1
|
Pinkett HW. The Evolution of ABC Importers. J Mol Biol 2025; 437:169082. [PMID: 40089147 PMCID: PMC12042770 DOI: 10.1016/j.jmb.2025.169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
I am an Associate Professor in the Department of Molecular Biosciences at Northwestern University. My research program investigates the structure, function, and regulation of membrane proteins, with a particular emphasis on ATP-binding cassette (ABC) importers. ABC transporters are a highly conserved superfamily of transmembrane proteins found across all organisms. These proteins utilize the energy from ATP binding and hydrolysis to transport of a broad array of substrates- including metabolites, lipids, peptides and drugs- across cellular membranes. In this perspective, I discuss how structural and biophysical characterization of ABC importers have significantly advanced our understanding of the mechanisms underlying their transport function. I also highlight the challenges in developing a unified mechanistic model and propose that the remarkable diversity of ABC transporters may necessitate multiple transport mechanisms for a complete picture of how these critical proteins function.
Collapse
Affiliation(s)
- Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
2
|
Rahmouni M, Clerc SL, Spadoni JL, Labib T, Tison M, Medina-Santos R, Bensussan A, Tamouza R, Deleuze JF, Zagury JF. Deep analysis of the major histocompatibility complex genetic associations using covariate analysis and haploblocks unravels new mechanisms for the molecular etiology of Elite Control in AIDS. BMC Immunol 2025; 26:1. [PMID: 39762745 PMCID: PMC11702083 DOI: 10.1186/s12865-024-00680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC). METHODS A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR. RESULTS Two thousand six hundred twenty-six SNPs were associated with EC (p<5.10-8), all located within the Major Histocompatibility Complex (MHC) region. Stepwise regression analysis narrowed this list to 17 SNPs. In parallel, 22 HLA class I and II alleles were associated with EC. Through meticulous mapping of the LD between all identified signals and employing reciprocal covariate analyses, we delineated a final set of 6 independent SNPs and 3 HLA class I gene alleles that accounted for most of the associations observed with EC. Our study revealed the presence of cumulative haploblock effects (SNP rs9264942 contributing to the HLA-B*57:01 effect) and that several HLA allele associations were in fact caused by SNPs in linkage disequilibrium (LD). Upon investigating SNPs in LD with the selected 6 SNPs and 3 HLA class I alleles for their impact on protein function (either damaging or differential expression), we identified several compelling mechanisms potentially explaining EC among which: a multi-action mechanism of HLA-B*57:01 involving MICA mutations and MICB differential expression overcoming the HIV-1 blockade of NK cell response, and overexpression of ZBTB12 with a possible anti-HIV-1 effect through HERV-K interference; a deleterious mutation in PPP1R18 favoring viral budding associated with rs1233396. CONCLUSION Our results show that MHC influence on EC likely extends beyond traditional HLA class I or class II allele associations, encompassing other MHC SNPs with various biological impacts. They point to the key role of NK cells in preventing HIV-1 infection. Our analysis shows that HLA-B*57:01 is indeed associated with partially functional MICA/MICB proteins which could also explain this marker's involvement in other diseases such as psoriasis. More broadly, our findings suggest that within any HLA class I and II association in diseases, there may exist distinct causal SNPs within this crucial, gene-rich, and LD-rich MHC region.
Collapse
Affiliation(s)
- Myriam Rahmouni
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Sigrid Le Clerc
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Jean-Louis Spadoni
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Taoufik Labib
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Maxime Tison
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Raissa Medina-Santos
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | | | - Ryad Tamouza
- Laboratoire Neuro-Psychiatrie translationnelle, Université Paris Est Créteil, INSERM U955, IMRB, Créteil, F-94010, France
| | | | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.
| |
Collapse
|
3
|
Mao Y, Suryawanshi A, Patial S, Saini Y. Airspaces-derived exosomes contain disease-relevant protein signatures in a mouse model of cystic fibrosis (CF)-like mucoinflammatory lung disease. Front Pharmacol 2024; 15:1460692. [PMID: 39386033 PMCID: PMC11461968 DOI: 10.3389/fphar.2024.1460692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Exosomes, membrane-bound extracellular vesicles, ranging from approximately 30-200 nm in diameter, are released by almost all cell types and play critical roles in intercellular communication. In response to the prevailing stress, the exosome-bound protein signatures vary in abundance and composition. To identify the bronchoalveolar lavage fluid (BALF) exosome-bound proteins associated with mucoinflammatory lung disease and to gain insights into their functional implications, we compared BALF exosomes-derived proteins from adult Scnn1b transgenic (Scnn1b-Tg+) and wild type (WT) mice. A total of 3,144 and 3,119 proteins were identified in BALF exosomes from Scnn1b-Tg+ and WT mice, respectively. Using cutoff criteria (Log2 fold-change > 1 and adjusted p-value < 0.05), the comparison of identified proteins revealed 127 and 30 proteins that were significantly upregulated and downregulated, respectively, in Scnn1b-Tg+ versus WT mice. In addition, 52 and 27 proteins were exclusively enriched in Scnn1b-Tg+ and WT mice, respectively. The identified exosome-bound proteins from the homeostatic airspaces of WT mice were mostly relevant to the normal physiological processes. The protein signatures enriched in the BALF exosomes of Scnn1b-Tg+ mice were relevant to macrophage activation and mucoinflammatory processes. Ingenuity pathway analyses revealed that the enriched proteins in Scnn1b-Tg+ mice contributed to the inflammatory responses and antimicrobial defense pathways. Selective proteins including, RETNLA/FIZZ1, LGALS3/Galectin-3, S100A8/MRP8, and CHIL3/YM1 were immunolocalized to specific cell types. The comparative analysis between enriched BALF exosome proteins and previously identified differentially upregulated genes in Scnn1b-Tg+ versus WT mice suggested that the compartment-/cell-specific upregulation in gene expression dictates the enrichment of their respective proteins in the lung airspaces. Taken together, this study demonstrates that the BALF exosome-bound protein signatures reflect disease-relevant disturbances. Our findings suggest that the exosomes carry disease-relevant protein signatures that can be used as a diagnostic as well as predictive biomarkers for mucoinflammatory lung disease.
Collapse
Affiliation(s)
- Yun Mao
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Sonika Patial
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Yogesh Saini
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Wang H, Wang H, Xin T, Xia B. Knockdown of the ABCG23 Gene Disrupts the Development and Lipid Accumulation of Panonychus citri (Acari/Tetranychidae). Int J Mol Sci 2024; 25:827. [PMID: 38255901 PMCID: PMC10815512 DOI: 10.3390/ijms25020827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Panonychus citri is a worldwide citrus pest that is currently controlled through the use of insecticides. However, alternative strategies are required to manage P. citri. Recent studies suggest that the ATP-binding cassette (ABC) transporter G subfamily plays a crucial role in transporting cuticular lipids, which are essential for the insect's barrier function against microbial penetration. Therefore, investigating the potential of the ABC transporter G subfamily as a control measure for P. citri could be a promising approach. Based on the genome database, the gene was cloned, and the transcriptional response of ABCG23 for the different developmental stages of P. citri and under spirobudiclofen stress was investigated. Our results showed that the expression level of ABCG23 was significantly lower in adult females exposed to treatment compared to the control and was higher in females than males. The knockdown of ABCG23 using RNAi led to a decrease in the survival rate, fecundity, and TG contents of P. citri. Additionally, a lethal phenotype was characterized by body wrinkling and darkening. These results indicate that ABCG23 may be involved in cuticular lipid transportation and have adverse effects on the development and reproduction of P. citri, providing insight into the discovery of new targets for pest management based on the insect cuticle's penetration barrier function.
Collapse
Affiliation(s)
| | | | | | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (H.W.); (H.W.); (T.X.)
| |
Collapse
|
5
|
Zin Aung K, Hlaing STM, Damayanti P, Tabassum T, Tsukino H, Hinoura T, Kuroda Y. Transporter Associated With Antigen Processing (TAP) 1 Gene Polymorphisms and Risks of Urothelial Cell Carcinoma Among the Japanese Population. Cureus 2024; 16:e52310. [PMID: 38357083 PMCID: PMC10866181 DOI: 10.7759/cureus.52310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Urothelial cell carcinoma is one of the costliest types of cancer because of its recurrence, lengthy course of therapy, and tendency to lead to further complications. Gene polymorphisms are one of many factors that are thought to cause the carcinogenesis of urothelial cell carcinoma. Two single-nucleotide polymorphisms (SNPs) of the transporter associated with antigen processing (TAP) 1 gene and their relationship with the risks of urothelial cell carcinoma in the Japanese population were examined in this study by using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) for genotyping and statistical analysis. The adjusted odd ratios with 95% confidence interval (CI) of the mutant types (A/G+G/G) in females for the I333V and D637G polymorphisms are 2.28 (1.11-4.66) and 2.50 (1.21-5.17), respectively. The findings showed that females with the (A/G+G/G) genotype are more likely to develop urothelial cell carcinoma than those with the A/A genotype. Any correlation between smoking and gene polymorphism was absent. Results indicate that TAP1 gene polymorphisms and the risk of urothelial cell carcinoma are related in females.
Collapse
Affiliation(s)
- Khine Zin Aung
- Department of Biostatistics, University of Kentucky College of Medicine, Lexington, USA
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, JPN
| | - Sa Tin Myo Hlaing
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, JPN
| | - Putri Damayanti
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, JPN
| | - Tamanna Tabassum
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, JPN
| | - Hiromasa Tsukino
- Department of Urology, Junwakai Memorial Hospital, Miyazaki, JPN
| | - Takuji Hinoura
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, JPN
| | - Yoshiki Kuroda
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, JPN
| |
Collapse
|
6
|
Sharma P, Kumar A, Meena LS. Elucidating the structural and functional prophecy of the Rv2326c gene, an ABC transporter of Mycobacterium tuberculosis H37Rv through computational approach. Biotechnol Appl Biochem 2023; 70:2025-2037. [PMID: 37606005 DOI: 10.1002/bab.2507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Tuberculosis is a fatal disease caused by Mycobacterium tuberculosis. M. tuberculosis becoming drug-resistant day by day, necessitating to know the mechanism behind the drug resistance and how to overcome this deadly malady. Drug resistance and reduced drug bioavailability are caused by a class of transporter proteins called the ATP-binding cassette (ABC) transporters, which pump a range of medicines out of cells at the price of ATP hydrolysis. By using computational approaches, we tried to elaborate the probable function of the Rv2326c gene of M. tuberculosis, perhaps involved in drug resistance mechanism. The presence of the signature motif of ABC transporters (LSGGELQRLALAAAL and LSGGQMRRVVLAGLL) and ATP binding motif (GXXXXGKT and GXXXXGKS) in the protein sequence signifying its importance in the ATP binding and transportation of molecules. Further, this manuscript elaborated about tertiary structure and validation, functional category, localization, phosphorylation site prediction, mutational analysis of conserved motifs. Ligand docking study shows the highest affinity with ATP than GTP justified its function as an ATP binding protein. The Rv2326c protein is present in the inner membrane and working as an ATP binding protein and might be playing a dynamic role in transportation. In this study, we found that Rv2326c protein might be working as an ABC transporter by which the drugs and other molecules are imported or exported into the bacterium. As a result, the current study provides a means to better understand its normal functioning and basic biology, which can help in the development of novel therapeutic targeting approaches for Rv2326c protein.
Collapse
Affiliation(s)
- Priyanka Sharma
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Ajit Kumar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
7
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
8
|
Wong-Benito V, de Rijke J, Dixon B. Antigen presentation in vertebrates: Structural and functional aspects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104702. [PMID: 37116963 DOI: 10.1016/j.dci.2023.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 06/05/2023]
Abstract
Antigen presentation is a key process of the immune system and is responsible for the activation of T cells. The main characters are the major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules, and accessory proteins that act as chaperones for these glycoproteins. Current knowledge of this process and also the elucidation of the structural features of these proteins, has been extensively reviewed in humans. Unfortunately, this is not the case for non-human species, wherein the function and structural characteristic of the antigen presentation proteins is far from being understood. The majority of previous studies in non-human species, especially in teleost fish and lower vertebrates, are limited to the transcriptomic level, which leads to gaps in the knowledge about the functional process of antigen presentation in these species. This review summarizes what is known so far about antigen presentation pathways in vertebrates from a structural and functional perspective. The focus is not only on the MHC receptors, but also, on the forgotten characters of these pathways such as the proteins of the peptide loading complex, and the MHC-II chaperone invariant chain.
Collapse
Affiliation(s)
| | - Jill de Rijke
- Department of Biology, University of Waterloo, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Canada.
| |
Collapse
|
9
|
Abstract
ABC transporters are essential for cellular physiology. Humans have 48 ABC genes organized into seven distinct families. Of these genes, 44 (in five distinct families) encode for membrane transporters, of which several are involved in drug resistance and disease pathways resulting from transporter dysfunction. Over the last decade, advances in structural biology have vastly expanded our mechanistic understanding of human ABC transporter function, revealing details of their molecular arrangement, regulation, and interactions, facilitated in large part by advances in cryo-EM that have rendered hitherto inaccessible targets amenable to high-resolution structural analysis. As a result, experimentally determined structures of multiple members of each of the five families of ABC transporters in humans are now available. Here we review this recent progress, highlighting the physiological relevance of human ABC transporters and mechanistic insights gleaned from their direct structure determination. We also discuss the impact and limitations of model systems and structure prediction methods in understanding human ABC transporters and discuss current challenges and future research directions.
Collapse
Affiliation(s)
- Amer Alam
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland;
| |
Collapse
|
10
|
Yang Y, Lu K, Qian J, Guo J, Xu H, Lu Z. Identification and characterization of ABC proteins in an important rice insect pest, Cnaphalocrocis medinalis unveil their response to Cry1C toxin. Int J Biol Macromol 2023; 237:123949. [PMID: 36894061 DOI: 10.1016/j.ijbiomac.2023.123949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Rice leaffolder (Cnaphalocrocis medinalis) is an important insect pest in paddy fields. Due to their essential role in the physiology and insecticidal resistance, ATP-binding cassette (ABC) proteins were studied in many insects. In this study, we identified the ABC proteins in C. medinalis through genomic data and analyzed their molecular characteristics. A total of 37 sequences with nucleotide-binding domain (NBD) were identified as ABC proteins and belonged to eight families (ABCA-ABCH). Four structure styles of ABC proteins were found in C. medinalis, including full structure, half structure, single structure, and ABC2 structure. In addition to these structures, TMD-NBD-TMD, NBD-TMD-NBD, and NBD-TMD-NBD-NBD were found in C. medinalis ABC proteins. Docking studies suggested that in addition to the soluble ABC proteins, other ABC proteins including ABCC4, ABCH1, ABCG3, ABCB5, ABCG1, ABCC7, ABCB3, ABCA3, and ABCC5 binding with Cry1C had higher weighted scores. The upregulation of ABCB1 and downregulation of ABCB3, ABCC1, ABCC7, ABCG1, ABCG3, and ABCG6 were associated with the C. medinalis response to Cry1C toxin. Collectively, these results help elucidate the molecular characteristics of C. medinalis ABC proteins, pave the way for further functional studies of C. medinalis ABC proteins, including their interaction with Cry1C toxin, and provide potential insecticide targets.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Ke Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China; Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Qian
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China.
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China.
| |
Collapse
|
11
|
Sharma P, Sharma P, Ahmad S, Kumar A. Chikungunya Virus Vaccine Development: Through Computational Proteome Exploration for Finding of HLA and cTAP Binding Novel Epitopes as Vaccine Candidates. Int J Pept Res Ther 2022; 28:50. [PMID: 35069056 PMCID: PMC8762984 DOI: 10.1007/s10989-021-10347-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2021] [Indexed: 12/19/2022]
Abstract
Chikungunya virus is a major arbovirus of great public health concern in the whole world, but no vaccine is yet available, still advance therapeutic treatment and effective vaccines are in progress. The present multistep screening and structural binding analysis with CHIKV proteome exploration can be crucial in the development phase of CHIKV epitope based vaccine. The approach employed in two phases (i) Sequence based screening of peptides through propred and IEDB Server (ii) Structure based study through autodocking and NAMD VMD simulation analysis. Among all 29 extracted peptides, only two peptides 2LLANTTFPC10 of protein E3 and 98VNSVAIPLL106 of protein nsP3 were observed most prominent over all consider parameters such as peptide conserve nature, supertype population coverage, TAP binding, docking and simulation study. During docking interaction study, the best peptide and allele docked complexes such as 2LLANTTFPC10–B*0702 allele and 98VNSVAIPLL106–A*0301 allele exhibited best binding energy of − 3.13 kcal/mol and − 3.19 kcal/mol, respectively, with stable bonding patterns and their motion during NAMD simulation which confirm conserve peptide and allele stable interaction. The current study also exhibited the good docking interaction of both peptides 2LLANTTFPC10 and 98VNSVAIPLL106 with c TAP1 protein (1jj7 -PDB ID) cavity which confirm as a channel passageway to peptide transport through the cytoplasm to lumen of ER during antigen processing and presentation. Overall, this multistep screening and crosscheck structural binding analysis with an exploration of the complete proteome of CHIKV can be a novel step in the development of CHIKV epitope based vaccine as well as diagnostic development with aspect of time, cost and side effects.
Collapse
Affiliation(s)
- Priti Sharma
- D. S. Degree College, Aligarh, Dr. B. R. Ambedkar Univeristy, Agra, 282004 India
| | - Pawan Sharma
- Institute of Engineering and Technology, Mangalayatan University, Aligarh, 202145 India
| | - Sheeba Ahmad
- D. S. Degree College, Aligarh, Dr. B. R. Ambedkar Univeristy, Agra, 282004 India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, G.T. Road, Kanpur, 209217 India
| |
Collapse
|
12
|
Mulberry Leaf and Radix Astragali Regulates Differentially Expressed Genes and Proteins in the Streptozotocin-Induced Diabetic Mice Liver. Processes (Basel) 2021. [DOI: 10.3390/pr9111898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As a chronic non-infectious disease, severely affecting human quality and health of life, diabetes mellitus (DM) and its complications have gradually developed into a major global public health problem. Mulberry Leaf and Radix Astragali have been used as a traditional medicinal formulation in diabetic patients for a long time, whose combination is usually found in traditional Chinese medicine prescriptions. However, due to the unclear synergistic mechanism of them for DM, the changes of differential genes and proteins in the liver tissue of streptozotocin-induced diabetic mice were analyzed, and then the potential synergistic mechanism of them in anti-diabetes was investigated in our research. Compared with the diabetic model group, there were 699 differentially expressed genes and 169 differentially expressed proteins in the Mulberry Leaf and Radix Astragali treated group, and there were 35 common specific genes both in the transcriptome and the proteome. These common genes participated mainly in the pathways, such as retinol metabolism, steroid hormone biosynthesis, and arachidonic acid metabolism. Quantitative real-time PCR() and Western blot results speculated that the synergistic effect on anti-diabetes was mainly through regulating the expression of Tap1, Ncoa4, and Alas2, by down-regulating Fabp2 and Hmox1 and up-regulating Hmgcr, Cyp7a1. All these genes would affect bile acid secretion, alleviate the occurrence of iron death, promote the metabolism and synthesis of glycolipid substances, and ultimately maintain the body’s glucose homeostasis.
Collapse
|
13
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
14
|
Shan J, Sun X, Li R, Zhu B, Liang P, Gao X. Identification of ABCG transporter genes associated with chlorantraniliprole resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2021; 77:3491-3499. [PMID: 33837648 DOI: 10.1002/ps.6402] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plutella xylostella (L.) is a serious worldwide pest that feeds on cruciferous plants and has evolved resistance to different classes of insecticides used for its control, including chlorantraniliprole. ATP-binding cassette (ABC) transporters, constituting the largest transport family in organisms, are involved in phase III of the detoxification process and may play important roles in insecticide resistance. RESULTS A total of 15 ABC transporter transcripts from subfamily G were identified in P. xylostella based on the latest DBM genome. Synergism studies showed that treatment with verapamil, a potent inhibitor of ABC transporters, significantly increased the toxicity of chlorantraniliprole against larvae of two chlorantraniliprole-resistant P. xylostella populations (NIL and BL). ABCG2, ABCG5, ABCG6, ABCG9, ABCG11, ABCG14 and ABCG15 were significantly overexpressed in NIL and BL compared with the susceptible population (SS), and ABCG1, ABCG6, ABCG8, ABCG9, ABCG14 and ABCG15 were significantly upregulated after treatment with the LC50 of chlorantraniliprole in SS. Subsequently, ABCG6, ABCG9 and ABCG14, which were overexpressed in both NIL and BL and could be induced in SS, were chosen for functional study. RNAi-mediated knockdown of each of the three ABCGs significantly increased the sensitivity of larvae to chlorantraniliprole. These results confirmed that overexpression of ABCG6, ABCG9 and ABCG14 may contribute to chlorantraniliprole resistance in P. xylostella. CONCLUSION Overexpression of some genes in the ABCG subfamily is involved in P. xylostella resistance to chlorantraniliprole. These results may help to establish a foundation for further studies investigating the role played by ABC transporters in chlorantraniliprole resistance in P. xylostella or other insect pests. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinqiong Shan
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xi Sun
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Ran Li
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
15
|
Srikant S. Evolutionary history of ATP-binding cassette proteins. FEBS Lett 2020; 594:3882-3897. [PMID: 33145769 DOI: 10.1002/1873-3468.13985] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette (ABC) proteins are found in every sequenced genome and evolved deep in the phylogenetic tree of life. ABC proteins form one of the largest homologous protein families, with most being involved in substrate transport across biological membranes, and a few cytoplasmic members regulating in essential processes like translation. The predominant ABC protein classification scheme is derived from human members, but the increasing number of fully sequenced genomes permits to reevaluate this paradigm in the light of the evolutionary history the ABC-protein superfamily. As we study the diversity of substrates, mechanisms, and physiological roles of ABC proteins, knowledge of the evolutionary relationships highlights similarities and differences that can be attributed to specific branches in protein divergence. While alignments and trees built on natural sequence variation account for the evolutionary divergence of ABC proteins, high-throughput experiments and next-generation sequencing creating experimental sequence variation are instrumental in identifying functional constraints. The combination of natural and experimentally produced sequence variation allows a broader and more rational study of the function and physiological roles of ABC proteins.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Biology, Massachusetts Institute of Technology
| |
Collapse
|
16
|
Ford RC, Hellmich UA. What monomeric nucleotide binding domains can teach us about dimeric ABC proteins. FEBS Lett 2020; 594:3857-3875. [PMID: 32880928 DOI: 10.1002/1873-3468.13921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The classic conceptualization of ATP binding cassette (ABC) transporter function is an ATP-dependent conformational change coupled to transport of a substrate across a biological membrane via the transmembrane domains (TMDs). The binding of two ATP molecules within the transporter's two nucleotide binding domains (NBDs) induces their dimerization. Despite retaining the ability to bind nucleotides, isolated NBDs frequently fail to dimerize. ABC proteins without a TMD, for example ABCE and ABCF, have NBDs tethered via elaborate linkers, further supporting that NBD dimerization does not readily occur for isolated NBDs. Intriguingly, even in full-length transporters, the NBD-dimerized, outward-facing state is not as frequently observed as might be expected. This leads to questions regarding what drives NBD interaction and the role of the TMDs or linkers. Understanding the NBD-nucleotide interaction and the subsequent NBD dimerization is thus pivotal for understanding ABC transporter activity in general. Here, we hope to provide new insights into ABC protein function by discussing the perplexing issue of (missing) NBD dimerization in isolation and in the context of full-length ABC proteins.
Collapse
Affiliation(s)
- Robert C Ford
- Faculty of Biology Medicine and Health, The University of Manchester, UK
| | - Ute A Hellmich
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt, Germany
| |
Collapse
|
17
|
Multidrug ABC transporters in bacteria. Res Microbiol 2019; 170:381-391. [DOI: 10.1016/j.resmic.2019.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
|
18
|
Srikant S, Gaudet R. Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Nat Struct Mol Biol 2019; 26:792-801. [PMID: 31451804 DOI: 10.1038/s41594-019-0280-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 07/17/2019] [Indexed: 01/27/2023]
Abstract
Much structural information has been amassed on ATP-binding cassette (ABC) transporters, including hundreds of structures of isolated domains and an increasing array of full-length transporters. The structures capture different steps in the transport cycle and have aided in the design and interpretation of computational simulations and biophysics experiments. These data provide a maturing, although still incomplete, elucidation of the protein dynamics and mechanisms of substrate selection and transit through the transporters. We present an updated view of the classical alternating-access mechanism as it applies to eukaryotic ABC transporters, focusing on type I exporters. Our model helps frame the progress in, and remaining questions about, transporter energetics, how substrates are selected and how ATP is consumed to perform work at the molecular scale. Many human ABC transporters are associated with disease; we highlight progress in understanding their pharmacology through the lens of structural biology and describe how this knowledge suggests approaches to pharmacologically targeting these transporters.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
19
|
Caffalette CA, Corey RA, Sansom MSP, Stansfeld PJ, Zimmer J. A lipid gating mechanism for the channel-forming O antigen ABC transporter. Nat Commun 2019; 10:824. [PMID: 30778065 PMCID: PMC6379404 DOI: 10.1038/s41467-019-08646-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular glycan biosynthesis is a widespread microbial protection mechanism. In Gram-negative bacteria, the O antigen polysaccharide represents the variable region of outer membrane lipopolysaccharides. Fully assembled lipid-linked O antigens are translocated across the inner membrane by the WzmWzt ABC transporter for ligation to the lipopolysaccharide core, with the transporter forming a continuous transmembrane channel in a nucleotide-free state. Here, we report its structure in an ATP-bound conformation. Large structural changes within the nucleotide-binding and transmembrane regions push conserved hydrophobic residues at the substrate entry site towards the periplasm and provide a model for polysaccharide translocation. With ATP bound, the transporter forms a large transmembrane channel with openings toward the membrane and periplasm. The channel's periplasmic exit is sealed by detergent molecules that block solvent permeation. Molecular dynamics simulation data suggest that, in a biological membrane, lipid molecules occupy this periplasmic exit and prevent water flux in the transporter's resting state.
Collapse
Affiliation(s)
- Christopher A Caffalette
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Jochen Zimmer
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
20
|
Voith von Voithenberg L, Park J, Stübe R, Lux C, Lee Y, Philippar K. A Novel Prokaryote-Type ECF/ABC Transporter Module in Chloroplast Metal Homeostasis. FRONTIERS IN PLANT SCIENCE 2019; 10:1264. [PMID: 31736987 PMCID: PMC6828968 DOI: 10.3389/fpls.2019.01264] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/11/2019] [Indexed: 05/18/2023]
Abstract
During evolution, chloroplasts, which originated by endosymbiosis of a prokaryotic ancestor of today's cyanobacteria with a eukaryotic host cell, were established as the site for photosynthesis. Therefore, chloroplast organelles are loaded with transition metals including iron, copper, and manganese, which are essential for photosynthetic electron transport due to their redox capacity. Although transport, storage, and cofactor-assembly of metal ions in chloroplasts are tightly controlled and crucial throughout plant growth and development, knowledge on the molecular nature of chloroplast metal-transport proteins is still fragmentary. Here, we characterized the soluble, ATP-binding ABC-transporter subunits ABCI10 and ABCI11 in Arabidopsis thaliana, which show similarities to components of prokaryotic, multisubunit ABC transporters. Both ABCI10 and ABCI11 proteins appear to be strongly attached to chloroplast-intrinsic membranes, most likely inner envelopes for ABCI10 and possibly plastoglobuli for ABCI11. Loss of ABCI10 and ABCI11 gene products in Arabidopsis leads to extremely dwarfed, albino plants showing impaired chloroplast biogenesis and deregulated metal homeostasis. Further, we identified the membrane-intrinsic protein ABCI12 as potential interaction partner for ABCI10 in the inner envelope. Our results suggest that ABCI12 inserts into the chloroplast inner envelope membrane most likely with five predicted α-helical transmembrane domains and represents the membrane-intrinsic subunit of a prokaryotic-type, energy-coupling factor (ECF) ABC-transporter complex. In bacteria, these multisubunit ECF importers are widely distributed for the uptake of nickel and cobalt metal ions as well as for import of vitamins and several other metabolites. Therefore, we propose that ABCI10 (as the ATPase A-subunit) and ABCI12 (as the membrane-intrinsic, energy-coupling T-subunit) are part of a novel, chloroplast envelope-localized, AAT energy-coupling module of a prokaryotic-type ECF transporter, most likely involved in metal ion uptake.
Collapse
Affiliation(s)
| | - Jiyoung Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | - Roland Stübe
- Plant Biochemistry and Physiology, Department of Biology I, LMU München, Planegg-Martinsried, Germany
| | - Christopher Lux
- Plant Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | - Katrin Philippar
- Plant Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
- *Correspondence: Katrin Philippar,
| |
Collapse
|
21
|
Voith von Voithenberg L, Park J, Stübe R, Lux C, Lee Y, Philippar K. A Novel Prokaryote-Type ECF/ABC Transporter Module in Chloroplast Metal Homeostasis. FRONTIERS IN PLANT SCIENCE 2019; 10:1264. [PMID: 31736987 DOI: 10.3389/fpls201901264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/11/2019] [Indexed: 05/22/2023]
Abstract
During evolution, chloroplasts, which originated by endosymbiosis of a prokaryotic ancestor of today's cyanobacteria with a eukaryotic host cell, were established as the site for photosynthesis. Therefore, chloroplast organelles are loaded with transition metals including iron, copper, and manganese, which are essential for photosynthetic electron transport due to their redox capacity. Although transport, storage, and cofactor-assembly of metal ions in chloroplasts are tightly controlled and crucial throughout plant growth and development, knowledge on the molecular nature of chloroplast metal-transport proteins is still fragmentary. Here, we characterized the soluble, ATP-binding ABC-transporter subunits ABCI10 and ABCI11 in Arabidopsis thaliana, which show similarities to components of prokaryotic, multisubunit ABC transporters. Both ABCI10 and ABCI11 proteins appear to be strongly attached to chloroplast-intrinsic membranes, most likely inner envelopes for ABCI10 and possibly plastoglobuli for ABCI11. Loss of ABCI10 and ABCI11 gene products in Arabidopsis leads to extremely dwarfed, albino plants showing impaired chloroplast biogenesis and deregulated metal homeostasis. Further, we identified the membrane-intrinsic protein ABCI12 as potential interaction partner for ABCI10 in the inner envelope. Our results suggest that ABCI12 inserts into the chloroplast inner envelope membrane most likely with five predicted α-helical transmembrane domains and represents the membrane-intrinsic subunit of a prokaryotic-type, energy-coupling factor (ECF) ABC-transporter complex. In bacteria, these multisubunit ECF importers are widely distributed for the uptake of nickel and cobalt metal ions as well as for import of vitamins and several other metabolites. Therefore, we propose that ABCI10 (as the ATPase A-subunit) and ABCI12 (as the membrane-intrinsic, energy-coupling T-subunit) are part of a novel, chloroplast envelope-localized, AAT energy-coupling module of a prokaryotic-type ECF transporter, most likely involved in metal ion uptake.
Collapse
Affiliation(s)
| | - Jiyoung Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | - Roland Stübe
- Plant Biochemistry and Physiology, Department of Biology I, LMU München, Planegg-Martinsried, Germany
| | - Christopher Lux
- Plant Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | - Katrin Philippar
- Plant Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| |
Collapse
|
22
|
The influence of TAP1 and TAP2 gene polymorphisms on TAP function and its inhibition by viral immune evasion proteins. Mol Immunol 2018; 101:55-64. [DOI: 10.1016/j.molimm.2018.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/03/2023]
|
23
|
Ran Y, Zheng A, Thibodeau PH. Structural analysis reveals pathomechanisms associated with pseudoxanthoma elasticum-causing mutations in the ABCC6 transporter. J Biol Chem 2018; 293:15855-15866. [PMID: 30154241 DOI: 10.1074/jbc.ra118.004806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/23/2018] [Indexed: 11/06/2022] Open
Abstract
Mutations in ABC subfamily C member 6 (ABCC6) transporter are associated with pseudoxanthoma elasticum (PXE), a disease resulting in ectopic mineralization and affecting multiple tissues. A growing number of mutations have been identified in individuals with PXE. For most of these variants, no mechanistic information is available regarding their role in normal and pathophysiologies. To assess how PXE-associated mutations alter ABCC6 biosynthesis and structure, we biophysically and biochemically evaluated the N-terminal nucleotide-binding domain. A high-resolution X-ray structure of nucleotide-binding domain 1 (NBD1) of human ABCC6 was obtained at 2.3 Å that provided a template on which to evaluate PXE-causing mutations. Biochemical analysis of mutations in this domain indicated that multiple PXE-causing mutations altered its structural properties. Analyses of the full-length protein revealed a strong correlation between the alterations in NBD properties and the processing and expression of ABCC6. These results suggest that a significant fraction of PXE-associated mutations located in NBD1 causes changes in its structural properties and that these mutation-induced alterations directly affect the maturation of the full-length ABCC6 protein.
Collapse
Affiliation(s)
- Yanchao Ran
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Aiping Zheng
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Patrick H Thibodeau
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
24
|
Casados-Vázquez LE, Bideshi DK, Barboza-Corona JE. Regulator ThnR and the ThnDE ABC transporter proteins confer autoimmunity to thurincin H in Bacillus thuringiensis. Antonie Van Leeuwenhoek 2018; 111:2349-2360. [DOI: 10.1007/s10482-018-1124-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
25
|
Vadija R, Mustyala KK, Malkhed V, Dulapalli R, Veeravarapu H, Malikanti R, Vuruputuri U. Identification of small molecular inhibitors for efflux protein Rv2688c of Mycobacterium tuberculosis. Biotechnol Appl Biochem 2018; 65:608-621. [PMID: 29377374 DOI: 10.1002/bab.1647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/23/2018] [Indexed: 11/11/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogen, which causes tuberculosis. The development of multidrug-resistant and extensively drug-resistant strains in Mtb is due to an efflux mechanism of antibiotics in the bacteria. The efflux pump proteins in the bacteria are implicated in the active efflux of antibiotics. The efflux pump protein, "fluoroquinolones export ATP-binding protein Rv2688c" (FEAB), is considered as a potential therapeutic target to prevent tuberculosis. In the present work, in silico protocols are applied to identify inhibitors for the FEAB protein to arrest the efflux mechanism. Comparative modeling techniques are used to build the protein structure. The generated structure consists of 9 helices, 13 beta strands, and 3 β sheets. The active site is predicted using active site prediction server tools. The virtual screening protocols are carried out to generate small ligand inhibitor structures. The identified ligand molecules show selective binding with Ser97, Glu99, Lys149, Asp171, Glu172, and Ser175 amino acid residues of the protein. The ligand molecules are subjected to in silico prediction of pharmaco kinetic properties, and the predicted IC50 (HERG) of all the molecules are less than -5.0, which is indicative of the identified ligand molecules is being potentially good FEAB inhibitors.
Collapse
Affiliation(s)
- Rajender Vadija
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Kiran Kumar Mustyala
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Vasavi Malkhed
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Ramasree Dulapalli
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Hymavathi Veeravarapu
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Ramesh Malikanti
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Uma Vuruputuri
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
26
|
Han J, Tang S, Li Y, Bao W, Wan H, Lu C, Zhou J, Li Y, Cheong L, Su X. In silico analysis and in vivo tests of the tuna dark muscle hydrolysate anti-oxidation effect. RSC Adv 2018; 8:14109-14119. [PMID: 35539313 PMCID: PMC9079911 DOI: 10.1039/c8ra00889b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/06/2018] [Indexed: 11/21/2022] Open
Abstract
Hydrolysate is a mixture of various peptides with specific functions. However, functional identification of hydrolysate with high throughput is still a difficult task. Furthermore, using in vivo tests via animal or cell experiments is time and labor-intensive. In this study, the peptides component of hydrolysate derived from the tuna dark muscle was measured via MALDI-TOF/TOF-MS, and the functions of the KEFT (Lys-Glu-Phe-Thr), EEASA (Glu-Glu-Ala-Ser-Ala) and RYDD (Arg-Tyr-Asp-Asp) peptides, which were found with the highest proportion, were predicted via Discovery Studio 2016 software. All three peptides were predicted to bind to the Keap1 protein with the highest fit-value and to affect the activity of Keap1, which is involved in anti-oxidation pathways. Subsequently, mice experiments showed that administration of tuna dark muscle hydrolysate increased the levels of superoxide dismutase and glutathione peroxidase in the serum and liver (P < 0.05) and decreased the malondialdehyde level (P < 0.05) as well as transcription of Keap1 (P > 0.05), which are consistent with the in silico analysis results using Discovery Studio 2016 software. The combination of in silico analysis and in vivo tests provided an alternative strategy for identifying hydrolysate function and provided insight into high-value utilization of protein hydrolysate. In silico prediction and in vivo confirmation of anti-oxidation effect.![]()
Collapse
Affiliation(s)
- Jiaojiao Han
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Shasha Tang
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Yanyan Li
- College of Agriculture and Life Sciences
- Cornell University
- Ithaca
- USA
| | - Wei Bao
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Haitao Wan
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Chenyang Lu
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Jun Zhou
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Ye Li
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | | | - Xiurong Su
- School of Marine Science
- Ningbo University
- Ningbo
- China
| |
Collapse
|
27
|
Sharma P, Sharma P, Mishra S, Kumar A. Analysis of Promiscuous T cell Epitopes for Vaccine Development Against West Nile Virus Using Bioinformatics Approaches. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Kraithong T, Channgam K, Itsathitphaisarn O, Tiensuwan M, Jeruzalmi D, Pakotiprapha D. Movement of the β-hairpin in the third zinc-binding module of UvrA is required for DNA damage recognition. DNA Repair (Amst) 2017; 51:60-69. [PMID: 28209516 DOI: 10.1016/j.dnarep.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/23/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
Nucleotide excision repair (NER) is distinguished from other DNA repair pathways by its ability to process various DNA lesions. In bacterial NER, UvrA is the key protein that detects damage and initiates the downstream NER cascade. Although it is known that UvrA preferentially binds to damaged DNA, the mechanism for damage recognition is unclear. A β-hairpin in the third Zn-binding module (Zn3hp) of UvrA has been suggested to undergo a conformational change upon DNA binding, and proposed to be important for damage sensing. Here, we investigate the contribution of the dynamics in the Zn3hp structural element to various activities of UvrA during the early steps of NER. By restricting the movement of the Zn3hp using disulfide crosslinking, we showed that the movement of the Zn3hp is required for damage-specific binding, UvrB loading and ATPase activities of UvrA. We individually inactivated each of the nucleotide binding sites in UvrA to investigate its role in the movement of the Zn3hp. Our results suggest that the conformational change of the Zn3hp is controlled by ATP hydrolysis at the distal nucleotide binding site. We propose a bi-phasic damage inspection model of UvrA in which movement of the Zn3hp plays a key role in damage recognition.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ketsaraphorn Channgam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Montip Tiensuwan
- Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
29
|
Oldham ML, Grigorieff N, Chen J. Structure of the transporter associated with antigen processing trapped by herpes simplex virus. eLife 2016; 5. [PMID: 27935481 PMCID: PMC5199193 DOI: 10.7554/elife.21829] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023] Open
Abstract
The transporter associated with antigen processing (TAP) is an ATP-binding cassette (ABC) transporter essential to cellular immunity against viral infection. Some persistent viruses have evolved strategies to inhibit TAP so that they may go undetected by the immune system. The herpes simplex virus for example evades immune surveillance by blocking peptide transport with a small viral protein ICP47. In this study, we determined the structure of human TAP bound to ICP47 by electron cryo-microscopy (cryo-EM) to 4.0 Å. The structure shows that ICP47 traps TAP in an inactive conformation distinct from the normal transport cycle. The specificity and potency of ICP47 inhibition result from contacts between the tip of the helical hairpin and the apex of the transmembrane cavity. This work provides a clear molecular description of immune evasion by a persistent virus. It also establishes the molecular structure of TAP to facilitate mechanistic studies of the antigen presentation process. DOI:http://dx.doi.org/10.7554/eLife.21829.001
Collapse
Affiliation(s)
- Michael L Oldham
- Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jue Chen
- Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
30
|
Sharma P, Srivastav S, Mishra S, Kumar A. Sequence and Structure Based Binding Prediction Study of HLA Class I and cTAP Binding Peptides for Japanese Encephalitis Vaccine Development. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9558-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Tanaka-Kumazawa K, Kikuchi Y, Sano-Kokubun Y, Shintani S, Yakushiji M, Kuramitsu HK, Ishihara K. Characterization of a potential ABC-type bacteriocin exporter protein from Treponema denticola. BMC Oral Health 2016; 17:18. [PMID: 27422166 PMCID: PMC4947327 DOI: 10.1186/s12903-016-0243-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Treponema denticola is strongly associated with the development of periodontal disease. Both synergistic and antagonistic effects are observed among bacterial species in the process of biofilm formation. Bacteriocin-related genes have not yet been fully characterized in periodontopathic bacteria. The aim of this study was to detect and characterize bacteriocin-associated proteins in T. denticola. METHODS The whole genome sequence of T. denticola ATCC 35405 was screened with a Streptococcus mutans bacteriocin immunity protein (ImmA/Bip) sequence. The prevalence of homologous genes in T. denticola strains was then investigated by Southern blotting. Expression of the genes was evaluated by qRT-PCR. RESULTS In the genome sequence of T. denticola, an amino acid sequence coded by the open reading frame TDE_0719 showed 26 % identity with the S. mutans ImmA. Furthermore, two protein sequences encoded by TDE_0425 and TDE_2431 in T. denticola ATCC 35405 showed ~40 % identity with that coded by TDE_0719. Therefore, TDE_0425, TDE_0719, and TDE_2431 were designated as tepA1, A2, and A3, respectively. Open reading frames showing similarity to the HlyD family of secretion proteins were detected downstream of tepA1, A2, and A3. They were designated as tepB1, B2, and B3, respectively. A gene harboring a bacteriocin-like signal sequence was detected upstream of tepA1. The prevalence of tepA1 and A2 differed among Treponema species. Susceptibility to chloramphenicol and ofloxacin was slightly decreased in a tepA2 mutant while that to kanamycin was increased. Expression of tepA3-B3 was increased in the tepA2 mutant. CONCLUSION These results indicate that T. denticola ATCC 35405 has three potential bacteriocin export proteins and that the presence of these genes differs among the Treponema strains. TepA3-B3 of the corresponding proteins may be involved in resistance to chloramphenicol.
Collapse
Affiliation(s)
- Kimiko Tanaka-Kumazawa
- Department of Pediatric Dentistry, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.,Oral Health Science Center, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Yumiko Sano-Kokubun
- Department of Pediatric Dentistry, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Seikou Shintani
- Department of Pediatric Dentistry, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Masashi Yakushiji
- Department of Pediatric Dentistry, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Howard K Kuramitsu
- Department of Oral Biology, State University of New York, Buffalo, NY, USA
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan. .,Oral Health Science Center, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| |
Collapse
|
32
|
Eggensperger S, Tampé R. The transporter associated with antigen processing: a key player in adaptive immunity. Biol Chem 2016; 396:1059-72. [PMID: 25781678 DOI: 10.1515/hsz-2014-0320] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
The adaptive immune system co-evolved with sophisticated pathways of antigen processing for efficient clearance of viral infections and malignant transformation. Antigenic peptides are primarily generated by proteasomal degradation and translocated into the lumen of the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP). In the ER, peptides are loaded onto major histocompatibility complex I (MHC I) molecules orchestrated by a multisubunit peptide-loading complex (PLC). Peptide-MHC I complexes are targeted to the cell surface for antigen presentation to cytotoxic T cells, which eventually leads to the elimination of virally infected or malignantly transformed cells. Here, we review MHC I mediated antigen processing with a primary focus on the function and structural organization of the heterodimeric ATP-binding cassette (ABC) transporter TAP1/2. We discuss recent data on the molecular transport mechanism of the antigen translocation complex with respect to structural and biochemical information of other ABC exporters. We further summarize how TAP provides a scaffold for the assembly of the macromolecular PLC, thereby coupling peptide translocation with MHC I loading. TAP inhibition by distinct viral evasins highlights the important role of TAP in adaptive immunity.
Collapse
|
33
|
Oldham ML, Hite RK, Steffen AM, Damko E, Li Z, Walz T, Chen J. A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 2016; 529:537-40. [PMID: 26789246 PMCID: PMC4848044 DOI: 10.1038/nature16506] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023]
Abstract
Cellular immunity against viral infection and tumor cells depends on antigen presentation by the major histocompatibility complex class 1 molecules (MHC I). Intracellular antigenic peptides are transported into the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP) and then loaded onto the nascent MHC I, which are exported to the cell surface and present peptides to the immune system1. Cytotoxic T lymphocytes recognize non-self peptides and program the infected or malignant cells for apoptosis. Defects in TAP account for immunodeficiency and tumor development. To escape immune surveillance, some viruses have evolved strategies to either down-regulate TAP expression or directly inhibit TAP activity. To date neither the architecture of TAP nor the mechanism of viral inhibition has been elucidated at the structural level. In this study we describe the cryo-electron microscopy (cryo-EM) structure of human TAP in complex with its inhibitor ICP47, a small protein produced by the herpes simplex virus I. We show that the twelve transmembrane helices and two cytosolic nucleotide-binding domains (NBDs) of the transporter adopt an inward-facing conformation with the two NBDs separated. The viral inhibitor ICP47 forms a long helical hairpin, which plugs the translocation pathway of TAP from the cytoplasmic side. Association of ICP47 precludes substrate binding and also prevents NBD closure necessary for ATP hydrolysis. This work illustrates a striking example of immune evasion by persistent viruses. By blocking viral antigens from entering the ER, herpes simplex virus is hidden from cytotoxic T lymphocytes, which may contribute to establishing a lifelong infection in the host.
Collapse
Affiliation(s)
- Michael L Oldham
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA
| | - Richard K Hite
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA
| | - Alanna M Steffen
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA
| | - Ermelinda Damko
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Zongli Li
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA.,Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Thomas Walz
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Jue Chen
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
34
|
Mustyala KK, Malkhed V, Chittireddy VRR, Vuruputuri U. Identification of Small Molecular Inhibitors for Efflux Protein: DrrA of Mycobacterium tuberculosis. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0427-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
35
|
Bukowska MA, Hohl M, Geertsma ER, Hürlimann LM, Grütter MG, Seeger MA. A Transporter Motor Taken Apart: Flexibility in the Nucleotide Binding Domains of a Heterodimeric ABC Exporter. Biochemistry 2015; 54:3086-99. [PMID: 25947941 DOI: 10.1021/acs.biochem.5b00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ABC exporters are ubiquitous multidomain transport proteins that couple ATP hydrolysis at a pair of nucleotide binding domains to substrate transport across the lipid bilayer mediated by two transmembrane domains. Recently, the crystal structure of the heterodimeric ABC exporter TM287/288 was determined. One of its asymmetric ATP binding sites is called the degenerate site; it binds nucleotides tightly but is impaired in terms of ATP hydrolysis. Here we report the crystal structures of both isolated motor domains of TM287/288. Unexpectedly, structural elements constituting the degenerate ATP binding site are disordered in these crystals and become structured only in the context of the full-length transporter. In addition, hydrogen bonding patterns of key residues, including those of the catalytically important Walker B and the switch loop motifs, are fundamentally different in the solitary NBDs compared to those in the intact transport protein. The structures reveal crucial interdomain contacts that need to be established for the proper assembly of the functional transporter complex.
Collapse
Affiliation(s)
- Magdalena A Bukowska
- †Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael Hohl
- †Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,‡Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30/32, 8006 Zurich, Switzerland
| | - Eric R Geertsma
- †Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lea M Hürlimann
- †Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,‡Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30/32, 8006 Zurich, Switzerland
| | - Markus G Grütter
- †Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Markus A Seeger
- †Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,‡Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30/32, 8006 Zurich, Switzerland
| |
Collapse
|
36
|
de Araujo ED, Kanelis V. Successful development and use of a thermodynamic stability screen for optimizing the yield of nucleotide binding domains. Protein Expr Purif 2014; 103:38-47. [PMID: 25153533 DOI: 10.1016/j.pep.2014.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 01/09/2023]
Abstract
ATP sensitive potassium (KATP) channels consist of four copies of a pore-forming inward rectifying potassium channel (Kir6.1 or Kir6.2) and four copies of a sulfonylurea receptor (SUR1, SUR2A, or SUR2B). SUR proteins are members of the ATP-binding cassette superfamily of proteins. Binding of ATP to the Kir6.x subunit mediates channel inhibition, whereas MgATP binding and hydrolysis at the SUR NBDs results in channel opening. Mutations in SUR1 and SUR2A NBDs cause diseases of insulin secretion and cardiac disorders, respectively, underlying the importance of studying the NBDs. Although purification of SUR2A NBD1 in a soluble form is possible, the lack of long-term sample stability of the protein in a concentrated form has precluded detailed studies of the protein aimed at gaining a molecular-level understanding of how SUR mutations cause disease. Here we use a convenient and cost-effective thermodynamic screening method to probe stabilizing conditions for SUR2A NBD1. Results from the screen are used to alter the purification protocol to allow for significantly increased yields of the purified protein. In addition, the screen provides strategies for long-term storage of NBD1 and generating NBD1 samples at high concentrations suitable for NMR studies. NMR spectra of NBD1 with MgAMP-PNP are of higher quality compared to using MgATP, indicating that MgAMP-PNP be used as the ligand in future NMR studies. The screen presented here can be expanded to using different additives and can be employed to enhance purification yields, sample life times, and storage of other low stability nucleotide binding domains, such as GTPases.
Collapse
Affiliation(s)
- Elvin D de Araujo
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
37
|
Zolnerciks JK, Akkaya BG, Snippe M, Chiba P, Seelig A, Linton KJ. The Q loops of the human multidrug resistance transporter ABCB1 are necessary to couple drug binding to the ATP catalytic cycle. FASEB J 2014; 28:4335-46. [PMID: 25016028 DOI: 10.1096/fj.13-245639] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For a primary active pump, such as the human ATP-binding-cassette (ABC) transporter ABCB1, coupling of drug-binding by the two transmembrane domains (TMDs) to the ATP catalytic cycle of the two nucleotide-binding domains (NBDs) is fundamental to the transport mechanism, but is poorly understood at the biochemical level. Structure data suggest that signals are transduced through intracellular loops of the TMDs that slot into grooves on the NBDs. At the base of these grooves is the Q loop. We therefore mutated the eponymous glutamine in one or both NBD Q loops and measured the effect on conformation and function by using a conformation-sensitive antibody (UIC2) and a fluorescent drug (Bodipy-verapamil), respectively. We showed that the double mutant is trapped in the inward-open state, which binds the drug, but cannot couple to the ATPase cycle. Our data also describe marked redundancy within the transport mechanism, because single-Q-loop mutants are functional for Bodipy-verapamil transport. This result allowed us to elucidate transduction pathways from twin drug-binding cavities to the Q loops using point mutations to favor one cavity over the other. Together, the data show that the Q loop is the central flexion point where the aspect of the drug-binding cavities is coupled to the ATP catalytic cycle.
Collapse
Affiliation(s)
- Joseph K Zolnerciks
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London UK
| | - Begum G Akkaya
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London UK
| | - Marjolein Snippe
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London UK
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria; and
| | - Anna Seelig
- Biophysical Chemistry Biozentrum, University of Basel, Basel, Switzerland
| | - Kenneth J Linton
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London UK;
| |
Collapse
|
38
|
Molecular modelling approaches for cystic fibrosis transmembrane conductance regulator studies. Int J Biochem Cell Biol 2014; 52:39-46. [DOI: 10.1016/j.biocel.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 12/30/2022]
|
39
|
ABC transporters in adaptive immunity. Biochim Biophys Acta Gen Subj 2014; 1850:449-60. [PMID: 24923865 DOI: 10.1016/j.bbagen.2014.05.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/24/2014] [Accepted: 05/29/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND ABC transporters ubiquitously found in all kingdoms of life move a broad range of solutes across membranes. Crystal structures of four distinct types of ABC transport systems have been solved, shedding light on different conformational states within the transport process. Briefly, ATP-dependent flipping between inward- and outward-facing conformations allows directional transport of various solutes. SCOPE OF REVIEW The heterodimeric transporter associated with antigen processing TAP1/2 (ABCB2/3) is a crucial element of the adaptive immune system. The ABC transport complex shuttles proteasomal degradation products into the endoplasmic reticulum. These antigenic peptides are loaded onto major histocompatibility complex class I molecules and presented on the cell surface. We detail the functional modules of TAP, its ATPase and transport cycle, and its interaction with and modulation by other cellular components. In particular, we emphasize how viral factors inhibit TAP activity and thereby prevent detection of the infected host cell by cytotoxic T-cells. MAJOR CONCLUSIONS Merging functional details on TAP with structural insights from related ABC transporters refines the understanding of solute transport. Although human ABC transporters are extremely diverse, they still may employ conceptually related transport mechanisms. Appropriately, we delineate a working model of the transport cycle and how viral factors arrest TAP in distinct conformations. GENERAL SIGNIFICANCE Deciphering the transport cycle of human ABC proteins is the major issue in the field. The defined peptidic substrate, various inhibitory viral factors, and its role in adaptive immunity provide unique tools for the investigation of TAP, making it an ideal model system for ABC transporters in general. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
|
40
|
Wei S, Roessler BC, Chauvet S, Guo J, Hartman JL, Kirk KL. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. J Biol Chem 2014; 289:19942-57. [PMID: 24876383 DOI: 10.1074/jbc.m114.562116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs.
Collapse
Affiliation(s)
- Shipeng Wei
- From the Departments of Cell, Developmental, and Integrative Biology
| | - Bryan C Roessler
- From the Departments of Cell, Developmental, and Integrative Biology
| | - Sylvain Chauvet
- From the Departments of Cell, Developmental, and Integrative Biology
| | | | | | - Kevin L Kirk
- From the Departments of Cell, Developmental, and Integrative Biology, Neurobiology and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham Alabama 35294-0005
| |
Collapse
|
41
|
Brautigam CA, Ouyang Z, Deka RK, Norgard MV. Sequence, biophysical, and structural analyses of the PstS lipoprotein (BB0215) from Borrelia burgdorferi reveal a likely binding component of an ABC-type phosphate transporter. Protein Sci 2013; 23:200-12. [PMID: 24318969 DOI: 10.1002/pro.2406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 01/23/2023]
Abstract
The Lyme disease agent Borrelia burgdorferi, which is transmitted via a tick vector, is dependent on its tick and mammalian hosts for a number of essential nutrients. Like other bacterial diderms, it must transport these biochemicals from the extracellular milieu across two membranes, ultimately to the B. burgdorferi cytoplasm. In the current study, we established that a gene cluster comprising genes bb0215 through bb0218 is cotranscribed and is therefore an operon. Sequence analysis of these proteins suggested that they are the components of an ABC-type transporter responsible for translocating phosphate anions from the B. burgdorferi periplasm to the cytoplasm. Biophysical experiments established that the putative ligand-binding protein of this system, BbPstS (BB0215), binds to phosphate in solution. We determined the high-resolution (1.3 Å) crystal structure of the protein in the absence of phosphate, revealing that the protein's fold is similar to other phosphate-binding proteins, and residues that are implicated in phosphate binding in other such proteins are conserved in BbPstS. Taken together, the gene products of bb0215-0218 function as a phosphate transporter for B. burgdorferi.
Collapse
Affiliation(s)
- Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | | | | | | |
Collapse
|
42
|
Bin JW, Wong ILK, Hu X, Yu ZX, Xing LF, Jiang T, Chow LMC, Biao WS. Structure–Activity Relationship Study of Permethyl Ningalin B Analogues as P-Glycoprotein Chemosensitizers. J Med Chem 2013; 56:9057-70. [DOI: 10.1021/jm400930e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jin Wen Bin
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 Shandong, China
| | - Iris L. K. Wong
- Department
of Applied Biology and Chemical Technology and the State Key Laboratory
for Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
- State
Key Laboratory in Chinese Medicine and Molecular Pharmacology, Shenzhen, 518057 Guangdong, China
| | - Xuesen Hu
- Department
of Applied Biology and Chemical Technology and the State Key Laboratory
for Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
- State
Key Laboratory in Chinese Medicine and Molecular Pharmacology, Shenzhen, 518057 Guangdong, China
| | - Zhang Xiao Yu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 Shandong, China
| | - Li Fu Xing
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 Shandong, China
| | - Tao Jiang
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 Shandong, China
| | - Larry M. C. Chow
- Department
of Applied Biology and Chemical Technology and the State Key Laboratory
for Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
- State
Key Laboratory in Chinese Medicine and Molecular Pharmacology, Shenzhen, 518057 Guangdong, China
| | - Wan Sheng Biao
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 Shandong, China
| |
Collapse
|
43
|
Geng J, Sivaramakrishnan S, Raghavan M. Analyses of conformational states of the transporter associated with antigen processing (TAP) protein in a native cellular membrane environment. J Biol Chem 2013; 288:37039-47. [PMID: 24196954 DOI: 10.1074/jbc.m113.504696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The transporter associated with antigen processing (TAP) plays a critical role in the MHC class I antigen presentation pathway. TAP translocates cellular peptides across the endoplasmic reticulum membrane in an ATP hydrolysis-dependent manner. We used FRET spectroscopy in permeabilized cells to delineate different conformational states of TAP in a native subcellular membrane environment. For these studies, we tagged the TAP1 and TAP2 subunits with enhanced cyan fluorescent protein and enhanced yellow fluorescent protein, respectively, C-terminally to their nucleotide binding domains (NBDs), and measured FRET efficiencies under different conditions. Our data indicate that both ATP and ADP enhance the FRET efficiencies but that neither induces a maximally closed NBD conformation. Additionally, peptide binding induces a large and significant increase in NBD proximity with a concentration dependence that is reflective of individual peptide affinities for TAP, revealing the underlying mechanism of peptide-stimulated ATPase activity of TAP. Maximal NBD closure is induced by the combination of peptide and non-hydrolysable ATP analogs. Thus, TAP1-TAP2 NBD dimers are not fully stabilized by nucleotides alone, and substrate binding plays a key role in inducing the transition state conformations of the NBD. Taken together, these findings show that at least three steps are involved in the transport of peptides across the endoplasmic reticulum membrane for antigen presentation, corresponding to three dynamically and structurally distinct conformational states of TAP. Our studies elucidate structural changes in the TAP NBD in response to nucleotides and substrate, providing new insights into the mechanism of ATP-binding cassette transporter function.
Collapse
Affiliation(s)
- Jie Geng
- From the Department of Microbiology and Immunology and
| | | | | |
Collapse
|
44
|
Abstract
T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review, we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.
Collapse
Affiliation(s)
- Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
45
|
Hwang TC, Kirk KL. The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb Perspect Med 2013; 3:a009498. [PMID: 23284076 DOI: 10.1101/cshperspect.a009498] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-gated anion channel with two remarkable distinctions. First, it is the only ATP-binding cassette (ABC) transporter that is known to be an ion channel--almost all others function as transport ATPases. Second, CFTR is the only ligand-gated channel that consumes its ligand (ATP) during the gating cycle--a consequence of its enzymatic activity as an ABC transporter. We discuss these special properties of CFTR in the context of its evolutionary history as an ABC transporter. Other topics include the mechanisms by which CFTR gating is regulated by phosphorylation of its unique regulatory domain and our current view of the CFTR permeation pathway (or pore). Understanding these basic operating principles of the CFTR channel is central to defining the mechanisms of action of prospective cystic fibrosis drugs and to the development of new, rational treatment strategies.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | |
Collapse
|
46
|
Jih KY, Sohma Y, Hwang TC. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation. ACTA ACUST UNITED AC 2012; 140:347-59. [PMID: 22966014 PMCID: PMC3457689 DOI: 10.1085/jgp.201210834] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ATP-binding cassette (ABC) protein superfamily. Unlike most other ABC proteins that function as active transporters, CFTR is an ATP-gated chloride channel. The opening of CFTR's gate is associated with ATP-induced dimerization of its two nucleotide-binding domains (NBD1 and NBD2), whereas gate closure is facilitated by ATP hydrolysis-triggered partial separation of the NBDs. This generally held theme of CFTR gating-a strict coupling between the ATP hydrolysis cycle and the gating cycle-is put to the test by our recent finding of a short-lived, post-hydrolytic state that can bind ATP and reenter the ATP-induced original open state. We accidentally found a mutant CFTR channel that exhibits two distinct open conductance states, the smaller O1 state and the larger O2 state. In the presence of ATP, the transition between the two states follows a preferred O1→O2 order, a telltale sign of a violation of microscopic reversibility, hence demanding an external energy input likely from ATP hydrolysis, as such preferred gating transition was abolished in a hydrolysis-deficient mutant. Interestingly, we also observed a considerable amount of opening events that contain more than one O1→O2 transition, indicating that more than one ATP molecule may be hydrolyzed within an opening burst. We thus conclude a nonintegral stoichiometry between the gating cycle and ATP consumption. Our results lead to a six-state gating model conforming to the classical allosteric mechanism: both NBDs and transmembrane domains hold a certain degree of autonomy, whereas the conformational change in one domain will facilitate the conformational change in the other domain.
Collapse
Affiliation(s)
- Kang-Yang Jih
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | |
Collapse
|
47
|
Corradi V, Singh G, Tieleman DP. The human transporter associated with antigen processing: molecular models to describe peptide binding competent states. J Biol Chem 2012; 287:28099-111. [PMID: 22700967 PMCID: PMC3431710 DOI: 10.1074/jbc.m112.381251] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human transporter associated with antigen processing (TAP) is a member of the ATP binding cassette (ABC) transporter superfamily. TAP plays an essential role in the antigen presentation pathway by translocating cytosolic peptides derived from proteasomal degradation into the endoplasmic reticulum lumen. Here, the peptides are loaded into major histocompatibility class I molecules to be in turn exposed at the cell surface for recognition by T-cells. TAP is a heterodimer formed by the association of two half-transporters, TAP1 and TAP2, with a typical ABC transporter core that consists of two nucleotide binding domains and two transmembrane domains. Despite the availability of biological data, a full understanding of the mechanism of action of TAP is limited by the absence of experimental structures of the full-length transporter. Here, we present homology models of TAP built on the crystal structures of P-glycoprotein, ABCB10, and Sav1866. The models represent the transporter in inward- and outward-facing conformations that could represent initial and final states of the transport cycle, respectively. We described conserved regions in the endoplasmic reticulum-facing loops with a role in the opening and closing of the cavity. We also identified conserved π-stacking interactions in the cytosolic part of the transmembrane domains that could explain the experimental data available for TAP1-Phe-265. Electrostatic potential calculations gave structural insights into the role of residues involved in peptide binding, such as TAP1-Val-288, TAP2-Cys-213, TAP2-Met-218. Moreover, these calculations identified additional residues potentially involved in peptide binding, in turn verified with replica exchange simulations performed on a peptide bound to the inward-facing models.
Collapse
Affiliation(s)
- Valentina Corradi
- Department of Biological Sciences and Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
48
|
Meena SR, Gangwar SP, Saxena AK. Purification, crystallization and preliminary X-ray crystallographic analysis of the ATPase domain of human TAP in nucleotide-free and ADP-, vanadate- and azide-complexed forms. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:655-8. [PMID: 22684063 PMCID: PMC3370903 DOI: 10.1107/s1744309112013954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/30/2012] [Indexed: 11/10/2022]
Abstract
The human transporter associated with antigen processing (TAP) protein belongs to the ATP-binding cassette (ABC) transporter superfamily and is formed by the heterodimerization of TAP1 and TAP2 subunits. TAP selectively pumps cytosolic peptides into the lumen of the endoplasmic reticulum in an ATP-dependent manner. The catalytic cycle of the ATPase domain of TAP is not understood at the molecular level. The structures of catalytic intermediates of the ATPase domain of TAP will contribute to the understanding of the chemical mechanism of ATP hydrolysis. In order to understand this mechanism, the ATPase domain of human TAP1 (NBD1) was expressed and purified, crystallized in nucleotide-free and transition-state complex forms and X-ray crystallographic studies were performed. The NBD1 protein was crystallized (i) in the nucleotide-free apo form; (ii) in complex with ADP-Mg(2+), mimicking the product-bound state; (iii) in complex with vanadate-ADP-Mg(2+), mimicking the ATP-bound state; and (iv) in complex with azide-ADP-Mg(2+), also mimicking the ATP-bound state. X-ray diffraction data sets were collected for apo and complexed NBD1 using an in-house X-ray diffraction facility at a wavelength of 1.5418 Å. The apo and complexed NBD1 crystals belonged to the primitive hexagonal space group P6(2), with one monomer in the asymmetric unit. Here, the crystallization, data collection and preliminary crystallographic analysis of apo and complexed NBD1 are reported.
Collapse
Affiliation(s)
- Sita R. Meena
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, USA
| | - Shanti P. Gangwar
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, USA
| | - Ajay K. Saxena
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, USA
| |
Collapse
|
49
|
N-Acetyl-d-glucosamine 2-epimerase from Anabaena sp. CH1 contains a novel ATP-binding site required for catalytic activity. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Direct evidence that the N-terminal extensions of the TAP complex act as autonomous interaction scaffolds for the assembly of the MHC I peptide-loading complex. Cell Mol Life Sci 2012; 69:3317-27. [PMID: 22638925 PMCID: PMC3437018 DOI: 10.1007/s00018-012-1005-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023]
Abstract
The loading of antigenic peptides onto major histocompatibility complex class I (MHC I) molecules is an essential step in the adaptive immune response against virally or malignantly transformed cells. The ER-resident peptide-loading complex (PLC) consists of the transporter associated with antigen processing (TAP1 and TAP2), assembled with the auxiliary factors tapasin and MHC I. Here, we demonstrated that the N-terminal extension of each TAP subunit represents an autonomous domain, named TMD0, which is correctly targeted to and inserted into the ER membrane. In the absence of coreTAP, each TMD0 recruits tapasin in a 1:1 stoichiometry. Although the TMD0s lack known ER retention/retrieval signals, they are localized to the ER membrane even in tapasin-deficient cells. We conclude that the TMD0s of TAP form autonomous interaction hubs linking antigen translocation into the ER with peptide loading onto MHC I, hence ensuring a major function in the integrity of the antigen-processing machinery.
Collapse
|