1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Sawada H, Saito T, Shimada Y, Nishimura H. Fertilization mechanisms in hermaphroditic ascidians and nematodes: Common mechanisms with mammals and plants. Curr Top Dev Biol 2025; 162:55-114. [PMID: 40180517 DOI: 10.1016/bs.ctdb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Most animals have male and female, whereas flowering plants are hermaphrodites. Exceptionally, a small population of invertebrates, including ascidians and nematodes, has hermaphrodite in reproductive strategies. Several ascidians exhibit strict self-sterility (or self-incompatibility), similar to flowering plants. Such a self-incompatibility mechanism in ascidian has been revealed to be very similar to those of flowering plants. Here, we describe the mechanisms of ascidian fertilization shared with invertebrates and mammals, as well as with plants. In the nematode Caenorhabditis elegans, having self-fertile hermaphrodite and male, several genes responsible for fertilization are homologous to those of mammals. Thus, novel proteins responsible for fertilization will be easily disclosed by the analyses of sterile mutants. In this review, we focus on the same or similar reproductive strategies by shedding lights on the common mechanisms of fertilization, particularly in hermaphrodites.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.
| | - Yoshihiro Shimada
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Hitoshi Nishimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan.
| |
Collapse
|
3
|
Kulkarni S, Morrissey A, Sebastian A, Giardine B, Smith C, Akinniyi OT, Keller CA, Arnaoutov A, Albert I, Mahony S, Reese JC. Human CCR4-NOT globally regulates gene expression and is a novel silencer of retrotransposon activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612038. [PMID: 39314347 PMCID: PMC11419117 DOI: 10.1101/2024.09.10.612038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
CCR4-NOT regulates multiple steps in gene regulation and has been well studied in budding yeast, but much less is known about the human complex. Auxin-induced degradation was used to rapidly deplete the scaffold subunit CNOT1, and CNOT4, to characterize the functions of human CCR4-NOT in gene regulation. Depleting CNOT1 increased RNA levels and caused a widespread decrease in RNA decay. In contrast, CNOT4 depletion only modestly changed steady-state RNA levels and, surprisingly, led to a global acceleration in mRNA decay. Further, depleting either subunit resulted in a global increase in RNA synthesis. In contrast to most of the genome, the transcription of KRAB-Zinc-Finger-protein (KZNFs) genes, especially those on chromosome 19, was repressed. KZNFs are transcriptional repressors of retrotransposable elements (rTEs), and consistent with the decreased KZNFs expression, rTEs, mainly Long Interspersed Nuclear Elements (LINEs), were activated. These data establish CCR4-NOT as a global regulator of gene expression and a novel silencer of rTEs.
Collapse
|
4
|
Taylor JD, Barrett N, Martinez Cuesta S, Cassidy K, Pachl F, Dodgson J, Patel R, Eriksson TM, Riley A, Burrell M, Bauer C, Rees DG, Cimbro R, Zhang AX, Minter RR, Hunt J, Legg S. Targeted protein degradation using chimeric human E2 ubiquitin-conjugating enzymes. Commun Biol 2024; 7:1179. [PMID: 39300128 DOI: 10.1038/s42003-024-06803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Proteins can be targeted for degradation by engineering biomolecules that direct them to the eukaryotic ubiquitination machinery. For instance, the fusion of an E3 ubiquitin ligase to a suitable target binding domain creates a 'biological Proteolysis-Targeting Chimera' (bioPROTAC). Here we employ an analogous approach where the target protein is recruited directly to a human E2 ubiquitin-conjugating enzyme via an attached target binding domain. Through rational design and screening we develop E2 bioPROTACs that induce the degradation of the human intracellular proteins SHP2 and KRAS. Using global proteomics, we characterise the target-specific and wider effects of E2 vs. VHL-based fusions. Taking SHP2 as a model target, we also employ a route to bioPROTAC discovery based on protein display libraries, yielding a degrader with comparatively weak affinity capable of suppressing SHP2-mediated signalling.
Collapse
Affiliation(s)
- Jonathan D Taylor
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK.
| | - Nathalie Barrett
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Sergio Martinez Cuesta
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Katelyn Cassidy
- Protein Sciences, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, 02451, USA
| | - Fiona Pachl
- Protein Sciences, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, 02451, USA
| | - James Dodgson
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Radhika Patel
- Centre for Genomics Research, Dynamic Omics, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Tuula M Eriksson
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Aidan Riley
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Matthew Burrell
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Christin Bauer
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - D Gareth Rees
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Raffaello Cimbro
- Centre for Genomics Research, Dynamic Omics, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Andrew X Zhang
- Protein Sciences, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, 02451, USA
| | - Ralph R Minter
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - James Hunt
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK.
| | - Sandrine Legg
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| |
Collapse
|
5
|
Munawar N, Wynne K, Oliviero G. PRC1 Protein Subcomplexes Architecture: Focus on the Interplay between Distinct PCGF Subunits in Protein Interaction Networks. Int J Mol Sci 2024; 25:9809. [PMID: 39337298 PMCID: PMC11432245 DOI: 10.3390/ijms25189809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The six PCGF proteins (PCGF1-6) define the biochemical identity of Polycomb repressor complex 1 (PRC1) subcomplexes. While structural and functional studies of PRC1 subcomplexes have revealed their specialized roles in distinct aspects of epigenetic regulation, our understanding of the variation in the protein interaction networks of distinct PCGF subunits in different PRC1 complexes is incomplete. We carried out an affinity purification mass spectrometry (AP-MS) screening of three PCGF subunits, PCGF1 (NSPC1), PCGF2 (MEL18), and PCGF4 (BMI1), to define their interactome and potential cellular function in pluripotent human embryonal carcinoma cell "NT2". The bioinformatic analysis revealed that these interacting proteins cover a range of functional pathways, often involved in cell biology and chromatin regulation. We also found evidence of mutual regulation (at mRNA and protein level) between three distinct PCGF subunits. Furthermore, we confirmed that the disruption of these subunits results in reduced cell proliferation ability. We reveal an interplay between the compositional diversity of the distinct PCGF containing PRC1 complex and the potential role of PCGF proteins within the wider cellular network.
Collapse
Affiliation(s)
- Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Kieran Wynne
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 C1P1 Dublin, Ireland;
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland
| |
Collapse
|
6
|
Mimura M, Ono S, Somashekar H, Nonomura KI. Impact of protein domains on the MEL2 granule, a cytoplasmic ribonucleoprotein complex maintaining faithful meiosis progression in rice. THE NEW PHYTOLOGIST 2024; 243:2235-2250. [PMID: 39049570 DOI: 10.1111/nph.19968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Cytoplasmic ribonucleoprotein (RNP) granules are membraneless structures composed of various RNAs and proteins that play important roles in post-transcriptional regulation. While RNP granules are known to regulate the meiotic entry in some organisms, little is known about their roles in plants. In this study, we observed the cytoplasmic granular structures of rice RNA-binding protein MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2), which contributes to the control of meiotic entry timing, in leaf protoplasts and spore mother cells. We performed colocalization analysis with known cytoplasmic RNP factors, and domain deletion analysis to assess their impact on granule formation and meiosis progression. Conservation of MEL2 domains across plant species was also explored. Our results indicated that MEL2 granules colocalized with processing body and stress granule factors. The maintenance of granule properties modulated by LOTUS domain and the intrinsically disordered region (IDR) is essential for proper MEL2 function in meiosis progression. MEL2-like proteins widely found in plant kingdom conserved LOTUS domain followed by the IDR despite their diverse domain structures, suggesting the functional conservation of these domains among plant species. This study highlights the role of MEL2 granule dynamics and its impact on meiotic transition and progression.
Collapse
Affiliation(s)
- Manaki Mimura
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Seijiro Ono
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Harsha Somashekar
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
7
|
Lv P, Liu J, Liu X. The role of ubiquitin-conjugating enzyme in the process of spermatogenesis. Reprod Biol Endocrinol 2024; 22:110. [PMID: 39198846 PMCID: PMC11351103 DOI: 10.1186/s12958-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The ubiquitination is crucial for controlling cellular homeostasis and protein modification, in which ubiquitin-conjugating enzyme (E2) acts as the central player in the ubiquitination system. Ubiquitin-conjugating enzymes, which have special domains that catalyse substrates, have sequence discrepancies and modulate various pathophysiological processes in different cells of multiple organisms. E2s take part in the mitosis of primordial germ cells, meiosis of spermatocytes and the formation of mature haploid spermatids to maintain normal male fertility. In this review, we summarize the various types of E2s and their functions during distinct stages of spermatogenesis.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Thurm AR, Finkel Y, Andrews C, Cai XS, Benko C, Bintu L. High-throughput discovery of regulatory effector domains in human RNA-binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604317. [PMID: 39071298 PMCID: PMC11275849 DOI: 10.1101/2024.07.19.604317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
RNA regulation plays an integral role in tuning gene expression and is controlled by thousands of RNA-binding proteins (RBPs). We develop and use a high-throughput recruitment assay (HT-RNA-Recruit) to identify regulatory domains within human RBPs by recruiting over 30,000 protein tiles from 367 RBPs to a reporter mRNA. We discover over 100 unique RNA-regulatory effectors in 86 distinct RBPs, presenting evidence that RBPs contain functionally separable domains that dictate their post-transcriptional control of gene expression, and identify some with unique activity at 5' or 3'UTRs. We identify some domains that downregulate gene expression both when recruited to DNA and RNA, and dissect their mechanisms of regulation. Finally, we build a synthetic RNA regulator that can stably maintain gene expression at desired levels that are predictable by a mathematical model. This work serves as a resource for human RNA-regulatory effectors and expands the synthetic repertoire of RNA-based genetic control tools. Highlights HT-RNA-Recruit identifies hundreds of RNA-regulatory effectors in human proteins.Recruitment to 5' and 3' UTRs identifies regulatory domains unique to each position.Some protein domains have both transcriptional and post-transcriptional regulatory activity.We develop a synthetic RNA regulator and a mathematical model to describe its behavior.
Collapse
|
9
|
Ye Q, Zhang L, Li Q, Ji Y, Zhou Y, Wu Z, Hu Y, Ma Y, Wang J, Zhang C. Genome and GWAS analysis identified genes significantly related to phenotypic state of Rhododendron bark. HORTICULTURE RESEARCH 2024; 11:uhae008. [PMID: 38487544 PMCID: PMC10939351 DOI: 10.1093/hr/uhae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/01/2024] [Indexed: 03/17/2024]
Abstract
As an important horticultural plant, Rhododendron is often used in urban greening and landscape design. However, factors such as the high rate of genetic recombination, frequent outcrossing in the wild, weak linkage disequilibrium, and the susceptibility of gene expression to environmental factors limit further exploration of functional genes related to important horticultural traits, and make the breeding of new varieties require a longer time. Therefore, we choose bark as the target trait which is not easily affected by environmental factors, but also has ornamental properties. Genome-wide association study (GWAS) of Rhododendron delavayi (30 samples), R. irroratum (30 samples) and their F1 generation R. agastum (200 samples) was conducted on the roughness of bark phenotypes. Finally, we obtained 2416.31 Gbp of clean data and identified 5 328 800 high-quality SNPs. According to the P-value and the degree of linkage disequilibrium of SNPs, we further identified 4 out of 11 candidate genes that affect bark roughness. The results of gene differential expression analysis further indicated that the expression levels of Rhdel02G0243600 and Rhdel08G0220700 in different bark phenotypes were significantly different. Our study identified functional genes that influence important horticultural traits of Rhododendron, and illustrated the powerful utility and great potential of GWAS in understanding and exploiting wild germplasm genetic resources of Rhododendron.
Collapse
Affiliation(s)
- Qiannan Ye
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Yunnan Academy of Agricultural Sciences Kunming 650000, China
| | - Qing Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaliang Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yanli Zhou
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
| | - Zhenzhen Wu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Hu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Yunnan Academy of Agricultural Sciences Kunming 650000, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- Haiyan Engineering & Technology Center, Zhejiang Institute of Advanced Technology, Jiaxing 314022, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
10
|
Barman P, Ferdoush J, Kaja A, Chakraborty P, Uprety B, Bhaumik R, Bhaumik R, Bhaumik SR. Ubiquitin-proteasome system regulation of a key gene regulatory factor, Paf1C. Gene 2024; 894:148004. [PMID: 37977317 DOI: 10.1016/j.gene.2023.148004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Paf1 (Polymerase-associated factor 1) complex (Paf1C) is evolutionarily conserved from yeast to humans, and facilitates transcription elongation as well as co-transcriptional histone covalent modifications and mRNA 3'-end processing. Thus, Paf1C is a key player in regulation of eukaryotic gene expression. Paf1C consists of Paf1, Cdc73, Ctr9, Leo1 and Rtf1 in both yeast and humans, but it has an additional component, Ski8, in humans. The abundances of these components regulate the assembly of Paf1C and/or its functions, thus implying the mechanisms involved in regulating the abundances of the Paf1C components in altered gene expression and hence cellular pathologies. Towards finding the mechanisms associated with the abundances of the Paf1C components, we analyzed here whether the Paf1C components are regulated via targeted ubiquitylation and 26S proteasomal degradation. We find that the Paf1C components except Paf1 do not undergo the 26S proteasomal degradation in both yeast and humans. Paf1 is found to be regulated by the ubiquitin-proteasome system (UPS) in yeast and humans. Alteration of such regulation changes Paf1's abundance, leading to aberrant gene expression. Intriguingly, while the Rtf1 component of Paf1C does not undergo the 26S proteasomal degradation, it is found to be ubiquitylated, suggesting that Rtf1 ubiquitylation could be engaged in Paf1C assembly and/or functions. Collectively, our results reveal distinct UPS regulation of the Paf1C components, Paf1 and Rtf1, in a proteolysis-dependent and -independent manners, respectively, with functional implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Jannatul Ferdoush
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Bhawana Uprety
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Risa Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
11
|
Altas B, Rhee HJ, Ju A, Solís HC, Karaca S, Winchenbach J, Kaplan-Arabaci O, Schwark M, Ambrozkiewicz MC, Lee C, Spieth L, Wieser GL, Chaugule VK, Majoul I, Hassan MA, Goel R, Wojcik SM, Koganezawa N, Hanamura K, Rotin D, Pichler A, Mitkovski M, de Hoz L, Poulopoulos A, Urlaub H, Jahn O, Saher G, Brose N, Rhee J, Kawabe H. Nedd4-2-dependent regulation of astrocytic Kir4.1 and Connexin43 controls neuronal network activity. J Cell Biol 2024; 223:e201902050. [PMID: 38032389 PMCID: PMC10689203 DOI: 10.1083/jcb.201902050] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/21/2021] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Nedd4-2 is an E3 ubiquitin ligase in which missense mutation is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of γ-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of the Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy.
Collapse
Affiliation(s)
- Bekir Altas
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Systems Neuroscience, University of Göttingen, Göttingen, Germany
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hong-Jun Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anes Ju
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Systems Neuroscience, University of Göttingen, Göttingen, Germany
| | - Hugo Cruces Solís
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Samir Karaca
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jan Winchenbach
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Systems Neuroscience, University of Göttingen, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Oykum Kaplan-Arabaci
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Manuela Schwark
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mateusz C. Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - ChungKu Lee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Georg L. Wieser
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Viduth K. Chaugule
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Irina Majoul
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Mohamed A. Hassan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Rashi Goel
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sonja M. Wojcik
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noriko Koganezawa
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kenji Hanamura
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Daniela Rotin
- The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Miso Mitkovski
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandros Poulopoulos
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Olaf Jahn
- Department of Molecular Neurobiology, Neuroproteomics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, Translational Neuroproteomics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
12
|
Eskandarian S, Grand RJ, Irani S, Saeedi M, Mirfakhraie R. Depletion of CNOT4 modulates the DNA damage responses following ionizing radiation (IR). J Cancer Res Ther 2024; 20:126-132. [PMID: 38554309 DOI: 10.4103/jcrt.jcrt_1723_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 04/01/2024]
Abstract
BACKGROUND The Ccr4-Not complex (CNOT complex in mammals) is a unique and highly conserved complex with numerous cellular functions. Until now, there has been relatively little known about the importance of the CNOT complex subunits in the DNA damage response (DDR) in mammalian cells. CNOT4 is a subunit of the complex with E3 ubiquitin ligase activity that interacts transiently with the CNOT1 subunit. Here, we attempt to investigate the role of human CNOT4 subunit in the DDR in human cells. MATERIAL AND METHODS In this study, cell viability in the absence of CNOT4 was assessed using a Cell Titer-Glo Luminescence assay up to 4 days post siRNA transfection. In a further experiment, CNOT4-depleted HeLa cells were exposed to 3Gy ionizing radiation (IR). Ataxia telangiectasia-mutated (ATM) and ATM Rad3-related (ATR) signaling pathways were then investigated by western blotting for phosphorylated substrates. In addition, foci formation of histone 2A family member X (γH2AX), replication protein A (RPA), TP53 binding protein 1 (53BP1), and DNA repair protein RAD51 homolog 1 was also determined by immunofluorescence microscopy comparing control and CNOT4-depleted HeLa cells 0, 8, and 24 h post IR treatment. RESULTS Our results from cell viability assays showed a significant reduction of cell growth activity at 24 (P value 0.02) and 48 h (P value 0.002) post siRNA. Western blot analysis showed slightly reduced or slightly delayed DDR signaling in CNOT4-depleted HeLa cells after IR. More significantly, we observed increased formation of γH2AX, RPA, 53BP1, and RAD51 foci after IR in CNOT4-depleted cells compared with the control cells. CONCLUSION We conclude that depletion of CNOT4 affects various aspects of the cellular response to DNA damage.
Collapse
Affiliation(s)
- Samira Eskandarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, U.K. B15 2TT
| | - Roger J Grand
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, U.K. B15 2TT
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan
| | - Reza Mirfakhraie
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Dong Y, Li W, Meng J, Wang P, Sun M, Zhou F, Li D, Shu J, Cai C. Pathogenicity analysis and splicing rescue of a classical splice site variant (c.1343+1G>T) of CNOT1 gene associated with neurodevelopmental disorders. Am J Med Genet A 2023; 191:2775-2782. [PMID: 37507849 DOI: 10.1002/ajmg.a.63360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Mutations in the CNOT1 gene lead to an incurable rare neurological disorder mainly manifested as a clinical spectrum of intellectual disability, developmental delay, seizures, and behavioral problems. In this study, we investigated a classical splice site variant of CNOT1 (c.1343+1G>T) associated with neurodevelopmental disorders, which was a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. To link CNOT1 dysfunction with the neurodevelopmental phenotype observed in a patient, in vitro minigene assay was used to verify the effect of CNOT1 gene splice site variant c.1343+1G>T on mRNA splicing. We also explored the impact of transient transfection introducing modified U1 snRNA on correcting the splicing variant. Through minigene expression in mammalian cells, we demonstrated that the variant induced complete exon 12 skipping, which explained the patient's clinical condition and provided additional genetic diagnosis evidence for the clinical significance of the variant. Moreover, we confirmed that the aberrant splice pattern could be partially corrected by the modified U1 snRNA at the mRNA level, which provided strong evidence for the therapeutic potential of modified U1 snRNA in neutralizing the hazardous effect of incorrect splicing patterns.
Collapse
Affiliation(s)
- Yan Dong
- Graduate College of Tianjin Medical University, Tianjin, China
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Weiran Li
- Graduate College of Tianjin Medical University, Tianjin, China
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Jing Meng
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Department of Neurology, Tianjin Children's Hospital, Tianjin, China
| | - Ping Wang
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Mei Sun
- Graduate College of Tianjin Medical University, Tianjin, China
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Feiyu Zhou
- Graduate College of Tianjin Medical University, Tianjin, China
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Dong Li
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Department of Neurology, Tianjin Children's Hospital, Tianjin, China
| | - Jianbo Shu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
14
|
Zhang B, Zhao B, Han S, Chen S. CNOT4 suppresses nonsmall cell lung cancer progression by promoting the degradation of PAF1. Mol Carcinog 2023; 62:1563-1571. [PMID: 37493105 DOI: 10.1002/mc.23599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023]
Abstract
CCR4-NOT transcription complex subunit 4 (CNOT4) and RNA polymerase II-associated factor, homolog (Saccharomyces cerevisiae) (PAF1) are implicated in nonsmall cell lung cancer (NSCLC). However, the molecular mechanism of their interaction in NSCLC progression is unknown. The expression of PAF1 and CNOT4 in human NSCLC tissues was detected by quantitative polymerase chain reaction. A549 cells that stably expressed CNOT4 and/or PAF1 were established. Western blot analysis and co-immunoprecipitation experiments were performed to reveal the interaction between CNOT4 and PAF1. Proliferation, migration, epithelial-mesenchymal transition (EMT), and colony formation assays were performed to determine the effect of CNOT4-PAF1 axis on NSCLC metastasis and stemness. Xenograft mouse tumor model was established, and tumor progression, EMT, and stemness were evaluated. It was found that CNOT4 expression was downregulated, whereas PAF1 expression was upregulated in human NSCLC tissues. CNOT4 facilitated the ubiquitination and degradation of PAF1 via the 26S proteasome. CNOT4 overexpression inhibited NSCLC progression, whereas PAF1 overexpression enhanced the proliferation, migration, and stemness of NSCLC, both in vitro and in vivo. Our results suggest that CNOT4-PAF1 axis modulates NSCLC metastasis and stemness, and may serve as potential therapeutic targets for lung cancer treatment.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Zhao
- Department of Pharmacy, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Song Han
- Department of Thoracic Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Shaomu Chen
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Absmeier E, Chandrasekaran V, O'Reilly FJ, Stowell JAW, Rappsilber J, Passmore LA. Specific recognition and ubiquitination of translating ribosomes by mammalian CCR4-NOT. Nat Struct Mol Biol 2023; 30:1314-1322. [PMID: 37653243 PMCID: PMC7615087 DOI: 10.1038/s41594-023-01075-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Translation affects messenger RNA stability and, in yeast, this is mediated by the Ccr4-Not deadenylation complex. The details of this process in mammals remain unclear. Here, we use cryogenic electron microscopy (cryo-EM) and crosslinking mass spectrometry to show that mammalian CCR4-NOT specifically recognizes ribosomes that are stalled during translation elongation in an in vitro reconstituted system with rabbit and human components. Similar to yeast, mammalian CCR4-NOT inserts a helical bundle of its CNOT3 subunit into the empty E site of the ribosome. Our cryo-EM structure shows that CNOT3 also locks the L1 stalk in an open conformation to inhibit further translation. CCR4-NOT is required for stable association of the nonconstitutive subunit CNOT4, which ubiquitinates the ribosome, likely to signal stalled translation elongation. Overall, our work shows that human CCR4-NOT not only detects but also enforces ribosomal stalling to couple translation and mRNA decay.
Collapse
Affiliation(s)
- Eva Absmeier
- MRC Laboratory of Molecular Biology (LMB), Cambridge, UK
- Freie University of Berlin, Berlin, Germany
| | | | | | | | - Juri Rappsilber
- Technical University of Berlin, Chair of Bioanalytics, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
16
|
Hagkarim NC, Hajkarim MC, Suzuki T, Fujiwara T, Winkler GS, Stewart GS, Grand RJ. Disruption of the Mammalian Ccr4-Not Complex Contributes to Transcription-Mediated Genome Instability. Cells 2023; 12:1868. [PMID: 37508532 PMCID: PMC10378556 DOI: 10.3390/cells12141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The mammalian Ccr4-Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. It is involved in the control of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, and nuclear RNA surveillance; the Ccr4-Not complex also plays a central role in the regulation of mRNA decay. Growing evidence suggests that gene transcription has a vital role in shaping the landscape of genome replication and is also a potent source of replication stress and genome instability. Here, we have examined the effects of the inactivation of the Ccr4-Not complex, via the depletion of the scaffold subunit CNOT1, on DNA replication and genome integrity in mammalian cells. In CNOT1-depleted cells, the elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which, together with R-loop accumulation, results in replication fork slowing, DNA damage, and senescence. Furthermore, we have shown that the stability of TBP mRNA increases in the absence of CNOT1, which may explain its elevated protein expression in CNOT1-depleted cells. Finally, we have shown the activation of mitogen-activated protein kinase signalling as evidenced by ERK1/2 phosphorylation in the absence of CNOT1, which may be responsible for the observed cell cycle arrest at the border of G1/S.
Collapse
Affiliation(s)
- Nafiseh Chalabi Hagkarim
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Morteza Chalabi Hajkarim
- Department of Medicine Haematology & Oncology, Columbia University, New York City, NY 10032, USA
| | - Toru Suzuki
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka City 577-8502, Japan
| | | | - Grant S Stewart
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Roger J Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
17
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Newman M, Li G, Martínez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. J Fungi (Basel) 2023; 9:359. [PMID: 36983527 PMCID: PMC10056406 DOI: 10.3390/jof9030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspects global transcription factor profiles (TFomes) and their potential roles in coordinating CC and AC functions to accomplish host-specific interactions. Remarkably, we found a clear positive correlation between the sizes of TFomes and the proteomes of an organism. With the acquisition of ACs, the FOSC TFomes were larger than the other fungal genomes included in this study. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls were highly conserved. Among the 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 were most significantly expanded to 671 and 167 genes per family including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) that are involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3% including a disordered protein Ren1. RNA-Seq revealed a steady pattern of expression for conserved TF families and specific activation for AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
Affiliation(s)
- Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - He Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sajeet Haridas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Richard D. Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hunter Lynch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sawyer Andersen
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Madison Newman
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gengtan Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Domingo Martínez-Soto
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shira Milo-Cochavi
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dilay Hazal Ayhan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598, USA
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
18
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Li G, Mart Nez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527873. [PMID: 36798233 PMCID: PMC9934661 DOI: 10.1101/2023.02.09.527873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspected global transcription factor profiles (TFomes) and their potential roles in coordinating CCs and ACs functions to accomplish host-specific pathogenicity. Remarkably, we found a clear positive correlation between the sizes of TFome and proteome of an organism, and FOSC TFomes are larger due to the acquisition of ACs. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls are highly conserved. Among 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 are most significantly expanded to 671 and 167 genes per family, including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3%, including a disordered protein Ren1. Expression profiles revealed a steady expression of conserved TF families and specific activation of AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
|
19
|
Niceta M, Pizzi S, Inzana F, Peron A, Bakhtiari S, Nizon M, Levy J, Mancini C, Cogné B, Radio FC, Agolini E, Cocciadiferro D, Novelli A, Salih MA, Recalcati MP, Arancio R, Besnard M, Tabet A, Kruer MC, Priolo M, Dallapiccola B, Tartaglia M. Delineation of the clinical profile of CNOT2 haploinsufficiency and overview of the IDNADFS phenotype. Clin Genet 2023; 103:156-166. [PMID: 36224108 PMCID: PMC9939052 DOI: 10.1111/cge.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 01/07/2023]
Abstract
CNOT2 haploinsufficiency underlies a rare neurodevelopmental disorder named Intellectual Developmental disorder with NAsal speech, Dysmorphic Facies, and variable Skeletal anomalies (IDNADFS, OMIM 618608). The condition clinically overlaps with chromosome 12q15 deletion syndrome, suggesting a major contribution of CNOT2 haploinsufficiency to the latter. CNOT2 is a member of the CCR4-NOT complex, which is a master regulator of multiple cellular processes, including gene expression, RNA deadenylation, and protein ubiquitination. To date, less than 20 pathogenic 12q15 microdeletions encompassing CNOT2, together with a single truncating variant of the gene, and two large intragenic deletions have been reported. Due to the small number of affected subjects described so far, the clinical profile of IDNADFS has not been fully delineated. Here we report five unrelated individuals, three of which carrying de novo intragenic CNOT2 variants, one presenting with a multiexon intragenic deletion, and an additional case of 12q15 microdeletion syndrome. Finally, we assess the features of IDNADFS by reviewing published and present affected individuals and reevaluate the clinical phenotype of this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Marcello Niceta
- Genetics and Rare DiseasesBambino Gesù Children's Hospital, IRCCSRomeItaly
- Department of PediatricsSapienza UniversityRomeItaly
| | - Simone Pizzi
- Genetics and Rare DiseasesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Francesca Inzana
- Genetic Counseling ServiceRegional Hospital of BolzanoBolzanoItaly
| | - Angela Peron
- Medical GeneticsASST Santi Paolo e Carlo, Ospedale San PaoloMilanItaly
- Division of Medical Genetics, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric NeurologyBarrow Neurological Institute, Phoenix Children's HospitalPhoenixArizonaUSA
- Departments of Child Health, Neurology, and Cellular and Molecular Medicine, and Program in GeneticsUniversity of Arizona College of Medicine – PhoenixPhoenixArizonaUSA
| | - Mathilde Nizon
- CHU Nantes, Service de Génétique MédicaleL'institut du thorax, INSERM, CNRS, UNIV NantesNantesFrance
| | - Jonathan Levy
- Genetics DepartmentAP‐HP, Robert‐Debré University HospitalParisFrance
| | - Cecilia Mancini
- Genetics and Rare DiseasesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Benjamin Cogné
- Laboratoire de Génétique MoléculaireCHU de NantesNantesFrance
| | | | - Emanuele Agolini
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Dario Cocciadiferro
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Antonio Novelli
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Mustafa A. Salih
- Neurology Division, Department of PediatricsCollege of Medicine, King Saud UniversityRiyadhSaudi Arabia
- Department of PediatricsCollege of Medicine, Almughtaribeen UniversityKhartoumSudan
| | - Maria Paola Recalcati
- Medical Cytogenetics LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | - Rosangela Arancio
- Clinica PediatricaOspedale San Paolo, ASST Santi Paolo CarloMilanItaly
| | - Marianne Besnard
- Service de NéonatologieCentre Hospitalier de Polynésie FrançaisePapeeteFrench Polynesia
| | - Anne‐Claude Tabet
- Human Genetics and Cognitive FunctionsInstitut Pasteur, UMR3571 CNRS, Université de ParisParisFrance
- Cytogenetic UnitRobert Debré Hospital, APHPParisFrance
| | - Michael C. Kruer
- Departments of Child Health, Neurology, and Cellular and Molecular Medicine, and Program in GeneticsUniversity of Arizona College of Medicine – PhoenixPhoenixArizonaUSA
| | - Manuela Priolo
- UOSD Genetica MedicaGrande Ospedale Metropolitano “Bianchi‐Melacrino‐Morelli”Reggio CalabriaItaly
| | - Bruno Dallapiccola
- Genetics and Rare DiseasesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Marco Tartaglia
- Genetics and Rare DiseasesBambino Gesù Children's Hospital, IRCCSRomeItaly
| |
Collapse
|
20
|
Burn TN, Miot C, Gordon SM, Culberson EJ, Diamond T, Kreiger PA, Hayer KE, Bhattacharyya A, Jones JM, Bassing CH, Behrens EM. The RAG1 Ubiquitin Ligase Domain Stimulates Recombination of TCRβ and TCRα Genes and Influences Development of αβ T Cell Lineages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:938-949. [PMID: 35948399 PMCID: PMC9492648 DOI: 10.4049/jimmunol.2001441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/29/2022] [Indexed: 01/04/2023]
Abstract
RAG1/RAG2 (RAG) endonuclease-mediated assembly of diverse lymphocyte Ag receptor genes by V(D)J recombination is critical for the development and immune function of T and B cells. The RAG1 protein contains a ubiquitin ligase domain that stabilizes RAG1 and stimulates RAG endonuclease activity in vitro. We report in this study that mice with a mutation that inactivates the Rag1 ubiquitin ligase in vitro exhibit decreased rearrangements and altered repertoires of TCRβ and TCRα genes in thymocytes and impaired thymocyte developmental transitions that require the assembly and selection of functional TCRβ and/or TCRα genes. These Rag1 mutant mice present diminished positive selection and superantigen-mediated negative selection of conventional αβ T cells, decreased genesis of invariant NK T lineage αβ T cells, and mature CD4+ αβ T cells with elevated autoimmune potential. Our findings reveal that the Rag1 ubiquitin ligase domain functions in vivo to stimulate TCRβ and TCRα gene recombination and influence differentiation of αβ T lineage cells, thereby establishing replete diversity of αβ TCRs and populations of αβ T cells while restraining generation of potentially autoreactive conventional αβ T cells.
Collapse
Affiliation(s)
- Thomas N Burn
- Penn Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Charline Miot
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Scott M Gordon
- Penn Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Erica J Culberson
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tamir Diamond
- Penn Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Portia A Kreiger
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Katharina E Hayer
- Department of Biomedical and Health Bioinformatics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Anamika Bhattacharyya
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC; and
| | - Jessica M Jones
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC; and
| | - Craig H Bassing
- Penn Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA;
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Edward M Behrens
- Penn Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA;
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
21
|
Transcriptomics of angiotensin II-induced long noncoding and coding RNAs in endothelial cells. J Hypertens 2022; 40:1303-1313. [PMID: 35762471 DOI: 10.1097/hjh.0000000000003140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Angiotensin II (Ang II)-induced endothelial dysfunction plays an important role in the pathogenesis of cardiovascular diseases such as systemic hypertension, cardiac hypertrophy and atherosclerosis. Recently, long noncoding RNAs (lncRNAs) have been shown to play an essential role in the pathobiology of cardiovascular diseases; however, the effect of Ang II on lncRNAs and coding RNAs expression in endothelial cells has not been evaluated. Accordingly, we sought to evaluate the expression profiles of lncRNAs and coding RNAs in endothelial cells following treatment with Ang II. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured and treated with Ang II (10-6 mol/l) for 24 h. The cells were then profiled for the expression of lncRNAs and mRNAs using the Arraystar Human lncRNA Expression Microarray V3.0. RESULTS In HUVECs following Ang II treatment, from a total of 30 584 lncRNA targets screened, 25 targets were significantly upregulated, while 69 were downregulated. In the same HUVECs samples, from 26 106 mRNA targets screened, 28 targets were significantly upregulated and 67 were downregulated. Of the differentially expressed lncRNAs, RP11-354P11.2 and RP11-360F5.1 were the most upregulated (11-fold) and downregulated (three-fold) lncRNAs, respectively. Assigning the differentially regulated genes into functional groups using bioinformatics reveals numerous genes involved in the nucleotide excision repair and ECM-receptor interaction. CONCLUSION This is the first study to profile the Ang II-induced differentially expressed lncRNAs and mRNAs in human endothelial cells. Our results reveal novel targets and substantially extend the list of potential candidate genes involved in Ang II-induced endothelial dysfunction and cardiovascular diseases.
Collapse
|
22
|
Dai X, Jiang Y, Gu J, Jiang Z, Wu Y, Yu C, Yin H, Zhang J, Shi Q, Shen L, Sha Q, Fan H. The CNOT4 Subunit of the CCR4-NOT Complex is Involved in mRNA Degradation, Efficient DNA Damage Repair, and XY Chromosome Crossover during Male Germ Cell Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003636. [PMID: 34026442 PMCID: PMC8132151 DOI: 10.1002/advs.202003636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/23/2021] [Indexed: 05/03/2023]
Abstract
The CCR4-NOT complex is a major mRNA deadenylase in eukaryotes, comprising the catalytic subunits CNOT6/6L and CNOT7/8, as well as CNOT4, a regulatory subunit with previously undetermined functions. These subunits have been hypothesized to play synergistic biochemical functions during development. Cnot7 knockout male mice have been reported to be infertile. In this study, viable Cnot6/6l double knockout mice are constructed, and the males are fertile. These results indicate that CNOT7 has CNOT6/6L-independent functions in vivo. It is also demonstrated that CNOT4 is required for post-implantation embryo development and meiosis progression during spermatogenesis. Conditional knockout of Cnot4 in male germ cells leads to defective DNA damage repair and homologous crossover between X and Y chromosomes. CNOT4 functions as a previously unrecognized mRNA adaptor of CCR4-NOT by targeting mRNAs to CNOT7 for deadenylation of poly(A) tails, thereby mediating the degradation of a subset of transcripts from the zygotene to pachytene stage. The mRNA removal promoted by the CNOT4-regulated CCR4-NOT complex during the zygotene-to-pachytene transition is crucial for the appropriate expression of genes involved in the subsequent events of spermatogenesis, normal DNA double-strand break repair during meiosis, efficient crossover between X and Y chromosomes, and ultimately, male fertility.
Collapse
Affiliation(s)
- Xing‐Xing Dai
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Jia‐Hui Gu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Zhi‐Yan Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Yun‐Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Chao Yu
- College of Life ScienceZhejiang UniversityHangzhou310058China
| | - Hao Yin
- First Affiliated Hospital of USTCHefei National Laboratory for Physical Sciences at MicroscaleSchool of Basic Medical SciencesDivision of Life Sciences and MedicineCAS Center for Excellence in Molecular Cell ScienceUniversity of Science and Technology of ChinaHefei230027China
| | - Jue Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XIANGYAChangsha410008China
| | - Qing‐Hua Shi
- First Affiliated Hospital of USTCHefei National Laboratory for Physical Sciences at MicroscaleSchool of Basic Medical SciencesDivision of Life Sciences and MedicineCAS Center for Excellence in Molecular Cell ScienceUniversity of Science and Technology of ChinaHefei230027China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Qian‐Qian Sha
- Fertility Preservation LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhou510317China
| | - Heng‐Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| |
Collapse
|
23
|
CNOT4 suppresses non-small cell lung cancer progression and is required for effector cytolytic T lymphocytes cell responses to lung cancer cells. Mol Immunol 2021; 132:165-171. [PMID: 33592572 DOI: 10.1016/j.molimm.2020.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 12/09/2022]
Abstract
The therapeutic options of non-small cell lung cancer (NSCLC) are limited, although a combination of targeted therapy and immunotherapy is promising. To explore novel targets for immunotherapy, we explored the role of Ccr4-Not transcription complex subunit 4 (CNOT4) in NSCLC. The expression of CNOT4 in tumor tissues was determined by immunohistochemistry staining and western blotting. The cell lines that stably express CNOT4 were established in H1299 and A549 cells. Direct cell counting, MTT assay, and colony formation were used to determine the ability of cell proliferation. Cell apoptosis and cell cycle were next analyzed by PI/Annexin V staining. Cell invasion and migration were examined by transwell assays. To further explore the function of CNOT4 in cytotoxic T lymphocytes (CTLs) mediated cytotoxicity, an in vitro co-culture system of CNOT4 overexpressing and control H1299 cells with CTLs was developed. CNOT4 was down-regulated in tumor tissues compared with paired normal tissues from patients with lung cancers. CNOT4 overexpression significantly inhibited tumor cell proliferation, colony formation, cell migration, and invasion, but promoted cell apoptosis. Furthermore, overexpression of CNOT4 enhanced cytotoxicity of CTLs to H1299. CNOT4 functions as a potential tumor suppressor of NSCLC via inhibiting tumor cell function and increasing the sensitivity to CTLs.
Collapse
|
24
|
The Arabidopsis NOT4A E3 ligase promotes PGR3 expression and regulates chloroplast translation. Nat Commun 2021; 12:251. [PMID: 33431870 PMCID: PMC7801604 DOI: 10.1038/s41467-020-20506-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Chloroplast function requires the coordinated action of nuclear- and chloroplast-derived proteins, including several hundred nuclear-encoded pentatricopeptide repeat (PPR) proteins that regulate plastid mRNA metabolism. Despite their large number and importance, regulatory mechanisms controlling PPR expression are poorly understood. Here we show that the Arabidopsis NOT4A ubiquitin-ligase positively regulates the expression of PROTON GRADIENT REGULATION 3 (PGR3), a PPR protein required for translating several thylakoid-localised photosynthetic components and ribosome subunits within chloroplasts. Loss of NOT4A function leads to a strong depletion of cytochrome b6f and NAD(P)H dehydrogenase (NDH) complexes, as well as plastid 30 S ribosomes, which reduces mRNA translation and photosynthetic capacity, causing pale-yellow and slow-growth phenotypes. Quantitative transcriptome and proteome analysis of the not4a mutant reveal it lacks PGR3 expression, and that its molecular defects resemble those of a pgr3 mutant. Furthermore, we show that normal plastid function is restored to not4a through transgenic PGR3 expression. Our work identifies NOT4A as crucial for ensuring robust photosynthetic function during development and stress-response, through promoting PGR3 production and chloroplast translation.
Collapse
|
25
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
26
|
Zhang B, Han S, Ma H, Chen S. CNOT4 enhances the efficacy of anti-PD-1 immunotherapy in a model of non-small cell lung cancer. FEBS Open Bio 2020; 10:2631-2639. [PMID: 33034149 PMCID: PMC7714061 DOI: 10.1002/2211-5463.12998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 01/22/2023] Open
Abstract
The use of immune checkpoint inhibitors that target programmed cell death‐1 (PD‐1) has been proposed for the treatment of advanced non‐small cell lung cancer (NSCLC). However, in clinical trials, cumulative response rates to anti‐PD‐1 treatment were approximately 20% in patients with NSCLC. CCR4‐NOT transcription complex, subunit 4 (CNOT4) is a RING finger protein with E3 ubiquitin ligase activity. We previously reported that CNOT4 may act as a tumor suppressor in NSCLC. Here, we examined whether CNOT4 can enhance the efficacy of anti‐PD‐1 immunotherapy in a model of NSCLC. The association of CNOT4 and overall survival was analyzed using datasets from The Cancer Genome Atlas (TCGA). Tumor models were established by subcutaneously implanting tumor cells line (A549 cell) into mice. CNOT4 was observed to be positively associated with relapse‐free survival and overall survival in patients with NSCLC. CNOT4 overexpression suppressed tumor growth in vivo and enhanced the effect of anti‐PD‐1 immunotherapy, which was accompanied by increased CD3+ and CD8+ T lymphocyte infiltration and higher interferon‐γ and tumor necrosis factor‐α levels. In conclusion, CNOT4 may enhance the efficacy of anti‐PD‐1 immunotherapy and may have potential as a prognostic marker for NSCLC, or as a combinational target with anti‐PD‐1 treatment for patients with NSCLC.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Han
- Department of Cardiothoracic Surgery, the Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, China
| | - Haitao Ma
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shaomu Chen
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
27
|
Chen H, Miller PW, Johnson DL, Laribee RN. The Ccr4-Not complex regulates TORC1 signaling and mitochondrial metabolism by promoting vacuole V-ATPase activity. PLoS Genet 2020; 16:e1009046. [PMID: 33064727 PMCID: PMC7592917 DOI: 10.1371/journal.pgen.1009046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 10/28/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023] Open
Abstract
The Ccr4-Not complex functions as an effector of multiple signaling pathways that control gene transcription and mRNA turnover. Consequently, Ccr4-Not contributes to a diverse array of processes, which includes a significant role in cell metabolism. Yet a mechanistic understanding of how it contributes to metabolism is lacking. Herein, we provide evidence that Ccr4-Not activates nutrient signaling through the essential target of rapamycin complex 1 (TORC1) pathway. Ccr4-Not disruption reduces global TORC1 signaling, and it also upregulates expression of the cell wall integrity (CWI) pathway terminal kinase Mpk1. Although CWI signaling represses TORC1 signaling, we find that Ccr4-Not loss inhibits TORC1 independently of CWI activation. Instead, we demonstrate that Ccr4-Not promotes the function of the vacuole V-ATPase, which interacts with the Gtr1 GTPase-containing EGO complex to stimulate TORC1 in response to nutrient sufficiency. Bypassing the V-ATPase requirement in TORC1 activation using a constitutively active Gtr1 mutant fully restores TORC1 signaling in Ccr4-Not deficient cells. Transcriptome analysis and functional studies revealed that loss of the Ccr4 subunit activates the TORC1 repressed retrograde signaling pathway to upregulate mitochondrial activity. Blocking this mitochondrial upregulation in Ccr4-Not deficient cells further represses TORC1 signaling, and it causes synergistic deficiencies in mitochondrial-dependent metabolism. These data support a model whereby Ccr4-Not loss impairs V-ATPase dependent TORC1 activation that forces cells to enhance mitochondrial metabolism to sustain a minimal level of TORC1 signaling necessary for cell growth and proliferation. Therefore, Ccr4-Not plays an integral role in nutrient signaling and cell metabolism by promoting V-ATPase dependent TORC1 activation.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - P. Winston Miller
- Molecular Bioinformatics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Daniel L. Johnson
- Molecular Bioinformatics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - R. Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
28
|
Wu H, Gontarek BC, Yi G, Beall BD, Neelakandan AK, Adhikari B, Chen R, McCarty DR, Severin AJ, Becraft PW. The thick aleurone1 Gene Encodes a NOT1 Subunit of the CCR4-NOT Complex and Regulates Cell Patterning in Endosperm. PLANT PHYSIOLOGY 2020; 184:960-972. [PMID: 32737073 PMCID: PMC7536710 DOI: 10.1104/pp.20.00703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/22/2020] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) thick aleurone1 (thk1-R) mutants form multiple aleurone layers in the endosperm and have arrested embryogenesis. Prior studies suggest that thk1 functions downstream of defective kernel1 (dek1) in a regulatory pathway that controls aleurone cell fate and other endosperm traits. The original thk1-R mutant contained an ∼2-Mb multigene deletion, which precluded identification of the causal gene. Here, ethyl methanesulfonate mutagenesis produced additional alleles, and RNA sequencing from developing endosperm was used to identify a candidate gene based on differential expression compared with the wild-type progenitor. Gene editing confirmed the gene identity by producing mutant alleles that failed to complement existing thk1 mutants and that produced multiple-aleurone homozygous phenotypes. Thk1 encodes a homolog of NEGATIVE ON TATA-LESS1, a protein that acts as a scaffold for the CARBON CATABOLITE REPRESSION4-NEGATIVE ON TATA-LESS complex. This complex is highly conserved and essential in all eukaryotes for regulating a wide array of gene expression and cellular activities. Maize also harbors a duplicate locus, thick aleurone-like1, which likely accounts for the ability of thk1 mutants to form viable cells. Transcriptomic analysis indicated that THK1 regulates activities involving cell division, signaling, differentiation, and metabolism. Identification of thk1 provides an important new component of the DEK1 regulatory system that patterns cell fate in endosperm.
Collapse
Affiliation(s)
- Hao Wu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Bryan C Gontarek
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Interdepartmental Plant Biology Program, Iowa State University, Ames, Iowa 50011
| | - Gibum Yi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Interdepartmental Plant Biology Program, Iowa State University, Ames, Iowa 50011
| | - Brandon D Beall
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Agronomy Department, Iowa State University, Ames, Iowa 50011
| | | | - Bibechana Adhikari
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Interdepartmental Plant Biology Program, Iowa State University, Ames, Iowa 50011
| | - Rumei Chen
- Department of Crop Genomics and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Donald R McCarty
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611-0690
| | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Ames, Iowa 50011
| | - Philip W Becraft
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Interdepartmental Plant Biology Program, Iowa State University, Ames, Iowa 50011
- Agronomy Department, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
29
|
Pereira PA, Boavida LC, Santos MR, Becker JD. AtNOT1 is required for gametophyte development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1289-1303. [PMID: 32369648 DOI: 10.1111/tpj.14801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In flowering plants, pollen development is under a dynamic and well-orchestrated transcriptional control, characterized by an early phase with high transcript diversity and a late post-mitotic phase skewed to a cell-type-specific transcriptome. Such transcriptional changes require a balance between synthesis and degradation of mRNA transcripts, the latter being initiated by deadenylation. The CCR4-NOT complex is the main evolutionary conserved deadenylase complex in eukaryotes, and its function is essential during germline specification in animals. We hypothesized that the CCR4-NOT complex might play a central role in mRNA turnover during microgametogenesis in Arabidopsis. Disruption of NOT1 gene, which encodes the scaffold protein of the CCR4-NOT complex, showed abnormal seed set. Genetic analysis failed to recover homozygous progeny, and reciprocal crosses confirmed reduced transmission through the male and female gametophytes. Concordantly, not1 embryo sacs showed delayed development and defects in embryogenesis. not1 pollen grains exhibited abnormal male germ unit configurations and failed to germinate. Transcriptome analysis of pollen from not1/+ mutants revealed that lack of NOT1 leads to an extensive transcriptional deregulation during microgametogenesis. Therefore, our work establishes NOT1 as an important player during gametophyte development in Arabidopsis.
Collapse
Affiliation(s)
- Patrícia A Pereira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Leonor C Boavida
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Mário R Santos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
30
|
Vissers LE, Kalvakuri S, de Boer E, Geuer S, Oud M, van Outersterp I, Kwint M, Witmond M, Kersten S, Polla DL, Weijers D, Begtrup A, McWalter K, Ruiz A, Gabau E, Morton JE, Griffith C, Weiss K, Gamble C, Bartley J, Vernon HJ, Brunet K, Ruivenkamp C, Kant SG, Kruszka P, Larson A, Afenjar A, Billette de Villemeur T, Nugent K, Raymond FL, Venselaar H, Demurger F, Soler-Alfonso C, Li D, Bhoj E, Hayes I, Hamilton NP, Ahmad A, Fisher R, van den Born M, Willems M, Sorlin A, Delanne J, Moutton S, Christophe P, Mau-Them FT, Vitobello A, Goel H, Massingham L, Phornphutkul C, Schwab J, Keren B, Charles P, Vreeburg M, De Simone L, Hoganson G, Iascone M, Milani D, Evenepoel L, Revencu N, Ward DI, Burns K, Krantz I, Raible SE, Murrell JR, Wood K, Cho MT, van Bokhoven H, Muenke M, Kleefstra T, Bodmer R, de Brouwer AP, de Brouwer APM. De Novo Variants in CNOT1, a Central Component of the CCR4-NOT Complex Involved in Gene Expression and RNA and Protein Stability, Cause Neurodevelopmental Delay. Am J Hum Genet 2020; 107:164-172. [PMID: 32553196 DOI: 10.1016/j.ajhg.2020.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/26/2020] [Indexed: 11/27/2022] Open
Abstract
CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
31
|
PRMT1 Is Critical for the Transcriptional Activity and the Stability of the Progesterone Receptor. iScience 2020; 23:101236. [PMID: 32563156 PMCID: PMC7305383 DOI: 10.1016/j.isci.2020.101236] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
The progesterone receptor (PR) is an inducible transcription factor that plays critical roles in female reproductive processes and in several aspects of breast cancer tumorigenesis. Our report describes the type I protein arginine methyltransferase 1 (PRMT1) as a cofactor controlling progesterone pathway, through the direct methylation of PR. Mechanistic assays in breast cancer cells indicate that PRMT1 methylates PR at the arginine 637 and reduces the stability of the receptor, thereby accelerating its recycling and finally its transcriptional activity. Depletion of PRMT1 decreases the expression of a subset of progesterone-inducible genes, controlling breast cancer cells proliferation and migration. Consistently, Kaplan-Meier analysis revealed that low expression of PRMT1 predicts a longer survival among the subgroup with high PR. Our study highlights PR methylation as a molecular switch adapting the transcription requirement of breast cells during tumorigenesis.
Collapse
|
32
|
Đukić A, Lulić L, Thomas M, Skelin J, Bennett Saidu NE, Grce M, Banks L, Tomaić V. HPV Oncoproteins and the Ubiquitin Proteasome System: A Signature of Malignancy? Pathogens 2020; 9:pathogens9020133. [PMID: 32085533 PMCID: PMC7168213 DOI: 10.3390/pathogens9020133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) E6 and E7 oncoproteins are critical for development and maintenance of the malignant phenotype in HPV-induced cancers. These two viral oncoproteins interfere with a plethora of cellular pathways, including the regulation of cell cycle and the control of apoptosis, which are critical in maintaining normal cellular functions. E6 and E7 bind directly with certain components of the Ubiquitin Proteasome System (UPS), enabling them to manipulate a number of important cellular pathways. These activities are the means by which HPV establishes an environment supporting the normal viral life cycle, however in some instances they can also lead to the development of malignancy. In this review, we have discussed how E6 and E7 oncoproteins from alpha and beta HPV types interact with the components of the UPS, and how this interplay contributes to the development of cancer.
Collapse
Affiliation(s)
- Anamaria Đukić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lucija Lulić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
- Correspondence: ; Tel.: +385-1-4561110; Fax: +385-1-4561010
| |
Collapse
|
33
|
Garcia-Barcena C, Osinalde N, Ramirez J, Mayor U. How to Inactivate Human Ubiquitin E3 Ligases by Mutation. Front Cell Dev Biol 2020; 8:39. [PMID: 32117970 PMCID: PMC7010608 DOI: 10.3389/fcell.2020.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
E3 ubiquitin ligases are the ultimate enzymes involved in the transfer of ubiquitin to substrate proteins, a process that determines the fate of the modified protein. Numerous diseases are caused by defects in the ubiquitin-proteasome machinery, including when the activity of a given E3 ligase is hampered. Thus, inactivation of E3 ligases and the resulting effects at molecular or cellular level have been the focus of many studies during the last few years. For this purpose, site-specific mutation of key residues involved in either protein interaction, substrate recognition or ubiquitin transfer have been reported to successfully inactivate E3 ligases. Nevertheless, it is not always trivial to predict which mutation(s) will block the catalytic activity of a ligase. Here we review over 250 site-specific inactivating mutations that have been carried out in 120 human E3 ubiquitin ligases. We foresee that the information gathered here will be helpful for the design of future experimental strategies.
Collapse
Affiliation(s)
- Cristina Garcia-Barcena
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
34
|
The CCR4-NOT Complex Maintains Stability and Transcription of rRNA Genes by Repressing Antisense Transcripts. Mol Cell Biol 2019; 40:MCB.00320-19. [PMID: 31611247 PMCID: PMC6908257 DOI: 10.1128/mcb.00320-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
The rRNA genes (rDNA) in eukaryotes are organized into highly repetitive gene clusters. Each organism maintains a particular number of copies, suggesting that the rDNA is actively stabilized. We previously identified about 700 Saccharomyces cerevisiae genes that could contribute to rDNA maintenance. Here, we further analyzed these deletion mutants with unstable rDNA by measuring the amounts of extrachromosomal rDNA circles (ERCs) that are released as by-products of intrachromosomal recombination. The rRNA genes (rDNA) in eukaryotes are organized into highly repetitive gene clusters. Each organism maintains a particular number of copies, suggesting that the rDNA is actively stabilized. We previously identified about 700 Saccharomyces cerevisiae genes that could contribute to rDNA maintenance. Here, we further analyzed these deletion mutants with unstable rDNA by measuring the amounts of extrachromosomal rDNA circles (ERCs) that are released as by-products of intrachromosomal recombination. We found that extremely high levels of ERCs were formed in the absence of Pop2 (Caf1), which is a subunit of the CCR4-NOT complex, important for the regulation of all stages of gene expression. In the pop2 mutant, transcripts from the noncoding promoter E-pro in the rDNA accumulated, and the amounts of cohesin and condensin were reduced, which could promote recombination events. Moreover, we discovered that the amount of rRNA was decreased in the pop2 mutant. Similar phenotypes were observed in the absence of subunits Ccr4 and Not4 that, like Pop2, convey enzymatic activity to the complex. These findings indicate that lack of any CCR4-NOT-associated enzymatic activity resulted in a severe unstable rDNA phenotype related to the accumulation of noncoding RNA from E-pro.
Collapse
|
35
|
Reconstitution of recombinant human CCR4-NOT reveals molecular insights into regulated deadenylation. Nat Commun 2019; 10:3173. [PMID: 31320642 PMCID: PMC6639331 DOI: 10.1038/s41467-019-11094-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
CCR4-NOT is a conserved multiprotein complex which regulates eukaryotic gene expression principally via shortening of poly(A) tails of messenger RNA or deadenylation. Here, we reconstitute a complete, recombinant human CCR4-NOT complex. Our reconstitution strategy permits strict compositional control to test mechanistic hypotheses with purified component variants. CCR4-NOT is more active and selective for poly(A) than the isolated exonucleases, CCR4a and CAF1, which have distinct deadenylation profiles in vitro. The exonucleases require at least two out of three conserved non-enzymatic modules (CAF40, NOT10:NOT11 or NOT) for full activity in CCR4-NOT. CAF40 and the NOT10:NOT11 module both bind RNA directly and stimulate deadenylation in a partially redundant manner. Linear motifs from different RNA-binding factors that recruit CCR4-NOT to specific mRNAs via protein-protein interactions with CAF40 can inhibit bulk deadenylation. We reveal an additional layer of regulatory complexity to the human deadenylation machinery, which may prime it either for general or target-specific degradation. The CCR4-NOT complex shortens poly(A) tails of messenger RNAs. By biochemical reconstitution of the entire human CCR4-NOT complex, the authors show the stimulatory roles of non-enzymatic subunits and the importance of the interaction between CAF40 and RNA binding proteins in targeted deadenylation.
Collapse
|
36
|
Abstract
The Ccr4-Not complex is an essential multi-subunit protein complex that plays a fundamental role in eukaryotic mRNA metabolism and has a multitude of different roles that impact eukaryotic gene expression . It has a conserved core of three Not proteins, the Ccr4 protein, and two Ccr4 associated factors, Caf1 and Caf40. A fourth Not protein, Not4, is conserved, but is only a stable subunit of the complex in yeast. Certain subunits have been duplicated during evolution, with functional divergence, such as Not3 in yeast, and Ccr4 or Caf1 in human. However the complex includes only one homolog for each protein. In addition, species-specific subunits are part of the complex, such as Caf130 in yeast or Not10 and Not11 in human. Two conserved catalytic functions are associated with the complex, deadenylation and ubiquitination . The complex adopts an L-shaped structure, in which different modules are bound to a large Not1 scaffold protein. In this chapter we will summarize our current knowledge of the architecture of the complex and of the structure of its constituents.
Collapse
Affiliation(s)
- Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, Switzerland.
| | - Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, Switzerland
| |
Collapse
|
37
|
Functional characterization of CNOT3 variants identified in familial adenomatous polyposis adenomas. Oncotarget 2019; 10:3939-3951. [PMID: 31231471 PMCID: PMC6570471 DOI: 10.18632/oncotarget.27003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/20/2019] [Indexed: 01/28/2023] Open
Abstract
Germline mutations in the tumor suppressor Adenomatous Polyposis Coli (APC) define Familial Adenomatous Polyposis (FAP), the genetic predisposition to developing adenomatous polyps. Recent sequencing of FAP adenomas have challenged established dogma that APC mutations alone represent the adenoma mutational landscape because recurrent somatic mutations in non-WNT pathway genes were also discovered. In particular, one of these novel genes, CNOT3, presented E20K and E70K mutations that are predicted to be deleterious in silico. We utilized zebrafish embryos to determine if these mutations affect CNOT3 function and perform novel biology in an APC-dependent pathway in vivo. Human CNOT3 (hCNOT3) and E20K mRNA injection rescued zebrafish cnot3a knockdown lordosis phenotype while E70K did not. In the FAP apcmcr zebrafish model, we show that ctbp1, but not retinoic acid, regulates cnot3a expression. Injection of hCNOT3 and E20K, but not E70K, to homozygous apcmcr zebrafish initiated gut differentiation while cnot3a knockdown in wildtype embryos led to decreased intestinal development and differentiation. Finally, targeted sequencing of 37 additional FAP adenomas revealed CNOT3 mutations in 20% of these samples. Overall, our work supports a mechanism where CTBP1 regulates CNOT3 and that overall CNOT3 perturbation could work in concert with germline APC mutations in advancing adenomas to a more transformed state prior to progression to adenocarcinoma.
Collapse
|
38
|
Stevens RV, Esposito D, Rittinger K. Characterisation of class VI TRIM RING domains: linking RING activity to C-terminal domain identity. Life Sci Alliance 2019; 2:2/3/e201900295. [PMID: 31028095 PMCID: PMC6487577 DOI: 10.26508/lsa.201900295] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
TRIM E3 ubiquitin ligases regulate multiple cellular processes, and their dysfunction is linked to disease. They are characterised by a conserved N-terminal tripartite motif comprising a RING, B-box domains, and a coiled-coil region, with C-terminal domains often mediating substrate recruitment. TRIM proteins are grouped into 11 classes based on C-terminal domain identity. Class VI TRIMs, TRIM24, TRIM33, and TRIM28, have been described as transcriptional regulators, a function linked to their C-terminal plant homeodomain and bromodomain, and independent of their ubiquitination activity. It is unclear whether E3 ligase activity is regulated in family members where the C-terminal domains function independently. Here, we provide a detailed biochemical characterisation of the RING domains of class VI TRIMs and describe the solution structure of the TRIM28 RING. Our study reveals a lack of activity of the isolated RING domains, which may be linked to the absence of self-association. We propose that class VI TRIMs exist in an inactive state and require additional regulatory events to stimulate E3 ligase activity, ensuring that associated chromatin-remodelling factors are not injudiciously degraded.
Collapse
Affiliation(s)
- Rebecca V Stevens
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Diego Esposito
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
39
|
Timmers HTM, Tora L. Transcript Buffering: A Balancing Act between mRNA Synthesis and mRNA Degradation. Mol Cell 2019; 72:10-17. [PMID: 30290147 DOI: 10.1016/j.molcel.2018.08.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/20/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Transcript buffering involves reciprocal adjustments between overall rates in mRNA synthesis and degradation to maintain similar cellular concentrations of mRNAs. This phenomenon was first discovered in yeast and encompasses coordination between the nuclear and cytoplasmic compartments. Transcript buffering was revealed by novel methods for pulse labeling of RNA to determine in vivo synthesis and degradation rates. In this Perspective, we discuss the current knowledge of transcript buffering. Emphasis is placed on the future challenges to determine the nature and directionality of the buffering signals, the generality of transcript buffering beyond yeast, and the molecular mechanisms responsible for this balancing.
Collapse
Affiliation(s)
- H Th Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ) Zentrale Klinische Forschung (ZKF), and Medical Faculty-University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, INSERM U1258 and Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
40
|
Ccr4-Not maintains genomic integrity by controlling the ubiquitylation and degradation of arrested RNAPII. Genes Dev 2019; 33:705-717. [PMID: 30948432 PMCID: PMC6546055 DOI: 10.1101/gad.322453.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022]
Abstract
The Ccr4-Not complex regulates essentially every aspect of gene expression, from mRNA synthesis to protein destruction. The Not4 subunit of the complex contains an E3 RING domain and targets proteins for ubiquitin-dependent proteolysis. Ccr4-Not associates with elongating RNA polymerase II (RNAPII), which raises the possibility that it controls the degradation of elongation complex components. Here, we demonstrate that Ccr4-Not controls the ubiquitylation and turnover of Rpb1, the largest subunit of RNAPII, during transcription arrest. Deleting NOT4 or mutating its RING domain strongly reduced the DNA damage-dependent ubiquitylation and destruction of Rpb1. Surprisingly, in vitro ubiquitylation assays indicate that Ccr4-Not does not directly ubiquitylate Rpb1 but instead promotes Rpb1 ubiquitylation by the HECT domain-containing ligase Rsp5. Genetic analyses suggest that Ccr4-Not acts upstream of RSP5, where it acts to initiate the destruction process. Ccr4-Not binds Rsp5 and forms a ternary complex with it and the RNAPII elongation complex. Analysis of mutant Ccr4-Not lacking the RING domain of Not4 suggests that it both recruits Rsp5 and delivers the E2 Ubc4/5 to RNAPII. Our work reveals a previously unknown function of Ccr4-Not and identifies an essential new regulator of RNAPII turnover during genotoxic stress.
Collapse
|
41
|
Sharma S, Bollinger KE, Kodeboyina SK, Zhi W, Patton J, Bai S, Edwards B, Ulrich L, Bogorad D, Sharma A. Proteomic Alterations in Aqueous Humor From Patients With Primary Open Angle Glaucoma. Invest Ophthalmol Vis Sci 2019; 59:2635-2643. [PMID: 29847670 PMCID: PMC6733532 DOI: 10.1167/iovs.17-23434] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Purpose Primary open angle glaucoma (POAG) is the most prevalent form of glaucoma, accounting for approximately 90% of all cases. The aqueous humor (AH), a biological fluid in the anterior and posterior chambers of the eye, is involved in a multitude of functions including the maintenance of IOP and ocular homeostasis. This fluid is very close to the pathologic site and is also known to have a significant role in glaucoma pathogenesis. The purpose of this study was to identify proteomic alterations in AH from patients with POAG. Methods AH samples were extracted from 47 patients undergoing cataract surgery (controls: n = 32; POAG: n = 15). Proteomic analysis of the digested samples was accomplished by liquid-chromatography-mass spectrometry. The identified proteins were evaluated using a variety of statistical and bioinformatics methods. Results A total of 33 proteins were significantly altered in POAG subjects compared with the controls. The most abundant proteins in POAG subjects are IGKC (13.56-fold), ITIH4 (4.1-fold), APOC3 (3.36-fold), IDH3A (3.11-fold), LOC105369216 (2.98-fold). SERPINF2 (2.94-fold), NPC2 (2.88-fold), SUCLG2 (2.70-fold), KIAA0100 (2.29-fold), CNOT4 (2.23-fold), AQP4 (2.11-fold), COL18A1 (2.08-fold), NWD1 (2.07-fold), and TMEM120B (2.06-fold). A significant increasing trend in the odds ratios of having POAG was observed with increased levels of these proteins. Conclusion Proteins identified in this study are implicated in signaling, glycosylation, immune response, molecular transport, and lipid metabolism. The identified candidate proteins may be potential biomarkers associated with POAG development and may lead to more insight in understanding the mechanisms underlying the pathogenesis of this disease.
Collapse
Affiliation(s)
- Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States.,Department of Ophthalmology, Augusta University, Augusta, Georgia, United States.,James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Kathryn E Bollinger
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States.,James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Sai Karthik Kodeboyina
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Jordan Patton
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Blake Edwards
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| | - Lane Ulrich
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| | - David Bogorad
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States.,Department of Population Health Sciences, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
42
|
Keskeny C, Raisch T, Sgromo A, Igreja C, Bhandari D, Weichenrieder O, Izaurralde E. A conserved CAF40-binding motif in metazoan NOT4 mediates association with the CCR4-NOT complex. Genes Dev 2019; 33:236-252. [PMID: 30692204 PMCID: PMC6362812 DOI: 10.1101/gad.320952.118] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022]
Abstract
The multisubunit CCR4-NOT mRNA deadenylase complex plays important roles in the posttranscriptional regulation of gene expression. The NOT4 E3 ubiquitin ligase is a stable component of the CCR4-NOT complex in yeast but does not copurify with the human or Drosophila melanogaster complex. Here we show that the C-terminal regions of human and D. melanogaster NOT4 contain a conserved sequence motif that directly binds the CAF40 subunit of the CCR4-NOT complex (CAF40-binding motif [CBM]). In addition, nonconserved sequences flanking the CBM also contact other subunits of the complex. Crystal structures of the CBM-CAF40 complex reveal a mutually exclusive binding surface for NOT4 and Roquin or Bag of marbles mRNA regulatory proteins. Furthermore, CAF40 depletion or structure-guided mutagenesis to disrupt the NOT4-CAF40 interaction impairs the ability of NOT4 to elicit decay of tethered reporter mRNAs in cells. Together with additional sequence analyses, our results reveal the molecular basis for the association of metazoan NOT4 with the CCR4-NOT complex and show that it deviates substantially from yeast. They mark the NOT4 ubiquitin ligase as an ancient but nonconstitutive cofactor of the CCR4-NOT deadenylase with potential recruitment and/or effector functions.
Collapse
Affiliation(s)
- Csilla Keskeny
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Tobias Raisch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Annamaria Sgromo
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Dipankar Bhandari
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| |
Collapse
|
43
|
Groves JA, Gillman C, DeLay CN, Kroll TT. Identification of Novel Binding Partners for Transcription Factor Emx2. Protein J 2019; 38:2-11. [PMID: 30628007 DOI: 10.1007/s10930-019-09810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mammalian homolog of Drosophila empty spiracles 2 (Emx2) is a homeobox transcription factor that plays central roles in early development of the inner ear, pelvic and shoulder girdles, cerebral cortex, and urogenital organs. The role for Emx2 is best understood within the context of the development of the neocortical region of the cortex, where Emx2 is expressed in a high posterior-medial to low anterior-lateral gradient that regulates the partitioning of the neocortex into different functional fields that perform discrete computational tasks. Despite several lines of evidence demonstrating an Emx2 concentration-dependent mechanism for establishing functional areas within the developing neocortex, little is known about how Emx2 physically carries out this role. Although several binding partners for Emx2 have been identified (including Sp8, eIF4E, and Pbx1), no screens have been used to identify potential protein binding partners for this protein. We utilized a yeast two-hybrid screen using a library constructed from embryonic mouse cDNA in an attempt to identify novel binding partners for Emx2. This initial screen isolated two potential Emx2-binding partner proteins, Cnot6l and QkI-7. These novel Emx2-binding proteins are involved in multiple levels of mRNA metabolism that including splicing, mRNA export, translation, and destruction, thus making them interesting targets for further study.
Collapse
Affiliation(s)
- Jennifer A Groves
- Department of Chemistry, Central Washington University, 400 E. University Way, Ellensburg, WA, 98929-7539, USA
| | - Cody Gillman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 157 Broad Center, M/C, Pasadena, USA
| | - Cierra N DeLay
- Department of Chemistry, Central Washington University, 400 E. University Way, Ellensburg, WA, 98929-7539, USA
| | - Todd T Kroll
- Department of Chemistry, Central Washington University, 400 E. University Way, Ellensburg, WA, 98929-7539, USA.
| |
Collapse
|
44
|
Trabucchi M, Mategot R. Subcellular Heterogeneity of the microRNA Machinery. Trends Genet 2018; 35:15-28. [PMID: 30503571 DOI: 10.1016/j.tig.2018.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/20/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023]
Abstract
Different methods have recently been developed to understand the subcellular localization and role of microRNAs (miRNAs) as well as small RNAs associated with Argonaute (AGO) proteins. The heterogeneity of the protein complexes associated with miRNAs, along with their subcellular localization, provides clues into their biochemical mechanism of function. Subcellular diversity indicates that miRNAs localized to different cellular regions could have different functions, including transcriptional regulation on chromatin or post-transcriptional control, providing global regulation of gene expression by miRNAs. Herein, I review the current knowledge and most recent discoveries relating to the subcellular function of miRNAs and other AGO-associated small RNAs, revealing the emergence of a multitude of functions of the miRNA pathway to control different steps of the gene expression program(s).
Collapse
Affiliation(s)
- Michele Trabucchi
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France; Université Côte d'Azur, Inserm, C3M, Nice, France.
| | - Raphael Mategot
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France; Université Côte d'Azur, Inserm, C3M, Nice, France
| |
Collapse
|
45
|
Chen H, Sirupangi T, Wu ZH, Johnson DL, Laribee RN. The conserved RNA recognition motif and C3H1 domain of the Not4 ubiquitin ligase regulate in vivo ligase function. Sci Rep 2018; 8:8163. [PMID: 29802328 PMCID: PMC5970261 DOI: 10.1038/s41598-018-26576-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/16/2018] [Indexed: 11/09/2022] Open
Abstract
The Ccr4-Not complex controls RNA polymerase II (Pol II) dependent gene expression and proteasome function. The Not4 ubiquitin ligase is a Ccr4-Not subunit that has both a RING domain and a conserved RNA recognition motif and C3H1 domain (referred to as the RRM-C domain) with unknown function. We demonstrate that while individual Not4 RING or RRM-C mutants fail to replicate the proteasomal defects found in Not4 deficient cells, mutation of both exhibits a Not4 loss of function phenotype. Transcriptome analysis revealed that the Not4 RRM-C affects a specific subset of Pol II-regulated genes, including those involved in transcription elongation, cyclin-dependent kinase regulated nutrient responses, and ribosomal biogenesis. The Not4 RING, RRM-C, or RING/RRM-C mutations cause a generalized increase in Pol II binding at a subset of these genes, yet their impact on gene expression does not always correlate with Pol II recruitment which suggests Not4 regulates their expression through additional mechanisms. Intriguingly, we find that while the Not4 RRM-C is dispensable for Ccr4-Not association with RNA Pol II, the Not4 RING domain is required for these interactions. Collectively, these data elucidate previously unknown roles for the conserved Not4 RRM-C and RING domains in regulating Ccr4-Not dependent functions in vivo.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Tirupataiah Sirupangi
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - Daniel L Johnson
- Molecular Bioinformatics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America
| | - R Nicholas Laribee
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, United States of America.
| |
Collapse
|
46
|
Gushchina LV, Kwiatkowski TA, Bhattacharya S, Weisleder NL. Conserved structural and functional aspects of the tripartite motif gene family point towards therapeutic applications in multiple diseases. Pharmacol Ther 2018; 185:12-25. [PMID: 29097306 PMCID: PMC5721676 DOI: 10.1016/j.pharmthera.2017.10.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tripartite motif (TRIM) gene family is a highly conserved group of E3 ubiquitin ligase proteins that can establish substrate specificity for the ubiquitin-proteasome complex and also have proteasome-independent functions. While several family members were studied previously, it is relatively recent that over 80 genes, based on sequence homology, were grouped to establish the TRIM gene family. Functional studies of various TRIM genes linked these proteins to modulation of inflammatory responses showing that they can contribute to a wide variety of disease states including cardiovascular, neurological and musculoskeletal diseases, as well as various forms of cancer. Given the fundamental role of the ubiquitin-proteasome complex in protein turnover and the importance of this regulation in most aspects of cellular physiology, it is not surprising that TRIM proteins display a wide spectrum of functions in a variety of cellular processes. This broad range of function and the highly conserved primary amino acid sequence of family members, particularly in the canonical TRIM E3 ubiquitin ligase domain, complicates the development of therapeutics that specifically target these proteins. A more comprehensive understanding of the structure and function of TRIM proteins will help guide therapeutic development for a number of different diseases. This review summarizes the structural organization of TRIM proteins, their domain architecture, common and unique post-translational modifications within the family, and potential binding partners and targets. Further discussion is provided on efforts to target TRIM proteins as therapeutic agents and how our increasing understanding of the nature of TRIM proteins can guide discovery of other therapeutics in the future.
Collapse
Affiliation(s)
- Liubov V Gushchina
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Thomas A Kwiatkowski
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sayak Bhattacharya
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Noah L Weisleder
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
47
|
Onsbring H, Jamy M, Ettema TJG. RNA Sequencing of Stentor Cell Fragments Reveals Transcriptional Changes during Cellular Regeneration. Curr Biol 2018; 28:1281-1288.e3. [PMID: 29628369 DOI: 10.1016/j.cub.2018.02.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 01/05/2023]
Abstract
While ciliates of the genus Stentor are known for their ability to regenerate when their cells are damaged or even fragmented, the physical and molecular mechanisms underlying this process are poorly understood. To identify genes involved in the regenerative capability of Stentor cells, RNA sequencing of individual Stentor polymorphus cell fragments was performed. After splitting a cell over the anterior-posterior axis, the posterior fragment has to regenerate the oral apparatus, while the anterior part needs to regenerate the hold fast. Altogether, differential expression analysis of both posterior and anterior S. polymorphus cell fragments for four different post-split time points revealed over 10,000 upregulated genes throughout the regeneration process. Among these, genes involved in cell signaling, microtubule-based movement, and cell cycle regulation seemed to be particularly important during cellular regeneration. We identified roughly nine times as many upregulated genes in regenerating S. polymorphus posterior fragments as compared to anterior fragments, indicating that regeneration of the anterior oral apparatus is a complex process that involves many genes. Our analyses identified several expanded groups of genes, such as dual-specific tyrosine-(Y)-phosphorylation-regulated kinases and MORN domain-containing proteins that seemingly act as key regulators of cellular regeneration. In agreement with earlier morphological and cell biological studies [1, 2], our differential expression analyses indicate that cellular regeneration and vegetative division share many similarities.
Collapse
Affiliation(s)
- Henning Onsbring
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden
| | - Mahwash Jamy
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden.
| |
Collapse
|
48
|
Kassem S, Villanyi Z, Collart MA. Not5-dependent co-translational assembly of Ada2 and Spt20 is essential for functional integrity of SAGA. Nucleic Acids Res 2017; 45:1186-1199. [PMID: 28180299 PMCID: PMC5388395 DOI: 10.1093/nar/gkw1059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/04/2016] [Accepted: 10/22/2016] [Indexed: 11/13/2022] Open
Abstract
Acetylation of histones regulates gene expression in eukaryotes. In the yeast Saccharomyces cerevisiae it depends mainly upon the ADA and SAGA histone acetyltransferase complexes for which Gcn5 is the catalytic subunit. Previous screens have determined that global acetylation is reduced in cells lacking subunits of the Ccr4–Not complex, a global regulator of eukaryotic gene expression. In this study we have characterized the functional connection between the Ccr4–Not complex and SAGA. We show that SAGA mRNAs encoding a core set of SAGA subunits are tethered together for co-translational assembly of the encoded proteins. Ccr4–Not subunits bind SAGA mRNAs and promote the co-translational assembly of these subunits. This is needed for integrity of SAGA. In addition, we determine that a glycolytic enzyme, the glyceraldehyde-3-phosphate dehydrogenase Tdh3, a prototypical moonlighting protein, is tethered at this site of Ccr4–Not-dependent co-translational SAGA assembly and functions as a chaperone.
Collapse
Affiliation(s)
- Sari Kassem
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics Geneva, University of Geneva, Geneva, Switzerland
| | - Zoltan Villanyi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics Geneva, University of Geneva, Geneva, Switzerland
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
49
|
Comprehensive Identification of Nuclear and Cytoplasmic TNRC6A-Associating Proteins. J Mol Biol 2017; 429:3319-3333. [DOI: 10.1016/j.jmb.2017.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022]
|
50
|
Birkou M, Chasapis CT, Marousis KD, Loutsidou AK, Bentrop D, Lelli M, Herrmann T, Carthy JM, Episkopou V, Spyroulias GA. A Residue Specific Insight into the Arkadia E3 Ubiquitin Ligase Activity and Conformational Plasticity. J Mol Biol 2017; 429:2373-2386. [PMID: 28647409 DOI: 10.1016/j.jmb.2017.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022]
Abstract
Arkadia (Rnf111) is an E3 ubiquitin ligase that plays a central role in the amplification of transforming growth factor beta (TGF-β) signaling responses by targeting for degradation the negative regulators of the pathway, Smad6 and Smad7, and the nuclear co-repressors Ski and Skil (SnoN). Arkadia's function in vivo depends on the really interesting new gene (RING)-H2 interaction with the E2 enzyme UbcH5b in order to ligate ubiquitin chains on its substrates. A conserved tryptophan (W972) in the C-terminal α-helix is widely accepted as essential for E2 recruitment and interaction and thus also for E3 enzymatic activity. The present NMR-driven study provides an atomic-level investigation of the structural and dynamical properties of two W972 Arkadia RING mutants, attempting to illuminate for the first time the differences between a functional and a nonfunctional mutant W972A and W972R, respectively. A TGF-β-responsive promoter driving luciferase was used to assay for Arkadia function in vivo. These experiments showed that the Arkadia W972A mutant has the same activity as wild-type (WT) Arkadia in enhancing TGF-β signaling responses, while W972R does not. Only minor structural differences exist between the W972A RING domain and WT-RING. In contrast, the W972R mutant hardly interacts with E2. The loss of function correlates with structural changes in the C-terminal α-helix and an increase in the distance between the Zn(II) ions. Our data show that the position occupied by W972 within WT Arkadia is critical for the function of RING and that it depends on the nature of the residue at this position.
Collapse
Affiliation(s)
- Maria Birkou
- Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | | | | | | | - Detlef Bentrop
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Moreno Lelli
- Institut des Sciences Analytiques, Centre de RMN à Très Hauts Champs, UMR 5280 CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Torsten Herrmann
- Institut des Sciences Analytiques, Centre de RMN à Très Hauts Champs, UMR 5280 CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Jonathon M Carthy
- Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes, London W12 0NN, UK
| | - Vasso Episkopou
- Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes, London W12 0NN, UK.
| | | |
Collapse
|