1
|
Mugume Y, Roy R, Agbemafle W, Shepard GN, Vue Y, Bassham DC. VPS45 is required for both diffuse and tip growth of Arabidopsis thaliana cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1120307. [PMID: 36923123 PMCID: PMC10009167 DOI: 10.3389/fpls.2023.1120307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION VPS45 belongs to the Sec1/Munc18 family of proteins, which interact with and regulate Qa-SNARE function during membrane fusion. We have shown previously that Arabidopsis thaliana VPS45 interacts with the SYP61/SYP41/VTI12 SNARE complex, which locates on the trans-Golgi network (TGN). It is required for SYP41 stability, and it functions in cargo trafficking to the vacuole and in cell expansion. It is also required for correct auxin distribution during gravitropism and lateral root growth. RESULTS As vps45 knockout mutation is lethal in Arabidopsis, we identified a mutant, vps45-3, with a point mutation in the VPS45 gene causing a serine 284-to-phenylalanine substitution. The VPS45-3 protein is stable and maintains interaction with SYP61 and SYP41. However, vps45-3 plants display severe growth defects with significantly reduced organ and cell size, similar to vps45 RNAi transgenic lines that have reduced VPS45 protein levels. Root hair and pollen tube elongation, both processes of tip growth, are highly compromised in vps45-3. Mutant root hairs are shorter and thicker than those of wild-type plants, and are wavy. These root hairs have vacuolar defects, containing many small vacuoles, compared with WT root hairs with a single large vacuole occupying much of the cell volume. Pollen tubes were also significantly shorter in vps45-3 compared to WT. DISCUSSION We thus show that VPS45 is essential for proper tip growth and propose that the observed vacuolar defects lead to loss of the turgor pressure needed for tip growth.
Collapse
Affiliation(s)
- Yosia Mugume
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Rahul Roy
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - William Agbemafle
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Gabriella N. Shepard
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Yee Vue
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Shelton SN, Smith SE, Unruh JR, Jaspersen SL. A distinct inner nuclear membrane proteome in Saccharomyces cerevisiae gametes. G3 (BETHESDA, MD.) 2021; 11:6400631. [PMID: 34849801 PMCID: PMC8664494 DOI: 10.1093/g3journal/jkab345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/10/2021] [Indexed: 01/24/2023]
Abstract
The inner nuclear membrane (INM) proteome regulates gene expression, chromatin organization, and nuclear transport; however, it is poorly understood how changes in INM protein composition contribute to developmentally regulated processes, such as gametogenesis. We conducted a screen to determine how the INM proteome differs between mitotic cells and gametes. In addition, we used a strategy that allowed us to determine if spores synthesize their INM proteins de novo, rather than inheriting their INM proteins from the parental cell. This screen used a split-GFP complementation system, where we were able to compare the distribution of all C-terminally tagged transmembrane proteins in Saccharomyces cerevisiae in gametes to that of mitotic cells. Gametes contain a distinct INM proteome needed to complete gamete formation, including expression of genes linked to cell wall biosynthesis, lipid biosynthetic and metabolic pathways, protein degradation, and unknown functions. Based on the inheritance pattern, INM components are made de novo in the gametes. Whereas mitotic cells show a strong preference for proteins with small extraluminal domains, gametes do not exhibit this size preference likely due to the changes in the nuclear permeability barrier during gametogenesis. Taken together, our data provide evidence for INM changes during gametogenesis and shed light on mechanisms used to shape the INM proteome of spores.
Collapse
Affiliation(s)
- Shary N Shelton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Eisemann TJ, Allen F, Lau K, Shimamura GR, Jeffrey PD, Hughson FM. The Sec1/Munc18 protein Vps45 holds the Qa-SNARE Tlg2 in an open conformation. eLife 2020; 9:e60724. [PMID: 32804076 PMCID: PMC7470827 DOI: 10.7554/elife.60724] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/15/2020] [Indexed: 01/17/2023] Open
Abstract
Fusion of intracellular trafficking vesicles is mediated by the assembly of SNARE proteins into membrane-bridging complexes. SNARE-mediated membrane fusion requires Sec1/Munc18-family (SM) proteins, SNARE chaperones that can function as templates to catalyze SNARE complex assembly. Paradoxically, the SM protein Munc18-1 traps the Qa-SNARE protein syntaxin-1 in an autoinhibited closed conformation. Here we present the structure of a second SM-Qa-SNARE complex, Vps45-Tlg2. Strikingly, Vps45 holds Tlg2 in an open conformation, with its SNARE motif disengaged from its Habc domain and its linker region unfolded. The domain 3a helical hairpin of Vps45 is unfurled, exposing the presumptive R-SNARE binding site to allow template complex formation. Although Tlg2 has a pronounced tendency to form homo-tetramers, Vps45 can rescue Tlg2 tetramers into stoichiometric Vps45-Tlg2 complexes. Our findings demonstrate that SM proteins can engage Qa-SNAREs using at least two different modes, one in which the SNARE is closed and one in which it is open.
Collapse
Affiliation(s)
- Travis J Eisemann
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Frederick Allen
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Kelly Lau
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | | | - Philip D Jeffrey
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | | |
Collapse
|
4
|
Shadur B, Asherie N, Newburger PE, Stepensky P. How we approach: Severe congenital neutropenia and myelofibrosis due to mutations in VPS45. Pediatr Blood Cancer 2019; 66:e27473. [PMID: 30294941 PMCID: PMC6249036 DOI: 10.1002/pbc.27473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 01/11/2023]
Abstract
Mutations in the VPS45 gene lead to a severe primary immune deficiency characterized by severe congenital neutropenia and primary myelofibrosis, leading to overwhelming infection and early death. This condition is exceedingly rare with only 16 patients previously reported, including four with successful hematopoietic stem cell transplantation. We review the pathophysiology underlying this condition and detail our approach to treatment, particularly vis-à-vis bone marrow transplantation and the challenges of transplanting into a diseased bone marrow niche. We provide an update on the progress of our three previously reported patients, and two additional patients transplanted at our center.
Collapse
Affiliation(s)
- Bella Shadur
- Bone Marrow Transplantation Department, Hadassah-Hebrew
University Medical Center, Jerusalem, Israel,Garvan Institute of Medical Research, Sydney,
Australia,University of New South Wales, Sydney, Australia
| | - Nathalie Asherie
- Bone Marrow Transplantation Department, Hadassah-Hebrew
University Medical Center, Jerusalem, Israel
| | - Peter E. Newburger
- Departments of Pediatrics & Molecular, Cell, and
Cancer Biology, University of Massachusetts Medical School, Worcester,
Massachusetts, USA
| | - Polina Stepensky
- Bone Marrow Transplantation Department, Hadassah-Hebrew
University Medical Center, Jerusalem, Israel
| |
Collapse
|
5
|
Mochizuki T, Kojima Y, Nishiwaki Y, Harakuni T, Masai I. Endocytic trafficking factor VPS45 is essential for spatial regulation of lens fiber differentiation in zebrafish. Development 2018; 145:145/20/dev170282. [PMID: 30322969 PMCID: PMC6215396 DOI: 10.1242/dev.170282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 01/20/2023]
Abstract
In vertebrate lens, lens epithelial cells cover the anterior half of the lens fiber core. Lens epithelial cells proliferate, move posteriorly and start to differentiate into lens fiber cells at the lens equator. Although FGF signaling promotes this equatorial commencement of lens fiber differentiation, the underlying mechanism is not fully understood. Here, we show that lens epithelial cells abnormally enter lens fiber differentiation without passing through the equator in zebrafish vps45 mutants. VPS45 belongs to the Sec1/Munc18-like protein family and promotes endosome trafficking, which differentially modulates signal transduction. Ectopic lens fiber differentiation in vps45 mutants does not depend on FGF, but is mediated through activation of TGFβ signaling and inhibition of canonical Wnt signaling. Thus, VPS45 normally suppresses lens fiber differentiation in the anterior region of lens epithelium by modulating TGFβ and canonical Wnt signaling pathways. These data indicate a novel role of endosome trafficking to ensure equator-dependent commencement of lens fiber differentiation. Summary: The endocytic regulator VPS45 suppresses FGF-independent lens fiber differentiation and ensures the spatial pattern of lens development.
Collapse
Affiliation(s)
- Toshiaki Mochizuki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Yutaka Kojima
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Yuko Nishiwaki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Tetsuya Harakuni
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 098-0945, Japan
| |
Collapse
|
6
|
The Sec1/Munc18 (SM) protein Vps45 is involved in iron uptake, mitochondrial function and virulence in the pathogenic fungus Cryptococcus neoformans. PLoS Pathog 2018; 14:e1007220. [PMID: 30071112 PMCID: PMC6091972 DOI: 10.1371/journal.ppat.1007220] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/14/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The battle for iron between invading microorganisms and mammalian hosts is a pivotal determinant of the outcome of infection. The pathogenic fungus, Cryptococcus neoformans, employs multiple mechanisms to compete for iron during cryptococcosis, a disease primarily of immunocompromised hosts. In this study, we examined the role of endocytic trafficking in iron uptake by characterizing a mutant defective in the Sec1/Munc18 (SM) protein Vps45. This protein is known to regulate the machinery for vesicle trafficking and fusion via interactions with SNARE proteins. As expected, a vps45 deletion mutant was impaired in endocytosis and showed sensitivity to trafficking inhibitors. The mutant also showed poor growth on iron-limited media and a defect in transporting the Cfo1 ferroxidase of the high-affinity iron uptake system from the plasma membrane to the vacuole. Remarkably, we made the novel observation that Vps45 also contributes to mitochondrial function in that a Vps45-Gfp fusion protein associated with mitotracker, and a vps45 mutant showed enhanced sensitivity to inhibitors of electron transport complexes as well as changes in mitochondrial membrane potential. Consistent with mitochondrial function, the vps45 mutant was impaired in calcium homeostasis. To assess the relevance of these defects for virulence, we examined cell surface properties of the vps45 mutant and found increased sensitivity to agents that challenge cell wall integrity and to antifungal drugs. A change in cell wall properties was consistent with our observation of altered capsule polysaccharide attachment, and with attenuated virulence in a mouse model of cryptococcosis. Overall, our studies reveal a novel role for Vps45-mediated trafficking for iron uptake, mitochondrial function and virulence. Cryptococcus neoformans is a causative agent of cryptococcal meningitis, a disease that is estimated to cause ~ 15% of AIDS-related deaths. In this context, cryptococosis is one of the most common causes of mortality in people with HIV/AIDS, closely behind tuberculosis. Unfortunately, very few antifungal drugs are available to treat this disease. However, understanding mechanisms involved in the pathogenesis of C. neoformans can lead to new therapeutic avenues. In this study, we discovered a new role for a regulatory protein involved in vesicle transport. Specifically, we found that the Vps45 protein, which regulates vesicle fusion, participates in the trafficking of iron into fungal cells, supports mitochondria function, mediates antifungal resistance and is required for virulence. These discoveries shed light on the molecular mechanisms underlying the uptake and use of iron as an essential nutrient for the virulence of C. neoformans. Further investigations could lead to the development of drugs that target Vps45-mediated processes.
Collapse
|
7
|
Ejzykowicz DE, Locken KM, Ruiz FJ, Manandhar SP, Olson DK, Gharakhanian E. Hygromycin B hypersensitive (hhy) mutants implicate an intact trans-Golgi and late endosome interface in efficient Tor1 vacuolar localization and TORC1 function. Curr Genet 2016; 63:531-551. [PMID: 27812735 DOI: 10.1007/s00294-016-0660-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/18/2022]
Abstract
Saccharomyces cerevisiae vacuoles are functionally analogous to mammalian lysosomes. Both also serve as physical platforms for Tor Complex 1 (TORC1) signal transduction, the master regulator of cellular growth and proliferation. Hygromycin B is a eukaryotic translation inhibitor. We recently reported on hygromycin B hypersensitive (hhy) mutants that fail to grow at subtranslation inhibitory concentrations of the drug and exhibit vacuolar defects (Banuelos et al. in Curr Genet 56:121-137, 2010). Here, we show that hhy phenotype is not due to increased sensitivity to translation inhibition and establish a super HHY (s-HHY) subgroup of genes comprised of ARF1, CHC1, DRS2, SAC1, VPS1, VPS34, VPS45, VPS52, and VPS54 that function exclusively or inclusively at trans-Golgi and late endosome interface. Live cell imaging of s-hhy mutants revealed that hygromycin B treatment disrupts vacuolar morphology and the localization of late endosome marker Pep12, but not that of late endosome-independent vacuolar SNARE Vam3. This, along with normal post-late endosome trafficking of the vital dye FM4-64, establishes that severe hypersensitivity to hygromycin B correlates specifically with compromised trans-Golgi and late endosome interface. We also show that Tor1p vacuolar localization and TORC1 anabolic functions, including growth promotion and phosphorylation of its direct substrate Sch9, are compromised in s-hhy mutants. Thus, an intact trans-Golgi and late endosome interface is a requisite for efficient Tor1 vacuolar localization and TORC1 function.
Collapse
Affiliation(s)
- Daniele E Ejzykowicz
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Kristopher M Locken
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Fiona J Ruiz
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.,Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Surya P Manandhar
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Daniel K Olson
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.,Inouye Center for Microbial Oceanography, Research and Education, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| | - Editte Gharakhanian
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.
| |
Collapse
|
8
|
Hierro A, Gershlick DC, Rojas AL, Bonifacino JS. Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:159-202. [PMID: 26315886 DOI: 10.1016/bs.ircmb.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endosomes undergo extensive spatiotemporal rearrangements as proteins and lipids flux through them in a series of fusion and fission events. These controlled changes enable the concentration of cargo for eventual degradation while ensuring the proper recycling of other components. A growing body of studies has now defined multiple recycling pathways from endosomes to the trans-Golgi network (TGN) which differ in their molecular machineries. The recycling process requires specific sets of lipids, coats, adaptors, and accessory proteins that coordinate cargo selection with membrane deformation and its association with the cytoskeleton. Specific tethering factors and SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) complexes are then required for the docking and fusion with the acceptor membrane. Herein, we summarize some of the current knowledge of the machineries that govern the retrograde transport from endosomes to the TGN.
Collapse
Affiliation(s)
- Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - David C Gershlick
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Rodríguez-Limas WA, Tannenbaum V, Tyo KEJ. Blocking endocytotic mechanisms to improve heterologous protein titers in Saccharomyces cerevisiae. Biotechnol Bioeng 2014; 112:376-85. [PMID: 25154809 DOI: 10.1002/bit.25360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/06/2014] [Accepted: 07/28/2014] [Indexed: 01/02/2023]
Abstract
Saccharomyces cerevisiae is a useful platform for protein production of biopharmaceuticals and industrial enzymes. To date, substantial effort has focused on alleviating several bottlenecks in expression and the secretory pathway. Recently, it has been shown that highly active endocytosis could decrease the overall protein titer in the supernatant. In this study, we block endocytosis and trafficking to the vacuole using a modified TEV Protease-Mediated Induction of Protein Instability (mTIPI) system to disrupt the endocytotic and vacuolar complexes. We report that conditional knock-down of endocytosis gene Rvs161 improved the concentration of α-amylase in supernatant of S. cerevisiae cultures by 63.7% compared to controls. By adaptive evolution, we obtained knock-down mutants in Rvs161 and End3 genes with 2-fold and 3-fold α-amylase concentrations compared to controls that were not evolved. Our study demonstrates that genetic blocking of endocytotic mechanisms can improve heterologous protein production in S. cerevisiae. This result is likely generalizable to other eukaryotic secretion hosts.
Collapse
Affiliation(s)
- William A Rodríguez-Limas
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois
| | | | | |
Collapse
|
10
|
Insulin stimulates syntaxin4 SNARE complex assembly via a novel regulatory mechanism. Mol Cell Biol 2014; 34:1271-9. [PMID: 24469400 DOI: 10.1128/mcb.01203-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insulin stimulates glucose transport into fat and muscle cells by increasing the exocytic trafficking rate of the GLUT4 facilitative glucose transporter from intracellular stores to the plasma membrane. Delivery of GLUT4 to the plasma membrane is mediated by formation of functional SNARE complexes containing syntaxin4, SNAP23, and VAMP2. Here we have used an in situ proximity ligation assay to integrate these two observations by demonstrating for the first time that insulin stimulation causes an increase in syntaxin4-containing SNARE complex formation in adipocytes. Furthermore, we demonstrate that insulin brings about this increase in SNARE complex formation by mobilizing a pool of syntaxin4 held in an inactive state under basal conditions. Finally, we have identified phosphorylation of the regulatory protein Munc18c, a direct target of the insulin receptor, as a molecular switch to coordinate this process. Hence, this report provides molecular detail of how the cell alters membrane traffic in response to an external stimulus, in this case, insulin.
Collapse
|
11
|
Hong W, Lev S. Tethering the assembly of SNARE complexes. Trends Cell Biol 2014; 24:35-43. [DOI: 10.1016/j.tcb.2013.09.006] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 12/11/2022]
|
12
|
Brochetta C, Suzuki R, Vita F, Soranzo MR, Claver J, Madjene LC, Attout T, Vitte J, Varin-Blank N, Zabucchi G, Rivera J, Blank U. Munc18-2 and syntaxin 3 control distinct essential steps in mast cell degranulation. THE JOURNAL OF IMMUNOLOGY 2013; 192:41-51. [PMID: 24323579 DOI: 10.4049/jimmunol.1301277] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mast cell degranulation requires N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) and mammalian uncoordinated18 (Munc18) fusion accessory proteins for membrane fusion. However, it is still unknown how their interaction supports fusion. In this study, we found that small interfering RNA-mediated silencing of the isoform Munc18-2 in mast cells inhibits cytoplasmic secretory granule (SG) release but not CCL2 chemokine secretion. Silencing of its SNARE-binding partner syntaxin 3 (STX3) also markedly inhibited degranulation, whereas combined knockdown produced an additive inhibitory effect. Strikingly, while Munc18-2 silencing impaired SG translocation, silencing of STX3 inhibited fusion, demonstrating unique roles of each protein. Immunogold studies showed that both Munc18-2 and STX3 are located on the granule surface, but also within the granule matrix and in small nocodazole-sensitive clusters of the cytoskeletal meshwork surrounding SG. After stimulation, clusters containing both effectors were detected at fusion sites. In resting cells, Munc18-2, but not STX3, interacted with tubulin. This interaction was sensitive to nocodazole treatment and decreased after stimulation. Our results indicate that Munc18-2 dynamically couples the membrane fusion machinery to the microtubule cytoskeleton and demonstrate that Munc18-2 and STX3 perform distinct, but complementary, functions to support, respectively, SG translocation and membrane fusion in mast cells.
Collapse
Affiliation(s)
- Cristiana Brochetta
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Ryo Suzuki
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Francesca Vita
- Department of Life Sciences Department of Physiology and Pathology, University of Trieste, Italy
| | - Maria Rosa Soranzo
- Department of Life Sciences Department of Physiology and Pathology, University of Trieste, Italy
| | - Julien Claver
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Lydia Celia Madjene
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Tarik Attout
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Joana Vitte
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Nadine Varin-Blank
- Inserm U978, 93000 Bobigny, France.,Laboratoire d'excellence "Inflamex," Unité de Formation et de Recherche Santé-Médecine-Biologie Humaine, 93000 Bobigny, France
| | - Giuliano Zabucchi
- Department of Life Sciences Department of Physiology and Pathology, University of Trieste, Italy
| | - Juan Rivera
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Ulrich Blank
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| |
Collapse
|
13
|
James DJ, Martin TFJ. CAPS and Munc13: CATCHRs that SNARE Vesicles. Front Endocrinol (Lausanne) 2013; 4:187. [PMID: 24363652 PMCID: PMC3849599 DOI: 10.3389/fendo.2013.00187] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/18/2013] [Indexed: 11/13/2022] Open
Abstract
CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS) and Munc13 (Mammalian Unc-13) proteins function to prime vesicles for Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes (MTCs) have been reported. MTCs coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.
Collapse
Affiliation(s)
- Declan J. James
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Thomas F. J. Martin
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- *Correspondence: Thomas F. J. Martin, Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA e-mail:
| |
Collapse
|
14
|
Lukehart J, Highfill C, Kim K. Vps1, a recycling factor for the traffic from early endosome to the late Golgi. Biochem Cell Biol 2013; 91:455-65. [DOI: 10.1139/bcb-2013-0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recycling of cellular membranes and their constituents plays a role for cell survival and growth. In the budding yeast, there are recycling traffics from early and late endosomal compartments to the late Golgi. Here, we examined a possible role for Vps1, a large GTPase, in the recycling traffic of GFP-Snc1 from early endosomes to the late Golgi. In the absence of Vps1 we observed an aberrant accumulation of GFP-Snc1 puncta in the cytoplasm that we identified as early endosomes. The N-terminal GTPase and the C-terminal GED domains of Vps1 are essential for Vps1’s function in Snc1 recycling. Our finding of genetic interactions of VPS1 with genes involved in early endosome-to-Golgi traffic further suggests Vps1 functions as a recycling factor in the membrane traffic. Finally, we provide evidence that the severe accumulation of GFP-Snc1 cytoplasmic puncta in vps1Δ cells is attributed to a mild defect in the retention of the GARP component Vps51 at the late Golgi, as well as a severe disruption of actin cables.
Collapse
Affiliation(s)
- Joshua Lukehart
- Department of Biology, Missouri State University, Springfield, MO 65897, USA
| | - Chad Highfill
- Department of molecular bioscience, University of Kansas, Lawrence, KS 66045, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, Springfield, MO 65897, USA
| |
Collapse
|
15
|
Roccisana J, Sadler JBA, Bryant NJ, Gould GW. Sorting of GLUT4 into its insulin-sensitive store requires the Sec1/Munc18 protein mVps45. Mol Biol Cell 2013; 24:2389-97. [PMID: 23741049 PMCID: PMC3727931 DOI: 10.1091/mbc.e13-01-0011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 01/15/2023] Open
Abstract
Insulin stimulates glucose transport in fat and muscle cells by regulating delivery of the facilitative glucose transporter, glucose transporter isoform 4 (GLUT4), to the plasma membrane. In the absence of insulin, GLUT4 is sequestered away from the general recycling endosomal pathway into specialized vesicles, referred to as GLUT4-storage vesicles. Understanding the sorting of GLUT4 into this store is a major challenge. Here we examine the role of the Sec1/Munc18 protein mVps45 in GLUT4 trafficking. We show that mVps45 is up-regulated upon differentiation of 3T3-L1 fibroblasts into adipocytes and is expressed at stoichiometric levels with its cognate target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor, syntaxin 16. Depletion of mVps45 in 3T3-L1 adipocytes results in decreased GLUT4 levels and impaired insulin-stimulated glucose transport. Using sub-cellular fractionation and an in vitro assay for GLUT4-storage vesicle formation, we show that mVps45 is required to correctly traffic GLUT4 into this compartment. Collectively our data reveal a crucial role for mVps45 in the delivery of GLUT4 into its specialized, insulin-regulated compartment.
Collapse
Affiliation(s)
- Jennifer Roccisana
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jessica B. A. Sadler
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nia J. Bryant
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Gwyn W. Gould
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
16
|
The Thr224Asn mutation in the VPS45 gene is associated with the congenital neutropenia and primary myelofibrosis of infancy. Blood 2013; 121:5078-87. [DOI: 10.1182/blood-2012-12-475566] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Key Points
VPS45 is a new gene associated with severe infections and bone marrow failure in infancy that can be treated by bone marrow transplantation. The mutation affects intracellular storage and transport and results in increased programmed cell death in neutrophils and bone marrow.
Collapse
|
17
|
Karnik R, Grefen C, Bayne R, Honsbein A, Köhler T, Kioumourtzoglou D, Williams M, Bryant NJ, Blatt MR. Arabidopsis Sec1/Munc18 protein SEC11 is a competitive and dynamic modulator of SNARE binding and SYP121-dependent vesicle traffic. THE PLANT CELL 2013; 25:1368-82. [PMID: 23572542 PMCID: PMC3663274 DOI: 10.1105/tpc.112.108506] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/27/2013] [Accepted: 03/16/2013] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana Qa-SNARE SYP121 (=SYR1/PEN1) drives vesicle traffic at the plasma membrane of cells throughout the vegetative plant. It facilitates responses to drought, to the water stress hormone abscisic acid, and to pathogen attack, and it is essential for recovery from so-called programmed stomatal closure. How SYP121-mediated traffic is regulated is largely unknown, although it is thought to depend on formation of a fusion-competent SNARE core complex with the cognate partners VAMP721 and SNAP33. Like SYP121, the Arabidopsis Sec1/Munc18 protein SEC11 (=KEULE) is expressed throughout the vegetative plant. We find that SEC11 binds directly with SYP121 both in vitro and in vivo to affect secretory traffic. Binding occurs through two distinct modes, one requiring only SEC11 and SYP121 and the second dependent on assembly of a complex with VAMP721 and SNAP33. SEC11 competes dynamically for SYP121 binding with SNAP33 and VAMP721, and this competition is predicated by SEC11 association with the N terminus of SYP121. These and additional data are consistent with a model in which SYP121-mediated vesicle fusion is regulated by an unusual "handshaking" mechanism of concerted SEC11 debinding and rebinding. They also implicate one or more factors that alter or disrupt SEC11 association with the SYP121 N terminus as an early step initiating SNARE complex formation.
Collapse
Affiliation(s)
- Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Robert Bayne
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Annegret Honsbein
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Tim Köhler
- Botanical Institute, University of Darmstadt, D-64287 Darmstadt, Germany
| | - Dimitrios Kioumourtzoglou
- Cell Biology Laboratory, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Mary Williams
- American Society of Plant Biologists, Rockville, Maryland 20855
| | - Nia J. Bryant
- Cell Biology Laboratory, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
18
|
Cabrera M, Arlt H, Epp N, Lachmann J, Griffith J, Perz A, Reggiori F, Ungermann C. Functional separation of endosomal fusion factors and the class C core vacuole/endosome tethering (CORVET) complex in endosome biogenesis. J Biol Chem 2012; 288:5166-75. [PMID: 23264632 DOI: 10.1074/jbc.m112.431536] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transport along the endolysosomal system requires multiple fusion events at early and late endosomes. Deletion of several endosomal fusion factors, including the Vac1 tether and the Class C core vacuole/endosome tethering (CORVET) complex-specific subunits Vps3 and Vps8, results in a class D vps phenotype. As these mutants have an apparently similar defect in endosomal transport, we asked whether CORVET and Vac1 could still act in distinct tethering reactions. Our data reveal that CORVET mutants can be rescued by Vac1 overexpression in the endocytic pathway but not in CPY or Cps1 sorting to the vacuole. Moreover, when we compared the ultrastructure, CORVET mutants were most similar to deletions of the Rab Vps21 and its guanine nucleotide exchange factor Vps9 and different from vac1 deletion, indicating separate functions. Likewise, CORVET still localized to endosomes even in the absence of Vac1, whereas Vac1 localization became diffuse in CORVET mutants. Importantly, CORVET localization requires the Rab5 homologs Vps21 and Ypt52, whereas Vac1 localization is strictly Vps21-dependent. In this context, we also uncover that Muk1 can compensate for loss of Vps9 in CORVET localization, indicating that two Rab5 guanine nucleotide exchange factors operate in the endocytic pathway. Overall, our study reveals a unique role of CORVET in the sorting of biosynthetic cargo to the vacuole/lysosome.
Collapse
Affiliation(s)
- Margarita Cabrera
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastr 13, 49076 Osnabrück, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Shanks SG, Carpp LN, Struthers MS, McCann RK, Bryant NJ. The Sec1/Munc18 protein Vps45 regulates cellular levels of its SNARE binding partners Tlg2 and Snc2 in Saccharomyces cerevisiae. PLoS One 2012; 7:e49628. [PMID: 23166732 PMCID: PMC3498219 DOI: 10.1371/journal.pone.0049628] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/11/2012] [Indexed: 12/29/2022] Open
Abstract
Intracellular membrane trafficking pathways must be tightly regulated to ensure proper functioning of all eukaryotic cells. Central to membrane trafficking is the formation of specific SNARE (soluble N-ethylmeleimide-sensitive factor attachment protein receptor) complexes between proteins on opposing lipid bilayers. The Sec1/Munc18 (SM) family of proteins play an essential role in SNARE-mediated membrane fusion, and like the SNAREs are conserved through evolution from yeast to humans. The SM protein Vps45 is required for the formation of yeast endosomal SNARE complexes and is thus essential for traffic through the endosomal system. Here we report that, in addition to its role in regulating SNARE complex assembly, Vps45 regulates cellular levels of its SNARE binding partners: the syntaxin Tlg2 and the v-SNARE Snc2: Cells lacking Vps45 have reduced cellular levels of Tlg2 and Snc2; and elevation of Vps45 levels results in concomitant increases in the levels of both Tlg2 and Snc2. As well as regulating traffic through the endosomal system, the Snc v-SNAREs are also required for exocytosis. Unlike most vps mutants, cells lacking Vps45 display multiple growth phenotypes. Here we report that these can be reversed by selectively restoring Snc2 levels in vps45 mutant cells. Our data indicate that as well as functioning as part of the machinery that controls SNARE complex assembly, Vps45 also plays a key role in determining the levels of its cognate SNARE proteins; another key factor in regulation of membrane traffic.
Collapse
Affiliation(s)
- Scott G. Shanks
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lindsay N. Carpp
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marion S. Struthers
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rebecca K. McCann
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nia J. Bryant
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
21
|
|
22
|
Low-resolution solution structures of Munc18:Syntaxin protein complexes indicate an open binding mode driven by the Syntaxin N-peptide. Proc Natl Acad Sci U S A 2012; 109:9816-21. [PMID: 22670057 DOI: 10.1073/pnas.1116975109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
When nerve cells communicate, vesicles from one neuron fuse with the presynaptic membrane releasing chemicals that signal to the next. Similarly, when insulin binds its receptor on adipocytes or muscle, glucose transporter-4 vesicles fuse with the cell membrane, allowing glucose to be imported. These essential processes require the interaction of SNARE proteins on vesicle and cell membranes, as well as the enigmatic protein Munc18 that binds the SNARE protein Syntaxin. Here, we show that in solution the neuronal protein Syntaxin1a interacts with Munc18-1 whether or not the Syntaxin1a N-peptide is present. Conversely, the adipocyte protein Syntaxin4 does not bind its partner Munc18c unless the N-peptide is present. Solution-scattering data for the Munc18-1:Syntaxin1a complex in the absence of the N-peptide indicates that this complex adopts the inhibitory closed binding mode, exemplified by a crystal structure of the complex. However, when the N-peptide is present, the solution-scattering data indicate both Syntaxin1a and Syntaxin4 adopt extended conformations in complexes with their respective Munc18 partners. The low-resolution solution structure of the open Munc18:Syntaxin binding mode was modeled using data from cross-linking/mass spectrometry, small-angle X-ray scattering, and small-angle neutron scattering with contrast variation, indicating significant differences in Munc18:Syntaxin interactions compared with the closed binding mode. Overall, our results indicate that the neuronal Munc18-1:Syntaxin1a proteins can adopt two alternate and functionally distinct binding modes, closed and open, depending on the presence of the N-peptide, whereas Munc18c:Syntaxin4 adopts only the open binding mode.
Collapse
|
23
|
Abstract
Antero- and retrograde cargo transport through the Golgi requires a series of membrane fusion events. Fusion occurs at the cis- and trans-side and along the rims of the Golgi stack. Four functional SNARE complexes have been identified mediating lipid bilayer merger in the Golgi. Their function is tightly controlled by a series of reactions involving vesicle tethering and SM proteins. This network of protein interactions spatially and temporally determines the specificity of transport vesicle targeting and fusion within the Golgi.
Collapse
Affiliation(s)
- Jörg Malsam
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | |
Collapse
|
24
|
Laufman O, Hong W, Lev S. The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport. ACTA ACUST UNITED AC 2011; 194:459-72. [PMID: 21807881 PMCID: PMC3153647 DOI: 10.1083/jcb.201102045] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The conserved oligomeric Golgi (COG) complex interacts with the t-SNARE Syntaxin 6 and promotes endosome-to-TGN retrograde trafficking. The conserved oligomeric Golgi (COG) complex has been implicated in the regulation of endosome to trans-Golgi network (TGN) retrograde trafficking in both yeast and mammals. However, the exact mechanisms by which it regulates this transport route remain largely unknown. In this paper, we show that COG interacts directly with the target membrane SNARE (t-SNARE) Syntaxin 6 via the Cog6 subunit. In Cog6-depleted cells, the steady-state level of Syntaxin 6 was markedly reduced, and concomitantly, endosome-to-TGN retrograde traffic was significantly attenuated. Cog6 knockdown also affected the steady-state levels and/or subcellular distributions of Syntaxin 16, Vti1a, and VAMP4 and impaired the assembly of the Syntaxin 6–Syntaxin16–Vti1a–VAMP4 SNARE complex. Remarkably, overexpression of VAMP4, but not of Syntaxin 6, bypassed the requirement for COG and restored endosome-to-TGN trafficking in Cog6-depleted cells. These results suggest that COG directly interacts with specific t-SNAREs and positively regulates SNARE complex assembly, thereby affecting their associated trafficking steps.
Collapse
Affiliation(s)
- Orly Laufman
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
25
|
Honsbein A, Blatt MR, Grefen C. A molecular framework for coupling cellular volume and osmotic solute transport control. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2363-70. [PMID: 21115662 DOI: 10.1093/jxb/erq386] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Eukaryotic cells expand using vesicle traffic to increase membrane surface area. Expansion in walled eukaryotes is driven by turgor pressure which depends fundamentally on the uptake and accumulation of inorganic ions. Thus, ion uptake and vesicle traffic must be controlled coordinately for growth. How this coordination is achieved is still poorly understood, yet is so elemental to life that resolving the underlying mechanisms will have profound implications for our understanding of cell proliferation, development, and pathogenesis, and will find applications in addressing the mineral and water use by plants in the face of global environmental change. Recent discoveries of interactions between trafficking and ion transport proteins now open the door to an entirely new approach to understanding this coordination. Some of the advances to date in identifying key protein partners in the model plant Arabidopsis and in yeast at membranes vital for cell volume and turgor control are outlined here. Additionally, new evidence is provided of a wider participation among Arabidopsis Kv-like K(+) channels in selective interaction with the vesicle-trafficking protein SYP121. These advances suggest some common paradigms that will help guide further exploration of the underlying connection between ion transport and membrane traffic and should transform our understanding of cellular homeostasis in eukaryotes.
Collapse
Affiliation(s)
- Annegret Honsbein
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cellular and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
26
|
Smyth AM, Duncan RR, Rickman C. Munc18-1 and syntaxin1: unraveling the interactions between the dynamic duo. Cell Mol Neurobiol 2010; 30:1309-13. [PMID: 21046456 PMCID: PMC11498833 DOI: 10.1007/s10571-010-9581-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/02/2010] [Indexed: 12/29/2022]
Abstract
All neurotransmitter and hormone regulated secretory events involve the action of three soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, syntaxin, SNAP-25, and synaptobrevin. The SNARE proteins interact to form a four alpha-helical complex, involving syntaxin and SNAP-25 on the plasma membrane and synaptobrevin on the vesicular membrane, bringing the opposing membranes together, promoting bilayer merger and membrane fusion. The process of regulated secretion is an adaptation of the membrane fusion events which occur at multiple steps throughout the intracellular trafficking pathway, in each case catalyzed by SNARE protein isoforms. At all of these locations, the SNAREs are joined by a member of the Sec1p/Munc18 (SM) protein family which selectively bind to syntaxin isoforms. From their initial identification, the SM proteins were known to be essential for membrane fusion, however, over the intervening decades, deciphering the precise mechanism of action of the SM proteins has proved problematic. Recent studies, investigating the interactions of munc18-1 and syntaxin1, provide an explanation for previous, apparently conflicting, observations yielding a new understanding of their cellular functions.
Collapse
Affiliation(s)
- Annya M. Smyth
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD UK
| | - Rory R. Duncan
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD UK
| | - Colin Rickman
- Department of Chemistry, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| |
Collapse
|
27
|
Lamb CA, McCann RK, Stöckli J, James DE, Bryant NJ. Insulin-regulated trafficking of GLUT4 requires ubiquitination. Traffic 2010; 11:1445-54. [PMID: 20854370 PMCID: PMC3152195 DOI: 10.1111/j.1600-0854.2010.01113.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A major consequence of insulin binding its receptor on fat and muscle cells is translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the cell surface where it serves to clear glucose from the bloodstream. Sorting of GLUT4 into its insulin-sensitive store requires the GGA [Golgi-localized, γ-ear-containing, ADP ribosylation factor (ARF)-binding] adaptor proteins, but the signal on GLUT4 to direct this sorting step is unknown. Here, we have identified a role for ubiquitination of GLUT4 in this process. We demonstrate that GLUT4 is ubiquitinated in 3T3-L1 adipocytes, and that a ubiquitin-resistant version fails to translocate to the cell surface of these cells in response to insulin. Our data support a model in which ubiquitination acts as a signal for the trafficking of GLUT4 from the endosomal/trans-Golgi network (TGN) system into its intracellular storage compartment, from where it is mobilized to the cell surface in response to insulin.
Collapse
Affiliation(s)
- Christopher A Lamb
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Smyth AM, Rickman C, Duncan RR. Vesicle fusion probability is determined by the specific interactions of munc18. J Biol Chem 2010; 285:38141-8. [PMID: 20801887 PMCID: PMC2992247 DOI: 10.1074/jbc.m110.164038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian-regulated secretion is absolutely dependent on four evolutionarily conserved proteins: three SNARE proteins and munc18. Dissecting the functional outcomes of the spatially organized protein interactions between these factors has been difficult because of the close interrelationship between different binding modes. Here, we investigated the spatial distribution of single munc18 molecules at the plasma membrane of cells and the underlying interactions between syntaxin and munc18. Disruption of munc18 binding to the N-terminal peptide motif of syntaxin did not alter munc18 localization on the plasma membrane but had a pronounced influence on the behavior of secretory vesicles and their likelihood to undergo fusion. We therefore conclude that interaction with the syntaxin N-peptide can confer differential release probabilities to secretory vesicles and may contribute to the delineation of secretory vesicle pools.
Collapse
Affiliation(s)
- Annya M Smyth
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | | | | |
Collapse
|
29
|
Abenza JF, Galindo A, Pantazopoulou A, Gil C, de los Ríos V, Peñalva MA. Aspergillus RabB Rab5 integrates acquisition of degradative identity with the long distance movement of early endosomes. Mol Biol Cell 2010; 21:2756-69. [PMID: 20534811 PMCID: PMC2912360 DOI: 10.1091/mbc.e10-02-0119] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Of the two Aspergillus early endosomal Rab5 paralogues, RabB recruits, in its GTP conformation, Vps19, Vps45, and Vps34, and the CORVET complex and couples acquisition of PI(3)P degradative identity with the long-distance movement of early endosomes. RabA also recruits CORVET, albeit less efficiently. The simultaneous loss of RabA and RabB is lethal. Aspergillus nidulans early endosomes display characteristic long-distance bidirectional motility. Simultaneous dual-channel acquisition showed that the two Rab5 paralogues RabB and RabA colocalize in these early endosomes and also in larger, immotile mature endosomes. However, RabB-GTP is the sole recruiter to endosomes of Vps34 PI3K (phosphatidylinositol-3-kinase) and the phosphatidylinositol-3-phosphate [PI(3)P] effector AnVps19 and rabBΔ, leading to thermosensitivity prevents multivesicular body sorting of endocytic cargo. Thus, RabB is the sole mediator of degradative endosomal identity. Importantly, rabBΔ, unlike rabAΔ, prevents early endosome movement. As affinity experiments and pulldowns showed that RabB-GTP recruits AnVps45, RabB coordinates PI(3)P-dependent endosome-to-vacuole traffic with incoming traffic from the Golgi and with long-distance endosomal motility. However, the finding that Anvps45Δ, unlike rabBΔ, severely impairs growth indicates that AnVps45 plays RabB-independent functions. Affinity chromatography showed that the CORVET complex is a RabB and, to a lesser extent, a RabA effector, in agreement with GST pulldown assays of AnVps8. rabBΔ leads to smaller vacuoles, suggesting that it impairs homotypic vacuolar fusion, which would agree with the sequential maturation of endosomal CORVET into HOPS proposed for Saccharomyces cerevisiae. rabBΔ and rabAΔ mutations are synthetically lethal, demonstrating that Rab5-mediated establishment of endosomal identity is essential for A. nidulans.
Collapse
Affiliation(s)
- Juan F Abenza
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas del CSIC, Madrid 28040, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Autoinhibition of SNARE complex assembly by a conformational switch represents a conserved feature of syntaxins. Biochem Soc Trans 2010; 38:209-12. [PMID: 20074061 DOI: 10.1042/bst0380209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Regulation and specificity of membrane trafficking are required to maintain organelle integrity while performing essential cellular transport. Membrane fusion events in all eukaryotic cells are facilitated by the formation of specific SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) complexes between proteins on opposing lipid bilayers. Although regulation of SNARE complex assembly is not well understood, it is clear that two conserved protein families, the Sx (syntaxin) and the SM (Sec1p/Munc18) proteins, are central to this process. Sxs are a subfamily of SNARE proteins; in addition to the coiled-coil SNARE motif, Sxs possess an N-terminal, autonomously folded, triple-helical (Habc) domain. For some Sxs, it has been demonstrated that this Habc domain exerts an autoinhibitory effect on SNARE complex assembly by making intramolecular contacts with the SNARE motif. SM proteins regulate membrane fusion through interactions with their cognate Sxs. One hypothesis for SM protein function is that they facilitate a switch of the Sx from a closed to an open conformation, thus lifting the inhibitory action of the Habc domain and freeing the SNARE motif to participate in SNARE complexes. However, whether these regulatory mechanisms are conserved throughout the Sx/SM protein families remains contentious as it is not clear whether the closed conformation represents a universal feature of Sxs.
Collapse
|
31
|
Banuelos MG, Moreno DE, Olson DK, Nguyen Q, Ricarte F, Aguilera-Sandoval CR, Gharakhanian E. Genomic analysis of severe hypersensitivity to hygromycin B reveals linkage to vacuolar defects and new vacuolar gene functions in Saccharomyces cerevisiae. Curr Genet 2009; 56:121-37. [PMID: 20043226 DOI: 10.1007/s00294-009-0285-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/30/2009] [Accepted: 12/16/2009] [Indexed: 12/19/2022]
Abstract
The vacuole of Saccharomyces cerevisiae has been a seminal model for studies of lysosomal trafficking, biogenesis, and function. Several yeast mutants defective in such vacuolar events have been unable to grow at low levels of hygromycin B, an aminoglycoside antibiotic. We hypothesized that such severe hypersensitivity to hygromycin B (hhy) is linked to vacuolar defects and performed a genomic screen for the phenotype using a haploid deletion strain library of non-essential genes. Fourteen HHY genes were initially identified and were subjected to bioinformatics analyses. The uncovered hhy mutants were experimentally characterized with respect to vesicular trafficking, vacuole morphology, and growth under various stress and drug conditions. The combination of bioinformatics analyses and phenotypic characterizations implicate defects in vesicular trafficking, vacuole fusion/fission, or vacuole function in all hhy mutants. The collection was enriched for sensitivity to monensin, indicative of vacuolar trafficking defects. Additionally, all hhy mutants showed severe sensitivities to rapamycin and caffeine, suggestive of TOR kinase pathway defects. Our experimental results also establish a new role in vacuolar and vesicular functions for two genes: PAF1, encoding a RNAP II-associated protein required for expression of cell cycle-regulated genes, and TPD3, encoding the regulatory subunit of protein phosphatase 2A. Thus, our results support linkage between severe hypersensitivity to hygromycin B and vacuolar defects.
Collapse
Affiliation(s)
- M G Banuelos
- Department of Biological Sciences, California State University at Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Common and distinct roles for the binding partners Rabenosyn-5 and Vps45 in the regulation of endocytic trafficking in mammalian cells. Exp Cell Res 2009; 316:859-74. [PMID: 19931244 DOI: 10.1016/j.yexcr.2009.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/11/2009] [Accepted: 11/11/2009] [Indexed: 02/08/2023]
Abstract
In several invertebrate organisms, the Sec1p/Munc18-like protein Vps45 interacts with the divalent Rab4/Rab5 effector, Rabenosyn-5 and carries out multiple functions in the endocytic/secretory pathways. In mammalian cells, Vps45 and Rabenosyn-5 also interact, but the molecular characterization of this binding, and the functional relationship between these two proteins has not been well defined. Here we identify a novel sequence within Rabenosyn-5 required for its interaction with Vps45. We demonstrate that hVps45-depletion decreases expression of Rabenosyn-5, likely resulting from Rabenosyn-5 degradation through the proteasomal pathway. Furthermore, we demonstrate that similar to Rabenosyn-5-depletion, hVps45-depletion causes impaired recycling of beta1 integrins, and a subsequent delay in human fibroblast cell migration on fibronectin-coated plates. Moreover, beta1 integrin recycling could be rescued by reintroduction of siRNA-resistant wild-type Rabenosyn-5, but not a mutant deficient in Vps45 binding. However, unlike Rabenosyn-5-depletion, which induces Golgi fragmentation and decreased recruitment of sorting nexin retromer subunits to the Golgi, hVps45-depletion induces Golgi condensation and accumulation of retromer subunits in the vicinity of the Golgi. In part, these phenomena could be attributed to reduced Syntaxin16 expression and altered localization of both Syntaxin16 and Syntaxin6 upon Vps45-depletion. Overall, these findings implicate hVps45 and Rabenosyn-5 in post early endosome transport, and we propose that their interaction serves as a nexus to promote bidirectional transport along the endosome-to-recycling compartment and endosome-to-Golgi axes.
Collapse
|
33
|
Hashizume K, Cheng YS, Hutton JL, Chiu CH, Carr CM. Yeast Sec1p functions before and after vesicle docking. Mol Biol Cell 2009; 20:4673-85. [PMID: 19776355 DOI: 10.1091/mbc.e09-02-0172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sec1/Munc18 (SM) proteins bind cognate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes and stimulate vesicle membrane fusion. Before fusion, vesicles are docked to specific target membranes. Regulation of vesicle docking is attributed to some but not all SM proteins, suggesting specialization of this earlier function. Yeast Sec1p seems to function only after vesicles are docked and SNARE complexes are assembled. Here, we show that yeast Sec1p is required before and after SNARE complex assembly, in support of general requirements for SM proteins in both vesicle docking and fusion. Two classes of sec1 mutants were isolated. Class A mutants are tightly blocked in cell growth and secretion at a step before SNARE complex assembly. Class B mutants have a SNARE complex binding defect, with a range in severity of cell growth and secretion defects. Mapping the mutations onto an SM protein structure implicates a peripheral bundle of helices for the early, docking function and a deep groove, opposite the syntaxin-binding cleft on nSec1/Munc-18, for the interaction between Sec1p and the exocytic SNARE complex.
Collapse
Affiliation(s)
- Kristina Hashizume
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry, New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
34
|
Furgason MLM, MacDonald C, Shanks SG, Ryder SP, Bryant NJ, Munson M. The N-terminal peptide of the syntaxin Tlg2p modulates binding of its closed conformation to Vps45p. Proc Natl Acad Sci U S A 2009; 106:14303-8. [PMID: 19667197 PMCID: PMC2732825 DOI: 10.1073/pnas.0902976106] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Indexed: 11/18/2022] Open
Abstract
The Sec1/Munc18 (SM) protein family regulates intracellular trafficking through interactions with individual SNARE proteins and assembled SNARE complexes. Revealing a common mechanism of this regulation has been challenging, largely because of the multiple modes of interaction observed between SM proteins and their cognate syntaxin-type SNAREs. These modes include binding of the SM to a closed conformation of syntaxin, binding to the N-terminal peptide of syntaxin, binding to assembled SNARE complexes, and/or binding to nonsyntaxin SNAREs. The SM protein Vps45p, which regulates endosomal trafficking in yeast, binds the conserved N-terminal peptide of the syntaxin Tlg2p. We used size exclusion chromatography and a quantitative fluorescent gel mobility shift assay to reveal an additional binding site that does not require the Tlg2p N-peptide. Characterization of Tlg2p mutants and truncations indicate that this binding site corresponds to a closed conformation of Tlg2p. Furthermore, the Tlg2p N-peptide competes with the closed conformation for binding, suggesting a fundamental regulatory mechanism for SM-syntaxin interactions in SNARE assembly and membrane fusion.
Collapse
Affiliation(s)
- Melonnie L. M. Furgason
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605; and
| | - Chris MacDonald
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular Biology, Davidson Building, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Scott G. Shanks
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular Biology, Davidson Building, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605; and
| | - Nia J. Bryant
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular Biology, Davidson Building, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605; and
| |
Collapse
|
35
|
Struthers MS, Shanks SG, MacDonald C, Carpp LN, Drozdowska AM, Kioumourtzoglou D, Furgason MLM, Munson M, Bryant NJ. Functional homology of mammalian syntaxin 16 and yeast Tlg2p reveals a conserved regulatory mechanism. J Cell Sci 2009; 122:2292-9. [PMID: 19509055 PMCID: PMC2723147 DOI: 10.1242/jcs.046441] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2009] [Indexed: 02/02/2023] Open
Abstract
Membrane fusion in all eukaryotic cells is regulated by the formation of specific SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes. The molecular mechanisms that control this process are conserved through evolution and require several protein families, including Sec1p/Munc18 (SM) proteins. Here, we demonstrate that the mammalian SNARE protein syntaxin 16 (Sx16, also known as Syn16) is a functional homologue of the yeast SNARE Tlg2p, in that its expression fully complements the mutant phenotypes of tlg2Delta mutant yeast. We have used this functional homology to demonstrate that, as observed for Tlg2p, the function of Sx16 is regulated by the SM protein Vps45p. Furthermore, in vitro SNARE-complex assembly studies demonstrate that the N-terminal domain of Tlg2p is inhibitory to the formation of SNARE complexes, and that this inhibition can be lifted by the addition of purified Vps45p. By combining these cell-biological and biochemical analyses, we propose an evolutionarily conserved regulatory mechanism for Vps45p function. Our data support a model in which the SM protein is required to facilitate a switch of Tlg2p and Sx16 from a closed to an open conformation, thus allowing SNARE-complex assembly and membrane fusion to proceed.
Collapse
Affiliation(s)
- Marion S. Struthers
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular
Biology, Davidson Building, Faculty of Biomedical and Life Sciences,
University of Glasgow, Glasgow G12 8QQ, UK
| | - Scott G. Shanks
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular
Biology, Davidson Building, Faculty of Biomedical and Life Sciences,
University of Glasgow, Glasgow G12 8QQ, UK
| | - Chris MacDonald
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular
Biology, Davidson Building, Faculty of Biomedical and Life Sciences,
University of Glasgow, Glasgow G12 8QQ, UK
| | - Lindsay N. Carpp
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular
Biology, Davidson Building, Faculty of Biomedical and Life Sciences,
University of Glasgow, Glasgow G12 8QQ, UK
| | - Alicja M. Drozdowska
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular
Biology, Davidson Building, Faculty of Biomedical and Life Sciences,
University of Glasgow, Glasgow G12 8QQ, UK
| | - Dimitrios Kioumourtzoglou
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular
Biology, Davidson Building, Faculty of Biomedical and Life Sciences,
University of Glasgow, Glasgow G12 8QQ, UK
| | - Melonnie L. M. Furgason
- Department of Biochemistry and Molecular Pharmacology, University of
Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of
Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nia J. Bryant
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular
Biology, Davidson Building, Faculty of Biomedical and Life Sciences,
University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
36
|
Essary BD, Marshall PA. Assessment of FUN-1 vital dye staining: Yeast with a block in the vacuolar sorting pathway have impaired ability to form CIVS when stained with FUN-1 fluorescent dye. J Microbiol Methods 2009; 78:208-12. [PMID: 19501122 DOI: 10.1016/j.mimet.2009.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 12/01/2022]
Abstract
FUN-1 [2-chloro-4-(2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene)-1-phenylquinolinium iodide] is a fluorescent dye used in studies of yeast and other fungi to monitor cell viability in the research lab and to assay for active fungal infection in the clinical setting. When the plasma membrane is intact, fungal cells internalize FUN-1 and the dye is seen as diffuse green cytosolic fluorescence. FUN-1 is then transported to the vacuole in metabolically active wild type cells and subsequently is compacted into fluorescent red cylindrical intravacuolar structures (CIVS) by an unknown transport pathway. This dye is used to determine yeast viability, as only live cells form CIVS. However, in live Saccharomyces cerevisiae with impaired protein sorting to the yeast vacuole, we report decreased to no CIVS formation, depending on the cellular location of the block in the sorting pathway. Cells with a block in vesicle-mediated transport from the Golgi to prevacuolar compartment (PVC) or with a block in recycling from the PVC to the Golgi demonstrate a substantial impairment in CIVS formation. Instead, the FUN-1 dye is seen either in small punctate structures under fluorescence or as diffuse red cytosol under white light. Thus, researchers using FUN-1 should be cognizant of the limitations of this procedure in determining cell viability as there are viable yeast mutants with impaired CIVS formation.
Collapse
Affiliation(s)
- Brandin D Essary
- Division of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Phoenix, AZ 85069, United States
| | | |
Collapse
|
37
|
Padilla-López S, Jiménez-Hidalgo M, Martín-Montalvo A, Clarke CF, Navas P, Santos-Ocaña C. Genetic evidence for the requirement of the endocytic pathway in the uptake of coenzyme Q6 in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:1238-48. [PMID: 19345667 PMCID: PMC3070215 DOI: 10.1016/j.bbamem.2009.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/16/2022]
Abstract
Coenzyme Q is an isoprenylated benzoquinone lipid that functions in respiratory electron transport and as a lipid antioxidant. Dietary supplementation with Q is increasingly used as a therapeutic for treatment of mitochondrial and neurodegenerative diseases, yet little is known regarding the mechanism of its uptake. As opposed to other yeast backgrounds, EG103 strains are unable to import exogenous Q(6) to the mitochondria. Furthermore, the distribution of exogenous Q(6) among endomembranes suggests an impairment of the membrane traffic at the level of the endocytic pathway. This fact was confirmed after the detection of defects in the incorporation of FM4-64 marker and CPY delivery to the vacuole. A similar effect was demonstrated in double mutant strains in Q(6) synthesis and several steps of endocytic process; those cells are unable to uptake exogenous Q(6) to the mitochondria and restore the growth on non-fermentable carbon sources. Additional data about the positive effect of peptone presence for exogenous Q(6) uptake support the hypothesis that Q(6) is transported to mitochondria through an endocytic-based system.
Collapse
Affiliation(s)
- Sergio Padilla-López
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, E-41013 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
OBJECTIVE The Sec1/Munc18 protein Munc18c has been implicated in Syntaxin 4-mediated exocytosis events, although its purpose in exocytosis has remained elusive. Given that Syntaxin 4 functions in the second phase of glucose-stimulated insulin secretion (GSIS), we hypothesized that Munc18c would also be required and sought insight into the possible mechanism(s) using the islet beta-cell as a model system. RESEARCH DESIGN AND METHODS Perifusion analyses of isolated Munc18c- (-/+) or Munc18c-depleted (RNAi) mouse islets were used to assess biphasic secretion. Protein interaction studies used subcellular fractions and detergent lysates prepared from MIN6 beta-cells to determine the mechanistic role of Munc18c in Syntaxin 4 activation and docking/fusion of vesicle-associated membrane protein (VAMP)2-containing insulin granules. Electron microscopy was used to gauge changes in granule localization. RESULTS Munc18c (-/+) islets secreted approximately 60% less insulin selectively during second-phase GSIS; RNAi-mediated Munc18c depletion functionally recapitulated this in wild-type and Munc18c (-/+) islets in a gene dosage-dependent manner. Munc18c depletion ablated the glucose-stimulated VAMP2-Syntaxin 4 association as well as Syntaxin 4 activation, correlating with the deficit in insulin release. Remarkably, Munc18c depletion resulted in aberrant granule localization to the plasma membrane in response to glucose stimulation, consistent with its selective effect on the second phase of secretion. CONCLUSIONS Collectively, these studies demonstrate an essential positive role for Munc18c in second-phase GSIS and suggest novel roles for Munc18c in granule localization to the plasma membrane as well as in triggering Syntaxin 4 accessibility to VAMP2 at a step preceding vesicle docking/fusion.
Collapse
Affiliation(s)
- Eunjin Oh
- From the Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debbie C. Thurmond
- From the Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana
- Corresponding author: Debbie C. Thurmond,
| |
Collapse
|
39
|
Abstract
Interaction of SM (Sec1/Munc18) proteins with their cognate syntaxins represents an important regulatory mechanism of SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor)-mediated membrane fusion. Understanding the conserved mechanisms by which SM proteins function in this process has proved challenging, largely due to an apparent lack of conservation of binding mechanisms between different SM-syntaxin pairs. In the present study, we have identified a hitherto uncharacterized mode of binding between syntaxin 4 and Munc18c that is independent of the binding mode shown previously to utilize the N-terminal peptide of syntaxin 4. Our data demonstrate that syntaxin 4 and Munc18c interact via two distinct modes of binding, analogous to those employed by syntaxin 1a-Munc18a and syntaxin 16-Vps45p (vacuolar protein sorting 45). These data support the notion that all syntaxin/SM proteins bind using conserved mechanisms, and pave the way for the formulation of unifying hypotheses of SM protein function.
Collapse
|
40
|
Aoki T, Ichimura S, Itoh A, Kuramoto M, Shinkawa T, Isobe T, Tagaya M. Identification of the neuroblastoma-amplified gene product as a component of the syntaxin 18 complex implicated in Golgi-to-endoplasmic reticulum retrograde transport. Mol Biol Cell 2009; 20:2639-49. [PMID: 19369418 DOI: 10.1091/mbc.e08-11-1104] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Syntaxin 18, a soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) protein implicated in endoplasmic reticulum (ER) membrane fusion, forms a complex with other SNAREs (BNIP1, p31, and Sec22b) and several peripheral membrane components (Sly1, ZW10, and RINT-1). In the present study, we showed that a peripheral membrane protein encoded by the neuroblastoma-amplified gene (NAG) is a subunit of the syntaxin 18 complex. NAG encodes a protein of 2371 amino acids, which exhibits weak similarity to yeast Dsl3p/Sec39p, an 82-kDa component of the complex containing the yeast syntaxin 18 orthologue Ufe1p. Under conditions favoring SNARE complex disassembly, NAG was released from syntaxin 18 but remained in a p31-ZW10-RINT-1 subcomplex. Binding studies showed that the extreme N-terminal region of p31 is responsible for the interaction with NAG and that the N- and the C-terminal regions of NAG interact with p31 and ZW10-RINT-1, respectively. Knockdown of NAG resulted in a reduction in the expression of p31, confirming their intimate relationship. NAG depletion did not substantially affect Golgi morphology and protein export from the ER, but it caused redistribution of Golgi recycling proteins accompanied by a defect in protein glycosylation. These results together suggest that NAG links between p31 and ZW10-RINT-1 and is involved in Golgi-to-ER transport.
Collapse
Affiliation(s)
- Takehiro Aoki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Zouhar J, Rojo E, Bassham DC. AtVPS45 is a positive regulator of the SYP41/SYP61/VTI12 SNARE complex involved in trafficking of vacuolar cargo. PLANT PHYSIOLOGY 2009; 149:1668-78. [PMID: 19251905 PMCID: PMC2663731 DOI: 10.1104/pp.108.134361] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/24/2009] [Indexed: 05/18/2023]
Abstract
We report a functional characterization of AtVPS45 (for vacuolar protein sorting 45), a protein from the Sec1/Munc18 family in Arabidopsis (Arabidopsis thaliana) that interacts at the trans-Golgi network (TGN) with the SYP41/SYP61/VTI12 SNARE complex. A null allele of AtVPS45 was male gametophytic lethal, whereas stable RNA interference lines with reduced AtVPS45 protein levels had stunted growth but were viable and fertile. In the silenced lines, we observed defects in vacuole formation that correlated with a reduction in cell expansion and with autophagy-related defects in nutrient turnover. Moreover, transport of vacuolar cargo with carboxy-terminal vacuolar sorting determinants was blocked in the silenced lines, suggesting that AtVPS45 functions in vesicle trafficking to the vacuole. These trafficking defects are similar to those observed in vti12 mutants, supporting a functional relationship between AtVPS45 and VTI12. Consistent with this, we found a decrease in SYP41 protein levels coupled to the silencing of AtVPS45, pointing to instability and malfunction of the SYP41/SYP61/VTI12 SNARE complex in the absence of its cognate Sec1/Munc18 regulator. Based on its localization on the TGN, we hypothesized that AtVPS45 could be involved in membrane fusion of retrograde vesicles recycling vacuolar trafficking machinery. Indeed, in the AtVPS45-silenced plants, we found a striking alteration in the subcellular fractionation pattern of vacuolar sorting receptors, which are required for sorting of carboxy-terminal vacuolar sorting determinant-containing cargo. We propose that AtVPS45 is essential for recycling of the vacuolar sorting receptors back to the TGN and that blocking this step underlies the defects in vacuolar cargo trafficking observed in the silenced lines.
Collapse
Affiliation(s)
- Jan Zouhar
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | | | | |
Collapse
|
42
|
Brandie FM, Aran V, Verma A, McNew JA, Bryant NJ, Gould GW. Negative regulation of syntaxin4/SNAP-23/VAMP2-mediated membrane fusion by Munc18c in vitro. PLoS One 2008; 3:e4074. [PMID: 19116655 PMCID: PMC2605266 DOI: 10.1371/journal.pone.0004074] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/01/2008] [Indexed: 02/04/2023] Open
Abstract
Background Translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the plasma membrane is responsible for the increased rate of glucose transport into fat and muscle cells in response to insulin. This represents a specialised form of regulated membrane trafficking. Intracellular membrane traffic is subject to multiple levels of regulation by conserved families of proteins in all eukaryotic cells. Notably, all intracellular fusion events require SNARE proteins and Sec1p/Munc18 family members. Fusion of GLUT4-containing vesicles with the plasma membrane of insulin-sensitive cells involves the SM protein Munc18c, and is regulated by the formation of syntaxin 4/SNAP23/VAMP2 SNARE complexes. Methodology/Principal Findings Here we have used biochemical approaches to characterise the interaction(s) of Munc18c with its cognate SNARE proteins and to examine the role of Munc18c in regulating liposome fusion catalysed by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. We demonstrate that Munc18c makes contacts with both t- and v-SNARE proteins of this complex, and directly inhibits bilayer fusion mediated by the syntaxin 4/SNAP23/VAMP2 SNARE complex. Conclusion/Significance Our reductionist approach has enabled us to ascertain a direct inhibitory role for Munc18c in regulating membrane fusion mediated by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. It is important to note that two different SM proteins have recently been shown to stimulate liposome fusion mediated by their cognate SNARE complexes. Given the structural similarities between SM proteins, it seems unlikely that different members of this family perform opposing regulatory functions. Hence, our findings indicate that Munc18c requires a further level of regulation in order to stimulate SNARE-mediated membrane fusion.
Collapse
Affiliation(s)
- Fiona M Brandie
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
43
|
Procino G, Barbieri C, Tamma G, De Benedictis L, Pessin JE, Svelto M, Valenti G. AQP2 exocytosis in the renal collecting duct -- involvement of SNARE isoforms and the regulatory role of Munc18b. J Cell Sci 2008; 121:2097-106. [PMID: 18505797 PMCID: PMC4327994 DOI: 10.1242/jcs.022210] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vasopressin regulates the fusion of the water channel aquaporin 2 (AQP2) to the apical membrane of the renal collecting-duct principal cells and several lines of evidence indicate that SNARE proteins mediate this process. In this work MCD4 renal cells were used to investigate the functional role of a set of Q- and R-SNAREs, together with that of Munc18b as a negative regulator of the formation of the SNARE complex. Both VAMP2 and VAMP3 were associated with immunoisolated AQP2 vesicles, whereas syntaxin 3 (Stx3), SNAP23 and Munc18 were associated with the apical plasma membrane. Co-immunoprecipitation experiments indicated that Stx3 forms complexes with VAMP2, VAMP3, SNAP23 and Munc18b. Protein knockdown coupled to apical surface biotinylation demonstrated that reduced levels of the R-SNAREs VAMP2 and VAMP3, and the Q-SNAREs Stx3 and SNAP23 strongly inhibited AQP2 fusion at the apical membrane. In addition, knockdown of Munc18b promoted a sevenfold increase of AQP2 fused at the plasma membrane without forskolin stimulation. Taken together these findings propose VAMP2, VAMP3, Stx3 and SNAP23 as the complementary set of SNAREs responsible for AQP2-vesicle fusion into the apical membrane, and Munc18b as a negative regulator of SNARE-complex formation in renal collecting-duct principal cells.
Collapse
Affiliation(s)
- Giuseppe Procino
- Department of General and Environmental Physiology, University of Bari, Via Amendola 165/A, Bari 70126, Italy
| | - Claudia Barbieri
- Department of General and Environmental Physiology, University of Bari, Via Amendola 165/A, Bari 70126, Italy
| | - Grazia Tamma
- Department of General and Environmental Physiology, University of Bari, Via Amendola 165/A, Bari 70126, Italy
| | - Leonarda De Benedictis
- Department of Pharmacology and Human Physiology, University of Bari Medical School, Bari 70124, Italy
| | - Jeffrey E. Pessin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Svelto
- Department of General and Environmental Physiology, University of Bari, Via Amendola 165/A, Bari 70126, Italy
| | - Giovanna Valenti
- Department of General and Environmental Physiology, University of Bari, Via Amendola 165/A, Bari 70126, Italy
| |
Collapse
|
44
|
Braun S, Jentsch S. SM-protein-controlled ER-associated degradation discriminates between different SNAREs. EMBO Rep 2007; 8:1176-82. [PMID: 18007658 DOI: 10.1038/sj.embor.7401105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 09/17/2007] [Accepted: 09/21/2007] [Indexed: 11/09/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a specialized activity of the ubiquitin-proteasome system that is involved in clearing the ER of aberrant proteins and regulating the levels of specific ER-resident proteins. Here we show that the yeast ER-SNARE Ufe1, a syntaxin (Qa-SNARE) involved in ER membrane fusion and retrograde transport from the Golgi to the ER, is prone to degradation by an ERAD-like mechanism. Notably, Ufe1 is protected against degradation through binding to Sly1, a known SNARE regulator of the Sec1-Munc18 (SM) protein family. This mechanism is specific for Ufe1, as the stability of another Sly1 partner, the Golgi Qa-SNARE Sed5, is not influenced by Sly1 interaction. Thus, our findings identify Sly1 as a discriminating regulator of SNARE levels and indicate that Sly1-controlled ERAD might regulate the balance between different Qa-SNARE proteins.
Collapse
Affiliation(s)
- Sigurd Braun
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich D-82152, Germany
| | | |
Collapse
|
45
|
Carpp LN, Shanks SG, Struthers MS, Bryant NJ. Cellular levels of the syntaxin Tlg2p are regulated by a single mode of binding to Vps45p. Biochem Biophys Res Commun 2007; 363:857-60. [PMID: 17904527 DOI: 10.1016/j.bbrc.2007.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 11/25/2022]
Abstract
Sec1p/Munc18 (SM) proteins play a key role in the regulation of soluble N-ethylmaleimide-sensitive fusion (NSF)-attachment protein receptor (SNARE)-mediated intracellular membrane trafficking events in all eukaryotic cells. Understanding the molecular mechanisms by which SM proteins function has not been straight forward as SM proteins bind to their cognate SNARE proteins by at least two distinct mechanisms, suggesting that they provide more than one function. We have previously characterised two binding modes used by the yeast SM protein Vps45p to interact with its SNARE proteins. In one of these modes, the N terminus of the syntaxin Tlg2p inserts into a hydrophobic pocket in the SM protein. We now report that disruption of this high-affinity binding between Vps45p and Tlg2p leads to downregulation of Tlg2p, and propose that this pocket-mode of binding of SM proteins to their cognate syntaxins serves to regulate cellular levels of the syntaxin.
Collapse
Affiliation(s)
- Lindsay N Carpp
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
46
|
Gulyás-Kovács A, de Wit H, Milosevic I, Kochubey O, Toonen R, Klingauf J, Verhage M, Sørensen JB. Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming. J Neurosci 2007; 27:8676-86. [PMID: 17687045 PMCID: PMC6672934 DOI: 10.1523/jneurosci.0658-07.2007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 06/21/2007] [Accepted: 06/25/2007] [Indexed: 11/21/2022] Open
Abstract
Exocytosis of secretory or synaptic vesicles is executed by a mechanism including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. Munc18-1 is a part of this fusion machinery, but its role is controversial because it is indispensable for fusion but also inhibits the assembly of purified SNAREs in vitro. This inhibition reflects the binding of Munc18-1 to a closed conformation of the target-SNARE syntaxin1. The controversy would be solved if binding to closed syntaxin1 were shown to be stimulatory for vesicle fusion and/or additional essential interactions were identified between Munc18-1 and the fusion machinery. Here, we provide evidence for both notions by dissecting sequential steps of the exocytotic cascade while expressing Munc18 variants in the Munc18-1 null background. In Munc18-1 null chromaffin cells, vesicle docking is abolished and syntaxin levels are reduced. A mutation that diminished Munc18 binding to syntaxin1 in vitro attenuated the vesicle-docking step but rescued vesicle priming in excess of docking. Conversely, expressing the Munc18-2 isoform, which also displays binding to closed syntaxin1, rescued vesicle docking identical with Munc18-1 but impaired more downstream vesicle priming steps. All Munc18 variants restored syntaxin1 levels at least to wild-type levels, showing that the docking phenotype is not caused by syntaxin1 reduction. None of the Munc18 variants affected vesicle fusion kinetics or fusion pore duration. In conclusion, binding of Munc18-1 to closed syntaxin1 stimulates vesicle docking and a distinct interaction mode regulates the consecutive priming step.
Collapse
Affiliation(s)
- Attila Gulyás-Kovács
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany, and
| | - Heidi de Wit
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Ira Milosevic
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany, and
| | - Olexiy Kochubey
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany, and
| | - Ruud Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Jürgen Klingauf
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany, and
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Jakob B. Sørensen
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany, and
| |
Collapse
|
47
|
Rickman C, Medine CN, Bergmann A, Duncan RR. Functionally and spatially distinct modes of munc18-syntaxin 1 interaction. J Biol Chem 2007; 282:12097-103. [PMID: 17264080 PMCID: PMC1891423 DOI: 10.1074/jbc.m700227200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic membrane trafficking is a conserved process under tight temporal and spatial regulation in which the fusion of membranes is driven by the formation of the ternary SNARE complex. Syntaxin 1a, a core component of the exocytic SNARE complex in neurons and neuroendocrine cells, is regulated directly by munc18-1, its cognate Sec1p/munc18 (SM) protein. SM proteins show remarkable structural conservation throughout evolution, indicating a common binding mechanism and function. However, SM proteins possess disparate binding mechanisms and regulatory effects with munc18-1, the major brain isoform, classed as atypical in both its binding specificity and its mode. We now show that munc18-1 interacts with syntaxin 1a through two mechanistically distinct modes of binding, both in vitro and in living cells, in contrast to current models. Furthermore, these functionally divergent interactions occur at distinct cellular locations. These findings provide a molecular explanation for the multiple, spatially distinct roles of munc18-1.
Collapse
Affiliation(s)
- Colin Rickman
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Claire N. Medine
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Axel Bergmann
- Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin, Germany
| | - Rory R. Duncan
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
48
|
Zilly FE, Sørensen JB, Jahn R, Lang T. Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol 2007; 4:e330. [PMID: 17002520 PMCID: PMC1570500 DOI: 10.1371/journal.pbio.0040330] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 08/08/2006] [Indexed: 11/18/2022] Open
Abstract
Munc18-1, a protein essential for regulated exocytosis in neurons and neuroendocrine cells, belongs to the family of Sec1/Munc18-like (SM) proteins. In vitro, Munc18-1 forms a tight complex with the SNARE syntaxin 1, in which syntaxin is stabilized in a closed conformation. Since closed syntaxin is unable to interact with its partner SNAREs SNAP-25 and synaptobrevin as required for membrane fusion, it has hitherto not been possible to reconcile binding of Munc18-1 to syntaxin 1 with its biological function. We now show that in intact and exocytosis-competent lawns of plasma membrane, Munc18-1 forms a complex with syntaxin that allows formation of SNARE complexes. Munc18-1 associated with membrane-bound syntaxin 1 can be effectively displaced by adding recombinant synaptobrevin but not syntaxin 1 or SNAP-25. Displacement requires the presence of endogenous SNAP-25 since no displacement is observed when chromaffin cell membranes from SNAP-25-deficient mice are used. We conclude that Munc18-1 allows for the formation of a complex between syntaxin and SNAP-25 that serves as an acceptor for vesicle-bound synaptobrevin and that thus represents an intermediate in the pathway towards exocytosis.
Collapse
Affiliation(s)
- Felipe E Zilly
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jakob B Sørensen
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Thorsten Lang
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ. Selective Activation of Cognate SNAREpins by Sec1/Munc18 Proteins. Cell 2007; 128:183-95. [PMID: 17218264 DOI: 10.1016/j.cell.2006.12.016] [Citation(s) in RCA: 365] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 10/31/2006] [Accepted: 12/05/2006] [Indexed: 01/11/2023]
Abstract
Sec1/Munc18 (SM) proteins are required for every step of intracellular membrane fusion, but their molecular mechanism of action has been unclear. In this work, we demonstrate a fundamental role of the SM protein: to act as a stimulatory subunit of its cognate SNARE fusion machinery. In a reconstituted system, mammalian SNARE pairs assemble between bilayers to drive a basal fusion reaction. Munc18-1/nSec1, a synaptic SM protein required for neurotransmitter release, strongly accelerates this reaction through direct contact with both t- and v-SNAREs. Munc18-1 accelerates fusion only for the cognate SNAREs for exocytosis, therefore enhancing fusion specificity.
Collapse
Affiliation(s)
- Jingshi Shen
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Since the discovery of SNARE proteins in the late 1980s, SNAREs have been recognized as key components of protein complexes that drive membrane fusion. Despite considerable sequence divergence among SNARE proteins, their mechanism seems to be conserved and is adaptable for fusion reactions as diverse as those involved in cell growth, membrane repair, cytokinesis and synaptic transmission. A fascinating picture of these robust nanomachines is emerging.
Collapse
Affiliation(s)
- Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany.
| | | |
Collapse
|