1
|
Zheng R, Zhao K, Chen J, Zhu X, Peng Y, Shen M, Liu ZJ, Peng D, Zhou Y. Genomic signatures of SnRKs highlighted conserved evolution within orchids and stress responses through ABA signaling in the Cymbidium ensifolium. BMC PLANT BIOLOGY 2025; 25:277. [PMID: 40025443 PMCID: PMC11874761 DOI: 10.1186/s12870-025-06280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Sucrose non-fermenting 1-related protein kinases (SnRKs) are crucial for modulating plant responses to abiotic stresses, linking metabolism with stress signaling pathways. Investigating the roles and stress responses of SnRKs in plants paves the way for developing stress-tolerant strategies in orchid species. Here, 362 SnRK members were identified from nine current orchid genomes, highlighting the conservation of these genes in evolution. Among these, 33 CeSnRKs were found across 20 chromosomes of C. ensifolium genome. Multiple duplication events increased the complexity of CeSnRKs during independent evolution. Moreover, distinct functional domains beyond the kinase domain differentiated the subfamilies. These multi-copy members existed tissue specific expressions falling into 6 main trends, especially CeSnRK1, CeCIPK9, CeCIPK23 displayed a strict floral expression. ABA-related elements were enriched in the promoters of CeSnRKs, and stress-related miRNA binding sites were identified on partial CeSnRKs. Consequently, most CeSnRKs exhibited up-regulated expression during ABA treatment. Several genes, such as CeSnRK2.1 and CeCIPK28 involved growth and development at different times and various tissues. The up-regulation of SnRK2.1, along with high expression of SnRK1 and CIPK27 under drought stress, and the differential expression patterns of CeSnRKs under cold stress, underscore the involvement of CeSnRK genes in different stress responses. Additionally, the diverse interactions of CeSnRKs with proteins highlighted a multifaceted functional network.These findings offer valuable insights for the future functional characterization formation of CeSnRKs and the adaptive evolution of genes in orchids.
Collapse
Affiliation(s)
- Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, The Cross-Strait Scientific and Technological Innovation Hub of Flower Industry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Zogopoulos VL, Papadopoulos K, Malatras A, Iconomidou VA, Michalopoulos I. ACT2.6: Global Gene Coexpression Network in Arabidopsis thaliana Using WGCNA. Genes (Basel) 2025; 16:258. [PMID: 40149410 PMCID: PMC11942487 DOI: 10.3390/genes16030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Genes with similar expression patterns across multiple samples are considered coexpressed, and they may participate in similar biological processes or pathways. Gene coexpression networks depict the degree of similarity between the expression profiles of all genes in a set of samples. Gene coexpression tools allow for the prediction of functional gene partners or the assignment of roles to genes of unknown function. Weighted Gene Correlation Network Analysis (WGCNA) is an R package that provides a multitude of functions for constructing and analyzing a weighted or unweighted gene coexpression network. METHODS Previously preprocessed, high-quality gene expression data of 3500 samples of Affymetrix microarray technology from various tissues of the Arabidopsis thaliana plant model species were used to construct a weighted gene coexpression network, using WGCNA. RESULTS The gene dendrogram was used as the basis for the creation of a new Arabidopsis coexpression tool (ACT) version (ACT2.6). The dendrogram contains 21,273 leaves, each one corresponding to a single gene. Genes that are clustered in the same clade are coexpressed. WGCNA grouped the genes into 27 functional modules, all of which were positively or negatively correlated with specific tissues. DISCUSSION Genes known to be involved in common metabolic pathways were discovered in the same module. By comparing the current ACT version with the previous one, it was shown that the new version outperforms the old one in discovering the functional connections between gene partners. ACT2.6 is a major upgrade over the previous version and a significant addition to the collection of public gene coexpression tools.
Collapse
Affiliation(s)
- Vasileios L. Zogopoulos
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (V.L.Z.); (K.P.)
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Konstantinos Papadopoulos
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (V.L.Z.); (K.P.)
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Apostolos Malatras
- Molecular Medicine Research Center, biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, 2109 Nicosia, Cyprus;
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Ioannis Michalopoulos
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (V.L.Z.); (K.P.)
| |
Collapse
|
3
|
Ma L, Qin DB, Sun L, Zhang K, Yu X, Dang AK, Hou S, Zhao X, Yang Y, Wang Y, Chen Y, Guo Y. SALT OVERLY SENSITIVE2 and AMMONIUM TRANSPORTER1;1 contribute to plant salt tolerance by maintaining ammonium uptake. THE PLANT CELL 2025; 37:koaf034. [PMID: 39963720 PMCID: PMC11840955 DOI: 10.1093/plcell/koaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Soil salinity is a severe threat to agriculture and plant growth. Under high salinity conditions, ammonium (NH4+) is the predominant inorganic nitrogen source used by plants due to limited nitrification. However, how ammonium shapes the plant response to salt stress remains a mystery. Here, we demonstrate that the growth of Arabidopsis (Arabidopsis thaliana) seedlings is less sensitive to salt stress when provided with ammonium instead of nitrate (NO3-), a response that is mediated by ammonium transporters (AMTs). We further show that the kinase SALT OVERLY SENSITIVE2 (SOS2) physically interacts with and activates AMT1;1 by directly phosphorylating the nonconserved serine residue Ser-450 in the C-terminal region. In agreement with the involvement of SOS2, ammonium uptake was lower in sos2 mutants grown under salt stress relative to the wild type. Moreover, AMT-mediated ammonium uptake enhanced salt-induced SOS2 kinase activity. Together, our study demonstrates that SOS2 activates AMT1;1 to fine-tune and maintain ammonium uptake and optimize the plant salt stress response.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - De-Bin Qin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Liping Sun
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kaina Zhang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiang Yu
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - An-Kai Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengfan Hou
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Jiao F, Zhang D, Chen Y, Wu J. Genome-Wide Identification of Members of the Soybean CBL Gene Family and Characterization of the Functional Role of GmCBL1 in Responses to Saline and Alkaline Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1304. [PMID: 38794375 PMCID: PMC11124892 DOI: 10.3390/plants13101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Calcium ions function as key messengers in the context of intracellular signal transduction. The ability of plants to respond to biotic and abiotic stressors is highly dependent on the calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) signaling network. Here, a comprehensive effort was made to identify all members of the soybean CBL gene family, leading to the identification of 15 total genes distributed randomly across nine chromosomes, including 13 segmental duplicates. All the GmCBL gene subfamilies presented with similar gene structures and conserved motifs. Analyses of the expression of these genes in different tissues revealed that the majority of these GmCBLs were predominantly expressed in the roots. Significant GmCBL expression and activity increases were also observed in response to a range of stress-related treatments, including salt stress, alkaline stress, osmotic stress, or exposure to salicylic acid, brassinosteroids, or abscisic acid. Striking increases in GmCBL1 expression were observed in response to alkaline and salt stress. Subsequent analyses revealed that GmCBL1 was capable of enhancing soybean salt and alkali tolerance through the regulation of redox reactions. These results offer new insight into the complex mechanisms through which the soybean CBL gene family regulates the responses of these plants to environmental stressors, highlighting promising targets for efforts aimed at enhancing soybean stress tolerance.
Collapse
Affiliation(s)
| | | | | | - Jinhua Wu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (F.J.); (D.Z.); (Y.C.)
| |
Collapse
|
5
|
Chen JS, Wang ST, Mei Q, Sun T, Hu JT, Xiao GS, Chen H, Xuan YH. The role of CBL-CIPK signaling in plant responses to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:53. [PMID: 38714550 DOI: 10.1007/s11103-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/06/2024] [Indexed: 05/10/2024]
Abstract
Plants have a variety of regulatory mechanisms to perceive, transduce, and respond to biotic and abiotic stress. One such mechanism is the calcium-sensing CBL-CIPK system responsible for the sensing of specific stressors, such as drought or pathogens. CBLs perceive and bind Calcium (Ca2+) in response to stress and then interact with CIPKs to form an activated complex. This leads to the phosphorylation of downstream targets, including transporters and ion channels, and modulates transcription factor levels and the consequent levels of stress-associated genes. This review describes the mechanisms underlying the response of the CBL-CIPK pathway to biotic and abiotic stresses, including regulating ion transport channels, coordinating plant hormone signal transduction, and pathways related to ROS signaling. Investigation of the function of the CBL-CIPK pathway is important for understanding plant stress tolerance and provides a promising avenue for molecular breeding.
Collapse
Affiliation(s)
- J S Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - S T Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Q Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - T Sun
- Chongqing Customs Technology Center, Chongqing, 400020, China
| | - J T Hu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - G S Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| | - H Chen
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Y H Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Xia C, Zhang X, Zuo Y, Zhang X, Zhang H, Wang B, Deng H. Genome-wide identification, expression analysis, and abiotic stress response of the CBL and CIPK gene families in Artocarpus nanchuanensis. Int J Biol Macromol 2024; 267:131454. [PMID: 38588845 DOI: 10.1016/j.ijbiomac.2024.131454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Artocarpus nanchuanensis, the northernmost species in the jackfruit genus, has great economic and horticultural value due to its nutritious fruit and beautiful tree shape. Calcineurin B-like proteins (CBLs) act as plant-specific Ca2+ sensors and participate in regulating plant responses to various abiotic stresses by interacting with CBL-interacting protein kinases (CIPKs). However, the characteristics and functions of the CBL and CIPK genes in A. nanchuanensis are still unclear. Here, we identified 14 CBL and 33 CIPK genes from the A. nanchuanensis genome, and based on phylogenetic analysis, they were divided into 4 and 7 clades, respectively. Gene structure and motif analysis indicated that the AnCBL and AnCIPK genes were relatively conserved. Colinear analysis showed that segmental duplication contributed to the expansion of the AnCBL and AnCIPK gene families. Expression analysis showed that AnCBL and AnCIPK genes were widely expressed in various tissues of A. nanchuanensis and exhibited tissue-specific expression. In addition, three genes (AnCBL6, AnCIPK7/8) may play important roles in response to salt, cold, and drought stresses. In summary, this study lays an important foundation for the improvement of stress resistance in A. nanchuanensis and provides new insight for the functional research on CBL and CIPK gene families.
Collapse
Affiliation(s)
- Changying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiao Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Binru Wang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
7
|
Qi C, Wang Q, Niu Y, Zhang Y, Liu M, Liu Z, Wang L. Characteristics of ZjCIPKs and ZjbHLH74-ZjCIPK5 regulated cold tolerance in jujube. Int J Biol Macromol 2024; 264:130429. [PMID: 38428762 DOI: 10.1016/j.ijbiomac.2024.130429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
CIPKs are kind of serine/threonine (Ser/Thr) protein kinases which play important roles in response to biotic and abiotic stresses, and in plant growth and development. However, CIPKs in jujube (Ziziphus jujuba Mill.) had limited information, especially regarding their response to cold stress. In the current study, a total of 18 ZjCIPKs were identified in jujube genome which unevenly distributed on seven chromosomes. Conserved motif and gene structural analysis depicted them with conserved DEGLSA and APE motifs and similar structures. Phylogenetic analysis indicated that CIPKs were classified into five subgroups (I-V). In addition, three pairs of ZjCIPKs exhibited tandem duplication while the segmental duplication of ZjCIPKs was not identified. Study on the cis-acting elements indicted that stress or hormone related cis-acting elements were distributed unevenly on ZjCIPKs promoters and most ZjCIPKs were down- or up-regulated by the cold stress. VIGS induced silencing of ZjCIPK5 decreased the cold tolerance of sour jujube. Subcellular location analysis showed ZjCIPK5 located in nucleus. Moreover, transcription factor ZjbHLH74 which was induced at 6 h under cold stress could interact with the promoter of ZjCIPK5 to regulate jujube cold tolerance. These findings provided insights to a molecular basis of CIPK5 in jujube cold tolerance breeding for future.
Collapse
Affiliation(s)
- Chaofeng Qi
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qingfang Wang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yahong Niu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
8
|
Kang H, Yang Y, Meng Y. Functional Differentiation of the Duplicated Gene BrrCIPK9 in Turnip ( Brassica rapa var. rapa). Genes (Basel) 2024; 15:405. [PMID: 38674340 PMCID: PMC11049275 DOI: 10.3390/genes15040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gene duplication is a key biological process in the evolutionary history of plants and an important driving force for the diversification of genomic and genetic systems. Interactions between the calcium sensor calcineurin B-like protein (CBL) and its target, CBL-interacting protein kinase (CIPK), play important roles in the plant's response to various environmental stresses. As a food crop with important economic and research value, turnip (Brassica rapa var. rapa) has been well adapted to the environment of the Tibetan Plateau and become a traditional crop in the region. The BrrCIPK9 gene in turnip has not been characterized. In this study, two duplicated genes, BrrCIPK9.1 and BrrCIPK9.2, were screened from the turnip genome. Based on the phylogenetic analysis, BrrCIPK9.1 and BrrCIPK9.2 were found located in different sub-branches on the phylogenetic tree. Real-time fluorescence quantitative PCR analyses revealed their differential expression levels between the leaves and roots and in response to various stress treatments. The differences in their interactions with BrrCBLs were also revealed by yeast two-hybrid analyses. The results indicate that BrrCIPK9.1 and BrrCIPK9.2 have undergone Asparagine-alanine-phenylalanine (NAF) site divergence during turnip evolution, which has resulted in functional differences between them. Furthermore, BrrCIPK9.1 responded to high-pH (pH 8.5) stress, while BrrCIPK9.2 retained its ancestral function (low K+), thus providing further evidence of their functional divergence. These functional divergence genes facilitate turnip's good adaptation to the extreme environment of the Tibetan Plateau. In summary, the results of this study reveal the characteristics of the duplicated BrrCIPK9 genes and provide a basis for further functional studies of BrrCBLs-BrrCIPKs in turnip.
Collapse
Affiliation(s)
- Haotong Kang
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Yunqiang Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying Meng
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China;
| |
Collapse
|
9
|
Zheng H, Xie Y, Mu C, Cheng W, Bai Y, Gao J. Deciphering the regulatory role of PheSnRK genes in Moso bamboo: insights into hormonal, energy, and stress responses. BMC Genomics 2024; 25:252. [PMID: 38448813 PMCID: PMC10916206 DOI: 10.1186/s12864-024-10176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
The SnRK (sucrose non-fermentation-related protein kinase) plays an important role in regulating various signals in plants. However, as an important bamboo shoot and wood species, the response mechanism of PheSnRK in Phyllostachys edulis to hormones, low energy and stress remains unclear. In this paper, we focused on the structure, expression, and response of SnRK to hormones and sugars. In this study, we identified 75 PheSnRK genes from the Moso bamboo genome, which can be divided into three groups according to the evolutionary relationship. Cis-element analysis has shown that the PheSnRK gene can respond to various hormones, light, and stress. The PheSnRK2.9 proteins were localized in the nucleus and cytoplasm. Transgenic experiments showed that overexpression of PheSnRK2.9 inhibited root development, the plants were salt-tolerant and exhibited slowed starch consumption in Arabidopsis in the dark. The results of yeast one-hybrid and dual luciferase assay showed that PheIAAs and PheNACs can regulate PheSnRK2.9 gene expression by binding to the promoter of PheSnRK2.9. This study provided a comprehensive understanding of PheSnRK genes of Moso bamboo, which provides valuable information for further research on energy regulation mechanism and stress response during the growth and development of Moso bamboo.
Collapse
Affiliation(s)
- Huifang Zheng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, 100102, Beijing, China
- College of Life Science, Leshan Normal University, Leshan, China
| | - Yali Xie
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, 100102, Beijing, China
| | - Changhong Mu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, 100102, Beijing, China
| | - Wenlong Cheng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, 100102, Beijing, China
| | - Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, 100102, Beijing, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, 100102, Beijing, China.
| |
Collapse
|
10
|
Bork A, Smits SHJ, Schmitt L. Calcium binding of AtCBL1: Structural and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140967. [PMID: 37757925 DOI: 10.1016/j.bbapap.2023.140967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
CBL1 is an EF hand Ca2+ binding protein from A. thaliana that is involved in the detection of cellular Ca2+ signals and the downstream signal transmission by interaction with the protein kinase CIPK23. So far, the structure and calcium ion binding affinities of CBL1 remain elusive. In this study it was observed that CBL1 tends to form higher oligomeric states due to an intrinsic hydrophobicity and the presence of the detergent BriJ35 was required for the purification of monomeric and functional protein. Functional insights into the in vitro Ca2+ binding capabilities of CBL1 were obtained by isothermal titration calorimetry (ITC) of the wildtype protein as well as single site EF hand mutants. Based on our results, a binding model of CBL1 for Ca2+in vivo is proposed. Additionally, upon both, ITC measurements and the analysis of an AlphaFold2 model of CBL1, we could gain first insights into the formation of the dimer interface. We could identify an area around EF hand 4 to be relevant for the structural and functional integrity of monomeric CBL1 and likely EF hand 1 to be involved in the dimer interface.
Collapse
Affiliation(s)
- Alexandra Bork
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
11
|
Liu X, Wang X, Yang C, Wang G, Fan B, Shang Y, Dang C, Xie C, Wang Z. Genome-wide identification of TaCIPK gene family members in wheat and their roles in host response to Blumeria graminis f. sp. tritici infection. Int J Biol Macromol 2023; 248:125691. [PMID: 37422244 DOI: 10.1016/j.ijbiomac.2023.125691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease affecting wheat crops worldwide. Functional genes can be activated in response to Bgt inoculations. Calcineurin B-like protein (CBL) together with CBL-interacting protein kinase (CIPK) forms the CBL-CIPK protein complex that participates in Ca2+ sensor kinase-related signaling pathways responding to abiotic and biotic stresses. In this study, we performed a genome-wide screening and identified 27 CIPK subfamilies (123 CIPK transcripts, TaCIPKs) including 55 new and 47 updated TaCIPKs in wheat. Phylogenetic analysis revealed that 123 TaCIPKs could be divided into four groups. Segmental duplications and tandem repeats promoted the expansion of the TaCIPK family. Gene function was further evidenced by differences in gene structure, cis-elements, and protein domains. TaCIPK15-4A was cloned in this study. TaCIPK15-4A contained 17 serine, seven tyrosine, and 15 threonine phosphorylation sites and localized in the plasma membrane and cytoplasm. TaCIPK15-4A expression was induced after Bgt inoculation. Virus-induced gene silencing and overexpression experiments indicated that TaCIPK15-4A could play a positive role in wheat disease resistance to Bgt. Overall, these results provide insights into the role of the TaCIPK gene family in wheat resistance and could be beneficial for further research to prevent Bgt infection.
Collapse
Affiliation(s)
- Xiaoying Liu
- College of Life Science, Tianjin Normal University, Tianjin, 30087, China
| | - Xueqing Wang
- College of Life Science, Tianjin Normal University, Tianjin, 30087, China
| | - Chenxiao Yang
- College of Life Science, Tianjin Normal University, Tianjin, 30087, China
| | - Guangyu Wang
- College of Life Science, Tianjin Normal University, Tianjin, 30087, China
| | - Baoli Fan
- College of Life Science, Tianjin Normal University, Tianjin, 30087, China
| | - Yuntao Shang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 30087, China
| | - Chen Dang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agro-biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agro-biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhenying Wang
- College of Life Science, Tianjin Normal University, Tianjin, 30087, China.
| |
Collapse
|
12
|
Ma L, Han R, Yang Y, Liu X, Li H, Zhao X, Li J, Fu H, Huo Y, Sun L, Yan Y, Zhang H, Li Z, Tian F, Li J, Guo Y. Phytochromes enhance SOS2-mediated PIF1 and PIF3 phosphorylation and degradation to promote Arabidopsis salt tolerance. THE PLANT CELL 2023; 35:2997-3020. [PMID: 37119239 PMCID: PMC10396371 DOI: 10.1093/plcell/koad117] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/08/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Soil salinity is one of the most detrimental abiotic stresses affecting plant survival, and light is a core environmental signal regulating plant growth and responses to abiotic stress. However, how light modulates the plant's response to salt stress remains largely obscure. Here, we show that Arabidopsis (Arabidopsis thaliana) seedlings are more tolerant to salt stress in the light than in the dark, and that the photoreceptors phytochrome A (phyA) and phyB are involved in this tolerance mechanism. We further show that phyA and phyB physically interact with the salt tolerance regulator SALT OVERLY SENSITIVE2 (SOS2) in the cytosol and nucleus, and enhance salt-activated SOS2 kinase activity in the light. Moreover, SOS2 directly interacts with and phosphorylates PHYTOCHROME-INTERACTING FACTORS PIF1 and PIF3 in the nucleus. Accordingly, PIFs act as negative regulators of plant salt tolerance, and SOS2 phosphorylation of PIF1 and PIF3 decreases their stability and relieves their repressive effect on plant salt tolerance in both light and dark conditions. Together, our study demonstrates that photoactivated phyA and phyB promote plant salt tolerance by increasing SOS2-mediated phosphorylation and degradation of PIF1 and PIF3, thus broadening our understanding of how plants adapt to salt stress according to their dynamic light environment.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Run Han
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangning Liu
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Li
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianfang Li
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haiqi Fu
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yandan Huo
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liping Sun
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Yan
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongyan Zhang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Tian
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Liang B, Cao J, Wang R, Fan C, Wang W, Hu X, He R, Tai F. ZmCIPK32 positively regulates germination of stressed seeds via gibberellin signal. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107716. [PMID: 37116226 DOI: 10.1016/j.plaphy.2023.107716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
Calcineurin B-like proteins (CBLs) as specific calcium sensors that interact with CBL-interacting protein kinases (CIPKs) play a key role in the regulation of plant development and abiotic stress tolerance. In this study, we isolated and characterized the CIPK32 gene from Zea mays. ZmCIPK32 showed that it comprised 440 amino acids and a conserved NAF motif responsible for the interaction with CBLs localized in the cytoplasm and cell membrane. The interaction of ZmCIPK32 with ZmCBL1 and ZmCBL9 demonstrated using yeast two-hybrid system and bimolecular fluorescence complementation assay required the presence of the NAF domain. Overexpression of ZmCIPK32 promoted early germination in transgenic Arabidopsis seeds relative to that observed in wild-type (WT) plants under mannitol treatment. In addition, ZmCIPK32-overexpressing plants were insensitive to treatments with exogenous abscisic acid and paclobutrazol (PBZ) at seed germination and early seedling stages. Expression levels of the key genes GA20ox and GA3ox involved in the synthesis of gibberellin (GA) were increased, whereas expression levels of genes involved in the conversion of active GA to inactive forms and GA signaling were reduced in ZmCIPK32-overexpressing plants relative to those in WT plants under mannitol and PBZ treatments. Furthermore, overexpression of ZmCIPK32 increased GA level but decreased abscisic acid level in transgenic lines compared to the respective levels in WT plants under PBZ or mannitol treatments. Our results suggest that ZmCIPK32 positively regulates seed germination under stressed conditions by modulating GA signals.
Collapse
Affiliation(s)
- Benshuai Liang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiahui Cao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruilin Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chenjie Fan
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
14
|
Adavi B S, Pandesha PH, B J, Jha SK, Chinnusamy V, Sathee L. Nitrate supply regulates tissue calcium abundance and transcript level of Calcineurin B-like (CBL) gene family in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107724. [PMID: 37172401 DOI: 10.1016/j.plaphy.2023.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Calcium ion (Ca2+) is the most ubiquitous signalling molecule and is sensed by different classes of Ca2+ sensor proteins. Recent evidences underscore the role of calcium signalling in plant response to nitrogen/nitrate supply. Recently we found that under nitrate deficiency, a short-term supply of calcium could improve the plant biomass, nitrate assimilation, anthocyanin accumulation and expression of nitrate uptake and signalling genes. Long-term calcium supply, on the other hand, was not beneficial. Calcineurin B-like (CBL) proteins are one of the vital plant Ca2+ sensory protein family which is essential for stress perception and signaling. To understand the dynamics of CBL-mediated stress signalling in bread wheat, we identified CBL genes in bread wheat (Triticum aestivum) and its progenitors, namely Triticum dicoccoides, Triticum urartu and Aegilops tauschii with the aid of newly available whole-genome sequence. The expression of different CBLs and the changes in root Ca2+ localization in response to nitrate provision or deficiency were analysed. Expression of the CBLs were studied in two bread wheat genotypes with comparatively higher (B.T. Schomburgk, BTS) and lower (Gluyas early, GE) nitrate responsiveness and nitrogen use efficiency. High N promoted the expression of CBLs in seedling leaves while in roots the expression was promoted by N deficiency. At the 5 days after anthesis stage, nitrate starvation downregulated the expression of CBLs while nitrate supply enhanced the expression. At anthesis stage, expression of CBL6 was significantly promoted by HN in panicles of both the genotypes, the highest expression was recorded in BTS. Expression of CBL6 was significantly upregulated by short term nitrate treatment also suggesting its role in Primary nitrate response (PNR) in wheat. There was a significant down regulation of CBL6 expression post nitrate starvation, making it a probable regulator of nitrogen starvation response (NSR) as well. In seedling roots, the tissue localization of Ca2+ was increased both by high and low nitrate treatments, albeit at different magnitudes. Our results suggest that calcium signalling might be a major signalling pathway governing nitrogen responsiveness and CBL6 might be playing pivotal role in NSR and PNR in wheat.
Collapse
Affiliation(s)
- Sandeep Adavi B
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pratheek H Pandesha
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jagadhesan B
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
15
|
Characterization of Dendrobium catenatum CBL-CIPK signaling networks and their response to abiotic stress. Int J Biol Macromol 2023; 236:124010. [PMID: 36918075 DOI: 10.1016/j.ijbiomac.2023.124010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Dendrobium catenatum is a traditional Chinese medicine listing as rare and endangered due to environmental impacts. But little is known about its stress resistance mechanism. The CBL-CIPK signaling pathway played vital roles in various stress responses. In this study, we identified 9 calcineurin B-like (CBL) genes and 28 CBL-interacting protein kinase (CIPK) genes from D. catenatum. Phylogenetic analysis showed that DcCBL and DcCIPK families could be divided into four and six subgroups, respectively. Members in each subgroup had similar gene structures. Cis-acting element analyses showed that these genes were involved in stress responses and hormone signaling. Spatial expression profiles showed that they were tissue-specific, and expressed lower in vegetative organs than reproductive organs. Gene expression analyses revealed that these genes were involved in drought, heat, cold, and salt responses and depended on abscisic acid (ABA) and salicylic acid (SA) signaling pathways. Furthermore, we cloned 19 DcCIPK genes and 9 DcCBL genes and detected ten interacting CBL-CIPK combinations using yeast two-hybrid system. Finally, we constructed 20 CBL-CIPK signaling pathways based on their expression patterns and interaction relationships. These results established CBL-CIPK signaling pathway responding to abiotic stress and provided a molecular basis for improving D. catenatum stress resistance in the future.
Collapse
|
16
|
Tansley C, Houghton J, Rose AME, Witek B, Payet RD, Wu T, Miller JB. CIPK-B is essential for salt stress signalling in Marchantia polymorpha. THE NEW PHYTOLOGIST 2023; 237:2210-2223. [PMID: 36660914 PMCID: PMC10953335 DOI: 10.1111/nph.18633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Calcium signalling is central to many plant processes, with families of calcium decoder proteins having expanded across the green lineage and redundancy existing between decoders. The liverwort Marchantia polymorpha has fast become a new model plant, but the calcium decoders that exist in this species remain unclear. We performed phylogenetic analyses to identify the calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) network of M. polymorpha. We analysed CBL-CIPK expression during salt stress, and determined protein-protein interactions using yeast two-hybrid and bimolecular fluorescence complementation. We also created genetic knockouts using CRISPR/Cas9. We confirm that M. polymorpha has two CIPKs and three CBLs. Both CIPKs and one CBL show pronounced salt-responsive transcriptional changes. All M. polymorpha CBL-CIPKs interact with each other in planta. Knocking out CIPK-B causes increased sensitivity to salt, suggesting that this CIPK is involved in salt signalling. We have identified CBL-CIPKs that form part of a salt tolerance pathway in M. polymorpha. Phylogeny and interaction studies imply that these CBL-CIPKs form an evolutionarily conserved salt overly sensitive pathway. Hence, salt responses may be some of the early functions of CBL-CIPK networks and increased abiotic stress tolerance required for land plant emergence.
Collapse
Affiliation(s)
- Connor Tansley
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - James Houghton
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Althea M. E. Rose
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Bartosz Witek
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Rocky D. Payet
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Taoyang Wu
- School of Computing SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - J. Benjamin Miller
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
17
|
Grape BES1 transcription factor gene VvBES1-3 confers salt tolerance in transgenic Arabidopsis. Gene X 2023; 854:147059. [PMID: 36535462 DOI: 10.1016/j.gene.2022.147059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
BRI1-EMS-Suppressor 1 (BES1) regulates plant growth, development, and stress resistance, and plays a pivotal role in the brassinosteroid (BR) signal transduction pathway. In this study, a total of 12 BES1 genes were identified in the grape (Vitis vinifera) genome. Phylogenetic, structure, and motif sequence analyses of these genes provided insights into their evolutionary characteristics. Hormone-, stress-, and light-responsive and organ-specific cis-acting elements were identified in VvBES1 gene promoters. Microarray data analysis showed that VvBES1 family members exhibit diverse expression patterns in different organs. Quantitative real-time PCR (qRT-PCR) analysis showed that the expression levels of VvBES1 genes differed in response to BR, methyl jasmonate (MeJA), cold (4 °C), NaCl, and polyethylene glycol (PEG) treatments. The expression of VvBES1-3 was 29-fold higher under salt stress than control at 12 h. Moreover, VvBES1-3-overexpessing Arabidopsis thaliana plants showed lower malondialdehyde content, higher proline content, enhanced antioxidant enzyme (catalase, superoxide dismutase, peroxidase) activities, and higher salt-responsive gene expression levels than wild-type plants under salt stress, indicating that VvBES1-3 overexpression enhances salt stress tolerance in transgenic Arabidopsis. These results will contribute to further understanding the functions of BES1 transcription factors in the abiotic stress response.
Collapse
|
18
|
Feng X, Meng Q, Zeng J, Yu Q, Xu D, Dai X, Ge L, Ma W, Liu W. Genome-wide identification of sucrose non-fermenting-1-related protein kinase genes in maize and their responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1087839. [PMID: 36618673 PMCID: PMC9815513 DOI: 10.3389/fpls.2022.1087839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Introduction Protein kinases play an important role in plants in response to environmental changes through signal transduction. As a large family of protein kinases, sucrose non-fermenting-1 (SNF1)-related kinases (SnRKs) were found and functionally verified in many plants. Nevertheless, little is known about the SnRK family of Zea mays. Methods Evolutionary relationships, chromosome locations, gene structures, conserved motifs, and cis-elements in promoter regions were systematically analyzed. Besides, tissue-specific and stress-induced expression patterns of ZmSnRKs were determined. Finally, functional regulatory networks between ZmSnRKs and other proteins or miRNAs were constructed. Results and Discussion In total, 60 SnRK genes located on 10 chromosomes were discovered in maize. ZmSnRKs were classified into three subfamilies (ZmSnRK1, ZmSnRK2, and ZmSnRK3), consisting of 4, 14, and 42 genes, respectively. Gene structure analysis showed that 33 of the 42 ZmSnRK3 genes contained only one exon. Most ZmSnRK genes contained at least one ABRE, MBS, and LTR cis-element and a few ZmSnRK genes had AuxRR-core, P-box, MBSI, and SARE ciselements in their promoter regions. The Ka:Ks ratio of 22 paralogous ZmSnRK gene pairs revealed that the ZmSnRK gene family had experienced a purifying selection. Meanwhile, we analyzed the expression profiles of ZmSnRKs, and they exhibited significant differences in various tissues and abiotic stresses. In addition, A total of eight ZmPP2Cs, which can interact with ZmSnRK proteins, and 46 miRNAs, which can target 24 ZmSnRKs, were identified. Generally, these results provide valuable information for further function verification of ZmSnRKs, and improve our understanding of the role of ZmSnRKs in the climate resilience of maize.
Collapse
Affiliation(s)
- Xue Feng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Quan Meng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xuehuan Dai
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Lei Ge
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Wenxing Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
19
|
Lu L, Wu X, Tang Y, Zhu L, Hao Z, Zhang J, Li X, Shi J, Chen J, Cheng T. Halophyte Nitraria billardieri CIPK25 promotes photosynthesis in Arabidopsis under salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1052463. [PMID: 36589077 PMCID: PMC9800929 DOI: 10.3389/fpls.2022.1052463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The calcineurin B-like (CBL)-interacting protein kinases (CIPKs), a type of plant-specific genes in the calcium signaling pathway, function in response to adverse environments. However, few halophyte derived CIPKs have been studied for their role in plant physiological and developmental adaptation during abiotic stresses, which inhibits the potential application of these genes to improve environmental adaptability of glycophytes. In this study, we constructed Nitraria billardieri CIPK25 overexpressing Arabidopsis and analyzed the seedling development under salt treatment. Our results show that Arabidopsis with NbCIPK25 expression exhibits more vigorous growth than wild type plants under salt condition. To gain insight into the molecular mechanisms underlying salt tolerance, we profiled the transcriptome of WT and transgenic plants via RNA-seq. GO and KEGG analyses revealed that upregulated genes in NbCIPK25 overexpressing seedlings under salt stress are enriched in photosynthesis related terms; Calvin-cycle genes including glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) are significantly upregulated in transgenic plants, which is consistent with a decreased level of NADPH (GAPDH substrate) and increased level of NADP+. Accordingly, NbCIPK25 overexpressing plants exhibited more efficient photosynthesis; soluble sugar and proteins, as photosynthesis products, showed a higher accumulation in transgenic plants. These results provide molecular insight into how NbCIPK25 promotes the expression of genes involved in photosynthesis, thereby maintaining plant growth under salt stress. Our finding supports the potential application of halophyte-derived NbCIPK25 in genetic modification for better salt adaptation.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xinru Wu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yao Tang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Liming Zhu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jingbo Zhang
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, Inner Mongolia, China
| | - Xinle Li
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, Inner Mongolia, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
20
|
Ai D, Wang Y, Wei Y, Zhang J, Meng J, Zhang Y. Comprehensive identification and expression analyses of the SnRK gene family in Casuarina equisetifolia in response to salt stress. BMC PLANT BIOLOGY 2022; 22:572. [PMID: 36482301 PMCID: PMC9733041 DOI: 10.1186/s12870-022-03961-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sucrose nonfermenting-1 (SNF1)-related protein kinases (SnRKs) play crucial roles in plant signaling pathways and stress adaptive responses by activating protein phosphorylation pathways. However, there have been no comprehensive studies of the SnRK gene family in the widely planted salt-tolerant tree species Casuarina equisetifolia. Here, we comprehensively analyze this gene family in C. equisetifolia using genome-wide identification, characterization, and profiling of expression changes in response to salt stress. RESULTS A total of 26 CeqSnRK genes were identified, which were divided into three subfamilies (SnRK1, SnRK2, and SnRK3). The intron-exon structures and protein‑motif compositions were similar within each subgroup but differed among groups. Ka/Ks ratio analysis indicated that the CeqSnRK family has undergone purifying selection, and cis-regulatory element analysis suggested that these genes may be involved in plant development and responses to various environmental stresses. A heat map was generated using quantitative real‑time PCR (RT-qPCR) data from 26 CeqSnRK genes, suggesting that they were expressed in different tissues. We also examined the expression of all CeqSnRK genes under exposure to different salt concentrations using RT-qPCR, finding that most CeqSnRK genes were regulated by different salt treatments. Moreover, co-expression network analysis revealed synergistic effects among CeqSnRK genes. CONCLUSIONS Several CeqSnRK genes (CeqSnRK3.7, CeqSnRK3.16, CeqSnRK3.17) were up-regulated following salt treatment. Among them, CeqSnRK3.16 expression was significantly up-regulated under various salt treatments, identifying this as a candidate gene salt stress tolerance gene. In addition, CeqSnRK3.16 showed significant expression change correlations with multiple genes under salt stress, indicating that it might exhibit synergistic effects with other genes in response to salt stress. This comprehensive analysis will provide a theoretical reference for CeqSnRK gene functional verification and the role of these genes in salt tolerance.
Collapse
Affiliation(s)
- Di Ai
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
- College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Yujiao Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yongcheng Wei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Jie Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Jingxiang Meng
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yong Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
21
|
Does Potassium (K +) Contribute to High-Nitrate (NO 3-) Weakening of a Plant's Defense System against Necrotrophic Fungi? Int J Mol Sci 2022; 23:ijms232415631. [PMID: 36555267 PMCID: PMC9778958 DOI: 10.3390/ijms232415631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
In this opinion article, we have analyzed the relevancy of a hypothesis which is based on the idea that in Arabidopsis thaliana jasmonic acid, a (JA)-mediated defense system against necrotrophic fungi is weakened when NO3- supply is high. Such a hypothesis is based on the fact that when NO3- supply is high, it induces an increase in the amount of bioactive ABA which induces the sequestration of the phosphatase ABI2 (PP2C) into the PYR/PYL/RCAR receptor. Consequently, the Ca sensors CBL1/9-CIPK23 are not dephosphorylated by ABI2, thus remaining able to phosphorylate targets such as AtNPF6.3 and AtKAT1, which are NO3- and K+ transporters, respectively. Therefore, the impact of phosphorylation on the regulation of these two transporters, could (1) reduce NO3- influx as in its phosphorylated state AtNPF6.3 shifts to low capacity state and (2) increase K+ influx, as in its phosphorylated state KAT1 becomes more active. It is also well known that in roots, K+ loading in the xylem and its transport to the shoot is activated in the presence of NO3-. As such, the enrichment of plant tissues in K+ can impair a jasmonic acid (JA) regulatory pathway and the induction of the corresponding biomarkers. The latter are known to be up-regulated under K+ deficiency and inhibited when K+ is resupplied. We therefore suggest that increased K+ uptake and tissue content induced by high NO3- supply modifies the JA regulatory pathway, resulting in a weakened JA-mediated plant's defense system against necrotrophic fungi.
Collapse
|
22
|
Guo X, Zhang D, Wang Z, Xu S, Batistič O, Steinhorst L, Li H, Weng Y, Ren D, Kudla J, Xu Y, Chong K. Cold-induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice. EMBO J 2022; 42:e110518. [PMID: 36341575 PMCID: PMC9811624 DOI: 10.15252/embj.2021110518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait. Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL-interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock-out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B-like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold-sensing mechanism that simultaneously conveys cold-induced protein conformational change, enhances kinase activity, and Ca2+ signal generation to facilitate chilling tolerance in rice.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Dajian Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Zhongliang Wang
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Shujuan Xu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Oliver Batistič
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms‐UniversitätMünsterGermany
| | - Leonie Steinhorst
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms‐UniversitätMünsterGermany
| | - Hao Li
- Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms‐UniversitätMünsterGermany
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Kang Chong
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
23
|
Zhang XX, Ren XL, Qi XT, Yang ZM, Feng XL, Zhang T, Wang HJ, Liang P, Jiang QY, Yang WJ, Fu Y, Chen M, Fu ZX, Xu B. Evolution of the CBL and CIPK gene families in Medicago: genome-wide characterization, pervasive duplication, and expression pattern under salt and drought stress. BMC PLANT BIOLOGY 2022; 22:512. [PMID: 36324083 PMCID: PMC9632064 DOI: 10.1186/s12870-022-03884-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Calcineurin B-like proteins (CBLs) are ubiquitous Ca2+ sensors that mediate plant responses to various stress and developmental processes by interacting with CBL-interacting protein kinases (CIPKs). CBLs and CIPKs play essential roles in acclimatization of crop plants. However, evolution of these two gene families in the genus Medicago is poorly understood. RESULTS A total of 68 CBL and 135 CIPK genes have been identified in five genomes from Medicago. Among these genomes, the gene number of CBLs and CIPKs shows no significant difference at the haploid genome level. Phylogenetic and comprehensive characteristic analyses reveal that CBLs and CIPKs are classified into four clades respectively, which is validated by distribution of conserved motifs. The synteny analysis indicates that the whole genome duplication events (WGDs) have contributed to the expansion of both families. Expression analysis demonstrates that two MsCBLs and three MsCIPKs are specifically expressed in roots, mature leaves, developing flowers and nitrogen fixing nodules of Medicago sativa spp. sativa, the widely grown tetraploid species. In particular, the expression of these five genes was highly up-regulated in roots when exposed to salt and drought stress, indicating crucial roles in stress responses. CONCLUSIONS Our study leads to a comprehensive understanding of evolution of CBL and CIPK gene families in Medicago, but also provides a rich resource to further address the functions of CBL-CIPK complexes in cultivated species and their closely related wild relatives.
Collapse
Affiliation(s)
- Xiao-Xia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiao-Long Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Tong Qi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Min Yang
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Xiao-Lei Feng
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Tian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Jie Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Liang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Ying Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Jun Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Fu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhi-Xi Fu
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
24
|
Li R, Radani Y, Ahmad B, Movahedi A, Yang L. Identification and characteristics of SnRK genes and cold stress-induced expression profiles in Liriodendron chinense. BMC Genomics 2022; 23:708. [PMID: 36253733 PMCID: PMC9578244 DOI: 10.1186/s12864-022-08902-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background The sucrose non-fermenting 1 (SNF1)-related protein kinases (SnRKs) play a vivid role in regulating plant metabolism and stress response, providing a pathway for regulation between metabolism and stress signals. Conducting identification and stress response studies on SnRKs in plants contributes to the development of strategies for tree species that are more tolerant to stress conditions. Results In the present study, a total of 30 LcSnRKs were identified in Liriodendron chinense (L. chinense) genome, which was distributed across 15 chromosomes and 4 scaffolds. It could be divided into three subfamilies: SnRK1, SnRK2, and SnRK3 based on phylogenetic analysis and domain types. The LcSnRK of the three subfamilies shared the same Ser/Thr kinase structure in gene structure and motif composition, while the functional domains, except for the kinase domain, showed significant differences. A total of 13 collinear gene pairs were detected in L. chinense and Arabidopsis thaliana (A. thaliana), and 18 pairs were detected in L. chinense and rice, suggesting that the LcSnRK family genes may be evolutionarily more closely related to rice. Cis-regulation element analysis showed that LcSnRKs were LTR and TC-rich, which could respond to different environmental stresses. Furthermore, the expression patterns of LcSnRKs are different at different times under low-temperature stress. LcSnRK1s expression tended to be down-regulated under low-temperature stress. The expression of LcSnRK2s tended to be up-regulated under low-temperature stress. The expression trend of LcSnRK3s under low-temperature stress was mainly up-or down-regulated. Conclusion The results of this study will provide valuable information for the functional identification of the LcSnRK gene in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08902-0.
Collapse
Affiliation(s)
- Rongxue Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yasmina Radani
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Baseer Ahmad
- Muhammad Nawaz Sharif University of Agriculture, Multan, Punjab, 25000, Pakistan
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
25
|
Gao C, Lu S, Zhou R, Wang Z, Li Y, Fang H, Wang B, Chen M, Cao Y. The OsCBL8-OsCIPK17 Module Regulates Seedling Growth and Confers Resistance to Heat and Drought in Rice. Int J Mol Sci 2022; 23:12451. [PMID: 36293306 PMCID: PMC9604039 DOI: 10.3390/ijms232012451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 12/01/2023] Open
Abstract
The calcium signaling pathway is critical for plant growth, development, and response to external stimuli. The CBL-CIPK pathway has been well characterized as a calcium-signaling pathway. However, in most reports, only a single function for this module has been described. Here, we examined multiple functions of this module. CIPK showed a similar distribution to that of CBL, and OsCBL and OsCIPK families were retained after experiencing whole genome duplication events through the phylogenetic and synteny analysis. This study found that OsCBL8 negatively regulated rice seed germination and seedling growth by interacting with OsCIPK17 with overexpression and gene editing mutant plants as materials combining plant phenotype, physiological indicators and transcriptome sequencing. This process is likely mediated by OsPP2C77, which is a member of the ABA signaling pathway. In addition, OsCBL mediated the targeting of OsNAC77 and OsJAMYB by OsCIPK17, thus conferring resistance to high temperatures and pathogens in rice. Our work reveals a unique signaling pathway, wherein OsCBL8 interacts with OsCIPK17 and provides rice with multiple resistance while also regulating seedling growth.
Collapse
Affiliation(s)
- Cong Gao
- College of Life Sciences, Nantong University, Nantong 226007, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuai Lu
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Rong Zhou
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Zihui Wang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Yi Li
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Hui Fang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Baohua Wang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Moxian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271000, China
| | - Yunying Cao
- College of Life Sciences, Nantong University, Nantong 226007, China
| |
Collapse
|
26
|
Sequence Characteristics and Expression Analysis of GhCIPK23 Gene in Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2022; 23:ijms231912040. [PMID: 36233340 PMCID: PMC9570493 DOI: 10.3390/ijms231912040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
CIPK (calcineurin B-like-interacting protein kinase) is a kind of serine/threonine protein kinase widely existing in plants, and it plays an important role in plant growth and development and stress response. To better understand the biological functions of the GhCIPK23 gene in upland cotton, the coding sequence (CDS) of the GhCIPK23 gene was cloned in upland cotton, and its protein sequence, evolutionary relationship, subcellular localization, expression pattern and cis-acting elements in the promoter region were analyzed. Our results showed that the full-length CDS of GhCIPK23 was 1368 bp, encoding a protein with 455 amino acids. The molecular weight and isoelectric point of this protein were 50.83 KDa and 8.94, respectively. The GhCIPK23 protein contained a conserved N-terminal protein kinase domain and C-terminal regulatory domain of the CIPK gene family member. Phylogenetic tree analysis demonstrated that GhCIPK23 had a close relationship with AtCIPK23, followed by OsCIPK23, and belonged to Group A with AtCIPK23 and OsCIPK23. The subcellular localization experiment indicated that GhCIPK23 was located in the plasma membrane. Tissue expression analysis showed that GhCIPK23 had the highest expression in petals, followed by sepals, and the lowest in fibers. Stress expression analysis showed that the expression of the GhCIPK23 gene was in response to drought, salt, low-temperature and exogenous abscisic acid (ABA) treatment, and had different expression patterns under different stress conditions. Further cis-acting elements analysis showed that the GhCIPK23 promoter region had cis-acting elements in response to abiotic stress, phytohormones and light. These results established a foundation for understanding the function of GhCIPK23 and breeding varieties with high-stress tolerance in cotton.
Collapse
|
27
|
Molecular and expression analysis indicate the role of CBL interacting protein kinases (CIPKs) in abiotic stress signaling and development in chickpea. Sci Rep 2022; 12:16862. [PMID: 36207429 PMCID: PMC9546895 DOI: 10.1038/s41598-022-20750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Calcineurin B-like proteins (CBL)-interacting protein kinases (CIPKs) regulate the developmental processes, hormone signal transduction and stress responses in plants. Although the genome sequence of chickpea is available, information related to the CIPK gene family is missing in this important crop plant. Here, a total of 22 CIPK genes were identified and characterized in chickpea. We found a high degree of structural and evolutionary conservation in the chickpea CIPK family. Our analysis showed that chickpea CIPKs have evolved with dicots such as Arabidopsis and soybean, and extensive gene duplication events have played an important role in the evolution and expansion of the CIPK gene family in chickpea. The three-dimensional structure of chickpea CIPKs was described by protein homology modelling. Most CIPK proteins are localized in the cytoplasm and nucleus, as predicted by subcellular localization analysis. Promoter analysis revealed various cis-regulatory elements related to plant development, hormone signaling, and abiotic stresses. RNA-seq expression analysis indicated that CIPKs are significantly expressed through a spectrum of developmental stages, tissue/organs that hinted at their important role in plant development. The qRT-PCR analysis revealed that several CaCIPK genes had specific and overlapping expressions in different abiotic stresses like drought, salt, and ABA, suggesting the important role of this gene family in abiotic stress signaling in chickpea. Thus, this study provides an avenue for detailed functional characterization of the CIPK gene family in chickpea and other legume crops.
Collapse
|
28
|
Genome-Wide Investigation and Expression Analysis of the Nitraria sibirica Pall. CIPK Gene Family. Int J Mol Sci 2022; 23:ijms231911599. [PMID: 36232901 PMCID: PMC9569540 DOI: 10.3390/ijms231911599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The calcineurin B-like-interacting protein kinase (CIPK) protein family plays a key role in the plant calcium ion-mediated signal transduction pathway, which regulates a plant's response to abiotic stress. Nitraria sibirica pall. (N. sibirica) is a halophyte with a strong tolerance for high salt environments, yet how it is able to deal with salt stress on a molecular level is still unknown. Due to their function as described in other plant species, CIPK genes are prime candidates for a role in salt stress signaling in N. sibirica. In this study, we identified and analyzed the phylogenetic makeup and gene expression of the N. sibirica CIPK gene family. A total of 14 CIPKs were identified from the N. sibirica genome and were clustered into seven groups based on their phylogeny. The promoters of NsCIPK genes contained multiple elements involved in hormonal and stress response. Synteny analysis identified a total of three pairs of synteny relationships between NsCIPK genes. Each gene showed its own specific expression pattern across different tissues, with the overall expression of CIPK6 being the lowest, and that of CIPK20 being the highest. Almost all CIPK genes tended to respond to salt, drought, and cold stress, but with different sensitivity levels. In this study, we have provided a general description of the NsCIPK gene family and its expression, which will be of great significance for further understanding of the NsCIPK gene family function.
Collapse
|
29
|
Ren W, Zhang J, He J, Fang J, Wan L. Identification, expression, and association analysis of calcineurin B-like protein–interacting protein kinase genes in peanut. Front Genet 2022; 13:939255. [PMID: 36134030 PMCID: PMC9483126 DOI: 10.3389/fgene.2022.939255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Plants usually respond to the external environment by initiating a series of signal transduction processes mediated by protein kinases, especially calcineurin B-like protein–interacting protein kinases (CIPKs). In this study, 54 CIPKs were identified in the peanut genome, of which 26 were from cultivated species (named AhCIPKs) and 28 from two diploid progenitors (Arachis duranensis—AdCIPKs and Arachis ipaensis—AiCIPKs). Evolution analysis revealed that the 54 CIPKs were composed of two different evolutionary branches. The CIPK members were unevenly distributed at different chromosomes. Synteny analysis strongly indicated that whole-genome duplication (allopolyploidization) contributed to the expansion of CIPK. Comparative genomics analysis showed that there was only one common collinear CIPK pairs among peanut, Arabidopsis, rice, grape, and soybean. The prediction results of cis-acting elements showed that AhCIPKs, AdCIPKs, and AiCIPKs contained different proportions of transcription factor binding motifs involved in regulating plant growth, abiotic stress, plant hormones, and light response elements. Spatial expression profiles revealed that almost all AhCIPKs had tissue-specific expression patterns. Furthermore, association analysis identified one polymorphic site in AdCIPK12 (AhCIPK11), which was significantly associated with pod length, seed length, hundred seed weight, and shoot root ratio. Our results provide valuable information of CIPKs in peanut and facilitate better understanding of their biological functions.
Collapse
Affiliation(s)
- Weifang Ren
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Juncheng Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jie He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Jiahai Fang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Liyun Wan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Liyun Wan,
| |
Collapse
|
30
|
Steinhorst L, He G, Moore LK, Schültke S, Schmitz-Thom I, Cao Y, Hashimoto K, Andrés Z, Piepenburg K, Ragel P, Behera S, Almutairi BO, Batistič O, Wyganowski T, Köster P, Edel KH, Zhang C, Krebs M, Jiang C, Guo Y, Quintero FJ, Bock R, Kudla J. A Ca 2+-sensor switch for tolerance to elevated salt stress in Arabidopsis. Dev Cell 2022; 57:2081-2094.e7. [PMID: 36007523 DOI: 10.1016/j.devcel.2022.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 12/20/2022]
Abstract
Excessive Na+ in soils inhibits plant growth. Here, we report that Na+ stress triggers primary calcium signals specifically in a cell group within the root differentiation zone, thus forming a "sodium-sensing niche" in Arabidopsis. The amplitude of this primary calcium signal and the speed of the resulting Ca2+ wave dose-dependently increase with rising Na+ concentrations, thus providing quantitative information about the stress intensity encountered. We also delineate a Ca2+-sensing mechanism that measures the stress intensity in order to mount appropriate salt detoxification responses. This is mediated by a Ca2+-sensor-switch mechanism, in which the sensors SOS3/CBL4 and CBL8 are activated by distinct Ca2+-signal amplitudes. Although the SOS3/CBL4-SOS2/CIPK24-SOS1 axis confers basal salt tolerance, the CBL8-SOS2/CIPK24-SOS1 module becomes additionally activated only in response to severe salt stress. Thus, Ca2+-mediated translation of Na+ stress intensity into SOS1 Na+/H+ antiporter activity facilitates fine tuning of the sodium extrusion capacity for optimized salt-stress tolerance.
Collapse
Affiliation(s)
- Leonie Steinhorst
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Gefeng He
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Lena K Moore
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Stefanie Schültke
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Ina Schmitz-Thom
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Yibo Cao
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Zaida Andrés
- Instituto de Biología Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Katrin Piepenburg
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Germany
| | - Paula Ragel
- Instituto de Biología Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Smrutisanjita Behera
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Oliver Batistič
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Thomas Wyganowski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Chunxia Zhang
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Melanie Krebs
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Francisco J Quintero
- Instituto de Biología Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| |
Collapse
|
31
|
Lu L, Wu X, Wang P, Zhu L, Liu Y, Tang Y, Hao Z, Lu Y, Zhang J, Shi J, Cheng T, Chen J. Halophyte Nitraria billardieri CIPK25 mitigates salinity-induced cell damage by alleviating H 2O 2 accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:961651. [PMID: 36003812 PMCID: PMC9393555 DOI: 10.3389/fpls.2022.961651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific module of calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) play a crucial role in plant adaptation to different biotic and abiotic stresses in various plant species. Despite the importance of the CBL-CIPK module in regulating plant salt tolerance, few halophyte CIPK orthologs have been studied. We identified NbCIPK25 in the halophyte Nitraria billardieri as a salt-responsive gene that may improve salt tolerance in glycophytes. Sequence analyses indicated that NbCIPK25 is a typical CIPK family member with a conserved NAF motif, which contains the amino acids: asparagine, alanine, and phenylalanine. NbCIPK25 overexpression in salt-stressed transgenic Arabidopsis seedlings resulted in enhanced tolerance to salinity, a higher survival rate, longer newly grown roots, more root meristem cells, and less damaged root cells in comparison to wild-type (WT) plants. H2O2 accumulation and malondialdehyde (MDA) content were both deceased in NbCIPK25-transgenic plants under salt treatment. Furthermore, their proline content, an important factor for scavenging reactive oxygen species, accumulated at a significantly higher level. In concordance, the transcription of genes related to proline accumulation was positively regulated in transgenic plants under salt condition. Finally, we observed a stronger auxin response in salt-treated transgenic roots. These results provide evidence for NbCIPK25 improving salt tolerance by mediating scavenging of reactive oxygen species, thereby protecting cells from oxidation and maintaining plant development under salt stress. These findings suggest the potential application of salt-responsive NbCIPK25 for cultivating glycophytes with a higher salt tolerance through genetic engineering.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xinru Wu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Pengkai Wang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Liming Zhu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuxin Liu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yao Tang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ye Lu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jingbo Zhang
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
32
|
Li H, Wang XH, Li Q, Xu P, Liu ZN, Xu M, Cui XY. GmCIPK21, a CBL-interacting protein kinase confers salt tolerance in soybean (Glycine max. L). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:47-55. [PMID: 35642834 DOI: 10.1016/j.plaphy.2022.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Salt stress severely affects plant development and yield. Calcineurin B-like protein interacting protein kinases (CIPKs) play a crucial role in plant adaptation to environmental challenges. However, the biological functions of CIPKs in soybean remain poorly understood. Here, we identified GmCIPK21, a salt-responsive CIPK gene from soybean. Overexpression of GmCIPK21 in Arabidopsis and soybean hairy roots led to increased salt tolerance. The hairy roots with GmCIPK21 suppression by RNA interference exhibited salt-sensitive phenotypes. Further physiological analysis revealed that GmCIPK21 reduced the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and increased the activity of the antioxidant enzymes under salt stress. Additionally, GmCIPK21 was found to enhance the ABA sensitivity of transgenic plants. GmCIPK21 was also implicated in increasing the activation of antioxidant-, salt-, and ABA-related genes upon salt stress. Interestingly, GmCIPK21 interacted with GmCBL4, promoting the scavenging salt-induced reactive oxygen species (ROS). These results collectively suggested that GmCIPK21 affects ROS homeostasis and ABA response to improve salt tolerance in soybean.
Collapse
Affiliation(s)
- Hui Li
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China; Center for International Education, Philippine Christian University, 1004, Philippines.
| | - Xiao-Hua Wang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Qiang Li
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Ping Xu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Zhen-Ning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Meng Xu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Xiao-Yu Cui
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| |
Collapse
|
33
|
Aslam M, Greaves JG, Jakada BH, Fakher B, Wang X, Qin Y. AcCIPK5, a pineapple CBL-interacting protein kinase, confers salt, osmotic and cold stress tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111284. [PMID: 35643609 DOI: 10.1016/j.plantsci.2022.111284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Plant-specific calcineurin B-like proteins (CBLs) and their interacting kinases, CBL-interacting protein kinases (CIPKs) module, are essential for dealing with various biotic and abiotic stress. The kinases (CIPKs) of this module have been well studied in several plants; however, the information about pineapple CIPKs remains limited. To understand how CIPKs function against environmental cues in pineapple, the CIPK5 gene of pineapple was cloned and characterized. The phylogenetic analyses revealed that AcCIPK5 is homologous to the CIPK12 of Arabidopsis and other plant species. Quantitative real-time PCR (qRT-PCR) analysis revealed that AcCIPK5 responds to multiple stresses, including osmotic, salt stress, heat and cold. Under optimal conditions, AcCIPK5 gets localized to the cytoplasm and cell membrane. The ectopic expression of AcCIPK5 in Arabidopsis improved the germination under osmotic and salt stress. Furthermore, AcCIPK5 positively regulated osmotic, drought, salt and cold tolerance and negatively regulated heat and fungal stress in Arabidopsis. Besides, the expression of AcCIPK impacted ABA-related genes and ROS homeostasis. Overall, the present study demonstrates that AcCIPK5 contributes to multiple stress tolerance and has the potential to be utilized in the development of stress-tolerant crops.
Collapse
Affiliation(s)
- Mohammad Aslam
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Joseph G Greaves
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Bello Hassan Jakada
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Beenish Fakher
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning 530007, China
| | - Yuan Qin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
34
|
Jiang B, Liu Y, Niu H, He Y, Ma D, Li Y. Mining the Roles of Wheat ( Triticum aestivum) SnRK Genes in Biotic and Abiotic Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:934226. [PMID: 35845708 PMCID: PMC9280681 DOI: 10.3389/fpls.2022.934226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/01/2022] [Indexed: 05/27/2023]
Abstract
Sucrose non-fermenting-1-related protein kinases (SnRKs) play vital roles in plant growth and stress responses. However, little is known about the SnRK functions in wheat. In this study, 149 TaSnRKs (wheat SnRKs) were identified and were divided into three subfamilies. A combination of public transcriptome data and real-time reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed the distinct expression patterns of TaSnRKs under various abiotic and biotic stresses. TaSnRK2.4-B, a member of SnRK2s, has different expression patterns under polyethylene glycol (PEG), sodium chloride (NaCl) treatment, and high concentrations of abscisic acid (ABA) application. Yeast two-hybrid assay indicated that TaSnRK2.4-B could interact with the SnRK2-interacting calcium sensor (SCS) in wheat and play a role in the ABA-dependent pathway. Moreover, TaSnRK2.4-B might be a negative regulator in wheat against pathogen infection. The present study provides valuable information for understanding the functions of the TaSnRK family and provides recommendations for future genetic improvement in wheat stress resistance.
Collapse
Affiliation(s)
- Baihui Jiang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yike Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Hongli Niu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yiqin He
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Longgan Lake National Nature Reserve Authority of Hubei, Huanggang, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Yan Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station for Central China, Wuhan, China
| |
Collapse
|
35
|
Liang G, Li Y, Wang P, Jiao S, Wang H, Mao J, Chen B. VaAPL1 Promotes Starch Synthesis to Constantly Contribute to Soluble Sugar Accumulation, Improving Low Temperature Tolerance in Arabidopsis and Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:920424. [PMID: 35812933 PMCID: PMC9257282 DOI: 10.3389/fpls.2022.920424] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 05/30/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is a key rate-limiting enzyme involved in starch synthesis. APL1, an AGPase large subunit, plays an important role in the growth and development of grapes; however, its function in withstanding low temperature (LT) remains elusive. Hence, VaAPL1 was cloned from Vitis amurensis (Zuoshan I), and its function was characterized. The gene was highly expressed in the phloem of V. amurensis during winter dormancy (0, -5, and - 10°C). Phylogenetic relationships demonstrated that VaAPL1 was closely genetic related to SlAPL1 (from Solanum lycopersicum), and clustered into I group. Further, VaAPL1 was ectopically expressed in Arabidopsis thaliana (ecotype Columbia, Col) and tomato ("Micro-Tom" tomato) to characterize its function under LT. Compared with Col, the average survival rate of VaAPL1-overexpressing A. thaliana exceeded 75.47% after freezing treatment. Moreover, reactive oxygen species (ROS) content decreased in VaAPL1-overexpressing A. thaliana and tomato plants under LT stress. The activities of AGPase, and starch contents in VaAPL1-overexpressing A. thaliana were higher than in Col after LT stress. The contents of sucrose and glucose were accumulated in overexpressing plants compared with wild-type at 0 h and 24 h after LT stress. Transcriptome sequencing of overexpressing tomato plants revealed involvement in sugar metabolism and the hormone signal pathway, and Ca2+ signaling pathway-related genes were up-regulated. Hence, these results suggest that overexpression of VaAPL1 not only ensured sufficient starch converting into soluble sugars to maintain cell osmotic potential and provided energy, but also indirectly activated signal pathways involved in LT to enhance plant tolerance.
Collapse
|
36
|
Genome-Wide Identification of the Salvia miltiorrhiza SmCIPK Gene Family and Revealing the Salt Resistance Characteristic of SmCIPK13. Int J Mol Sci 2022; 23:ijms23126861. [PMID: 35743301 PMCID: PMC9224336 DOI: 10.3390/ijms23126861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the CIPK (CBL-interacting protein kinases) gene family play important roles in calcium (Ca2+) signaling pathway-regulated plant resistance to abiotic stresses. Salvia miltiorrhiza, which is widely planted and grown in complex and diverse environments, is mainly focused on the transcriptional regulation of enzyme genes related to the biosynthesis of its bioactive components. However, the excavation of the genes related to the resistance of S.miltiorrhiza and the involved signaling pathways have not been deeply studied. In this study, 20 SmCIPK genes were identified and classified into two families and five subfamilies by biochemical means. Sequence characteristics and conserved motif analysis revealed the conservation and difference of SmCIPK protein in plants. Expression pattern analysis showed that SmCIPKs were mainly expressed in flowers and roots, and more than 90% of gene expression was induced by SA (salicylic acid), and MeJA (methyl jasmonate). Furthermore, the expression level of SmCIPK13 could be significantly increased after stress treatment with NaCl. SmCIPK13 expression in yeast reduces sensitivity to salt, while overexpression of it in Arabidopsis has the same effect and was localized in the cytoplasm, cell membrane and nucleus. In conclusion, the identification of the SmCIPK gene family and the functional characterization of the SmCIPK13 gene provides the basis for clarification of key genes in the Ca2+ signaling pathway and abiotic stress in S.miltiorrhiza.
Collapse
|
37
|
Xiaolin Z, Baoqiang W, Xian W, Xiaohong W. Identification of the CIPK-CBL family gene and functional characterization of CqCIPK14 gene under drought stress in quinoa. BMC Genomics 2022; 23:447. [PMID: 35710332 PMCID: PMC9204864 DOI: 10.1186/s12864-022-08683-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background Calcineurin-like Protein (CBL) and CBL interacting protein kinase (CIPK) play a key role in plant signal transduction and response to various environmental stimuli. Quinoa, as an important plant with high nutritional value, can meet the basic nutritional needs of human Cash crop, is also susceptible to abiotic stress. However, CBL-CIPK in quinoa have not been reported. Results In this study, 16 CBL and 41 CIPK genes were identified in quinoa. CBL-CIPK gene shows different intron-exon gene structure and motif, they participate in different biological processes, and form a complex regulatory network between CBL-CIPK proteins. Many cis-regulatory element associated with ABA and drought have been found. The expression patterns of CBL-CIPK showed different expression patterns in various abiotic stresses and tissues. RT-qPCR showed that most members of these two gene families were involved in drought regulation of quinoa, in particular, the expression levels of CqCIPK11, CqCIPK15, CqCIPK37 and CqCBL13 increased significantly under drought stress. Conclusions The structures and functions of the CBL-CIPK family in quinoa were systematically explored. Many CBL-CIPK may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the quinoa CBL-CIPK family and our understanding of the CBL-CIPK family in higher plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08683-6.
Collapse
Affiliation(s)
- Zhu Xiaolin
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.,Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wang Baoqiang
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.,Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wang Xian
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Xiaohong
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China. .,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China. .,Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
38
|
Wang Q, Zhao K, Gong Y, Yang Y, Yue Y. Genome-Wide Identification and Functional Analysis of the Calcineurin B-like Protein and Calcineurin B-like Protein-Interacting Protein Kinase Gene Families in Chinese Cabbage (Brassica rapa ssp. pekinensis). Genes (Basel) 2022; 13:genes13050795. [PMID: 35627180 PMCID: PMC9140732 DOI: 10.3390/genes13050795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
In plants, calcineurin B-like proteins (CBL) are a unique set of calcium sensors that decode calcium signals by activating a plant-specific protein kinase family called CBL-interacting protein kinases (CIPKs). The CBL–CIPK family and its interacting complexes regulate plant responses to various environmental stimuli. Chinese cabbage (Brassica rapa ssp. pekinensis) is an important vegetable crop in Asia; however, there are no reports on the role of the CBLs–CIPKs’ signaling system in response to abiotic stress during cabbage growth. In this study, 18 CBL genes and 47 CIPK genes were identified from the Chinese cabbage genome. Expansion of the gene families was mainly due to tandem repeats and segmental duplication. An analysis of gene expression patterns showed that different duplicate genes exhibited different expression patterns in response to treatment with Mg2+, K+, and low temperature. In addition, differences in the structural domain sequences of NAF/FISL and interaction profiles in yeast two-hybrid assays suggested a functional divergence of the duplicate genes during the long-term evolution of Chinese cabbage, a result further validated by potassium deficiency treatment using trans-BraCIPK23.1/23.2/23.3 Arabidopsis thaliana. Our results provide a basis for studies related to the functional divergence of duplicate genes and in-depth studies of BraCBL–BraCIPK functions in Chinese cabbage.
Collapse
Affiliation(s)
- Qianwen Wang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (K.Z.); (Y.G.)
| | - Kai Zhao
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (K.Z.); (Y.G.)
| | - Yuqiang Gong
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (K.Z.); (Y.G.)
| | - Yunqiang Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Yanling Yue
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (K.Z.); (Y.G.)
- Correspondence:
| |
Collapse
|
39
|
Zhu K, Fan P, Liu H, Tan P, Ma W, Mo Z, Zhao J, Chu G, Peng F. Insight into the CBL and CIPK gene families in pecan (Carya illinoinensis): identification, evolution and expression patterns in drought response. BMC PLANT BIOLOGY 2022; 22:221. [PMID: 35484502 PMCID: PMC9047272 DOI: 10.1186/s12870-022-03601-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/18/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Calcium (Ca2+) serves as a ubiquitous second messenger and plays a pivotal role in signal transduction. Calcineurin B-like proteins (CBLs) are plant-specific Ca2+ sensors that interact with CBL-interacting protein kinases (CIPKs) to transmit Ca2+ signals. CBL-CIPK complexes have been reported to play pivotal roles in plant development and response to drought stress; however, limited information is available about the CBL and CIPK genes in pecan, an important nut crop. RESULTS In the present study, a total of 9 CBL and 30 CIPK genes were identified from the pecan genome and divided into four and five clades based on phylogeny, respectively. Gene structure and distribution of conserved sequence motif analysis suggested that family members in the same clade commonly exhibited similar exon-intron structures and motif compositions. The segmental duplication events contributed largely to the expansion of pecan CBL and CIPK gene families, and Ka/Ks values revealed that all of them experienced strong negative selection. Phylogenetic analysis of CIPK proteins from 14 plant species revealed that CIPKs in the intron-poor clade originated in seed plants. Tissue-specific expression profiles of CiCBLs and CiCIPKs were analysed, presenting functional diversity. Expression profiles derived from RNA-Seq revealed distinct expression patterns of CiCBLs and CiCIPKs under drought treatment in pecan. Moreover, coexpression network analysis helped to elucidate the relationships between these genes and identify potential candidates for the regulation of drought response, which were verified by qRT-PCR analysis. CONCLUSIONS The characterization and analysis of CBL and CIPK genes in pecan genome could provide a basis for further functional analysis of CiCBLs and CiCIPKs in the drought stress response of pecan.
Collapse
Affiliation(s)
- Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Pinghua Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Pengpeng Tan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Wenjuan Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Zhenghai Mo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 Jiangsu China
| | - Juan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Guolin Chu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Fangren Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| |
Collapse
|
40
|
Xiong J, Chen D, Su T, Shen Q, Wu D, Zhang G. Genome-Wide Identification, Expression Pattern and Sequence Variation Analysis of SnRK Family Genes in Barley. PLANTS 2022; 11:plants11070975. [PMID: 35406955 PMCID: PMC9002700 DOI: 10.3390/plants11070975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/02/2023]
Abstract
Sucrose non-fermenting 1 (SNF1)-related protein kinase (SnRK) is a large family of protein kinases that play a significant role in plant stress responses. Although intensive studies have been conducted on SnRK members in some crops, little is known about the SnRK in barley. Using phylogenetic and conserved motif analyses, we discovered 46 SnRK members scattered across barley’s 7 chromosomes and classified them into 3 sub-families. The gene structures of HvSnRKs showed the divergence among three subfamilies. Gene duplication and synteny analyses on the genomes of barley and rice revealed the evolutionary features of HvSnRKs. The promoter regions of HvSnRK family genes contained many ABRE, MBS and LTR elements responding to abiotic stresses, and their expression patterns varied with different plant tissues and abiotic stresses. HvSnRKs could interact with the components of ABA signaling pathway to respond to abiotic stress. Moreover, the haplotypes of HvSnRK2.5 closely associated with drought tolerance were detected in a barley core collection. The current results could be helpful for further exploration of the HvSnRK genes responding to abiotic stress tolerance in barley.
Collapse
Affiliation(s)
- Jiangyan Xiong
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China; (J.X.); (D.C.); (T.S.); (Q.S.)
| | - Danyi Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China; (J.X.); (D.C.); (T.S.); (Q.S.)
| | - Tingting Su
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China; (J.X.); (D.C.); (T.S.); (Q.S.)
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China; (J.X.); (D.C.); (T.S.); (Q.S.)
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (D.W.); (G.Z.)
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China; (J.X.); (D.C.); (T.S.); (Q.S.)
- Linyi Institute of Agricultural Sciences, Zhejiang University, Linyi 276000, China
- Correspondence: (D.W.); (G.Z.)
| |
Collapse
|
41
|
Gao C, Zhu X, Lu S, Xu J, Zhou R, Lv J, Chen Y, Cao Y. Functional Analysis of OsCIPK17 in Rice Grain Filling. FRONTIERS IN PLANT SCIENCE 2022; 12:808312. [PMID: 35145535 PMCID: PMC8821165 DOI: 10.3389/fpls.2021.808312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
We used mutant cipk17 and Nipponbare in field experiments to analyze agronomic traits, photosynthetic parameters, transcriptome, and gene expression. The results demonstrated cytoplasmic localization of OsCIPK17, while GUS allogeneic (A. thaliana) tissue-staining and quantitative analysis showed the gene was expressed in many organs, including flower buds; furthermore, it was involved in root, stem, and leaf growth. Compared to Nipponbare plants, grain filling rate and final grain weight decreased in plants of the knockout mutant owing to a delay in attainment of maximum grain filling rate. Photosystem II (PSII) efficiency was also reduced. Enrichment analysis showed that the functions of differentially expressed genes (DEGs) focused on nucleoside-, nucleotide-, and lipid-binding, as well as hydrolase, transferase, and phosphorylase activities. Signaling pathways mainly included starch and sucrose metabolism, as well as photosynthesis. Additionally, some DEGs were verified by fluorescence analysis. The results showed that knockout of OsCIPK17 affected photosynthesis and starch-, sucrose-, and amino acid metabolism-related gene expression; furthermore, the mutation reduced PSII utilization efficiency, it blocked the synthesis and metabolism of starch and sucrose, and affected the formation and transport of assimilates, thereby reducing final grain weight.
Collapse
|
42
|
Ma R, Liu W, Li S, Zhu X, Yang J, Zhang N, Si H. Genome-Wide Identification, Characterization and Expression Analysis of the CIPK Gene Family in Potato ( Solanum tuberosum L.) and the Role of StCIPK10 in Response to Drought and Osmotic Stress. Int J Mol Sci 2021; 22:ijms222413535. [PMID: 34948331 PMCID: PMC8708990 DOI: 10.3390/ijms222413535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
The potato (Solanum tuberosum L.), one of the most important food crops worldwide, is sensitive to environmental stresses. Sensor–responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) not only modulate plant growth and development but also mediate numerous stress responses. Here, using a Hidden Markov Model and BLAST searches, 27 CIPK genes were identified in potato and divided into five groups by phylogenetic analysis and into two clades (intron-poor and intron-rich) by gene structure analysis. Quantitative reverse-transcription PCR (qRT-PCR) assays revealed that StCIPK genes play important roles in plant growth, development and abiotic stress tolerance. Up-regulated expression of StCIPK10 was significantly induced by drought, PEG6000 and ABA. StCIPK10 enhances both the ability of potato to scavenge reactive oxygen species and the content of corresponding osmoregulation substances, thereby strengthening tolerance to drought and osmotic stress. StCIPK10 is located at the intersection between the abscisic acid and abiotic stress signaling pathways, which control both root growth and stomatal closure in potato. In addition, StCIPK10 interacts with StCBL1, StCBL4, StCBL6, StCBL7, StCBL8, StCBL11 and StCBL12, and is specifically recruited to the plasma membrane by StCBL11.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xi Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1875
| |
Collapse
|
43
|
Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, Habib ur Rahman M, Brestic M, Ratnasekera D, Lamilla-Tamayo L, Al-Ashkar I, EL Sabagh A. Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:767150. [PMID: 34975951 PMCID: PMC8714756 DOI: 10.3389/fpls.2021.767150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
- Horticultural Sciences Department, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, United States
| | | | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, Bonn, Germany
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
44
|
Huang L, Li Z, Fu Q, Liang C, Liu Z, Liu Q, Pu G, Li J. Genome-Wide Identification of CBL-CIPK Gene Family in Honeysuckle ( Lonicera japonica Thunb.) and Their Regulated Expression Under Salt Stress. Front Genet 2021; 12:751040. [PMID: 34795693 PMCID: PMC8593244 DOI: 10.3389/fgene.2021.751040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
In plants, calcineurin B-like proteins (CBLs) are a unique group of Ca2+ sensors that decode Ca2+ signals by activating a family of plant-specific protein kinases known as CBL-interacting protein kinases (CIPKs). CBL-CIPK gene families and their interacting complexes are involved in regulating plant responses to various environmental stimuli. To gain insight into the functional divergence of CBL-CIPK genes in honeysuckle, a total of six LjCBL and 17 LjCIPK genes were identified. The phylogenetic analysis along with the gene structure analysis divided both CBL and CBL-interacting protein kinase genes into four subgroups and validated by the distribution of conserved protein motifs. The 3-D structure prediction of proteins shown that most LjCBLs shared the same Protein Data Bank hit 1uhnA and most LjCIPKs shared the 6c9Da. Analysis of cis-acting elements and gene ontology implied that both LjCBL and LjCIPK genes could be involved in hormone signal responsiveness and stress adaptation. Protein-protein interaction prediction suggested that LjCBL4 is hypothesized to interact with LjCIPK7/9/15/16 and SOS1/NHX1. Gene expression analysis in response to salinity stress revealed that LjCBL2/4, LjCIPK1/15/17 under all treatments gradually increased over time until peak expression at 72 h. These results demonstrated the conservation of salt overly sensitive pathway genes in honeysuckle and a model of Ca2+-LjCBL4/LjSOS3-LjCIPK16/LjSOS2 module-mediated salt stress signaling in honeysuckle is proposed. This study provides insight into the characteristics of the CBL-CIPK gene families involved in honeysuckle salt stress responses, which could serve as a foundation for gene transformation technology, to obtain highly salt-tolerant medicinal plants in the context of the global reduction of cultivated land.
Collapse
Affiliation(s)
- Luyao Huang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhuangzhuang Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qingxia Fu
- Department of Pharmacy, Linyi People's Hospital, Linyi, China
| | - Conglian Liang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenhua Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gaobin Pu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
45
|
Mishra S, Sharma P, Singh R, Tiwari R, Singh GP. Genome-wide identification and expression analysis of sucrose nonfermenting-1-related protein kinase (SnRK) genes in Triticum aestivum in response to abiotic stress. Sci Rep 2021; 11:22477. [PMID: 34795369 PMCID: PMC8602265 DOI: 10.1038/s41598-021-99639-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
The SnRK gene family is a key regulator that plays an important role in plant stress response by phosphorylating the target protein to regulate subsequent signaling pathways. This study was aimed to perform a genome-wide analysis of the SnRK gene family in wheat and the expression profiling of SnRKs in response to abiotic stresses. An in silico analysis identified 174 SnRK genes, which were then categorized into three subgroups (SnRK1/2/3) on the basis of phylogenetic analyses and domain types. The gene intron-exon structure and protein-motif composition of SnRKs were similar within each subgroup but different amongst the groups. Gene duplication and synteny between the wheat and Arabidopsis genomes was also investigated in order to get insight into the evolutionary aspects of the TaSnRK family genes. The result of cis-acting element analysis showed that there were abundant stress- and hormone-related cis-elements in the promoter regions of 129 SnRK genes. Furthermore, quantitative real-time PCR data revealed that heat, salt and drought treatments enhanced TaSnRK2.11 expression, suggesting that it might be a candidate gene for abiotic stress tolerance. We also identified eight microRNAs targeting 16 TaSnRK genes which are playing important role across abiotic stresses and regulation in different pathways. These findings will aid in the functional characterization of TaSnRK genes for further research.
Collapse
Affiliation(s)
- Shefali Mishra
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India.
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | |
Collapse
|
46
|
Bomle DV, Kiran A, Kumar JK, Nagaraj LS, Pradeep CK, Ansari MA, Alghamdi S, Kabrah A, Assaggaf H, Dablool AS, Murali M, Amruthesh KN, Udayashankar AC, Niranjana SR. Plants Saline Environment in Perception with Rhizosphere Bacteria Containing 1-Aminocyclopropane-1-Carboxylate Deaminase. Int J Mol Sci 2021; 22:ijms222111461. [PMID: 34768893 PMCID: PMC8584133 DOI: 10.3390/ijms222111461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Soil salinity stress has become a serious roadblock for food production worldwide since it is one of the key factors affecting agricultural productivity. Salinity and drought are predicted to cause considerable loss of crops. To deal with this difficult situation, a variety of strategies have been developed, including plant breeding, plant genetic engineering, and a wide range of agricultural practices, including the use of plant growth-promoting rhizobacteria (PGPR) and seed biopriming techniques, to improve the plants' defenses against salinity stress, resulting in higher crop yields to meet future human food demand. In the present review, we updated and discussed the negative effects of salinity stress on plant morphological parameters and physio-biochemical attributes via various mechanisms and the beneficial roles of PGPR with 1-Aminocyclopropane-1-Carboxylate(ACC) deaminase activity as green bio-inoculants in reducing the impact of saline conditions. Furthermore, the applications of ACC deaminase-producing PGPR as a beneficial tool in seed biopriming techniques are updated and explored. This strategy shows promise in boosting quick seed germination, seedling vigor and plant growth uniformity. In addition, the contentious findings of the variation of antioxidants and osmolytes in ACC deaminase-producing PGPR treated plants are examined.
Collapse
Affiliation(s)
- Dhanashree Vijayrao Bomle
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Asha Kiran
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Jeevitha Kodihalli Kumar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Lavanya Senapathyhalli Nagaraj
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Chamanahalli Kyathegowda Pradeep
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: (M.A.A.); (A.C.U.); (S.R.N.)
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia; (S.A.); (A.K.); (H.A.)
| | - Ahmed Kabrah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia; (S.A.); (A.K.); (H.A.)
| | - Hamza Assaggaf
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia; (S.A.); (A.K.); (H.A.)
| | - Anas S. Dablool
- Department of Public Health, Health Science College Al-Leith, Umm Al-Qura University, Makkah 21961, Saudi Arabia;
| | - Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (M.M.); (K.N.A.)
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (M.M.); (K.N.A.)
| | - Arakere Chunchegowda Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
- Correspondence: (M.A.A.); (A.C.U.); (S.R.N.)
| | - Siddapura Ramachandrappa Niranjana
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
- Correspondence: (M.A.A.); (A.C.U.); (S.R.N.)
| |
Collapse
|
47
|
Calcium Sensor SlCBL4 Associates with SlCIPK24 Protein Kinase and Mediates Salt Tolerance in Solanum lycopersicum. PLANTS 2021; 10:plants10102173. [PMID: 34685982 PMCID: PMC8541381 DOI: 10.3390/plants10102173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Soil salinity is one of the major environmental stresses that restrict the growth and development of tomato (Solanum lycopersicum L.) worldwide. In Arabidopsis, the calcium signaling pathway mediated by calcineurin B-like protein 4 (CBL4) and CBL-interacting protein kinase 24 (CIPK24) plays a critical role in salt stress response. In this study, we identified and isolated two tomato genes similar to the Arabidopsis genes, designated as SlCBL4 and SlCIPK24, respectively. Bimolecular fluorescence complementation (BiFC) and pull-down assays indicated that SlCBL4 can physically interact with SlCIPK24 at the plasma membrane of plant cells in a Ca2+-dependent manner. Overexpression of SlCBL4 or superactive SlCIPK24 mutant (SlCIPK24M) conferred salt tolerance to transgenic tomato (cv. Moneymaker) plants. In particular, the SlCIPK24M-overexpression lines displayed dramatically enhanced tolerance to high salinity. It is notable that the transgenic plants retained higher contents of Na+ and K+ in the roots compared to the wild-type tomato under salt stress. Taken together, our findings clearly suggest that SlCBL4 and SlCIPK24 are functional orthologs of the Arabidopsis counterpart genes, which can be used or engineered to produce salt-tolerant tomato plants.
Collapse
|
48
|
Xu M, Li H, Liu ZN, Wang XH, Xu P, Dai SJ, Cao X, Cui XY. The soybean CBL-interacting protein kinase, GmCIPK2, positively regulates drought tolerance and ABA signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:980-989. [PMID: 34583133 DOI: 10.1016/j.plaphy.2021.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 05/27/2023]
Abstract
Calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) play important roles in plant environmental stress responses. However, the biological functions of the CBL-CIPK signaling pathway in the tolerance of soybean (Glycine max) to drought stress remain elusive. Here, we characterized the GmCIPK2 gene in soybean, and its expression was induced by drought stress and exogenous abscisic acid (ABA) treatments. The overexpression of GmCIPK2 enhanced drought tolerance in transgenic Arabidopsis and soybean hairy roots, whereas downregulation of GmCIPK2 expression in soybean hairy roots by RNA interference resulted in increased drought sensitivity. Further analysis showed that GmCIPK2 was involved in ABA-mediated stomatal closure in plants under drought stress conditions. GmCIPK2 increased the expression of ABA- and drought-responsive genes during drought stress. Additionally, yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays demonstrated that a positive regulator of drought stress, GmCBL1, physically interacted with GmCIPK2 on the plasma membrane. Collectively, our results demonstrated that GmCIPK2 positively regulates drought tolerance and ABA signaling in plants, providing new insights into the underlying mechanisms of how the CBL-CIPK signaling pathway contributes to drought tolerance in soybean.
Collapse
Affiliation(s)
- Meng Xu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Hui Li
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Zhen-Ning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Xiao-Hua Wang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Ping Xu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Sheng-Jie Dai
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Xue Cao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Xiao-Yu Cui
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| |
Collapse
|
49
|
Ródenas R, Vert G. Regulation of Root Nutrient Transporters by CIPK23: 'One Kinase to Rule Them All'. PLANT & CELL PHYSIOLOGY 2021; 62:553-563. [PMID: 33367898 DOI: 10.1093/pcp/pcaa156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/27/2020] [Indexed: 05/21/2023]
Abstract
Protein kinases constitute essential regulatory components in the majority of cellular processes in eukaryotic cells. The CBL-INTERACTING PROTEIN KINASE (CIPK) family of plant protein kinases functions in calcium (Ca2+)-related signaling pathways and is therefore involved in the response to a wide variety of signals in plants. By covalently linking phosphate groups to their target proteins, CIPKs regulate the activity of downstream targets, their localization, their stability and their ability to interact with other proteins. In Arabidopsis, the CIPK23 kinase has emerged as a major hub driving root responses to diverse environmental stresses, including drought, salinity and nutrient imbalances, such as potassium, nitrate and iron deficiencies, as well as ammonium, magnesium and non-iron metal toxicities. This review will chiefly report on the prominent roles of CIPK23 in the regulation of plant nutrient transporters and on the underlying molecular mechanisms. We will also discuss the different scenarios explaining how a single promiscuous kinase, such as CIPK23, may convey specific responses to a myriad of signals.
Collapse
Affiliation(s)
- Reyes Ródenas
- Plant Science Research Laboratory (LRSV), UMR5546, CNRS, Université Toulouse 3, 24 Chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546, CNRS, Université Toulouse 3, 24 Chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| |
Collapse
|
50
|
Lin QJ, Kumar V, Chu J, Li ZM, Wu XX, Dong H, Sun Q, Xuan YH. CBL-interacting protein kinase 31 regulates rice resistance to blast disease by modulating cellular potassium levels. Biochem Biophys Res Commun 2021; 563:23-30. [PMID: 34058471 DOI: 10.1016/j.bbrc.2021.05.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Rice blast disease caused by infection with Magnaporthe oryzae, a hemibiotrophic fungal pathogen, significantly reduces the yield production. However, the rice defense mechanism against blast disease remains elusive. To identify the genes involved in the regulation of rice defense to blast disease, dissociation (Ds) transposon tagging mutant lines were analyzed in terms of their response to M. oryzae isolate Guy11. Among them, CBL-interactingprotein kinase31 (CIPK31) mutants were more susceptible than wild-type plants to blast. The CIPK31 transcript was found to be insensitive to Guy11 infection, and the CIPK31-GFP was localized to the cytosol and nucleus. Overexpression of CIPK31 promoted rice defense to blast. Further analysis indicated that CIPK31 interacts with Calcineurin B-like 2 (CBL2) and CBL6 at the plasma membrane, and cbl2 mutants are more susceptible to blast compared with wild-type plants, suggesting that calcium signaling might partially through the CBL2-CIPK31 signaling regulate rice defense. Yeast two-hybrid results showed that AKT1-like (AKT1L), a potential potassium (K+) channel protein, interacted with CIPK31, and the K+ level was significantly lower in the cipk31 mutants than in the wild-type control. In addition, exogenous potassium application increased rice resistance to blast, suggesting that CIPK31 might interact with AKT1L to increase K+ uptake, thereby promoting resistance to blast. Taken together, the results presented here demonstrate that CBL2-CIPK31-AKT1L is a new signaling pathway that regulates rice defense to blast disease.
Collapse
Affiliation(s)
- Qiu Jun Lin
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Vikranth Kumar
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jin Chu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Zhi Min Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xian Xin Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hai Dong
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Qian Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|