1
|
Jiang Y, Liang Y, Zhao F, Lu Z, Wang S, Meng Y, Liu Z, Zhang J, Zhao Y. Rtf1 HMD domain facilitates global histone H2B monoubiquitination and regulates morphogenesis and virulence in the meningitis-causing pathogen Cryptococcus neoformans. eLife 2025; 13:RP99229. [PMID: 40353352 PMCID: PMC12068867 DOI: 10.7554/elife.99229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Rtf1 is generally considered to be a subunit of the Paf1 complex (Paf1C), which is a multifunctional protein complex involved in histone modification and RNA biosynthesis at multiple stages. Rtf1 is stably associated with the Paf1C in Saccharomyces cerevisiae, but not in other species including humans. Little is known about its function in human fungal pathogens. Here, we show that Rtf1 is required for facilitating H2B monoubiquitination (H2Bub1), and regulates fungal morphogenesis and pathogenicity in the meningitis-causing fungal pathogen Cryptococcus neoformans. Rtf1 is not tightly associated with the Paf1C, and its histone modification domain (HMD) is sufficient to promote H2Bub1 and the expression of genes related to fungal mating and filamentation. Moreover, Rtf1 HMD fully restores fungal morphogenesis and pathogenicity; however, it fails to restore defects of thermal tolerance and melanin production in the rtf1Δ strain background. The present study establishes a role for cryptococcal Rtf1 as a Paf1C-independent regulator in regulating fungal morphogenesis and pathogenicity, and highlights the function of HMD in facilitating global H2Bub1 in C. neoformans.
Collapse
Affiliation(s)
- Yixuan Jiang
- College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Ying Liang
- College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Fujie Zhao
- College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Zhenguo Lu
- College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Siyu Wang
- College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Yao Meng
- College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Zhanxiang Liu
- College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Jing Zhang
- College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
| | - Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural UniversityZhengzhouChina
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural AffairsZhengzhouChina
- Henan Province Key Laboratory of Animal Food Pathogens SurveillanceZhengzhouChina
| |
Collapse
|
2
|
Galan C, Lu G, Gill R, Li D, Liu Y, Huh JR, Hang S. RTF1 mediates epigenetic control of Th17 cell differentiation via H2B monoubiquitination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae043. [PMID: 40073106 PMCID: PMC11952878 DOI: 10.1093/jimmun/vkae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/02/2024] [Indexed: 03/14/2025]
Abstract
A gene encoding the transcription factor RTF1 has been associated with an increased risk of ulcerative colitis (UC). In this study, we investigated its function in modulating T cells expressing interleukin-17A (Th17 cells), a cardinal cell type promoting intestinal inflammation. Our results indicate that Rtf1 deficiency disrupts the differentiation of Th17 cells, while leaving regulatory T cells (Treg) unaffected. Mechanistically, RTF1 facilitates histone H2B monoubiquitination (H2Bub1), which requires its histone modification domain (HMD), for supporting Th17 cell function. Impaired Th17 differentiation was also observed in cells lacking the H2Bub1 E3 ligase subunit RNF40, an enzyme known to physically interact with RTF1. Thus, our study underscores the essential role of RTF1 in H2Bub1-mediated epigenetic regulation of Th17 cell differentiation. Understanding this process will likely provide valuable insights into addressing Th17-associated inflammatory disorders. (Images were created with BioRender).
Collapse
Affiliation(s)
| | - Guangqing Lu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Richard Gill
- Genentech, Inc, South San Francisco, CA, United States
| | - Dun Li
- Genentech, Inc, South San Francisco, CA, United States
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Bio2Q, Keio University, Tokyo, Japan
| | - Saiyu Hang
- Genentech, Inc, South San Francisco, CA, United States
| |
Collapse
|
3
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
4
|
Lee MK, Park NH, Lee SY, Kim T. Context-Dependent and Locus-Specific Role of H3K36 Methylation in Transcriptional Regulation. J Mol Biol 2025; 437:168796. [PMID: 39299382 DOI: 10.1016/j.jmb.2024.168796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
H3K36 methylation is a critical histone modification involved in transcription regulation. It involves the mono (H3K36me1), di (H3K36me2), and/or tri-methylation (H3K36me3) of lysine 36 on histone H3 by methyltransferases. In yeast, Set2 catalyzes all three methylation states. By contrast, in higher eukaryotes, at least eight methyltransferases catalyze different methylation states, including SETD2 for H3K36me3 and the NSD family for H3K36me2 in vivo. Both Set2 and SETD2 interact with the phosphorylated CTD of RNA Pol II, which links H3K36 methylation to transcription. In yeast, H3K36me3 and H3K36me2 peak at the 3' ends of genes. In higher eukaryotes, this is also true for H3K36me3 but not for H3K36me2, which is enriched at the 5' ends of genes and intergenic regions, suggesting that H3K36me2 and H3K36me3 may play different regulatory roles. Whether H3K36me1 demonstrates preferential distribution remains unclear. H3K36me3 is essential for inhibiting transcription elongation. It also suppresses cryptic transcription by promoting histone deacetylation by the histone deacetylases Rpd3S (yeast) and variant NuRD (higher eukaryotes). H3K36me3 also facilitates DNA methylation by DNMT3B, thereby preventing spurious transcription initiation. H3K36me3 not only represses transcription since it promotes the activation of mRNA and cryptic promoters in response to environmental changes by targeting the histone acetyltransferase NuA3 in yeast. Further research is needed to elucidate the methylation state- and locus-specific functions of H3K36me1 and the mechanisms that regulate it.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Na Hyun Park
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Young Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - TaeSoo Kim
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
5
|
Estell C, West S. ZC3H4/Restrictor Exerts a Stranglehold on Pervasive Transcription. J Mol Biol 2025; 437:168707. [PMID: 39002716 DOI: 10.1016/j.jmb.2024.168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The regulation of transcription by RNA polymerase II (RNAPII) underpins all cellular processes and is perturbed in thousands of diseases. In humans, RNAPII transcribes ∼20000 protein-coding genes and engages in apparently futile non-coding transcription at thousands of other sites. Despite being so ubiquitous, this transcription is usually attenuated soon after initiation and the resulting products are immediately degraded by the nuclear exosome. We and others have recently described a new complex, "Restrictor", which appears to control such unproductive transcription. Underpinned by the RNA binding protein, ZC3H4, Restrictor curtails unproductive/pervasive transcription genome-wide. Here, we discuss these recent discoveries and speculate on some of the many unknowns regarding Restrictor function and mechanism.
Collapse
Affiliation(s)
- Chris Estell
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Steven West
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
6
|
Tripplehorn SA, Shirra MK, Lardo SM, Marvil HG, Hainer SJ, Arndt KM. A direct interaction between the Chd1 CHCT domain and Rtf1 controls Chd1 distribution and nucleosome positioning on active genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627179. [PMID: 39677735 PMCID: PMC11643122 DOI: 10.1101/2024.12.06.627179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The nucleosome remodeler Chd1 is required for the re-establishment of nucleosome positioning in the wake of transcription elongation by RNA Polymerase II. Previously, we found that Chd1 occupancy on gene bodies depends on the Rtf1 subunit of the Paf1 complex in yeast. Here, we identify an N-terminal region of Rtf1 and the CHCT domain of Chd1 as sufficient for their interaction and demonstrate that this interaction is direct. Mutations that disrupt the Rtf1-Chd1 interaction result in an accumulation of Chd1 at the 5' ends of Chd1-occupied genes, increased cryptic transcription, altered nucleosome positioning, and concordant shifts in histone modification profiles. We show that a homologous region within mouse RTF1 interacts with the CHCT domains of mouse CHD1 and CHD2. This work supports a conserved mechanism for coupling Chd1 family proteins to the transcription elongation complex and identifies a cellular function for a domain within Chd1 about which little is known.
Collapse
Affiliation(s)
| | - Margaret K. Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Santana M. Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Hannah G. Marvil
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
7
|
Wang J, Fendler NL, Shukla A, Wu SY, Challa A, Lee J, Joachimiak LA, Minna JD, Chiang CM, Vos SM, D'Orso I. ARF alters PAF1 complex integrity to selectively repress oncogenic transcription programs upon p53 loss. Mol Cell 2024; 84:4538-4557.e12. [PMID: 39532099 PMCID: PMC12001331 DOI: 10.1016/j.molcel.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The polymerase associated factor 1 (PAF1) complex (PAF1c) promotes RNA polymerase II (RNA Pol II) transcription at the elongation step; however, how PAF1c transcription activity is selectively regulated during cell fate transitions remains poorly understood. Here, we reveal that the alternative reading frame (ARF) tumor suppressor operates at two levels to restrain PAF1c-dependent oncogenic transcriptional programs upon p53 loss in mouse cells. First, ARF assembles into homo-oligomers to bind the PAF1 subunit to promote PAF1c disassembly, consequently dampening PAF1c interaction with RNA Pol II and PAF1c-dependent transcription. Second, ARF targets the RUNX family transcription factor 1 (RUNX1) to selectively tune gene transcription. Consistently, ARF loss triggers RUNX1- and PAF1c-dependent transcriptional activation of pro-growth ligands (growth differentiation factor/bone morphogenetic protein [GDF/BMP]), promoting a cell-intrinsic GDF/BMP-Smad1/5 axis that aberrantly induce cell growth. Notably, pharmacologic inactivation of GDF/BMP signaling and genetic perturbation of RUNX1 significantly attenuate cell proliferation mediated by dual p53 and ARF loss, offering therapeutic utility. Our data underscore the significance of selective ARF-mediated tumor-suppressive functions through a universal transcriptional regulator.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikole L Fendler
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA
| | - Ashutosh Shukla
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeon Lee
- Lydia Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lukasz A Joachimiak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Francette AM, Arndt KM. Multiple direct and indirect roles of the Paf1 complex in transcription elongation, splicing, and histone modifications. Cell Rep 2024; 43:114730. [PMID: 39244754 PMCID: PMC11498942 DOI: 10.1016/j.celrep.2024.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
The polymerase-associated factor 1 (Paf1) complex (Paf1C) is a conserved protein complex with critical functions during eukaryotic transcription. Previous studies showed that Paf1C is multi-functional, controlling specific aspects of transcription ranging from RNA polymerase II (RNAPII) processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and the extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
9
|
Fetian T, Grover A, Arndt KM. Histone H2B ubiquitylation: Connections to transcription and effects on chromatin structure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195018. [PMID: 38331024 PMCID: PMC11098702 DOI: 10.1016/j.bbagrm.2024.195018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes are major determinants of eukaryotic genome organization and regulation. Many studies, incorporating a diversity of experimental approaches, have been focused on identifying and discerning the contributions of histone post-translational modifications to DNA-centered processes. Among these, monoubiquitylation of H2B (H2Bub) on K120 in humans or K123 in budding yeast is a critical histone modification that has been implicated in a wide array of DNA transactions. H2B is co-transcriptionally ubiquitylated and deubiquitylated via the concerted action of an extensive network of proteins. In addition to altering the chemical and physical properties of the nucleosome, H2Bub is important for the proper control of gene expression and for the deposition of other histone modifications. In this review, we discuss the molecular mechanisms underlying the ubiquitylation cycle of H2B and how it connects to the regulation of transcription and chromatin structure.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Aakash Grover
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
10
|
Obermeyer S, Kapoor H, Markusch H, Grasser KD. Transcript elongation by RNA polymerase II in plants: factors, regulation and impact on gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:645-656. [PMID: 36703573 DOI: 10.1111/tpj.16115] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Transcriptional elongation by RNA polymerase II (RNAPII) through chromatin is a dynamic and highly regulated step of eukaryotic gene expression. A combination of transcript elongation factors (TEFs) including modulators of RNAPII activity and histone chaperones facilitate efficient transcription on nucleosomal templates. Biochemical and genetic analyses, primarily performed in Arabidopsis, provided insight into the contribution of TEFs to establish gene expression patterns during plant growth and development. In addition to summarising the role of TEFs in plant gene expression, we emphasise in our review recent advances in the field. Thus, mechanisms are presented how aberrant intragenic transcript initiation is suppressed by repressing transcriptional start sites within coding sequences. We also discuss how transcriptional interference of ongoing transcription with neighbouring genes is prevented. Moreover, it appears that plants make no use of promoter-proximal RNAPII pausing in the way mammals do, but there are nucleosome-defined mechanism(s) that determine the efficiency of mRNA synthesis by RNAPII. Accordingly, a still growing number of processes related to plant growth, development and responses to changing environmental conditions prove to be regulated at the level of transcriptional elongation.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Henna Kapoor
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Hanna Markusch
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| |
Collapse
|
11
|
Francette AM, Arndt KM. Multiple direct and indirect roles of Paf1C in elongation, splicing, and histone post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591159. [PMID: 38712269 PMCID: PMC11071476 DOI: 10.1101/2024.04.25.591159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Paf1C is a highly conserved protein complex with critical functions during eukaryotic transcription. Previous studies have shown that Paf1C is multi-functional, controlling specific aspects of transcription, ranging from RNAPII processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M. Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
- Lead contact
| |
Collapse
|
12
|
Archuleta SR, Goodrich JA, Kugel JF. Mechanisms and Functions of the RNA Polymerase II General Transcription Machinery during the Transcription Cycle. Biomolecules 2024; 14:176. [PMID: 38397413 PMCID: PMC10886972 DOI: 10.3390/biom14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
Collapse
Affiliation(s)
| | - James A. Goodrich
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| | - Jennifer F. Kugel
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| |
Collapse
|
13
|
Miller CLW, Warner JL, Winston F. Insights into Spt6: a histone chaperone that functions in transcription, DNA replication, and genome stability. Trends Genet 2023; 39:858-872. [PMID: 37481442 PMCID: PMC10592469 DOI: 10.1016/j.tig.2023.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Transcription elongation requires elaborate coordination between the transcriptional machinery and chromatin regulatory factors to successfully produce RNA while preserving the epigenetic landscape. Recent structural and genomic studies have highlighted that suppressor of Ty 6 (Spt6), a conserved histone chaperone and transcription elongation factor, sits at the crux of the transcription elongation process. Other recent studies have revealed that Spt6 also promotes DNA replication and genome integrity. Here, we review recent studies of Spt6 that have provided new insights into the mechanisms by which Spt6 controls transcription and have revealed the breadth of Spt6 functions in eukaryotic cells.
Collapse
Affiliation(s)
- Catherine L W Miller
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - James L Warner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Crump NT, Smith AL, Godfrey L, Dopico-Fernandez AM, Denny N, Harman JR, Hamley JC, Jackson NE, Chahrour C, Riva S, Rice S, Kim J, Basrur V, Fermin D, Elenitoba-Johnson K, Roeder RG, Allis CD, Roberts I, Roy A, Geng H, Davies JOJ, Milne TA. MLL-AF4 cooperates with PAF1 and FACT to drive high-density enhancer interactions in leukemia. Nat Commun 2023; 14:5208. [PMID: 37626123 PMCID: PMC10457349 DOI: 10.1038/s41467-023-40981-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Aberrant enhancer activation is a key mechanism driving oncogene expression in many cancers. While much is known about the regulation of larger chromosome domains in eukaryotes, the details of enhancer-promoter interactions remain poorly understood. Recent work suggests co-activators like BRD4 and Mediator have little impact on enhancer-promoter interactions. In leukemias controlled by the MLL-AF4 fusion protein, we use the ultra-high resolution technique Micro-Capture-C (MCC) to show that MLL-AF4 binding promotes broad, high-density regions of enhancer-promoter interactions at a subset of key targets. These enhancers are enriched for transcription elongation factors like PAF1C and FACT, and the loss of these factors abolishes enhancer-promoter contact. This work not only provides an additional model for how MLL-AF4 is able to drive high levels of transcription at key genes in leukemia but also suggests a more general model linking enhancer-promoter crosstalk and transcription elongation.
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK.
| | - Alastair L Smith
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Laura Godfrey
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana M Dopico-Fernandez
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicholas Denny
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joseph C Hamley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicole E Jackson
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Catherine Chahrour
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simone Riva
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Siobhan Rice
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Damian Fermin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kojo Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Anindita Roy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
15
|
Pal S, Biswas D. Promoter-proximal regulation of gene transcription: Key factors involved and emerging role of general transcription factors in assisting productive elongation. Gene 2023:147571. [PMID: 37331491 DOI: 10.1016/j.gene.2023.147571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
The pausing of RNA polymerase II (Pol II) at the promoter-proximal sites is a key rate-limiting step in gene expression. Cells have dedicated a specific set of proteins that sequentially establish pause and then release the Pol II from promoter-proximal sites. A well-controlled pausing and subsequent release of Pol II is crucial for thefine tuning of expression of genes including signal-responsive and developmentally-regulated ones. The release of paused Pol II broadly involves its transition from initiation to elongation. In this review article, we will discuss the phenomenon of Pol II pausing, the underlying mechanism, and also the role of different known factors, with an emphasis on general transcription factors, involved in this overall regulation. We will further discuss some recent findings suggesting a possible role (underexplored) of initiation factors in assisting the transition of transcriptionally-engaged paused Pol II into productive elongation.
Collapse
Affiliation(s)
- Sujay Pal
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Ellison MA, Namjilsuren S, Shirra M, Blacksmith M, Schusteff R, Kerr E, Fang F, Xiang Y, Shi Y, Arndt K. Spt6 directly interacts with Cdc73 and is required for Paf1 complex occupancy at active genes in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:4814-4830. [PMID: 36928138 PMCID: PMC10250246 DOI: 10.1093/nar/gkad180] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The Paf1 complex (Paf1C) is a conserved transcription elongation factor that regulates transcription elongation efficiency, facilitates co-transcriptional histone modifications, and impacts molecular processes linked to RNA synthesis, such as polyA site selection. Coupling of the activities of Paf1C to transcription elongation requires its association with RNA polymerase II (Pol II). Mutational studies in yeast identified Paf1C subunits Cdc73 and Rtf1 as important mediators of Paf1C association with Pol II on active genes. While the interaction between Rtf1 and the general elongation factor Spt5 is relatively well-understood, the interactions involving Cdc73 have not been fully elucidated. Using a site-specific protein cross-linking strategy in yeast cells, we identified direct interactions between Cdc73 and two components of the Pol II elongation complex, the elongation factor Spt6 and the largest subunit of Pol II. Both of these interactions require the tandem SH2 domain of Spt6. We also show that Cdc73 and Spt6 can interact in vitro and that rapid depletion of Spt6 dissociates Paf1 from chromatin, altering patterns of Paf1C-dependent histone modifications genome-wide. These results reveal interactions between Cdc73 and the Pol II elongation complex and identify Spt6 as a key factor contributing to the occupancy of Paf1C at active genes in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Mitchell A Ellison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Margaret K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew S Blacksmith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rachel A Schusteff
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eleanor M Kerr
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Fei Fang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
17
|
Kenaston MW, Shah PS. The Archer and the Prey: The Duality of PAF1C in Antiviral Immunity. Viruses 2023; 15:1032. [PMID: 37243120 PMCID: PMC10222983 DOI: 10.3390/v15051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In the ongoing arms race between virus and host, fine-tuned gene expression plays a critical role in antiviral signaling. However, viruses have evolved to disrupt this process and promote their own replication by targeting host restriction factors. Polymerase-associated factor 1 complex (PAF1C) is a key player in this relationship, recruiting other host factors to regulate transcription and modulate innate immune gene expression. Consequently, PAF1C is consistently targeted by a diverse range of viruses, either to suppress its antiviral functions or co-opt them for their own benefit. In this review, we delve into the current mechanisms through which PAF1C restricts viruses by activating interferon and inflammatory responses at the transcriptional level. We also highlight how the ubiquity of these mechanisms makes PAF1C especially vulnerable to viral hijacking and antagonism. Indeed, as often as PAF1C is revealed to be a restriction factor, viruses are found to have targeted the complex in reply.
Collapse
Affiliation(s)
- Matthew W. Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
18
|
Park J, Park S, Lee JS. Role of the Paf1 complex in the maintenance of stem cell pluripotency and development. FEBS J 2023; 290:951-961. [PMID: 35869661 DOI: 10.1111/febs.16582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/26/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Cell identity is determined by the transcriptional regulation of a cell-type-specific gene group. The Paf1 complex (Paf1C), an RNA polymerase II-associating factor, is an important transcriptional regulator that not only participates in transcription elongation and termination but also affects transcription-coupled histone modifications and chromatin organisation. Recent studies have shown that Paf1C is involved in the expression of genes required for self-renewal and pluripotency in stem cells and tumorigenesis. In this review, we focused on the role of Paf1C as a critical transcriptional regulator in cell fate decisions. Paf1C affects the pluripotency of stem cells by regulating the expression of core transcription factors such as Oct4 and Nanog. In addition, Paf1C directly binds to the promoters or distant elements of target genes, thereby maintaining the pluripotency in embryonic stem cells derived from an early stage of the mammalian embryo. Paf1C is upregulated in cancer stem cells, as compared with that in cancer cells, suggesting that Paf1C may be a target for cancer therapy. Interestingly, Paf1C is involved in multiple developmental stages in Drosophila, zebrafish, mice and even humans, thereby displaying a trend for the correlation between Paf1C and cell fate. Thus, we propose that Paf1C is a critical contributor to cell differentiation, cell specification and its characteristics and could be employed as a therapeutic target in developmental diseases.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| | - Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| |
Collapse
|
19
|
Kenaston MW, Pham OH, Petit MJ, Shah PS. Transcriptomic profiling implicates PAF1 in both active and repressive immune regulatory networks. BMC Genomics 2022; 23:787. [PMID: 36451099 PMCID: PMC9713194 DOI: 10.1186/s12864-022-09013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Sitting at the interface of gene expression and host-pathogen interaction, polymerase associated factor 1 complex (PAF1C) is a rising player in the innate immune response. The complex localizes to the nucleus and associates with chromatin to modulate RNA polymerase II (RNAPII) elongation of gene transcripts. Performing this function at both proximal and distal regulatory elements, PAF1C interacts with many host factors across such sites, along with several microbial proteins during infection. Therefore, translating the ubiquity of PAF1C into specific impacts on immune gene expression remains especially relevant. RESULTS Advancing past work, we treat PAF1 knockout cells with a slate of immune stimuli to identify key trends in PAF1-dependent gene expression with broad analytical depth. From our transcriptomic data, we confirm PAF1 is an activator of traditional immune response pathways as well as other cellular pathways correlated with pathogen defense. With this model, we employ computational approaches to refine how PAF1 may contribute to both gene activation and suppression. Specifically focusing on transcriptional motifs and regulons, we predict gene regulatory elements strongly associated with PAF1, including those implicated in an immune response. Overall, our results suggest PAF1 is involved in innate immunity at several distinct axes of regulation. CONCLUSIONS By identifying PAF1-dependent gene expression across several pathogenic contexts, we confirm PAF1C to be a key mediator of innate immunity. Combining these transcriptomic profiles with potential regulatory networks corroborates the previously identified functions of PAF1C. With this, we foster new avenues for its study as a regulator of innate immunity, and our results will serve as a basis for targeted study of PAF1C in future validation studies.
Collapse
Affiliation(s)
- Matthew W. Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Oanh H. Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Marine J. Petit
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA ,grid.301713.70000 0004 0393 3981MRC-University of Glasgow, Centre for Virus Research, G61 1HQ, Glasgow, UK
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA ,Department of Chemical Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
20
|
Ehara H, Kujirai T, Shirouzu M, Kurumizaka H, Sekine SI. Structural basis of nucleosome disassembly and reassembly by RNAPII elongation complex with FACT. Science 2022; 377:eabp9466. [PMID: 35981082 DOI: 10.1126/science.abp9466] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During gene transcription, RNA polymerase II (RNAPII) traverses nucleosomes in chromatin, but its mechanism has remained elusive. Using cryo-electron microscopy, we obtained structures of the RNAPII elongation complex (EC) passing through a nucleosome, in the presence of transcription elongation factors Spt6, Spn1, Elf1, Spt4/5, and Paf1C and the histone chaperone FACT. The structures show snapshots of EC progression on DNA, mediating downstream nucleosome disassembly followed by its reassembly upstream of the EC, facilitated by FACT. FACT dynamically adapts to successively occurring subnucleosome intermediates, forming an interface with the EC. Spt6, Spt4/5, and Paf1C form a "cradle" at the EC DNA-exit site, and support the upstream nucleosome reassembly. These structures explain the mechanism by which the EC traverses nucleosomes while maintaining the chromatin structure and epigenetic information.
Collapse
Affiliation(s)
- Haruhiko Ehara
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomoya Kujirai
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan.,Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Kurumizaka
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan.,Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shun-Ichi Sekine
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
21
|
Oss-Ronen L, Sarusi T, Cohen I. Histone Mono-Ubiquitination in Transcriptional Regulation and Its Mark on Life: Emerging Roles in Tissue Development and Disease. Cells 2022; 11:cells11152404. [PMID: 35954248 PMCID: PMC9368181 DOI: 10.3390/cells11152404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation plays an essential role in driving precise transcriptional programs during development and homeostasis. Among epigenetic mechanisms, histone mono-ubiquitination has emerged as an important post-transcriptional modification. Two major histone mono-ubiquitination events are the mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), placed by Polycomb repressive complex 1 (PRC1), and histone H2B lysine 120 mono-ubiquitination (H2BK120ub), placed by the heteromeric RNF20/RNF40 complex. Both of these events play fundamental roles in shaping the chromatin epigenetic landscape and cellular identity. In this review we summarize the current understandings of molecular concepts behind histone mono-ubiquitination, focusing on their recently identified roles in tissue development and pathologies.
Collapse
Affiliation(s)
| | | | - Idan Cohen
- Correspondence: ; Tel.: +972-8-6477593; Fax: +972-8-6477626
| |
Collapse
|
22
|
Song A, Chen FX. The pleiotropic roles of SPT5 in transcription. Transcription 2022; 13:53-69. [PMID: 35876486 PMCID: PMC9467590 DOI: 10.1080/21541264.2022.2103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Initially discovered by genetic screens in budding yeast, SPT5 and its partner SPT4 form a stable complex known as DSIF in metazoa, which plays pleiotropic roles in multiple steps of transcription. SPT5 is the most conserved transcription elongation factor, being found in all three domains of life; however, its structure has evolved to include new domains and associated posttranslational modifications. These gained features have expanded transcriptional functions of SPT5, likely to meet the demand for increasingly complex regulation of transcription in higher organisms. This review discusses the pleiotropic roles of SPT5 in transcription, including RNA polymerase II (Pol II) stabilization, enhancer activation, Pol II pausing and its release, elongation, and termination, with a focus on the most recent progress of SPT5 functions in regulating metazoan transcription.
Collapse
Affiliation(s)
- Aixia Song
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, Province 200032, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, Province 200032, China
| |
Collapse
|
23
|
Kubota Y, Ota N, Takatsuka H, Unno T, Onami S, Sugimoto A, Ito M. The
PAF1
complex cell‐autonomously promotes oogenesis in
Caenorhabditis elegans. Genes Cells 2022; 27:409-420. [PMID: 35430776 PMCID: PMC9321568 DOI: 10.1111/gtc.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
The RNA polymerase II‐associated factor 1 complex (PAF1C) is a protein complex that consists of LEO1, RTF1, PAF1, CDC73, and CTR9, and has been shown to be involved in RNA polymerase II‐mediated transcriptional and chromatin regulation. Although it has been shown to regulate a variety of biological processes, the precise role of the PAF1C during germ line development has not been clarified. In this study, we found that reduction in the function of the PAF1C components, LEO‐1, RTFO‐1, PAFO‐1, CDC‐73, and CTR‐9, in Caenorhabditis elegans affects oogenesis. Defects in oogenesis were also confirmed using an oocyte maturation marker, OMA‐1::GFP. While four to five OMA‐1::GFP‐positive oocytes were observed in wild‐type animals, their numbers were significantly decreased in pafo‐1 mutant and leo‐1(RNAi), pafo‐1(RNAi), and cdc‐73(RNAi) animals. Expression of a functional PAFO‐1::mCherry transgene in the germline significantly rescued the oogenesis‐defective phenotype of the pafo‐1 mutants, suggesting that expression of the PAF1C in germ cells is required for oogenesis. Notably, overexpression of OMA‐1::GFP partially rescued the oogenesis defect in the pafo‐1 mutants. Based on our findings, we propose that the PAF1C promotes oogenesis in a cell‐autonomous manner by positively regulating the expression of genes involved in oocyte maturation.
Collapse
Affiliation(s)
- Yukihiro Kubota
- Department of Bioinformatics College of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Natsumi Ota
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Hisashi Takatsuka
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Takuma Unno
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Shuichi Onami
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
- RIKEN Center for Biosystems Dynamics Research 2‐2‐3, Minatojima‐minamimachi, Chuo‐ku Kobe Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dinamics Graduate School of Life Sciences, Tohoku University 2‐1‐1 Katahira Sendai Miyagi Japan
| | - Masahiro Ito
- Department of Bioinformatics College of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| |
Collapse
|
24
|
Wang Z, Song A, Xu H, Hu S, Tao B, Peng L, Wang J, Li J, Yu J, Wang L, Li Z, Chen X, Wang M, Chi Y, Wu J, Xu Y, Zheng H, Chen FX. Coordinated regulation of RNA polymerase II pausing and elongation progression by PAF1. SCIENCE ADVANCES 2022; 8:eabm5504. [PMID: 35363521 PMCID: PMC11093130 DOI: 10.1126/sciadv.abm5504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Pleiotropic transcription regulator RNA polymerase II (Pol II)-associated factor 1 (PAF1) governs multiple transcriptional steps and the deposition of several epigenetic marks. However, it remains unclear how ultimate transcriptional outcome is determined by PAF1 and whether it relates to PAF1-controlled epigenetic marks. We use rapid degradation systems and reveal direct PAF1 functions in governing pausing partially by recruiting Integrator-PP2A (INTAC), in addition to ensuring elongation. Following acute PAF1 degradation, most destabilized polymerase undergoes effective release, which presumably relies on skewed balance between INTAC and P-TEFb, resulting in hyperphosphorylated substrates including SPT5. Impaired Pol II progression during elongation, along with altered pause release frequency, determines the final transcriptional outputs. Moreover, PAF1 degradation causes a cumulative decline in histone modifications. These epigenetic alterations in chromatin likely further influence the production of transcripts from PAF1 target genes.
Collapse
Affiliation(s)
- Zhenning Wang
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aixia Song
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Xu
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shibin Hu
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bolin Tao
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Linna Peng
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jingwen Wang
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiali Yu
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ze Li
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mengyun Wang
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yayun Chi
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hai Zheng
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
25
|
Liu X, Guo Z, Han J, Peng B, Zhang B, Li H, Hu X, David CJ, Chen M. The PAF1 complex promotes 3' processing of pervasive transcripts. Cell Rep 2022; 38:110519. [PMID: 35294889 DOI: 10.1016/j.celrep.2022.110519] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/03/2022] Open
Abstract
The PAF1 complex (PAF1C) functions in multiple transcriptional processes involving RNA polymerase II (RNA Pol II). Enhancer RNAs (eRNAs) and promoter upstream transcripts (PROMPTs) are pervasive transcripts transcribed by RNA Pol II and degraded rapidly by the nuclear exosome complex after 3' endonucleolytic cleavage by the Integrator complex (Integrator). Here we show that PAF1C has a role in termination of eRNAs and PROMPTs that are cleaved 1-3 kb downstream of the transcription start site. Mechanistically, PAF1C facilitates recruitment of Integrator to sites of pervasive transcript cleavage, promoting timely cleavage and transcription termination. We also show that PAF1C recruits Integrator to coding genes, where PAF1C then dissociates from Integrator upon entry into processive elongation. Our results demonstrate a function of PAF1C in limiting the length and accumulation of pervasive transcripts that result from non-productive transcription.
Collapse
Affiliation(s)
- Xinhong Liu
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Ziwei Guo
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Jing Han
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Bo Peng
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Bin Zhang
- Peking University-Tsinghua Center for Life Sciences, Beijing 100084, China; Institute for Immunology, Tsinghua University School of Medicine, Beijing 100084, China
| | - Haitao Li
- Tsinghua University School of Medicine, Beijing 100084, China; Peking University-Tsinghua Center for Life Sciences, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Hu
- Tsinghua University School of Medicine, Beijing 100084, China; Peking University-Tsinghua Center for Life Sciences, Beijing 100084, China; Institute for Immunology, Tsinghua University School of Medicine, Beijing 100084, China
| | - Charles J David
- Tsinghua University School of Medicine, Beijing 100084, China; Peking University-Tsinghua Center for Life Sciences, Beijing 100084, China
| | - Mo Chen
- Tsinghua University School of Medicine, Beijing 100084, China.
| |
Collapse
|
26
|
Zhang B, Liu ZY, Wu R, Zhang CM, Cao K, Shan WG, Liu Z, Ji M, Tian ZL, Sethi G, Shi HL, Wang RH. Transcriptional regulator CTR9 promotes hepatocellular carcinoma progression and metastasis via increasing PEG10 transcriptional activity. Acta Pharmacol Sin 2021; 43:2109-2118. [PMID: 34876700 PMCID: PMC9343652 DOI: 10.1038/s41401-021-00812-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/31/2021] [Indexed: 11/09/2022]
Abstract
Cln Three Requiring 9 (CTR9), a scaffold protein of the polymerase-associated factor-1 (PAF1) complex (PAF1c), is primarily localized in the nucleus of cells. Recent studies show that CTR9 plays essential roles in the development of various human cancers and their occurrence; however, its regulatory roles and precise mechanisms in hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the roles of CTR9 using in vitro assays and a xenograft mouse model. We found that CTR9 protein is upregulated in tumor tissues from HCC patients. Knockdown of CTR9 substantially reduced HCC cell proliferation, invasion, and migration, whereas its overexpression promoted these activities. In addition, in vitro results revealed that CTR9 silencing dramatically increased cell cycle regulators, p21 and p27, but markedly decreased matrix metalloproteinases, MMP2 and MMP9, with these outcomes reversed upon CTR9 overexpression. Furthermore, the underlying molecular mechanism suggests that CTR9 promoted the oncogene paternally expressed gene 10 (PEG10) transcription via its promoter region. Finally, the oncogenic roles of CTR9 were confirmed in a xenograft mouse model. This study confirms that CTR9, an oncoprotein that promotes HCC cell proliferation, invasion, and migration, increases tumor growth in a xenograft mouse model. CTR9 could be a novel therapeutic target. Further investigation is warranted to verify CTR9 potential in novel therapies for HCC.
Collapse
|
27
|
Chen F, Liu B, Zeng J, Guo L, Ge X, Feng W, Li DF, Zhou H, Long J. Crystal Structure of the Core Module of the Yeast Paf1 Complex. J Mol Biol 2021; 434:167369. [PMID: 34852272 DOI: 10.1016/j.jmb.2021.167369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022]
Abstract
The highly conserved multifunctional polymerase-associated factor 1 (Paf1) complex (PAF1C), which consists of five core subunits: Ctr9, Paf1, Leo1, Cdc73, and Rtf1, acts as a diverse hub that regulates all stages of RNA polymerase II-mediated transcription and various other cellular functions. However, the underlying mechanisms remain unclear. Here, we report the crystal structure of the core module derived from a quaternary Ctr9/Paf1/Cdc73/Rtf1 complex of S. cerevisiae PAF1C, which reveals interfaces between the tetratricopeptide repeat module in Ctr9 and Cdc73 or Rtf1, and find that the Ctr9/Paf1 subcomplex is the key scaffold for PAF1C assembly. Our study demonstrates that Cdc73 binds Ctr9/Paf1 subcomplex with a very similar conformation within thermophilic fungi or human PAF1C, and that the binding of Cdc73 to PAF1C is important for yeast growth. Importantly, our structure reveals for the first time that the extreme C-terminus of Rtf1 adopts an "L"-shaped structure, which interacts with Ctr9 specifically. In addition, disruption of the binding of either Cdc73 or Rtf1 to PAF1C greatly affects the normal level of histone H2B K123 monoubiquitination in vivo. Collectively, our results provide a structural insight into the architecture of the quaternary Ctr9/Paf1/Cdc73/Rtf1 complex and PAF1C functional regulation.
Collapse
Affiliation(s)
- Feilong Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Beibei Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jianwei Zeng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuan Ge
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; Nankai International Advanced Research Institute (Shenzhen Futian), Shenzhen, Guangdong 518045, China.
| |
Collapse
|
28
|
Transcription recycling assays identify PAF1 as a driver for RNA Pol II recycling. Nat Commun 2021; 12:6318. [PMID: 34732721 PMCID: PMC8566496 DOI: 10.1038/s41467-021-26604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/17/2021] [Indexed: 11/20/2022] Open
Abstract
RNA Polymerase II (Pol II) transcriptional recycling is a mechanism for which the required factors and contributions to overall gene expression levels are poorly understood. We describe an in vitro methodology facilitating unbiased identification of putative RNA Pol II transcriptional recycling factors and quantitative measurement of transcriptional output from recycled transcriptional components. Proof-of-principle experiments identified PAF1 complex components among recycling factors and detected defective transcriptional output from Pol II recycling following PAF1 depletion. Dynamic ChIP-seq confirmed PAF1 silencing triggered defective Pol II recycling in human cells. Prostate tumors exhibited enhanced transcriptional recycling, which was attenuated by antibody-based PAF1 depletion. These findings identify Pol II recycling as a potential target in cancer and demonstrate the applicability of in vitro and cellular transcription assays to characterize Pol II recycling in other disease states. RNA Polymerase II (Pol II) recycling can influence transcription efficiency. Here the authors describe an approach aimed at facilitating the identification of factors involved in Pol II recycling and identify PAF1 complex components as mediators of recycling.
Collapse
|
29
|
Uzun Ü, Brown T, Fischl H, Angel A, Mellor J. Spt4 facilitates the movement of RNA polymerase II through the +2 nucleosomal barrier. Cell Rep 2021; 36:109755. [PMID: 34592154 PMCID: PMC8492961 DOI: 10.1016/j.celrep.2021.109755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/18/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Spt4 is a transcription elongation factor with homologs in organisms with nucleosomes. Structural and in vitro studies implicate Spt4 in transcription through nucleosomes, and yet the in vivo function of Spt4 is unclear. Here, we assess the precise position of Spt4 during transcription and the consequences of the loss of Spt4 on RNA polymerase II (RNAPII) dynamics and nucleosome positioning in Saccharomyces cerevisiae. In the absence of Spt4, the spacing between gene-body nucleosomes increases and RNAPII accumulates upstream of the nucleosomal dyad, most dramatically at nucleosome +2. Spt4 associates with elongating RNAPII early in transcription, and its association dynamically changes depending on nucleosome positions. Together, our data show that Spt4 regulates early elongation dynamics, participates in co-transcriptional nucleosome positioning, and promotes RNAPII movement through the gene-body nucleosomes, especially the +2 nucleosome.
Collapse
Affiliation(s)
- Ülkü Uzun
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas Brown
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Harry Fischl
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrew Angel
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
30
|
Francette AM, Tripplehorn SA, Arndt KM. The Paf1 Complex: A Keystone of Nuclear Regulation Operating at the Interface of Transcription and Chromatin. J Mol Biol 2021; 433:166979. [PMID: 33811920 PMCID: PMC8184591 DOI: 10.1016/j.jmb.2021.166979] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The regulation of transcription by RNA polymerase II is closely intertwined with the regulation of chromatin structure. A host of proteins required for the disassembly, reassembly, and modification of nucleosomes interacts with Pol II to aid its movement and counteract its disruptive effects on chromatin. The highly conserved Polymerase Associated Factor 1 Complex, Paf1C, travels with Pol II and exerts control over transcription elongation and chromatin structure, while broadly impacting the transcriptome in both single cell and multicellular eukaryotes. Recent studies have yielded exciting new insights into the mechanisms by which Paf1C regulates transcription elongation, epigenetic modifications, and post-transcriptional steps in eukaryotic gene expression. Importantly, these functional studies are now supported by an extensive foundation of high-resolution structural information, providing intimate views of Paf1C and its integration into the larger Pol II elongation complex. As a global regulatory factor operating at the interface between chromatin and transcription, the impact of Paf1C is broad and its influence reverberates into other domains of nuclear regulation, including genome stability, telomere maintenance, and DNA replication.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
31
|
Shukla A, Bhalla P, Potdar PK, Jampala P, Bhargava P. Transcription-dependent enrichment of the yeast FACT complex influences nucleosome dynamics on the RNA polymerase III-transcribed genes. RNA (NEW YORK, N.Y.) 2020; 27:rna.077974.120. [PMID: 33277439 PMCID: PMC7901838 DOI: 10.1261/rna.077974.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
The FACT (FAcilitates Chromatin Transactions) complex influences transcription initiation and enables passage of RNA polymerase (pol) II through gene body nucleosomes during elongation. In the budding yeast, ~280 non-coding RNA genes highly transcribed in vivo by pol III are found in the nucleosome-free regions bordered by positioned nucleosomes. The downstream nucleosome dynamics was found to regulate transcription via controlling the gene terminator accessibility and hence, terminator-dependent pol III recycling. As opposed to the enrichment at the 5'-ends of pol II-transcribed genes, our genome-wide mapping found transcription-dependent enrichment of the FACT subunit Spt16 near the 3'-end of all pol III-transcribed genes. Spt16 physically associates with the pol III transcription complex and shows gene-specific occupancy levels on the individual genes. On the non-tRNA pol III-transcribed genes, Spt16 facilitates transcription by reducing the nucleosome occupany on the gene body. On the tRNA genes, it maintains the position of the nucleosome at the 3' gene-end and affects transcription in gene-specific manner. Under nutritional stress, Spt16 enrichment is abolished in the gene downstream region of all pol III-transcribed genes and reciprocally changed on the induced or repressed pol II-transcribed ESR genes. Under the heat and replicative stress, its occupancy on the pol III-transcribed genes increases significantly. Our results show that Spt16 elicits a differential, gene-specific and stress-responsive dynamics, which provides a novel stress-sensor mechanism of regulating transcription against external stress. By primarily influencing the nucleosomal organization, FACT links the downstream nucleosome dynamics to transcription and environmental stress on the pol III-transcribed genes.
Collapse
|
32
|
Formosa T, Winston F. The role of FACT in managing chromatin: disruption, assembly, or repair? Nucleic Acids Res 2020; 48:11929-11941. [PMID: 33104782 PMCID: PMC7708052 DOI: 10.1093/nar/gkaa912] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription) has long been considered to be a transcription elongation factor whose ability to destabilize nucleosomes promotes RNAPII progression on chromatin templates. However, this is just one function of this histone chaperone, as FACT also functions in DNA replication. While broadly conserved among eukaryotes and essential for viability in many organisms, dependence on FACT varies widely, with some differentiated cells proliferating normally in its absence. It is therefore unclear what the core functions of FACT are, whether they differ in different circumstances, and what makes FACT essential in some situations but not others. Here, we review recent advances and propose a unifying model for FACT activity. By analogy to DNA repair, we propose that the ability of FACT to both destabilize and assemble nucleosomes allows it to monitor and restore nucleosome integrity as part of a system of chromatin repair, in which disruptions in the packaging of DNA are sensed and returned to their normal state. The requirement for FACT then depends on the level of chromatin disruption occurring in the cell, and the cell's ability to tolerate packaging defects. The role of FACT in transcription would then be just one facet of a broader system for maintaining chromatin integrity.
Collapse
Affiliation(s)
- Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Decker TM. Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5). J Mol Biol 2020; 433:166657. [PMID: 32987031 DOI: 10.1016/j.jmb.2020.09.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
The transcription elongation factor Spt5 is conserved from bacteria to humans. In eukaryotes, Spt5 forms a complex with Spt4 and regulates processive transcription elongation. Recent studies on transcription elongation suggest different mechanistic roles in yeast versus mammals. Higher eukaryotes utilize Spt4-Spt5 (DSIF) to regulate promoter-proximal pausing, a transcription-regulatory mechanism that connects initiation to productive elongation. DSIF is a versatile transcription factor and has been implicated in both gene-specific regulation and transcription through nucleosomes. Future studies will further elucidate the role of DSIF in transcriptional dynamics and disentangle its inhibitory and enhancing activities in transcription.
Collapse
Affiliation(s)
- Tim-Michael Decker
- Department of Biochemistry, University of Colorado, 3415 Colorado Ave, Boulder, CO 80303, USA.
| |
Collapse
|
34
|
Gao R, Bao J, Yan H, Xie L, Qin W, Ning H, Huang S, Cheng J, Zhi R, Li Z, Tucker B, Chen Y, Zhang K, Wu X, Liu Z, Gao X, Hu D. Competition between PAF1 and MLL1/COMPASS confers the opposing function of LEDGF/p75 in HIV latency and proviral reactivation. SCIENCE ADVANCES 2020; 6:eaaz8411. [PMID: 32426500 PMCID: PMC7220354 DOI: 10.1126/sciadv.aaz8411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/02/2020] [Indexed: 05/19/2023]
Abstract
Transcriptional status determines the HIV replicative state in infected patients. However, the transcriptional mechanisms for proviral replication control remain unclear. In this study, we show that, apart from its function in HIV integration, LEDGF/p75 differentially regulates HIV transcription in latency and proviral reactivation. During latency, LEDGF/p75 suppresses proviral transcription via promoter-proximal pausing of RNA polymerase II (Pol II) by recruiting PAF1 complex to the provirus. Following latency reversal, MLL1 complex competitively displaces PAF1 from the provirus through casein kinase II (CKII)-dependent association with LEDGF/p75. Depleting or pharmacologically inhibiting CKII prevents PAF1 dissociation and abrogates the recruitment of both MLL1 and Super Elongation Complex (SEC) to the provirus, thereby impairing transcriptional reactivation for latency reversal. These findings, therefore, provide a mechanistic understanding of how LEDGF/p75 coordinates its distinct regulatory functions at different stages of the post-integrated HIV life cycles. Targeting these mechanisms may have a therapeutic potential to eradicate HIV infection.
Collapse
Affiliation(s)
- Ru Gao
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiaqian Bao
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Han Yan
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Liya Xie
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wanchang Qin
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hanhan Ning
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shuqi Huang
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jun Cheng
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Renyong Zhi
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Cancer Institute and Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Zexing Li
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Bronwyn Tucker
- School of Medical English and Health Communication, Tianjin Medical University, Tianjin 300070, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xudong Wu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xin Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Corresponding author. (D.H.); (X.G.)
| | - Deqing Hu
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Cancer Institute and Hospital of Tianjin Medical University, Tianjin 300060, China
- Corresponding author. (D.H.); (X.G.)
| |
Collapse
|
35
|
The Set1 N-terminal domain and Swd2 interact with RNA polymerase II CTD to recruit COMPASS. Nat Commun 2020; 11:2181. [PMID: 32358498 PMCID: PMC7195483 DOI: 10.1038/s41467-020-16082-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Methylation of histone H3 lysine 4 (H3K4) by Set1/COMPASS occurs co-transcriptionally, and is important for gene regulation. Set1/COMPASS associates with the RNA polymerase II C-terminal domain (CTD) to establish proper levels and distribution of H3K4 methylations. However, details of CTD association remain unclear. Here we report that the Set1 N-terminal region and the COMPASS subunit Swd2, which interact with each other, are both needed for efficient CTD binding in Saccharomyces cerevisiae. Moreover, a single point mutation in Swd2 that affects its interaction with Set1 also impairs COMPASS recruitment to chromatin and H3K4 methylation. A CTD interaction domain (CID) from the protein Nrd1 can partially substitute for the Set1 N-terminal region to restore CTD interactions and histone methylation. However, even when Set1/COMPASS is recruited via the Nrd1 CID, histone H2B ubiquitylation is still required for efficient H3K4 methylation, indicating that H2Bub acts after the initial recruitment of COMPASS to chromatin.
Collapse
|
36
|
Ipa1 Is an RNA Polymerase II Elongation Factor that Facilitates Termination by Maintaining Levels of the Poly(A) Site Endonuclease Ysh1. Cell Rep 2020; 26:1919-1933.e5. [PMID: 30759400 PMCID: PMC7236606 DOI: 10.1016/j.celrep.2019.01.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/05/2018] [Accepted: 01/15/2019] [Indexed: 02/08/2023] Open
Abstract
The yeast protein Ipa1 was recently discovered to interact with the Ysh1
endonuclease of the prem-RNA cleavage and polyadenylation (C/P) machinery, and
Ipa1 mutation impairs 3′end processing. We report that Ipa1 globally
promotes proper transcription termination and poly(A) site selection, but with
variable effects on genes depending upon the specific configurations of
polyadenylation signals. Our findings suggest that the role of Ipa1 in
termination is mediated through interaction with Ysh1, since Ipa1 mutation leads
to decrease in Ysh1 and poor recruitment of the C/P complex to a transcribed
gene. The Ipa1 association with transcriptionally active chromatin resembles
that of elongation factors, and the mutant shows defective Pol II elongation
kinetics in vivo. Ysh1 overexpression in the Ipa1 mutant
rescues the termination defect, but not the mutant’s sensitivity to
6-azauracil, an indicator of defective elongation. Our findings support a model
in which an Ipa1/Ysh1 complex helps coordinate transcription elongation and
3′ end processing. The essential, uncharacterized Ipa1 protein was recently discovered to
interact with the Ysh1 endonuclease of the pre-mRNA cleavage and polyadenylation
machinery. Pearson et al. propose that the Ipa1/Ysh1 interaction provides the
cell with a means to coordinate and regulate transcription elongation with
3′ end processing in accordance with the cell’s needs.
Collapse
|
37
|
Lee JW, Bae E, Kwon SH, Yu MY, Cha RH, Lee H, Kim DK, Lee JP, Ye SK, Yoo JY, Park DJ, Kim YS, Yang SH. Transcriptional modulation of the T helper 17/interleukin 17 axis ameliorates renal ischemia-reperfusion injury. Nephrol Dial Transplant 2020; 34:1481-1498. [PMID: 30544214 DOI: 10.1093/ndt/gfy370] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is a latent transcription factor critical for T-cell function. Although inhibition of the Janus kinase 2 (JAK2)/STAT3 pathway has been reported to be protective against ischemia-reperfusion injury (IRI), the role of T cell-associated STAT3 in the pathogenesis of renal IRI has not been specifically defined. METHODS We induced renal IRI in both mice with T cell-specific STAT3 knockout (Lck-Cre;STAT3flox/flox) and wild-type controls (C57BL/6) and assessed renal damage and inflammation at 48 h after IRI. Human proximal tubular epithelial cells grown under hypoxia were treated with a JAK2 inhibitor, caffeic acid 3,4-dihydroxy-phenylethyl ester, to determine the effect of JAK2/STAT3 inhibition on renal epithelia. Independently, we disrupted Cln 3-requiring 9 (Ctr9) to inhibit T helper 17 (Th17) activation via RNA interference and determined if Ctr9 inhibition aggravates renal injury through upregulated Th17 activation. RESULTS The Lck-Cre;STAT3flox/flox mice exhibited significantly reduced kidney damage compared with controls. This protective effect was associated with reduced intrarenal Th17 infiltration and proinflammatory cytokines. Human proximal tubular epithelial cells under hypoxia exhibited significant upregulation of interleukin 17 receptors, and pharmacologic inhibition of JAK2 significantly ameliorated this change. RNA interference with Ctr9 in splenocytes enhanced differentiation into Th17 cells. In vivo knockdown of Ctr9 in mice with renal IRI further aggravated Th17-associated inflammation and kidney injury. CONCLUSIONS STAT3 in T cells contributes to renal IRI through Th17 activation. Inhibition of Ctr9 further enhances Th17 activation and aggravates kidney injury, further supporting the role of Th17 cells in renal IRI.
Collapse
Affiliation(s)
- Jae Wook Lee
- Kidney Research Institute, Seoul National University, Seoul, South Korea.,Nephrology Clinic, National Cancer Center, Goyang, South Korea
| | - Eunjin Bae
- Department of Internal Medicine, Gyeongsang National University College of Medicine and Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Sun-Ho Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
| | - Mi-Yeon Yu
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, South Korea
| | - Ran-Hui Cha
- Internal Medicine, National Medical Center, Seoul, South Korea
| | - Hajeong Lee
- Kidney Research Institute, Seoul National University, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Dong Ki Kim
- Kidney Research Institute, Seoul National University, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Pyo Lee
- Kidney Research Institute, Seoul National University, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
| | - Joo-Yeon Yoo
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | - Dong Jun Park
- Department of Internal Medicine, Gyeongsang National University College of Medicine and Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Yon Su Kim
- Kidney Research Institute, Seoul National University, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
38
|
Link AJ, Niu X, Weaver CM, Jennings JL, Duncan DT, McAfee KJ, Sammons M, Gerbasi VR, Farley AR, Fleischer TC, Browne CM, Samir P, Galassie A, Boone B. Targeted Identification of Protein Interactions in Eukaryotic mRNA Translation. Proteomics 2020; 20:e1900177. [PMID: 32027465 DOI: 10.1002/pmic.201900177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/13/2019] [Indexed: 11/09/2022]
Abstract
To identify protein-protein interactions and phosphorylated amino acid sites in eukaryotic mRNA translation, replicate TAP-MudPIT and control experiments are performed targeting Saccharomyces cerevisiae genes previously implicated in eukaryotic mRNA translation by their genetic and/or functional roles in translation initiation, elongation, termination, or interactions with ribosomal complexes. Replicate tandem affinity purifications of each targeted yeast TAP-tagged mRNA translation protein coupled with multidimensional liquid chromatography and tandem mass spectrometry analysis are used to identify and quantify copurifying proteins. To improve sensitivity and minimize spurious, nonspecific interactions, a novel cross-validation approach is employed to identify the most statistically significant protein-protein interactions. Using experimental and computational strategies discussed herein, the previously described protein composition of the canonical eukaryotic mRNA translation initiation, elongation, and termination complexes is calculated. In addition, statistically significant unpublished protein interactions and phosphorylation sites for S. cerevisiae's mRNA translation proteins and complexes are identified.
Collapse
Affiliation(s)
- Andrew J Link
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xinnan Niu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Connie M Weaver
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jennifer L Jennings
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Dexter T Duncan
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - K Jill McAfee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Morgan Sammons
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Vince R Gerbasi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Adam R Farley
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Tracey C Fleischer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | | | - Parimal Samir
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Allison Galassie
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Braden Boone
- Department of Bioinformatics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
39
|
A Quantitative Genetic Interaction Map of HIV Infection. Mol Cell 2020; 78:197-209.e7. [PMID: 32084337 DOI: 10.1016/j.molcel.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/16/2022]
Abstract
We have developed a platform for quantitative genetic interaction mapping using viral infectivity as a functional readout and constructed a viral host-dependency epistasis map (vE-MAP) of 356 human genes linked to HIV function, comprising >63,000 pairwise genetic perturbations. The vE-MAP provides an expansive view of the genetic dependencies underlying HIV infection and can be used to identify drug targets and study viral mutations. We found that the RNA deadenylase complex, CNOT, is a central player in the vE-MAP and show that knockout of CNOT1, 10, and 11 suppressed HIV infection in primary T cells by upregulating innate immunity pathways. This phenotype was rescued by deletion of IRF7, a transcription factor regulating interferon-stimulated genes, revealing a previously unrecognized host signaling pathway involved in HIV infection. The vE-MAP represents a generic platform that can be used to study the global effects of how different pathogens hijack and rewire the host during infection.
Collapse
|
40
|
Jurynec MJ, Bai X, Bisgrove BW, Jackson H, Nechiporuk A, Palu RAS, Grunwald HA, Su YC, Hoshijima K, Yost HJ, Zon LI, Grunwald DJ. The Paf1 complex and P-TEFb have reciprocal and antagonist roles in maintaining multipotent neural crest progenitors. Development 2019; 146:dev.180133. [PMID: 31784460 DOI: 10.1242/dev.180133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Multipotent progenitor populations are necessary for generating diverse tissue types during embryogenesis. We show the RNA polymerase-associated factor 1 complex (Paf1C) is required to maintain multipotent progenitors of the neural crest (NC) lineage in zebrafish. Mutations affecting each Paf1C component result in near-identical NC phenotypes; alyron mutant embryos carrying a null mutation in paf1 were analyzed in detail. In the absence of zygotic paf1 function, definitive premigratory NC progenitors arise but fail to maintain expression of the sox10 specification gene. The mutant NC progenitors migrate aberrantly and fail to differentiate appropriately. Blood and germ cell progenitor development is affected similarly. Development of mutant NC could be rescued by additional loss of positive transcription elongation factor b (P-TEFb) activity, a key factor in promoting transcription elongation. Consistent with the interpretation that inhibiting/delaying expression of some genes is essential for maintaining progenitors, mutant embryos lacking the CDK9 kinase component of P-TEFb exhibit a surfeit of NC progenitors and their derivatives. We propose Paf1C and P-TEFb act antagonistically to regulate the timing of the expression of genes needed for NC development.
Collapse
Affiliation(s)
- Michael J Jurynec
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xiaoying Bai
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brent W Bisgrove
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Haley Jackson
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Alex Nechiporuk
- Department of Cell and Developmental Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rebecca A S Palu
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hannah A Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi-Chu Su
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - H Joseph Yost
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
41
|
Cucinotta CE, Hildreth AE, McShane BM, Shirra MK, Arndt KM. The nucleosome acidic patch directly interacts with subunits of the Paf1 and FACT complexes and controls chromatin architecture in vivo. Nucleic Acids Res 2019; 47:8410-8423. [PMID: 31226204 PMCID: PMC6895269 DOI: 10.1093/nar/gkz549] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
The nucleosome core regulates DNA-templated processes through the highly conserved nucleosome acidic patch. While structural and biochemical studies have shown that the acidic patch controls chromatin factor binding and activity, few studies have elucidated its functions in vivo. We employed site-specific crosslinking to identify proteins that directly bind the acidic patch in Saccharomyces cerevisiae and demonstrated crosslinking of histone H2A to Paf1 complex subunit Rtf1 and FACT subunit Spt16. Rtf1 bound to nucleosomes through its histone modification domain, supporting its role as a cofactor in H2B K123 ubiquitylation. An acidic patch mutant showed defects in nucleosome positioning and occupancy genome-wide. Our results provide new information on the chromatin engagement of two central players in transcription elongation and emphasize the importance of the nucleosome core as a hub for proteins that regulate chromatin during transcription.
Collapse
Affiliation(s)
- Christine E Cucinotta
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - A Elizabeth Hildreth
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Brendan M McShane
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Margaret K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
42
|
Yeast PAF1 complex counters the pol III accumulation and replication stress on the tRNA genes. Sci Rep 2019; 9:12892. [PMID: 31501524 PMCID: PMC6733944 DOI: 10.1038/s41598-019-49316-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
The RNA polymerase (pol) III transcribes mostly short, house-keeping genes, which produce stable, non-coding RNAs. The tRNAs genes, highly transcribed by pol III in vivo are known replication fork barriers. One of the transcription factors, the PAF1C (RNA polymerase II associated factor 1 complex) is reported to associate with pol I and pol II and influence their transcription. We found low level PAF1C occupancy on the yeast pol III-transcribed genes, which is not correlated with nucleosome positions, pol III occupancy and transcription. PAF1C interacts with the pol III transcription complex and causes pol III loss from the genes under replication stress. Genotoxin exposure causes pol III but not Paf1 loss from the genes. In comparison, Paf1 deletion leads to increased occupancy of pol III, γ-H2A and DNA pol2 in gene-specific manner. Paf1 restricts the accumulation of pol III by influencing the pol III pause on the genes, which reduces the pol III barrier to the replication fork progression.
Collapse
|
43
|
Abstract
Elongation factor Paf1C regulates several stages of the RNA polymerase II (Pol II) transcription cycle, although it is unclear how it modulates Pol II distribution and progression in mammalian cells. We found that conditional ablation of Paf1 resulted in the accumulation of unphosphorylated and Ser5 phosphorylated Pol II around promoter-proximal regions and within the first 20 to 30 kb of gene bodies, respectively. Paf1 ablation did not impact the recruitment of other key elongation factors, namely, Spt5, Spt6, and the FACT complex, suggesting that Paf1 function may be mechanistically distinguishable from each of these factors. Moreover, loss of Paf1 triggered an increase in TSS-proximal nucleosome occupancy, which could impose a considerable barrier to Pol II elongation past TSS-proximal regions. Remarkably, accumulation of Ser5P in the first 20 to 30 kb coincided with reductions in histone H2B ubiquitylation within this region. Furthermore, we show that nascent RNA species accumulate within this window, suggesting a mechanism whereby Paf1 loss leads to aberrant, prematurely terminated transcripts and diminution of full-length transcripts. Importantly, we found that loss of Paf1 results in Pol II elongation rate defects with significant rate compression. Our findings suggest that Paf1C is critical for modulating Pol II elongation rates by functioning beyond the pause-release step as an "accelerator" over specific early gene body regions.
Collapse
|
44
|
Bhalla P, Vernekar DV, Gilquin B, Couté Y, Bhargava P. Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II. Gene 2018; 702:205-214. [PMID: 30593915 DOI: 10.1016/j.gene.2018.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
Eukaryotic transcription is a highly regulated fundamental life process. A large number of regulatory proteins and complexes, many of them with sequence-specific DNA-binding activity are known to influence transcription by RNA polymerase (pol) II with a fine precision. In comparison, only a few regulatory proteins are known for pol III, which transcribes genes encoding small, stable, non-translated RNAs. The pol III transcription is precisely regulated under various stress conditions. We used pol III transcription complex (TC) components TFIIIC (Tfc6), pol III (Rpc128) and TFIIIB (Brf1) as baits and mass spectrometry to identify their potential interactors in vivo. A large interactome constituting chromatin modifiers, regulators and factors of transcription by pol I and pol II supports the possibility of a crosstalk between the three transcription machineries. The association of proteins and complexes involved in various basic life processes like ribogenesis, RNA processing, protein folding and degradation, DNA damage response, replication and transcription underscores the possibility of the pol III TC serving as a signaling hub for communication between the transcription and other cellular physiological activities under normal growth conditions. We also found an equally large number of proteins and complexes interacting with the TC under nutrient starvation condition, of which at least 25% were non-identical under the two conditions. The data reveal the possibility of a large number of signaling cues for pol III transcription against adverse conditions, necessary for an efficient co-ordination of various cellular functions.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Dipti Vinayak Vernekar
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Benoit Gilquin
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India.
| |
Collapse
|
45
|
Martin BJE, Chruscicki AT, Howe LJ. Transcription Promotes the Interaction of the FAcilitates Chromatin Transactions (FACT) Complex with Nucleosomes in Saccharomyces cerevisiae. Genetics 2018; 210:869-881. [PMID: 30237209 PMCID: PMC6218215 DOI: 10.1534/genetics.118.301349] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
The FACT (FAcilitates Chromatin Transactions) complex is a conserved complex that maintains chromatin structure on transcriptionally active genes. Consistent with this, FACT is enriched on highly expressed genes, but how it is targeted to these regions is unknown. In vitro, FACT binds destabilized nucleosomes, supporting the hypothesis that FACT is targeted to transcribed chromatin through recognition of RNA polymerase (RNAP)-disrupted nucleosomes. In this study, we used high-resolution analysis of FACT occupancy in Saccharomyces cerevisiae to test this hypothesis. We demonstrate that FACT interacts with nucleosomes in vivo and that its interaction with chromatin is dependent on transcription by any of the three RNAPs. Deep sequencing of micrococcal nuclease-resistant fragments shows that FACT-bound nucleosomes exhibit differing nuclease sensitivity compared to bulk chromatin, consistent with a modified nucleosome structure being the preferred ligand for this complex. Interestingly, a subset of FACT-bound nucleosomes may be "overlapping dinucleosomes," in which one histone octamer invades the ∼147-bp territory normally occupied by the adjacent nucleosome. While the differing nuclease sensitivity of FACT-bound nucleosomes could also be explained by the demonstrated ability of FACT to alter nucleosome structure, transcription inhibition restores nuclease resistance, suggesting that it is not due to FACT interaction alone. Collectively, these results are consistent with a model in which FACT is targeted to transcribed genes through preferential interaction with RNAP-disrupted nucleosomes.
Collapse
Affiliation(s)
- Benjamin J E Martin
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Adam T Chruscicki
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - LeAnn J Howe
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
46
|
Rodrigues J, Lydall D. Cis and trans interactions between genes encoding PAF1 complex and ESCRT machinery components in yeast. Curr Genet 2018; 64:1105-1116. [PMID: 29564528 PMCID: PMC6153643 DOI: 10.1007/s00294-018-0828-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/23/2022]
Abstract
Saccharomyces cerevisiae is a commonly used model organism for understanding eukaryotic gene function. However, the close proximity between yeast genes can complicate the interpretation of yeast genetic data, particularly high-throughput data. In this study, we examined the interplay between genes encoding components of the PAF1 complex and VPS36, the gene located next to CDC73 on chromosome XII. The PAF1 complex (Cdc73, Paf1, Ctr9, Leo1, and Rtf1, in yeast) affects RNA levels by affecting transcription, histone modifications, and post-transcriptional RNA processing. The human PAF1 complex is linked to cancer, and in yeast, it has been reported to play a role in telomere biology. Vps36, part of the ESCRT-II complex, is involved in sorting proteins for vacuolar/lysosomal degradation. We document a complex set of genetic interactions, which include an adjacent gene effect between CDC73 and VPS36 and synthetic sickness between vps36Δ and cdc73Δ, paf1Δ, or ctr9Δ. Importantly, paf1Δ and ctr9Δ are synthetically lethal with deletions of other components of the ESCRT-II (SNF8 and VPS25), ESCRT-I (STP22), or ESCRT-III (SNF7) complexes. We found that RNA levels of VPS36, but not other ESCRT components, are positively regulated by all components of the PAF1 complex. Finally, we show that deletion of ESCRT components decreases the telomere length in the S288C yeast genetic background, but not in the W303 background. Together, our results outline complex interactions, in cis and in trans, between genes encoding PAF1 and ESCRT-II complex components that affect telomere function and cell viability in yeast.
Collapse
Affiliation(s)
- Joana Rodrigues
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
47
|
Xie Y, Zheng M, Chu X, Chen Y, Xu H, Wang J, Zhou H, Long J. Paf1 and Ctr9 subcomplex formation is essential for Paf1 complex assembly and functional regulation. Nat Commun 2018; 9:3795. [PMID: 30228257 PMCID: PMC6143631 DOI: 10.1038/s41467-018-06237-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/15/2018] [Indexed: 11/09/2022] Open
Abstract
The evolutionarily conserved multifunctional polymerase-associated factor 1 (Paf1) complex (Paf1C), which is composed of at least five subunits (Paf1, Leo1, Ctr9, Cdc73, and Rtf1), plays vital roles in gene regulation and has connections to development and human diseases. Here, we report two structures of each of the human and yeast Ctr9/Paf1 subcomplexes, which assemble into heterodimers with very similar conformations, revealing an interface between the tetratricopeptide repeat module in Ctr9 and Paf1. The structure of the Ctr9/Paf1 subcomplex may provide mechanistic explanations for disease-associated mutations in human PAF1 and CTR9. Our study reveals that the formation of the Ctr9/Paf1 heterodimer is required for the assembly of yeast Paf1C, and is essential for yeast viability. In addition, disruption of the interaction between Paf1 and Ctr9 greatly affects the level of histone H3 methylation in vivo. Collectively, our results shed light on Paf1C assembly and functional regulation.
Collapse
Affiliation(s)
- Ying Xie
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minying Zheng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Huisha Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
48
|
Transcriptional elongation factor Paf1 core complex adopts a spirally wrapped solenoidal topology. Proc Natl Acad Sci U S A 2018; 115:9998-10003. [PMID: 30224485 PMCID: PMC6176576 DOI: 10.1073/pnas.1812256115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The polymerase-associated factor 1 (PAF1) complex is a general transcription elongation factor of RNA polymerase II, which not only regulates various stages of the transcription cycle but also broadly influences gene expression through modulating chromatin structure and/or recruiting other transcription-related factors. This study presents a high-resolution crystal structure of the core region of the Paf1-Ctr9-Cdc73 ternary complex, which not only greatly facilitates our understanding of the overall architecture of the Paf1 complex but also provides a structure-based platform for understanding the molecular mechanism underlying the role of the Paf1 complex in regulating gene expression and sheds light toward deciphering the impact of its mutational spectrum on human diseases. The polymerase-associated factor 1 (Paf1) complex is a general transcription elongation factor of RNA polymerase II, which is composed of five core subunits, Paf1, Ctr9, Cdc73, Leo1, and Rtf1, and functions as a diverse platform that broadly affects gene expression genome-wide. In this study, we solved the 2.9-Å crystal structure of the core region composed of the Ctr9-Paf1-Cdc73 ternary complex from a thermophilic fungi, which provides a structural perspective of the molecular details of the organization and interactions involving the Paf1 subunits in the core complex. We find that Ctr9 is composed of 21 tetratricopeptide repeat (TPR) motifs that wrap three circular turns in a right-handed superhelical manner around the N-terminal region of an elongated single-polypeptide–chain scaffold of Paf1. The Cdc73 fragment is positioned within the surface groove of Ctr9, where it contacts mainly with Ctr9 and minimally with Paf1. We also identified that the Paf1 complex preferentially binds single-strand–containing DNAs. Our work provides structural insights into the overall architecture of the Paf1 complex and paves the road forward for understanding the molecular mechanisms of the Paf1 complex in transcriptional regulation.
Collapse
|
49
|
Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 2018; 560:607-612. [PMID: 30135578 DOI: 10.1038/s41586-018-0440-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/17/2018] [Indexed: 11/09/2022]
Abstract
Gene regulation involves activation of RNA polymerase II (Pol II) that is paused and bound by the protein complexes DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF). Here we show that formation of an activated Pol II elongation complex in vitro requires the kinase function of the positive transcription elongation factor b (P-TEFb) and the elongation factors PAF1 complex (PAF) and SPT6. The cryo-EM structure of an activated elongation complex of Sus scrofa Pol II and Homo sapiens DSIF, PAF and SPT6 was determined at 3.1 Å resolution and compared to the structure of the paused elongation complex formed by Pol II, DSIF and NELF. PAF displaces NELF from the Pol II funnel for pause release. P-TEFb phosphorylates the Pol II linker to the C-terminal domain. SPT6 binds to the phosphorylated C-terminal-domain linker and opens the RNA clamp formed by DSIF. These results provide the molecular basis for Pol II pause release and elongation activation.
Collapse
|
50
|
Acetylation-Dependent Recruitment of the FACT Complex and Its Role in Regulating Pol II Occupancy Genome-Wide in Saccharomyces cerevisiae. Genetics 2018; 209:743-756. [PMID: 29695490 DOI: 10.1534/genetics.118.300943] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
Histone chaperones, chromatin remodelers, and histone modifying complexes play a critical role in alleviating the nucleosomal barrier for DNA-dependent processes. Here, we have examined the role of two highly conserved yeast (Saccharomyces cerevisiae) histone chaperones, facilitates chromatin transcription (FACT) and Spt6, in regulating transcription. We show that the H3 tail contributes to the recruitment of FACT to coding sequences in a manner dependent on acetylation. We found that deleting a H3 histone acetyltransferase Gcn5 or mutating lysines on the H3 tail impairs FACT recruitment at ADH1 and ARG1 genes. However, deleting the H4 tail or mutating the H4 lysines failed to dampen FACT occupancy in coding regions. Additionally, we show that FACT depletion reduces RNA polymerase II (Pol II) occupancy genome-wide. Spt6 depletion leads to a reduction in Pol II occupancy toward the 3'-end, in a manner dependent on the gene length. Severe transcription and histone-eviction defects were also observed in a strain that was impaired for Spt6 recruitment (spt6Δ202) and depleted of FACT. Importantly, the severity of the defect strongly correlated with wild-type Pol II occupancies at these genes, indicating critical roles for Spt6 and Spt16 in promoting high-level transcription. Collectively, our results show that both FACT and Spt6 are important for transcription globally and may participate during different stages of transcription.
Collapse
|