association and chromatin binding of two of the replicative DNA polymerases. Inactivation of Psf1 leads to loss of chromatin binding of DNA polymerase epsilon, and Cdc45 is similarly affected. In contrast, chromatin association of the catalytic subunit of DNA polymerase alpha is not affected by defective GINS function. We suggest that GINS functions in a pathway that involves Cdc45 and is necessary for DNA polymerase epsilon chromatin binding, but that a separate pathway sets up the chromatin association of DNA polymerase alpha.
Collapse
Affiliation(s)
- Chen Chun Pai
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Krohn M, Skjølberg HC, Soltani H, Grallert B, Boye E. The G1-S checkpoint in fission yeast is not a general DNA damage checkpoint. J Cell Sci 2008; 121:4047-54. [PMID: 19033384 DOI: 10.1242/jcs.035428] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inhibitory mechanisms called checkpoints regulate progression of the cell cycle in the presence of DNA damage or when a previous cell-cycle event is not finished. In fission yeast exposed to ultraviolet light the G1-S transition is regulated by a novel checkpoint that depends on the Gcn2 kinase. The molecular mechanisms involved in checkpoint induction and maintenance are not known. Here we characterise the checkpoint further by exposing the cells to a variety of DNA-damaging agents. Exposure to methyl methane sulphonate and hydrogen peroxide induce phosphorylation of eIF2alpha, a known Gcn2 target, and an arrest in G1 phase. By contrast, exposure to psoralen plus long-wavelength ultraviolet light, inducing DNA adducts and crosslinks, or to ionizing radiation induce neither eIF2alpha phosphorylation nor a cell-cycle delay. We conclude that the G1-S checkpoint is not a general DNA-damage checkpoint, in contrast to the one operating at the G2-M transition. The tight correlation between eIF2alpha phosphorylation and the presence of a G1-phase delay suggests that eIF2alpha phosphorylation is required for checkpoint induction. The implications for checkpoint signalling are discussed.
Collapse
Affiliation(s)
- Marit Krohn
- Department of Cell Biology, Institute for Cancer Research, Rikshospitalet Medical Centre, Montebello, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
34
|
Li F, Huarte M, Zaratiegui M, Vaughn MW, Shi Y, Martienssen R, Cande WZ. Lid2 is required for coordinating H3K4 and H3K9 methylation of heterochromatin and euchromatin. Cell 2008; 135:272-83. [PMID: 18957202 PMCID: PMC2614271 DOI: 10.1016/j.cell.2008.08.036] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 05/02/2008] [Accepted: 08/20/2008] [Indexed: 01/25/2023]
Abstract
In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation.
Collapse
Affiliation(s)
- Fei Li
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Maite Huarte
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Mikel Zaratiegui
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Matthew W. Vaughn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Yang Shi
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Rob Martienssen
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - W. Zacheus Cande
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
35
|
Schizosaccharomyces pombe Noc3 is essential for ribosome biogenesis and cell division but not DNA replication. EUKARYOTIC CELL 2008; 7:1433-40. [PMID: 18606828 DOI: 10.1128/ec.00119-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The initiation of eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at chromosomal origins of DNA replication. Pre-RC assembly requires the essential DNA replication proteins ORC, Cdc6, and Cdt1 to load the MCM DNA helicase onto chromatin. Saccharomyces cerevisiae Noc3 (ScNoc3), an evolutionarily conserved protein originally implicated in 60S ribosomal subunit trafficking, has been proposed to be an essential regulator of DNA replication that plays a direct role during pre-RC formation in budding yeast. We have cloned Schizosaccharomyces pombe noc3(+) (Spnoc3(+)), the S. pombe homolog of the budding yeast ScNOC3 gene, and functionally characterized the requirement for the SpNoc3 protein during ribosome biogenesis, cell cycle progression, and DNA replication in fission yeast. We showed that fission yeast SpNoc3 is a functional homolog of budding yeast ScNoc3 that is essential for cell viability and ribosome biogenesis. We also showed that SpNoc3 is required for the normal completion of cell division in fission yeast. However, in contrast to the proposal that ScNoc3 plays an essential role during DNA replication in budding yeast, we demonstrated that fission yeast cells do enter and complete S phase in the absence of SpNoc3, suggesting that SpNoc3 is not essential for DNA replication in fission yeast.
Collapse
|
36
|
Kunoh T, Habu T, Matsumoto T. Involvement of fission yeast Clr6-HDAC in regulation of the checkpoint kinase Cds1. Nucleic Acids Res 2008; 36:3311-9. [PMID: 18440981 PMCID: PMC2425474 DOI: 10.1093/nar/gkn203] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modification of the N-terminal tail of histones is required for various nuclear processes. Here, we show that fission yeast Clr6-HDAC (histone deacetylase) regulates the checkpoint kinase Cds1 when DNA replication encounters a stressful condition. We found that the global level of acetylation of histone H4 was constant throughout the normal cell cycle, but was reduced significantly when the cell recovered from the HU-induced cell cycle arrest (or slow DNA replication). We identified the Clr6-HDAC as a component responsible for the reduction in the level of the H4 acetylation. Although DNA replication was completed, the HU-induced cell cycle arrest could not be released even after removal of HU in the clr6-1 mutant. Under this experimental condition, Cds1 kinase was maintained active and remained bound tightly to chromatin. We also demonstrated that Cds1 was active even after treatment with caffeine, an inhibitor for ATM/ATR that is an activator of Cds1. These results indicate that inactivation of Cds1 requires functional Clr6-HDAC independently of the conventional DNA replication checkpoint. When DNA replication is impeded, Clr6-HDAC activity may monitor damage on chromatin structure/environment, which is required for inactivation of Cds1.
Collapse
Affiliation(s)
- Tatsuki Kunoh
- Radiation Biology Center and Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, Japan 606-8501
| | | | | |
Collapse
|
37
|
Gregan J, Riedel CG, Pidoux A, Katou Y, Rumpf C, Schleiffer A, Kearsey SE, Shirahige K, Allshire RC, Nasmyth K. The kinetochore proteins Pcs1 and Mde4 and heterochromatin are required to prevent merotelic orientation. Curr Biol 2007; 17:1190-200. [PMID: 17627824 PMCID: PMC1931489 DOI: 10.1016/j.cub.2007.06.044] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 06/06/2007] [Accepted: 06/14/2007] [Indexed: 01/25/2023]
Abstract
Background Accurate chromosome segregation depends on the establishment of correct—amphitelic—kinetochore orientation. Merotelic kinetochore orientation is an error that occurs when a single kinetochore attaches to microtubules emanating from opposite spindle poles, a condition that hinders segregation of the kinetochore to a spindle pole in anaphase. To avoid chromosome missegregation resulting from merotelic kinetochore orientation, cells have developed mechanisms to prevent or correct merotelic attachment. A protein called Pcs1 has been implicated in preventing merotelic attachment in mitosis and meiosis II in the fission yeast S. pombe. Results We report that Pcs1 forms a complex with a protein called Mde4. Both Pcs1 and Mde4 localize to the central core of centromeres. Deletion of mde4+, like that of pcs1+, causes the appearance of lagging chromosomes during the anaphases of mitotic and meiosis II cells. We provide evidence that the kinetochores of lagging chromosomes in both pcs1 and mde4 mutant cells are merotelically attached. In addition, we find that lagging chromosomes in cells with defective centromeric heterochromatin also display features consistent with merotelic attachment. Conclusions We suggest that the Pcs1/Mde4 complex is the fission yeast counterpart of the budding yeast monopolin subcomplex Csm1/Lrs4, which promotes the segregation of sister kinetochores to the same pole during meiosis I. We propose that the Pcs1/Mde4 complex acts in the central kinetochore domain to clamp microtubule binding sites together, the centromeric heterochromatin coating the flanking domains provides rigidity, and both systems contribute to the prevention of merotelic attachment.
Collapse
Affiliation(s)
- Juraj Gregan
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Dr. Bohr-Gasse 1, 1030 Vienna, Austria
- Corresponding author
| | - Christian G. Riedel
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alison L. Pidoux
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Yuki Katou
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Cornelia Rumpf
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Dr. Bohr-Gasse 1, 1030 Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Stephen E. Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Division of Gene Research, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Robin C. Allshire
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
- Corresponding author
| | - Kim Nasmyth
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
- Corresponding author
| |
Collapse
|
38
|
Siam R, Gómez EB, Forsburg SL. Schizosaccharomyces pombe Rad4/Cut5 protein modification and chromatin binding changes in DNA damage. DNA Cell Biol 2007; 26:565-75. [PMID: 17688408 DOI: 10.1089/dna.2007.0582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Schizosaccharomyces pombe Rad4/Cut5 protein is essential for DNA replication and checkpoint control. We have analyzed the behavior of the protein during unperturbed DNA replication, in different replication and checkpoint mutant backgrounds and in response to DNA-damaging agents. In an unperturbed cell cycle, Rad4 is chromatin bound and the mobility of the protein is not altered. Rad4 protein level and thus chromatin binding are dependent on a functional DNA polymerase epsilon. In response to replication arrest and DNA damage, the protein is modified in a Rad3-dependent manner. These data indicate that Rad4 undergoes diverse forms of regulation that are distinct in both DNA replication and checkpoint response.
Collapse
Affiliation(s)
- Rania Siam
- Molecular and Cell Biology Laboratory, The Salk Institute, La Jolla, California, USA
| | | | | |
Collapse
|
39
|
Tvegård T, Soltani H, Skjølberg HC, Krohn M, Nilssen EA, Kearsey SE, Grallert B, Boye E. A novel checkpoint mechanism regulating the G1/S transition. Genes Dev 2007; 21:649-54. [PMID: 17369398 PMCID: PMC1820939 DOI: 10.1101/gad.421807] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ultraviolet irradiation of fission yeast cells in G1 phase induced a delay in chromatin binding of replication initiation factors and, consistently, a transient delay in S-phase entry. The cell cycle delay was totally dependent on the Gcn2 kinase, a sensor of the nutritional status, and was accompanied by phosphorylation of the translation initiation factor eIF2alpha and by a general depression of translation. However, the G1-specific synthesis of factors required for DNA replication was not reduced by ultraviolet radiation. The cell cycle delay represents a novel checkpoint with a novel mechanism of action that is not activated by ionizing radiation.
Collapse
Affiliation(s)
- Tonje Tvegård
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
| | - Héla Soltani
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
| | - Henriette C. Skjølberg
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
| | - Marit Krohn
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
| | - Esben A. Nilssen
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
| | - Stephen E. Kearsey
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Beáta Grallert
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
| | - Erik Boye
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
- Corresponding author.E-MAIL ; FAX 47-22934580
| |
Collapse
|
40
|
Meister P, Taddei A, Ponti A, Baldacci G, Gasser SM. Replication foci dynamics: replication patterns are modulated by S-phase checkpoint kinases in fission yeast. EMBO J 2007; 26:1315-26. [PMID: 17304223 PMCID: PMC1817620 DOI: 10.1038/sj.emboj.7601538] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 12/11/2006] [Indexed: 12/22/2022] Open
Abstract
Although the molecular enzymology of DNA replication is well characterised, how and why it occurs in discrete nuclear foci is unclear. Using fission yeast, we show that replication takes place in a limited number of replication foci, whose distribution changes with progression through S phase. These sites define replication factories which contain on average 14 replication forks. We show for the first time that entire foci are mobile, able both to fuse and re-segregate. These foci form distinguishable patterns during S phase, whose succession is reproducible, defining early-, mid- and late-S phase. In wild-type cells, this same temporal sequence can be detected in the presence of hydroxyurea (HU), despite the reduced rate of replication. In cells lacking the intra-S checkpoint kinase Cds1, replication factories dismantle on HU. Intriguingly, even in the absence of DNA damage, the replication foci in cds1 cells assume a novel distribution that is not present in wild-type cells, arguing that Cds1 kinase activity contributes to the spatio-temporal organisation of replication during normal cell growth.
Collapse
Affiliation(s)
- Peter Meister
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- UMR2027, CNRS/Institut Curie, Bâtiment 110, Centre Universitaire, Orsay Cedex, France
| | - Angela Taddei
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- UMR218, CNRS/Institut Curie, 26 rue d'Ulm, Paris, France
| | - Aaron Ponti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Giuseppe Baldacci
- UMR2027, CNRS/Institut Curie, Bâtiment 110, Centre Universitaire, Orsay Cedex, France
- These authors contributed equally to this work
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- These authors contributed equally to this work
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. Tel.: +41 61 697 7255; Fax +41 61 697 6862; E-mail:
| |
Collapse
|
41
|
Ampatzidou E, Irmisch A, O'Connell MJ, Murray JM. Smc5/6 is required for repair at collapsed replication forks. Mol Cell Biol 2006; 26:9387-401. [PMID: 17030601 PMCID: PMC1698528 DOI: 10.1128/mcb.01335-06] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/23/2006] [Accepted: 10/02/2006] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, three pairs of structural-maintenance-of-chromosome (SMC) proteins are found in conserved multisubunit protein complexes required for chromosomal organization. Cohesin, the Smc1/3 complex, mediates sister chromatid cohesion while two condensin complexes containing Smc2/4 facilitate chromosome condensation. Smc5/6 scaffolds an essential complex required for homologous recombination repair. We have examined the response of smc6 mutants to the inhibition of DNA replication. We define homologous recombination-dependent and -independent functions for Smc6 during replication inhibition and provide evidence for a Rad60-independent function within S phase, in addition to a Rad60-dependent function following S phase. Both genetic and physical data show that when forks collapse (i.e., are not stabilized by the Cds1Chk2 checkpoint), Smc6 is required for the effective repair of resulting lesions but not for the recruitment of recombination proteins. We further demonstrate that when the Rad60-dependent, post-S-phase Smc6 function is compromised, the resulting recombination-dependent DNA intermediates that accumulate following release from replication arrest are not recognized by the G2/M checkpoint.
Collapse
Affiliation(s)
- Eleni Ampatzidou
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | | | | | | |
Collapse
|
42
|
Locovei AM, Spiga MG, Tanaka K, Murakami Y, D'Urso G. The CENP-B homolog, Abp1, interacts with the initiation protein Cdc23 (MCM10) and is required for efficient DNA replication in fission yeast. Cell Div 2006; 1:27. [PMID: 17112379 PMCID: PMC1664554 DOI: 10.1186/1747-1028-1-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 11/17/2006] [Indexed: 11/10/2022] Open
Abstract
Abp1, and the closely related Cbh1 and Cbh2 are homologous to the human centromere-binding protein CENP-B that has been implicated in the assembly of centromeric heterochromatin. Fission yeast cells lacking Abp1 show an increase in mini-chromosome instability suggesting that Abp1 is important for chromosome segregation and/or DNA synthesis. Here we show that Abp1 interacts with the DNA replication protein Cdc23 (MCM10) in a two-hybrid assay, and that the Deltaabp1 mutant displays a synthetic phenotype with a cdc23 temperature-sensitive mutant. Moreover, genetic interactions were also observed between abp1+ and four additional DNA replication initiation genes cdc18+, cdc21+, orc1+, and orc2+. Interestingly, we find that S phase is delayed in cells deleted for abp1+ when released from a G1 block. However, no delay is observed when cells are released from an early S phase arrest induced by hydroxyurea suggesting that Abp1 functions prior to, or coincident with, the initiation of DNA replication.
Collapse
Affiliation(s)
- Alexandra M Locovei
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, P.O. Box 016189, Miami, FL, 33101, USA
| | - Maria-Grazia Spiga
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, P.O. Box 016189, Miami, FL, 33101, USA
| | - Katsunori Tanaka
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Shimane, Japan
| | - Yota Murakami
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Gennaro D'Urso
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, P.O. Box 016189, Miami, FL, 33101, USA
| |
Collapse
|
43
|
Ikai N, Yanagida M. Cdc48 is required for the stability of Cut1/separase in mitotic anaphase. J Struct Biol 2006; 156:50-61. [PMID: 16904908 DOI: 10.1016/j.jsb.2006.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/31/2006] [Accepted: 04/01/2006] [Indexed: 01/11/2023]
Abstract
Separase, a large protease essential for sister chromatid separation, cleaves the cohesin subunit Scc1/Rad21 during anaphase and leads to dissociation of the link between sister chromatids. Securin, a chaperone and inhibitor of separase, is ubiquitinated by APC/cyclosome, and degraded by 26S proteasome in anaphase. Cdc48/VCP/p97, an AAA ATPase, is involved in a variety of cellular activities, many of which are implicated in the proteasome-mediated degradation. We previously reported that temperature-sensitive (ts) fission yeast Schizosaccharomyces pombe cdc48 mutants were suppressed by multicopy plasmid carrying the cut1(+)/separase gene and that the defective mitotic phenotypes of cut1 and cdc48 were similar. We here describe characterizations of Cdc48 mutant protein and the role of Cdc48 in sister chromatid separation. Mutant residue resides in the conserved D1 domain within the central hole of hexamer, while Cdc48 mutant protein possesses the ATPase activity. Consistent with the phenotypic similarity and the rescue of cdc48 mutant by overproduced Cut1/separase, the levels of Cut1 and also Cut2 are diminished in cdc48 mutant. We show that the stability of Cut1 during anaphase requires Cdc48. Cells lose viability during the traverse of anaphase in cdc48 mutant cells. Cdc48 may protect Cut1/separase and Cut2/securin against the instability during polyubiquitination and degradation in the metaphase-anaphase transition.
Collapse
Affiliation(s)
- Nobuyasu Ikai
- Department of Gene Mechanism, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
44
|
Namdar M, Kearsey SE. Analysis of Mcm2–7 chromatin binding during anaphase and in the transition to quiescence in fission yeast. Exp Cell Res 2006; 312:3360-9. [PMID: 16899242 DOI: 10.1016/j.yexcr.2006.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/27/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
Mcm2-7 proteins are generally considered to function as a heterohexameric complex, providing helicase activity for the elongation step of DNA replication. These proteins are loaded onto replication origins in M-G1 phase in a process termed licensing or pre-replicative complex formation. It is likely that Mcm2-7 proteins are loaded onto chromatin simultaneously as a pre-formed hexamer although some studies suggest that subcomplexes are recruited sequentially. To analyze this process in fission yeast, we have compared the levels and chromatin binding of Mcm2-7 proteins during the fission yeast cell cycle. Mcm subunits are present at approximately 1 x 10(4) molecules/cell and are bound with approximately equal stoichiometry on chromatin in G1/S phase cells. Using a single cell assay, we have correlated the timing of chromatin association of individual Mcm subunits with progression through mitosis. This showed that Mcm2, 4 and 7 associate with chromatin at about the same stage of anaphase, suggesting that licensing involves the simultaneous binding of these subunits. We also examined Mcm2-7 chromatin association when cells enter a G0-like quiescent state. Chromatin binding is lost in this transition in a process that does not require DNA replication or the selective degradation of specific subunits.
Collapse
Affiliation(s)
- Mandana Namdar
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | | |
Collapse
|
45
|
Bernard P, Drogat J, Maure JF, Dheur S, Vaur S, Genier S, Javerzat JP. A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4. Curr Biol 2006; 16:875-81. [PMID: 16682348 DOI: 10.1016/j.cub.2006.03.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/09/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
Sister-chromatid cohesion is mediated by cohesin, a ring-shape complex made of four core subunits called Scc1, Scc3, Smc1, and Smc3 in Saccharomyces cerevisiae (Rad21, Psc3, Psm1, and Psm3 in Schizosaccharomyces pombe). How cohesin ensures cohesion is unknown, although its ring shape suggests that it may tether sister DNA strands by encircling them . Cohesion establishment is a two-step process. Cohesin is loaded on chromosomes before replication and cohesion is subsequently established during S phase. In S. cerevisiae, cohesin loading requires a separate complex containing the Scc2 and Scc4 proteins. Cohesin rings fail to associate with chromatin and cohesion can not establish when Scc2 is impaired . The mechanism of loading is unknown, although some data suggest that hydrolysis of ATP bound to Smc1/3 is required . Scc2 homologs exist in fission yeast (Mis4), Drosophila, Xenopus, and human . By contrast, no homolog of Scc4 has been identified so far. We report here on the identification of fission yeast Ssl3 as a Scc4-like factor. Ssl3 is in complex with Mis4 and, as a bona fide loading factor, Ssl3 is required in G1 for cohesin binding to chromosomes but dispensable in G2 when cohesion is established. The discovery of a functional homolog of Scc4 indicates that the machinery of cohesin loading is conserved among eukaryotes.
Collapse
Affiliation(s)
- Pascal Bernard
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux F-33077, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
There has been remarkable progress in the last 20 years in defining the molecular mechanisms that regulate initiation of DNA synthesis in eukaryotic cells. Replication origins in the DNA nucleate the ordered assembly of protein factors to form a prereplication complex (preRC) that is poised for DNA synthesis. Transition of the preRC to an active initiation complex is regulated by cyclin-dependent kinases and other signaling molecules, which promote further protein assembly and activate the mini chromosome maintenance helicase. We will review these mechanisms and describe the state of knowledge about the proteins involved. However, we will also consider an additional layer of complexity. The DNA in the cell is packaged with histone proteins into chromatin. Chromatin structure provides an additional layer of heritable information with associated epigenetic modifications. Thus, we will begin by describing chromatin structure, and how the cell generally controls access to the DNA. Access to the DNA requires active chromatin remodeling, specific histone modifications, and regulated histone deposition. Studies in transcription have revealed a variety of mechanisms that regulate DNA access, and some of these are likely to be shared with DNA replication. We will briefly describe heterochromatin as a model for an epigenetically inherited chromatin state. Next, we will describe the mechanisms of replication initiation and how these are affected by constraints of chromatin. Finally, chromatin must be reassembled with appropriate modifications following passage of the replication fork, and our third major topic will be the reassembly of chromatin and its associated epigenetic marks. Thus, in this chapter, we seek to bring together the studies of replication initiation and the studies of chromatin into a single holistic narrative.
Collapse
Affiliation(s)
- Angel P Tabancay
- Molecular and Computational Biology Section University of Southern California Los Angeles, California 90089, USA
| | | |
Collapse
|
47
|
Abstract
Regulation of DNA replication is critical for accurate and timely dissemination of genomic material to daughter cells. The cell uses a variety of mechanisms to control this aspect of the cell cycle. There are various determinants of origin identification, as well as a large number of proteins required to load replication complexes at these defined genomic regions. A pre-Replication Complex (pre-RC) associates with origins in the G1 phase. This complex includes the Origin Recognition Complex (ORC), which serves to recognize origins, the putative helicase MCM2-7, and other factors important for complex assembly. Following pre-RC loading, a pre-Initiation Complex (pre-IC) builds upon the helicase with factors required for eventual loading of replicative polymerases. The chromatin association of these two complexes is temporally distinct, with pre-RC being inhibited, and pre-IC being activated by cyclin-dependent kinases (Cdks). This regulation is the basis for replication licensing, which allows replication to occur at a specific time once, and only once, per cell cycle. By preventing extra rounds of replication within a cell cycle, or by ensuring the cell cycle cannot progress until the environmental and intracellular conditions are most optimal, cells are able to carry out a successful replication cycle with minimal mutations.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
48
|
Gómez EB, Espinosa JM, Forsburg SL. Schizosaccharomyces pombe mst2+ encodes a MYST family histone acetyltransferase that negatively regulates telomere silencing. Mol Cell Biol 2005; 25:8887-903. [PMID: 16199868 PMCID: PMC1265769 DOI: 10.1128/mcb.25.20.8887-8903.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/23/2005] [Accepted: 07/21/2005] [Indexed: 11/20/2022] Open
Abstract
Histone acetylation and deacetylation are associated with transcriptional activity and the formation of constitutively silent heterochromatin. Increasingly, histone acetylation is also implicated in other chromosome transactions, including replication and segregation. We have cloned the only Schizosaccharomyces pombe MYST family histone acetyltransferase genes, mst1(+) and mst2(+). Mst1p, but not Mst2p, is essential for viability. Both proteins are localized to the nucleus and bound to chromatin throughout the cell cycle. Deltamst2 genetically interacts with mutants that affect heterochromatin, cohesion, and telomere structure. Mst2p is a negative regulator of silencing at the telomere but does not affect silencing in the centromere or mating type region. We generated a census of proteins and histone modifications at wild-type telomeres. A histone acetylation gradient at the telomeres is lost in Deltamst2 cells without affecting the distribution of Taz1p, Swi6p, Rad21p, or Sir2p. We propose that the increased telomeric silencing is caused by histone hypoacetylation and/or an increase in the ratio of methylated to acetylated histones. Although telomere length is normal, meiosis is aberrant in Deltamst2 diploid homozygote mutants, suggesting that telomeric histone acetylation contributes to normal meiotic progression.
Collapse
Affiliation(s)
- Eliana B Gómez
- Molecular & Computational Biology Section, University of Southern California, Los Angeles, 90089-2910, USA
| | | | | |
Collapse
|
49
|
Yang X, Gregan J, Lindner K, Young H, Kearsey SE. Nuclear distribution and chromatin association of DNA polymerase alpha-primase is affected by TEV protease cleavage of Cdc23 (Mcm10) in fission yeast. BMC Mol Biol 2005; 6:13. [PMID: 15941470 PMCID: PMC1182370 DOI: 10.1186/1471-2199-6-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Cdc23/Mcm10 is required for the initiation and elongation steps of DNA replication but its biochemical function is unclear. Here, we probe its function using a novel approach in fission yeast, involving Cdc23 cleavage by the TEV protease. RESULTS Insertion of a TEV protease cleavage site into Cdc23 allows in vivo removal of the C-terminal 170 aa of the protein by TEV protease induction, resulting in an S phase arrest. This C-terminal fragment of Cdc23 is not retained in the nucleus after cleavage, showing that it lacks a nuclear localization signal and ability to bind to chromatin. Using an in situ chromatin binding procedure we have determined how the S phase chromatin association of DNA polymerase alpha-primase and the GINS (Sld5-Psf1-Psf2-Psf3) complex is affected by Cdc23 inactivation. The chromatin binding and sub-nuclear distribution of DNA primase catalytic subunit (Spp1) is affected by Cdc23 cleavage and also by inactivation of Cdc23 using a degron allele, implying that DNA polymerase alpha-primase function is dependent on Cdc23. In contrast to the effect on Spp1, the chromatin association of the Psf2 subunit of the GINS complex is not affected by Cdc23 inactivation. CONCLUSION An important function of Cdc23 in the elongation step of DNA replication may be to assist in the docking of DNA polymerase alpha-primase to chromatin.
Collapse
Affiliation(s)
- Xiaowen Yang
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
- Current address: Structural Genomics Consortium, Nuffield Department of Clinical Medicine, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Juraj Gregan
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
- Current address: IMP, Dr. Bohr-Gasse 7, A-1030, Austria
| | - Karola Lindner
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
| | - Hedi Young
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
| |
Collapse
|
50
|
Lambert S, Watson A, Sheedy DM, Martin B, Carr AM. Gross Chromosomal Rearrangements and Elevated Recombination at an Inducible Site-Specific Replication Fork Barrier. Cell 2005; 121:689-702. [PMID: 15935756 DOI: 10.1016/j.cell.2005.03.022] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/25/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
Genomic rearrangements linked to aberrant recombination are associated with cancer and human genetic diseases. Such recombination has indirectly been linked to replication fork stalling. Using fission yeast, we have developed a genetic system to block replication forks at nonhistone/DNA complexes located at a specific euchromatic site. We demonstrate that stalled replication forks lead to elevated intrachromosomal and ectopic recombination promoting site-specific gross chromosomal rearrangements. We show that recombination is required to promote cell viability when forks are stalled, that recombination proteins associate with sites of fork stalling, and that recombination participates in deleterious site-specific chromosomal rearrangements. Thus, recombination is a "double-edged sword," preventing cell death when the replisome disassembles at the expense of genetic stability.
Collapse
Affiliation(s)
- Sarah Lambert
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | | | |
Collapse
|