1
|
Tang J, Zhang L, Su J, Ye Q, Li Y, Liu D, Cui H, Zhang Y, Ye Z. Insights into Fungal Mitochondrial Genomes and Inheritance Based on Current Findings from Yeast-like Fungi. J Fungi (Basel) 2024; 10:441. [PMID: 39057326 PMCID: PMC11277600 DOI: 10.3390/jof10070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The primary functions of mitochondria are to produce energy and participate in the apoptosis of cells, with them being highly conserved among eukaryotes. However, the composition of mitochondrial genomes, mitochondrial DNA (mtDNA) replication, and mitochondrial inheritance varies significantly among animals, plants, and fungi. Especially in fungi, there exists a rich diversity of mitochondrial genomes, as well as various replication and inheritance mechanisms. Therefore, a comprehensive understanding of fungal mitochondria is crucial for unraveling the evolutionary history of mitochondria in eukaryotes. In this review, we have organized existing reports to systematically describe and summarize the composition of yeast-like fungal mitochondrial genomes from three perspectives: mitochondrial genome structure, encoded genes, and mobile elements. We have also provided a systematic overview of the mechanisms in mtDNA replication and mitochondrial inheritance during bisexual mating. Additionally, we have discussed and proposed open questions that require further investigation for clarification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.)
| |
Collapse
|
2
|
Fragkoulis G, Hangas A, Fekete Z, Michell C, Moraes C, Willcox S, Griffith JD, Goffart S, Pohjoismäki JO. Linear DNA-driven recombination in mammalian mitochondria. Nucleic Acids Res 2024; 52:3088-3105. [PMID: 38300793 PMCID: PMC11014290 DOI: 10.1093/nar/gkae040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Mitochondrial DNA (mtDNA) recombination in animals has remained enigmatic due to its uniparental inheritance and subsequent homoplasmic state, which excludes the biological need for genetic recombination, as well as limits tools to study it. However, molecular recombination is an important genome maintenance mechanism for all organisms, most notably being required for double-strand break repair. To demonstrate the existence of mtDNA recombination, we took advantage of a cell model with two different types of mitochondrial genomes and impaired its ability to degrade broken mtDNA. The resulting excess of linear DNA fragments caused increased formation of cruciform mtDNA, appearance of heterodimeric mtDNA complexes and recombinant mtDNA genomes, detectable by Southern blot and by long range PacBio® HiFi sequencing approach. Besides utilizing different electrophoretic methods, we also directly observed molecular complexes between different mtDNA haplotypes and recombination intermediates using transmission electron microscopy. We propose that the known copy-choice recombination by mitochondrial replisome could be sufficient for the needs of the small genome, thus removing the requirement for a specialized mitochondrial recombinase. The error-proneness of this system is likely to contribute to the formation of pathological mtDNA rearrangements.
Collapse
Affiliation(s)
- Georgios Fragkoulis
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Anu Hangas
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Zsófia Fekete
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Doctoral School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Craig Michell
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami,FL, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
3
|
Shibata T, Ikawa S, Iwasaki W, Sasanuma H, Masai H, Hirota K. Homology recognition without double-stranded DNA-strand separation in D-loop formation by RecA. Nucleic Acids Res 2024; 52:2565-2577. [PMID: 38214227 PMCID: PMC10954442 DOI: 10.1093/nar/gkad1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
RecA protein and RecA/Rad51 orthologues are required for homologous recombination and DNA repair in all living creatures. RecA/Rad51 catalyzes formation of the D-loop, an obligatory recombination intermediate, through an ATP-dependent reaction consisting of two phases: homology recognition between double-stranded (ds)DNA and single-stranded (ss)DNA to form a hybrid-duplex core of 6-8 base pairs and subsequent hybrid-duplex/D-loop processing. How dsDNA recognizes homologous ssDNA is controversial. The aromatic residue at the tip of the β-hairpin loop (L2) was shown to stabilize dsDNA-strand separation. We tested a model in which dsDNA strands were separated by the aromatic residue before homology recognition and found that the aromatic residue was not essential to homology recognition, but was required for D-loop processing. Contrary to the model, we found that the double helix was not unwound even a single turn during search for sequence homology, but rather was unwound only after the homologous sequence was recognized. These results suggest that dsDNA recognizes its homologous ssDNA before strand separation. The search for homologous sequence with homologous ssDNA without dsDNA-strand separation does not generate stress within the dsDNA; this would be an advantage for dsDNA to express homology-dependent functions in vivo and also in vitro.
Collapse
Affiliation(s)
- Takehiko Shibata
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo 192-0397, Japan
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
- Cellular & Molecular Biology Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Shukuko Ikawa
- Cellular & Molecular Biology Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Wakana Iwasaki
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Sasanuma
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
4
|
Gilea AI, Magistrati M, Notaroberto I, Tiso N, Dallabona C, Baruffini E. The Saccharomyces cerevisiae mitochondrial DNA polymerase and its contribution to the knowledge about human POLG-related disorders. IUBMB Life 2023; 75:983-1002. [PMID: 37470284 DOI: 10.1002/iub.2770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.
Collapse
Affiliation(s)
- Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ilenia Notaroberto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Schrott S, Osman C. Two mitochondrial HMG-box proteins, Cim1 and Abf2, antagonistically regulate mtDNA copy number in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:11813-11835. [PMID: 37850632 PMCID: PMC10681731 DOI: 10.1093/nar/gkad849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023] Open
Abstract
The mitochondrial genome, mtDNA, is present in multiple copies in cells and encodes essential subunits of oxidative phosphorylation complexes. mtDNA levels have to change in response to metabolic demands and copy number alterations are implicated in various diseases. The mitochondrial HMG-box proteins Abf2 in yeast and TFAM in mammals are critical for mtDNA maintenance and packaging and have been linked to mtDNA copy number control. Here, we discover the previously unrecognized mitochondrial HMG-box protein Cim1 (copy number influence on mtDNA) in Saccharomyces cerevisiae, which exhibits metabolic state dependent mtDNA association. Surprisingly, in contrast to Abf2's supportive role in mtDNA maintenance, Cim1 negatively regulates mtDNA copy number. Cells lacking Cim1 display increased mtDNA levels and enhanced mitochondrial function, while Cim1 overexpression results in mtDNA loss. Intriguingly, Cim1 deletion alleviates mtDNA maintenance defects associated with loss of Abf2, while defects caused by Cim1 overexpression are mitigated by simultaneous overexpression of Abf2. Moreover, we find that the conserved LON protease Pim1 is essential to maintain low Cim1 levels, thereby preventing its accumulation and concomitant repressive effects on mtDNA. We propose a model in which the protein ratio of antagonistically acting Cim1 and Abf2 determines mtDNA copy number.
Collapse
Affiliation(s)
- Simon Schrott
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg-Martinsried 82152, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg-Martinsried 82152, Germany
| |
Collapse
|
6
|
Nunn CJ, Klyshko E, Goyal S. petiteFinder: an automated computer vision tool to compute Petite colony frequencies in baker's yeast. BMC Bioinformatics 2023; 24:50. [PMID: 36793007 PMCID: PMC9930278 DOI: 10.1186/s12859-023-05168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Mitochondrial respiration is central to cellular and organismal health in eukaryotes. In baker's yeast, however, respiration is dispensable under fermentation conditions. Because yeast are tolerant of this mitochondrial dysfunction, yeast are widely used by biologists as a model organism to ask a variety of questions about the integrity of mitochondrial respiration. Fortunately, baker's yeast also display a visually identifiable Petite colony phenotype that indicates when cells are incapable of respiration. Petite colonies are smaller than their Grande (wild-type) counterparts, and their frequency can be used to infer the integrity of mitochondrial respiration in populations of cells. Unfortunately, the computation of Petite colony frequencies currently relies on laborious manual colony counting methods which limit both experimental throughput and reproducibility. RESULTS To address these problems, we introduce a deep learning enabled tool, petiteFinder, that increases the throughput of the Petite frequency assay. This automated computer vision tool detects Grande and Petite colonies and computes Petite colony frequencies from scanned images of Petri dishes. It achieves accuracy comparable to human annotation but at up to 100 times the speed and outperforms semi-supervised Grande/Petite colony classification approaches. Combined with the detailed experimental protocols we provide, we believe this study can serve as a foundation to standardize this assay. Finally, we comment on how Petite colony detection as a computer vision problem highlights ongoing difficulties with small object detection in existing object detection architectures. CONCLUSION Colony detection with petiteFinder results in high accuracy Petite and Grande detection in images in a completely automated fashion. It addresses issues in scalability and reproducibility of the Petite colony assay which currently relies on manual colony counting. By constructing this tool and providing details of experimental conditions, we hope this study will enable larger-scale experiments that rely on Petite colony frequencies to infer mitochondrial function in yeast.
Collapse
Affiliation(s)
- Christopher J. Nunn
- grid.17063.330000 0001 2157 2938Department of Physics, University of Toronto, Toronto, ON M5S 2W9 Canada
| | - Eugene Klyshko
- grid.17063.330000 0001 2157 2938Department of Physics, University of Toronto, Toronto, ON M5S 2W9 Canada ,grid.17063.330000 0001 2157 2938Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada
| | - Sidhartha Goyal
- grid.17063.330000 0001 2157 2938Department of Physics, University of Toronto, Toronto, ON M5S 2W9 Canada ,grid.17063.330000 0001 2157 2938IBBME, University of Toronto, Toronto, ON M5S 3G9 Canada
| |
Collapse
|
7
|
Nunn CJ, Goyal S. Contingency and selection in mitochondrial genome dynamics. eLife 2022; 11:76557. [PMID: 35404229 PMCID: PMC9054137 DOI: 10.7554/elife.76557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
High frequencies of mutant mitochondrial DNA (mtDNA) in human cells lead to cellular defects that are associated with aging and disease. Yet much remains to be understood about the dynamics of the generation of mutant mtDNAs and their relative replicative fitness that informs their fate within cells and tissues. To address this, we utilize long-read single-molecule sequencing to track mutational trajectories of mtDNA in the model organism Saccharomyces cerevisiae. This model has numerous advantages over mammalian systems due to its much larger mtDNA and ease of artificially competing mutant and wild-type mtDNA copies in cells. We show a previously unseen pattern that constrains subsequent excision events in mtDNA fragmentation in yeast. We also provide evidence for the generation of rare and contentious non-periodic mtDNA structures that lead to persistent diversity within individual cells. Finally, we show that measurements of relative fitness of mtDNA fit a phenomenological model that highlights important biophysical parameters governing mtDNA fitness. Altogether, our study provides techniques and insights into the dynamics of large structural changes in genomes that we show are applicable to more complex organisms like humans.
Collapse
Affiliation(s)
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes (Basel) 2021; 12:genes12121866. [PMID: 34946817 PMCID: PMC8701800 DOI: 10.3390/genes12121866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability.
Collapse
|
9
|
Jiang PH, Hou CY, Teng SC. An HSP90 cochaperone Ids2 maintains the stability of mitochondrial DNA and ATP synthase. BMC Biol 2021; 19:242. [PMID: 34763695 PMCID: PMC8582188 DOI: 10.1186/s12915-021-01179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteostasis unbalance and mitochondrial dysfunction are two hallmarks of aging. While the chaperone folds and activates its clients, it is the cochaperone that determines the specificity of the clients. Ids2 is an HSP90's cochaperone controlling mitochondrial functions, but no in vivo clients of Ids2 have been reported yet. RESULTS We performed a screen of the databases of HSP90 physical interactors, mitochondrial components, and mutants with respiratory defect, and identified Atp3, a subunit of the complex V ATP synthase, as a client of Ids2. Deletion of IDS2 destabilizes Atp3, and an α-helix at the middle region of Ids2 recruits Atp3 to the folding system. Shortage of Ids2 or Atp3 leads to the loss of mitochondrial DNA. The intermembrane space protease Yme1 is critical to maintaining the Atp3 protein level. Moreover, Ids2 is highly induced when cells carry out oxidative respiration. CONCLUSIONS These findings discover a cochaperone essentially for maintaining the stability of mitochondrial DNA and the proteostasis of the electron transport chain-crosstalk between two hallmarks of aging.
Collapse
Affiliation(s)
- Pei-Heng Jiang
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chen-Yan Hou
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051, Taiwan.
- Center of Precision Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Mitochondrial Genomic Landscape: A Portrait of the Mitochondrial Genome 40 Years after the First Complete Sequence. Life (Basel) 2021; 11:life11070663. [PMID: 34357035 PMCID: PMC8303319 DOI: 10.3390/life11070663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
Notwithstanding the initial claims of general conservation, mitochondrial genomes are a largely heterogeneous set of organellar chromosomes which displays a bewildering diversity in terms of structure, architecture, gene content, and functionality. The mitochondrial genome is typically described as a single chromosome, yet many examples of multipartite genomes have been found (for example, among sponges and diplonemeans); the mitochondrial genome is typically depicted as circular, yet many linear genomes are known (for example, among jellyfish, alveolates, and apicomplexans); the chromosome is normally said to be “small”, yet there is a huge variation between the smallest and the largest known genomes (found, for example, in ctenophores and vascular plants, respectively); even the gene content is highly unconserved, ranging from the 13 oxidative phosphorylation-related enzymatic subunits encoded by animal mitochondria to the wider set of mitochondrial genes found in jakobids. In the present paper, we compile and describe a large database of 27,873 mitochondrial genomes currently available in GenBank, encompassing the whole eukaryotic domain. We discuss the major features of mitochondrial molecular diversity, with special reference to nucleotide composition and compositional biases; moreover, the database is made publicly available for future analyses on the MoZoo Lab GitHub page.
Collapse
|
11
|
Itoh Y, Naschberger A, Mortezaei N, Herrmann JM, Amunts A. Analysis of translating mitoribosome reveals functional characteristics of translation in mitochondria of fungi. Nat Commun 2020; 11:5187. [PMID: 33056988 PMCID: PMC7560712 DOI: 10.1038/s41467-020-18830-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
Mitoribosomes are specialized protein synthesis machineries in mitochondria. However, how mRNA binds to its dedicated channel, and tRNA moves as the mitoribosomal subunit rotate with respect to each other is not understood. We report models of the translating fungal mitoribosome with mRNA, tRNA and nascent polypeptide, as well as an assembly intermediate. Nicotinamide adenine dinucleotide (NAD) is found in the central protuberance of the large subunit, and the ATPase inhibitory factor 1 (IF1) in the small subunit. The models of the active mitoribosome explain how mRNA binds through a dedicated protein platform on the small subunit, tRNA is translocated with the help of the protein mL108, bridging it with L1 stalk on the large subunit, and nascent polypeptide paths through a newly shaped exit tunnel involving a series of structural rearrangements. An assembly intermediate is modeled with the maturation factor Atp25, providing insight into the biogenesis of the mitoribosomal large subunit and translation regulation.
Collapse
Affiliation(s)
- Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Solna, Sweden
| | - Andreas Naschberger
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Narges Mortezaei
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663, Kaiserslautern, Germany
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Solna, Sweden.
| |
Collapse
|
12
|
Piljukov V, Garber N, Sedman T, Sedman J. Irc3 is a monomeric DNA branch point‐binding helicase in mitochondria of the yeast
Saccharomyces cerevisiae. FEBS Lett 2020; 594:3142-3155. [DOI: 10.1002/1873-3468.13893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/18/2020] [Indexed: 01/10/2023]
Affiliation(s)
| | - Natalja Garber
- Institute of Molecular and Cell Biology University of Tartu Estonia
| | - Tiina Sedman
- Institute of Molecular and Cell Biology University of Tartu Estonia
| | - Juhan Sedman
- Institute of Molecular and Cell Biology University of Tartu Estonia
| |
Collapse
|
13
|
Medina R, Franco MEE, Bartel LC, Martinez Alcántara V, Saparrat MCN, Balatti PA. Fungal Mitogenomes: Relevant Features to Planning Plant Disease Management. Front Microbiol 2020; 11:978. [PMID: 32547508 PMCID: PMC7272585 DOI: 10.3389/fmicb.2020.00978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial genomes (mt-genomes) are characterized by a distinct codon usage and their autonomous replication. Mt-genomes encode highly conserved genes (mt-genes), like proteins involved in electron transport and oxidative phosphorylation but they also carry highly variable regions that are in part responsible for their high plasticity. The degree of conservation of their genes is such that they allow the establishment of phylogenetic relationships even across distantly related species. Here, we describe the mechanisms that generate changes along mt-genomes, which play key roles at enlarging the ability of fungi to adapt to changing environments. Within mt-genomes of fungal pathogens, there are dispensable as well as indispensable genes for survival, virulence and/or pathogenicity. We also describe the different complexes or mechanisms targeted by fungicides, thus addressing a relevant issue regarding disease management. Despite the controversial origin and evolution of fungal mt-genomes, the intrinsic mechanisms and molecular biology involved in their evolution will help to understand, at the molecular level, the strategies for fungal disease management.
Collapse
Affiliation(s)
- Rocio Medina
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Laura Cecilia Bartel
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Virginia Martinez Alcántara
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Carlos Nazareno Saparrat
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
14
|
Rolling-Circle Replication in Mitochondrial DNA Inheritance: Scientific Evidence and Significance from Yeast to Human Cells. Genes (Basel) 2020; 11:genes11050514. [PMID: 32384722 PMCID: PMC7288456 DOI: 10.3390/genes11050514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
Studies of mitochondrial (mt)DNA replication, which forms the basis of mitochondrial inheritance, have demonstrated that a rolling-circle replication mode exists in yeasts and human cells. In yeast, rolling-circle mtDNA replication mediated by homologous recombination is the predominant pathway for replication of wild-type mtDNA. In human cells, reactive oxygen species (ROS) induce rolling-circle replication to produce concatemers, linear tandem multimers linked by head-to-tail unit-sized mtDNA that promote restoration of homoplasmy from heteroplasmy. The event occurs ahead of mtDNA replication mechanisms observed in mammalian cells, especially under higher ROS load, as newly synthesized mtDNA is concatemeric in hydrogen peroxide-treated human cells. Rolling-circle replication holds promise for treatment of mtDNA heteroplasmy-attributed diseases, which are regarded as incurable. This review highlights the potential therapeutic value of rolling-circle mtDNA replication.
Collapse
|
15
|
Tomáška Ľ, Nosek J. Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. J Mol Evol 2020; 88:293-318. [PMID: 32157325 DOI: 10.1007/s00239-020-09935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
16
|
Dujon B. Mitochondrial genetics revisited. Yeast 2020; 37:191-205. [DOI: 10.1002/yea.3445] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bernard Dujon
- Department Genomes and GeneticsInstitut Pasteur Paris France
| |
Collapse
|
17
|
Bernal M, Yang X, Lisby M, Mazón G. The FANCM family Mph1 helicase localizes to the mitochondria and contributes to mtDNA stability. DNA Repair (Amst) 2019; 82:102684. [DOI: 10.1016/j.dnarep.2019.102684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/24/2022]
|
18
|
Twist and Turn-Topoisomerase Functions in Mitochondrial DNA Maintenance. Int J Mol Sci 2019; 20:ijms20082041. [PMID: 31027213 PMCID: PMC6514783 DOI: 10.3390/ijms20082041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Like any genome, mitochondrial DNA (mtDNA) also requires the action of topoisomerases to resolve topological problems in its maintenance, but for a long time, little was known about mitochondrial topoisomerases. The last years have brought a closer insight into the function of these fascinating enzymes in mtDNA topology regulation, replication, transcription, and segregation. Here, we summarize the current knowledge about mitochondrial topoisomerases, paying special attention to mammalian mitochondrial genome maintenance. We also discuss the open gaps in the existing knowledge of mtDNA topology control and the potential involvement of mitochondrial topoisomerases in human pathologies. While Top1mt, the only exclusively mitochondrial topoisomerase in mammals, has been studied intensively for nearly a decade, only recent studies have shed some light onto the mitochondrial function of Top2β and Top3α, enzymes that are shared between nucleus and mitochondria. Top3α mediates the segregation of freshly replicated mtDNA molecules, and its dysfunction leads to mtDNA aggregation and copy number depletion in patients. Top2β, in contrast, regulates mitochondrial DNA replication and transcription through the alteration of mtDNA topology, a fact that should be acknowledged due to the frequent use of Topoisomerase 2 inhibitors in medical therapy.
Collapse
|
19
|
Ling F, Bradshaw E, Yoshida M. Prevention of mitochondrial genomic instability in yeast by the mitochondrial recombinase Mhr1. Sci Rep 2019; 9:5433. [PMID: 30931958 PMCID: PMC6443803 DOI: 10.1038/s41598-019-41699-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/12/2019] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial (mt) DNA encodes factors essential for cellular respiration, therefore its level and integrity are crucial. ABF2 encodes a mitochondrial DNA-binding protein and its null mutation (Δabf2) induces mtDNA instability in Saccharomyces cerevisiae. Mhr1 is a mitochondrial recombinase that mediates the predominant form of mtDNA replication and acts in mtDNA segregation and the repair of mtDNA double-stranded breaks (DSBs). However, the involvement of Mhr1 in prevention of mtDNA deletion mutagenesis is unknown. In this study we used Δabf2 mhr1-1 double-mutant cells, which lose mitochondrial function in media containing fermentable carbon sources, to investigate whether Mhr1 is a suppressor of mtDNA deletion mutagenesis. We used a suppresivity assay and Southern blot analysis to reveal that the Δabf2 mutation causes mtDNA deletions rather than an mtDNA-lacking (ρ0) phenotype, and observed that mtDNA deletions are exacerbated by an additional mhr1-1 mutation. Loss of respiratory function due to mtDNA fragmentation occurred in ∆mhr1 and ∆abf2 mhr1-1 cells. However, exogenous introduction of Mhr1 into Δabf2 mhr1-1 cells significantly rescued respiratory growth, suggesting that Mhr1-driven homologous mtDNA recombination prevents mtDNA instability.
Collapse
Affiliation(s)
- Feng Ling
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan.
| | - Elliot Bradshaw
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Department of Biotechnology, Graduate School of Agricultural Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
20
|
Abstract
The mitochondrial genome encodes proteins essential for the oxidative phosphorylation and, consequently, for proper mitochondrial function. Its localization and, possibly, structural organization contribute to higher DNA damage accumulation, when compared to the nuclear genome. In addition, the mitochondrial genome mutates at rates several times higher than the nuclear, although the causal relationship between these events are not clearly established. Maintaining mitochondrial DNA stability is critical for cellular function and organismal fitness, and several pathways contribute to that, including damage tolerance and bypass, degradation of damaged genomes and DNA repair. Despite initial evidence suggesting that mitochondria lack DNA repair activities, most DNA repair pathways have been at least partially characterized in mitochondria from several model organisms, including humans. In this chapter, we review what is currently known about how the main DNA repair pathways operate in mitochondria and contribute to mitochondrial DNA stability, with focus on the enzymology of mitochondrial DNA repair.
Collapse
Affiliation(s)
- Rebeca R Alencar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Caio M P F Batalha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Saccharomyces cerevisiae Mhr1 can bind Xho I-induced mitochondrial DNA double-strand breaks in vivo. Mitochondrion 2017; 42:23-32. [PMID: 29032234 DOI: 10.1016/j.mito.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/30/2017] [Accepted: 10/06/2017] [Indexed: 11/23/2022]
Abstract
Mitochondrial DNA (mtDNA) double-strand break (DSB) repair is essential for maintaining mtDNA integrity, but little is known about the proteins involved in mtDNA DSB repair. Here, we utilize Saccharomyces cerevisiae as a eukaryotic model to identify proteins involved in mtDNA DSB repair. We show that Mhr1, a protein known to possess homologous DNA pairing activity in vitro, binds to mtDNA DSBs in vivo, indicating its involvement in mtDNA DSB repair. Our data also indicate that Yku80, a protein previously implicated in mtDNA DSB repair, does not compete with Mhr1 for binding to mtDNA DSBs. In fact, C-terminally tagged Yku80 could not be detected in yeast mitochondrial extracts. Therefore, we conclude that Mhr1, but not Yku80, is a potential mtDNA DSB repair factor in yeast.
Collapse
|
22
|
Prasai K, Robinson LC, Scott RS, Tatchell K, Harrison L. Evidence for double-strand break mediated mitochondrial DNA replication in Saccharomyces cerevisiae. Nucleic Acids Res 2017; 45:7760-7773. [PMID: 28549155 PMCID: PMC5569933 DOI: 10.1093/nar/gkx443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/04/2017] [Indexed: 01/30/2023] Open
Abstract
The mechanism of mitochondrial DNA (mtDNA) replication in Saccharomyces cerevisiae is controversial. Evidence exists for double-strand break (DSB) mediated recombination-dependent replication at mitochondrial replication origin ori5 in hypersuppressive ρ− cells. However, it is not clear if this replication mode operates in ρ+ cells. To understand this, we targeted bacterial Ku (bKu), a DSB binding protein, to the mitochondria of ρ+ cells with the hypothesis that bKu would bind persistently to mtDNA DSBs, thereby preventing mtDNA replication or repair. Here, we show that mitochondrial-targeted bKu binds to ori5 and that inducible expression of bKu triggers petite formation preferentially in daughter cells. bKu expression also induces mtDNA depletion that eventually results in the formation of ρ0 cells. This data supports the idea that yeast mtDNA replication is initiated by a DSB and bKu inhibits mtDNA replication by binding to a DSB at ori5, preventing mtDNA segregation to daughter cells. Interestingly, we find that mitochondrial-targeted bKu does not decrease mtDNA content in human MCF7 cells. This finding is in agreement with the fact that human mtDNA replication, typically, is not initiated by a DSB. Therefore, this study provides evidence that DSB-mediated replication is the predominant form of mtDNA replication in ρ+ yeast cells.
Collapse
Affiliation(s)
- Kanchanjunga Prasai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Lucy C Robinson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Rona S Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Kelly Tatchell
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Lynn Harrison
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
23
|
Regulation of Small Mitochondrial DNA Replicative Advantage by Ribonucleotide Reductase in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:3083-3090. [PMID: 28717049 PMCID: PMC5592933 DOI: 10.1534/g3.117.043851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small mitochondrial genomes can behave as selfish elements by displacing wild-type genomes regardless of their detriment to the host organism. In the budding yeast Saccharomyces cerevisiae, small hypersuppressive mtDNA transiently coexist with wild-type in a state of heteroplasmy, wherein the replicative advantage of the small mtDNA outcompetes wild-type and produces offspring without respiratory capacity in >95% of colonies. The cytosolic enzyme ribonucleotide reductase (RNR) catalyzes the rate-limiting step in dNTP synthesis and its inhibition has been correlated with increased petite colony formation, reflecting loss of respiratory function. Here, we used heteroplasmic diploids containing wild-type (rho+) and suppressive (rho−) or hypersuppressive (HS rho−) mitochondrial genomes to explore the effects of RNR activity on mtDNA heteroplasmy in offspring. We found that the proportion of rho+ offspring was significantly increased by RNR overexpression or deletion of its inhibitor, SML1, while reducing RNR activity via SML1 overexpression produced the opposite effects. In addition, using Ex Taq and KOD Dash polymerases, we observed a replicative advantage for small over large template DNA in vitro, but only at low dNTP concentrations. These results suggest that dNTP insufficiency contributes to the replicative advantage of small mtDNA over wild-type and cytosolic dNTP synthesis by RNR is an important regulator of heteroplasmy involving small mtDNA molecules in yeast.
Collapse
|
24
|
Chen XJ, Clark-Walker GD. Unveiling the mystery of mitochondrial DNA replication in yeasts. Mitochondrion 2017; 38:17-22. [PMID: 28778567 DOI: 10.1016/j.mito.2017.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 11/27/2022]
Abstract
Conventional DNA replication is initiated from specific origins and requires the synthesis of RNA primers for both the leading and lagging strands. In contrast, the replication of yeast mitochondrial DNA is origin-independent. The replication of the leading strand is likely primed by recombinational structures and proceeded by a rolling circle mechanism. The coexistent linear and circular DNA conformers facilitate the recombination-based initiation. The replication of the lagging strand is poorly understood. Re-evaluation of published data suggests that the rolling circle may also provide structures for the synthesis of the lagging-strand by mechanisms such as template switching. Thus, the coupling of recombination with rolling circle replication and possibly, template switching, may have been selected as an economic replication mode to accommodate the reductive evolution of mitochondria. Such a replication mode spares the need for conventional replicative components, including those required for origin recognition/remodelling, RNA primer synthesis and lagging-strand processing.
Collapse
Affiliation(s)
- Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
25
|
Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species. Mol Phylogenet Evol 2017; 108:49-60. [PMID: 28189617 DOI: 10.1016/j.ympev.2017.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 11/23/2022]
Abstract
Horizontal gene transfer (HGT) in eukaryotic plastids and mitochondrial genomes is common, and plays an important role in organism evolution. In yeasts, recent mitochondrial HGT has been suggested between S. cerevisiae and S. paradoxus. However, few strains have been explored given the lack of accurate mitochondrial genome annotations. Mitochondrial genome sequences are important to understand how frequent these introgressions occur, and their role in cytonuclear incompatibilities and fitness. Indeed, most of the Bateson-Dobzhansky-Muller genetic incompatibilities described in yeasts are driven by cytonuclear incompatibilities. We herein explored the mitochondrial inheritance of several worldwide distributed wild Saccharomyces species and their hybrids isolated from different sources and geographic origins. We demonstrated the existence of several recombination points in mitochondrial region COX2-ORF1, likely mediated by either the activity of the protein encoded by the ORF1 (F-SceIII) gene, a free-standing homing endonuclease, or mostly facilitated by A+T tandem repeats and regions of integration of GC clusters. These introgressions were shown to occur among strains of the same species and among strains of different species, which suggests a complex model of Saccharomyces evolution that involves several ancestral hybridization events in wild environments.
Collapse
|
26
|
Repair of Oxidative DNA Damage in Saccharomyces cerevisiae. DNA Repair (Amst) 2017; 51:2-13. [PMID: 28189416 DOI: 10.1016/j.dnarep.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae.
Collapse
|
27
|
MIYAKAWA I. Organization and dynamics of yeast mitochondrial nucleoids. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:339-359. [PMID: 28496055 PMCID: PMC5489437 DOI: 10.2183/pjab.93.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mitochondrial DNA (mtDNA) is packaged by association with specific proteins in compact DNA-protein complexes named mitochondrial nucleoids (mt-nucleoids). The budding yeast Saccharomyces cerevisiae is able to grow either aerobically or anaerobically. Due to this characteristic, S. cerevisiae has been extensively used as a model organism to study genetics, morphology and biochemistry of mitochondria for a long time. Mitochondria of S. cerevisiae frequently fuse and divide, and perform dynamic morphological changes depending on the culture conditions and the stage of life cycle of the yeast cells. The mt-nucleoids also dynamically change their morphology, accompanying morphological changes of mitochondria. The mt-nucleoids have been isolated morphologically intact and functional analyses of mt-nucleoid proteins have been extensively performed. These studies have revealed that the functions of mt-nucleoid proteins are essential for maintenance of mtDNA. The aims of this review are to summarize the history on the research of yeast mt-nucleoids as well as recent findings on the organization of the mt-nucleoids and mitochondrial dynamics.
Collapse
Affiliation(s)
- Isamu MIYAKAWA
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
- Correspondence should be addressed: I. Miyakawa, Department of Biology, Faculty of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan (e-mail: )
| |
Collapse
|
28
|
Ling F, Niu R, Hatakeyama H, Goto YI, Shibata T, Yoshida M. Reactive oxygen species stimulate mitochondrial allele segregation toward homoplasmy in human cells. Mol Biol Cell 2016; 27:1684-93. [PMID: 27009201 PMCID: PMC4865324 DOI: 10.1091/mbc.e15-10-0690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/16/2016] [Indexed: 12/03/2022] Open
Abstract
Use of heteroplasmic m.3243A > G primary fibroblast cells derived from a patient with the mitochondrial disease MELAS shows that ROS trigger vegetative segregation of heteroplasmy toward wild-type and mutant mitochondrial DNA homoplasmy via the formation of linear head-to-tail multimers (concatemers). Mitochondria that contain a mixture of mutant and wild-type mitochondrial (mt) DNA copies are heteroplasmic. In humans, homoplasmy is restored during early oogenesis and reprogramming of somatic cells, but the mechanism of mt-allele segregation remains unknown. In budding yeast, homoplasmy is restored by head-to-tail concatemer formation in mother cells by reactive oxygen species (ROS)–induced rolling-circle replication and selective transmission of concatemers to daughter cells, but this mechanism is not obvious in higher eukaryotes. Here, using heteroplasmic m.3243A > G primary fibroblast cells derived from MELAS patients treated with hydrogen peroxide (H2O2), we show that an optimal ROS level promotes mt-allele segregation toward wild-type and mutant mtDNA homoplasmy. Enhanced ROS level reduced the amount of intact mtDNA replication templates but increased linear tandem multimers linked by head-to-tail unit-sized mtDNA (mtDNA concatemers). ROS-triggered mt-allele segregation correlated with mtDNA-concatemer production and enabled transmission of multiple identical mt-genome copies as a single unit. Our results support a mechanism by which mt-allele segregation toward mt-homoplasmy is mediated by concatemers.
Collapse
Affiliation(s)
- Feng Ling
- Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004 Japan
| | - Rong Niu
- Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004 Japan
| | - Hideyuki Hatakeyama
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004 Japan Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Yu-Ichi Goto
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004 Japan Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Takehiko Shibata
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004 Japan Cellular and Molecular Biology Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, Saitama 351-0198, Japan Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004 Japan
| |
Collapse
|
29
|
Stein A, Kalifa L, Sia EA. Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005664. [PMID: 26540255 PMCID: PMC4634946 DOI: 10.1371/journal.pgen.1005664] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
Abstract
Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs.
Collapse
Affiliation(s)
- Alexis Stein
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Lidza Kalifa
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Elaine A. Sia
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
30
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
31
|
Freel KC, Friedrich A, Schacherer J. Mitochondrial genome evolution in yeasts: an all-encompassing view. FEMS Yeast Res 2015; 15:fov023. [PMID: 25969454 DOI: 10.1093/femsyr/fov023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are important organelles that harbor their own genomes encoding a key set of proteins that ensure respiration and provide the eukaryotic cell with energy. Recent advances in high-throughput sequencing technologies present a unique opportunity to explore mitochondrial (mt) genome evolution. The Saccharomycotina yeasts have proven to be the leading organisms for mt comparative and population genomics. In fact, the explosion of complete yeast mt genome sequences has allowed for a broader view of the mt diversity across this incredibly diverse subphylum, both within and between closely related species. Here, we summarize the present state of yeast mitogenomics, including the currently available data and what it reveals concerning the diversity of content, organization, structure and evolution of mt genomes.
Collapse
Affiliation(s)
- Kelle C Freel
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156 Strasbourg 67083, France
| | - Anne Friedrich
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156 Strasbourg 67083, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156 Strasbourg 67083, France
| |
Collapse
|
32
|
Kaniak-Golik A, Skoneczna A. Mitochondria-nucleus network for genome stability. Free Radic Biol Med 2015; 82:73-104. [PMID: 25640729 DOI: 10.1016/j.freeradbiomed.2015.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
The proper functioning of the cell depends on preserving the cellular genome. In yeast cells, a limited number of genes are located on mitochondrial DNA. Although the mechanisms underlying nuclear genome maintenance are well understood, much less is known about the mechanisms that ensure mitochondrial genome stability. Mitochondria influence the stability of the nuclear genome and vice versa. Little is known about the two-way communication and mutual influence of the nuclear and mitochondrial genomes. Although the mitochondrial genome replicates independent of the nuclear genome and is organized by a distinct set of mitochondrial nucleoid proteins, nearly all genome stability mechanisms responsible for maintaining the nuclear genome, such as mismatch repair, base excision repair, and double-strand break repair via homologous recombination or the nonhomologous end-joining pathway, also act to protect mitochondrial DNA. In addition to mitochondria-specific DNA polymerase γ, the polymerases α, η, ζ, and Rev1 have been found in this organelle. A nuclear genome instability phenotype results from a failure of various mitochondrial functions, such as an electron transport chain activity breakdown leading to a decrease in ATP production, a reduction in the mitochondrial membrane potential (ΔΨ), and a block in nucleotide and amino acid biosynthesis. The loss of ΔΨ inhibits the production of iron-sulfur prosthetic groups, which impairs the assembly of Fe-S proteins, including those that mediate DNA transactions; disturbs iron homeostasis; leads to oxidative stress; and perturbs wobble tRNA modification and ribosome assembly, thereby affecting translation and leading to proteotoxic stress. In this review, we present the current knowledge of the mechanisms that govern mitochondrial genome maintenance and demonstrate ways in which the impairment of mitochondrial function can affect nuclear genome stability.
Collapse
Affiliation(s)
- Aneta Kaniak-Golik
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland.
| |
Collapse
|
33
|
Lodi T, Dallabona C, Nolli C, Goffrini P, Donnini C, Baruffini E. DNA polymerase γ and disease: what we have learned from yeast. Front Genet 2015; 6:106. [PMID: 25852747 PMCID: PMC4362329 DOI: 10.3389/fgene.2015.00106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
Mip1 is the Saccharomyces cerevisiae DNA polymerase γ (Pol γ), which is responsible for the replication of mitochondrial DNA (mtDNA). It belongs to the family A of the DNA polymerases and it is orthologs to human POLGA. In humans, mutations in POLG(1) cause many mitochondrial pathologies, such as progressive external ophthalmoplegia (PEO), Alpers' syndrome, and ataxia-neuropathy syndrome, all of which present instability of mtDNA, which results in impaired mitochondrial function in several tissues with variable degrees of severity. In this review, we summarize the genetic and biochemical knowledge published on yeast mitochondrial DNA polymerase from 1989, when the MIP1 gene was first cloned, up until now. The role of yeast is particularly emphasized in (i) validating the pathological mutations found in human POLG and modeled in MIP1, (ii) determining the molecular defects caused by these mutations and (iii) finding the correlation between mutations/polymorphisms in POLGA and mtDNA toxicity induced by specific drugs. We also describe recent findings regarding the discovery of molecules able to rescue the phenotypic defects caused by pathological mutations in Mip1, and the construction of a model system in which the human Pol γ holoenzyme is expressed in yeast and complements the loss of Mip1.
Collapse
Affiliation(s)
- Tiziana Lodi
- Department of Life Sciences, University of Parma Parma, Italy
| | | | - Cecilia Nolli
- Department of Life Sciences, University of Parma Parma, Italy
| | - Paola Goffrini
- Department of Life Sciences, University of Parma Parma, Italy
| | - Claudia Donnini
- Department of Life Sciences, University of Parma Parma, Italy
| | | |
Collapse
|
34
|
RECQ4 selectively recognizes Holliday junctions. DNA Repair (Amst) 2015; 30:80-9. [PMID: 25769792 DOI: 10.1016/j.dnarep.2015.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 12/23/2022]
Abstract
The RECQ4 protein belongs to the RecQ helicase family, which plays crucial roles in genome maintenance. Mutations in the RECQ4 gene are associated with three insidious hereditary disorders: Rothmund-Thomson, Baller-Gerold, and RAPADILINO syndromes. These syndromes are characterized by growth deficiency, radial ray defects, red rashes, and higher predisposition to malignancy, especially osteosarcomas. Within the RecQ family, RECQ4 is the least characterized, and its role in DNA replication and repair remains unknown. We have identified several DNA binding sites within RECQ4. Two are located at the N-terminus and one is located within the conserved helicase domain. N-terminal domains probably cooperate with one another and promote the strong annealing activity of RECQ4. Surprisingly, the region spanning 322-400aa shows a very high affinity for branched DNA substrates, especially Holliday junctions. This study demonstrates biochemical activities of RECQ4 that could be involved in genome maintenance and suggest its possible role in processing replication and recombination intermediates.
Collapse
|
35
|
Kehrein K, Schilling R, Möller-Hergt BV, Wurm CA, Jakobs S, Lamkemeyer T, Langer T, Ott M. Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies. Cell Rep 2015; 10:843-853. [PMID: 25683707 DOI: 10.1016/j.celrep.2015.01.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/17/2014] [Accepted: 12/31/2014] [Indexed: 12/27/2022] Open
Abstract
Mitochondria contain their own genetic system that provides subunits of the complexes driving oxidative phosphorylation. A quarter of the mitochondrial proteome participates in gene expression, but how all these factors are orchestrated and spatially organized is currently unknown. Here, we established a method to purify and analyze native and intact complexes of mitochondrial ribosomes. Quantitative mass spectrometry revealed extensive interactions of ribosomes with factors involved in all the steps of posttranscriptional gene expression. These interactions result in large expressosome-like assemblies that we termed mitochondrial organization of gene expression (MIOREX) complexes. Superresolution microscopy revealed that most MIOREX complexes are evenly distributed throughout the mitochondrial network, whereas a subset is present as nucleoid-MIOREX complexes that unite the whole spectrum of organellar gene expression. Our work therefore provides a conceptual framework for the spatial organization of mitochondrial protein synthesis that likely developed to facilitate gene expression in the organelle.
Collapse
Affiliation(s)
- Kirsten Kehrein
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Ramon Schilling
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Braulio Vargas Möller-Hergt
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Christian A Wurm
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; Department of Neurology, University of Göttingen Medical School, 37073 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Tobias Lamkemeyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany; Max-Planck-Institute for Biology of Aging, 50931 Cologne, Germany
| | - Martin Ott
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
36
|
Lewis SC, Joers P, Willcox S, Griffith JD, Jacobs HT, Hyman BC. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans. PLoS Genet 2015; 11:e1004985. [PMID: 25693201 PMCID: PMC4334201 DOI: 10.1371/journal.pgen.1004985] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s) of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s) of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.
Collapse
Affiliation(s)
- Samantha C. Lewis
- Department of Biology and Interdepartmental Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Priit Joers
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
- Estonian Biocentre, Tartu, Estonia
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Howard T. Jacobs
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
- Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Bradley C. Hyman
- Department of Biology and Interdepartmental Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
37
|
Abstract
In eukaryotic cells, the production of cellular energy requires close interplay between nuclear and mitochondrial genomes. The mitochondrial genome is essential in that it encodes several genes involved in oxidative phosphorylation. Each cell contains several mitochondrial genome copies and mitochondrial DNA recombination is a widespread process occurring in plants, fungi, protists, and invertebrates. Saccharomyces cerevisiae has proved to be an excellent model to dissect mitochondrial biology. Several studies have focused on DNA recombination in this organelle, yet mostly relied on reporter genes or artificial systems. However, no complete mitochondrial recombination map has been released for any eukaryote so far. In the present work, we sequenced pools of diploids originating from a cross between two different S. cerevisiae strains to detect recombination events. This strategy allowed us to generate the first genome-wide map of recombination for yeast mitochondrial DNA. We demonstrated that recombination events are enriched in specific hotspots preferentially localized in non-protein-coding regions. Additionally, comparison of the recombination profiles of two different crosses showed that the genetic background affects hotspot localization and recombination rates. Finally, to gain insights into the mechanisms involved in mitochondrial recombination, we assessed the impact of individual depletion of four genes previously associated with this process. Deletion of NTG1 and MGT1 did not substantially influence the recombination landscape, alluding to the potential presence of additional regulatory factors. Our findings also revealed the loss of large mitochondrial DNA regions in the absence of MHR1, suggesting a pivotal role for Mhr1 in mitochondrial genome maintenance during mating. This study provides a comprehensive overview of mitochondrial DNA recombination in yeast and thus paves the way for future mechanistic studies of mitochondrial recombination and genome maintenance.
Collapse
|
38
|
Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev 2014; 77:476-96. [PMID: 24006472 DOI: 10.1128/mmbr.00007-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells.
Collapse
|
39
|
Westermann B. Mitochondrial inheritance in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1039-46. [PMID: 24183694 DOI: 10.1016/j.bbabio.2013.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/08/2013] [Accepted: 10/22/2013] [Indexed: 11/25/2022]
Abstract
Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.
Collapse
|
40
|
Ling F, Hori A, Yoshitani A, Niu R, Yoshida M, Shibata T. Din7 and Mhr1 expression levels regulate double-strand-break-induced replication and recombination of mtDNA at ori5 in yeast. Nucleic Acids Res 2013; 41:5799-816. [PMID: 23598996 PMCID: PMC3675488 DOI: 10.1093/nar/gkt273] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Ntg1 and Mhr1 proteins initiate rolling-circle mitochondrial (mt) DNA replication to achieve homoplasmy, and they also induce homologous recombination to maintain mitochondrial genome integrity. Although replication and recombination profoundly influence mitochondrial inheritance, the regulatory mechanisms that determine the choice between these pathways remain unknown. In Saccharomyces cerevisiae, double-strand breaks (DSBs) introduced by Ntg1 at the mitochondrial replication origin ori5 induce homologous DNA pairing by Mhr1, and reactive oxygen species (ROS) enhance production of DSBs. Here, we show that a mitochondrial nuclease encoded by the nuclear gene DIN7 (DNA damage inducible gene) has 5′-exodeoxyribonuclease activity. Using a small ρ− mtDNA bearing ori5 (hypersuppressive; HS) as a model mtDNA, we revealed that DIN7 is required for ROS-enhanced mtDNA replication and recombination that are both induced at ori5. Din7 overproduction enhanced Mhr1-dependent mtDNA replication and increased the number of residual DSBs at ori5 in HS-ρ− cells and increased deletion mutagenesis at the ori5 region in ρ+ cells. However, simultaneous overproduction of Mhr1 suppressed all of these phenotypes and enhanced homologous recombination. Our results suggest that after homologous pairing, the relative activity levels of Din7 and Mhr1 modulate the preference for replication versus homologous recombination to repair DSBs at ori5.
Collapse
Affiliation(s)
- Feng Ling
- Chemical Genetics Laboratory, RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Mbantenkhu M, Wierzbicki S, Wang X, Guo S, Wilkens S, Chen XJ. A short carboxyl-terminal tail is required for single-stranded DNA binding, higher-order structural organization, and stability of the mitochondrial single-stranded annealing protein Mgm101. Mol Biol Cell 2013; 24:1507-18. [PMID: 23536705 PMCID: PMC3655812 DOI: 10.1091/mbc.e13-01-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mgm101 is a Rad52-type single-stranded annealing protein (SSAP) required for mitochondrial DNA (mtDNA) repair and maintenance. Structurally, Mgm101 forms large oligomeric rings. Here we determine the function(s) of a 32-amino acid carboxyl-terminal tail (Mgm101(238-269)) conserved in the Mgm101 family of proteins. Mutagenic analysis shows that Lys-253, Trp-257, Arg-259, and Tyr-268 are essential for mtDNA maintenance. Mutations in Lys-251, Arg-252, Lys-260, and Tyr-266 affect mtDNA stability at 37°C and under oxidative stress. The Y268A mutation severely affects single-stranded DNA (ssDNA) binding without altering the ring structure. Mutations in the Lys-251-Arg-252-Lys-253 positive triad also affect ssDNA binding. Moreover, the C-tail alone is sufficient to mediate ssDNA binding. Finally, we find that the W257A and R259A mutations dramatically affect the conformation and oligomeric state of Mgm101. These structural alterations correlate with protein degradation in vivo. The data thus indicate that the C-tail of Mgm101, likely displayed on the ring surface, is required for ssDNA binding, higher-order structural organization, and protein stability. We speculate that an initial electrostatic and base-stacking interaction with ssDNA could remodel ring organization. This may facilitate the formation of nucleoprotein filaments competent for mtDNA repair. These findings could have broad implications for understanding how SSAPs promote DNA repair and genome maintenance.
Collapse
Affiliation(s)
- MacMillan Mbantenkhu
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
42
|
Dzierzbicki P, Kaniak-Golik A, Malc E, Mieczkowski P, Ciesla Z. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex. Mutat Res 2012; 740:21-33. [PMID: 23276591 DOI: 10.1016/j.mrfmmm.2012.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 12/10/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress-induced lesions in the mitochondrial genome.
Collapse
Affiliation(s)
- Piotr Dzierzbicki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
43
|
Abstract
Advances in sequencing technology have enabled whole-genome sequences to be obtained from multiple individuals within species, particularly in model organisms with compact genomes. For example, 36 genome sequences of Saccharomyces cerevisiae are now publicly available, and SNP data are available for even larger collections of strains. One potential use of these resources is mapping the genetic basis of phenotypic variation through genome-wide association (GWA) studies, with the benefit that associated variants can be studied experimentally with greater ease than in outbred populations such as humans. Here, we evaluate the prospects of GWA studies in S. cerevisiae strains through extensive simulations and a GWA study of mitochondrial copy number. We demonstrate that the complex and heterogeneous patterns of population structure present in yeast populations can lead to a high type I error rate in GWA studies of quantitative traits, and that methods typically used to control for population stratification do not provide adequate control of the type I error rate. Moreover, we show that while GWA studies of quantitative traits in S. cerevisiae may be difficult depending on the particular set of strains studied, association studies to map cis-acting quantitative trait loci (QTL) and Mendelian phenotypes are more feasible. We also discuss sampling strategies that could enable GWA studies in yeast and illustrate the utility of this approach in Saccharomyces paradoxus. Thus, our results provide important practical insights into the design and interpretation of GWA studies in yeast, and other model organisms that possess complex patterns of population structure.
Collapse
|
44
|
Bradshaw E, Yoshida M, Ling F. Mitochondrial fission proteins Fis1 and Mdv1, but not Dnm1, play a role in maintenance of heteroplasmy in budding yeast. FEBS Lett 2012; 586:1245-51. [PMID: 22575664 DOI: 10.1016/j.febslet.2012.03.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/27/2012] [Accepted: 03/19/2012] [Indexed: 01/11/2023]
Abstract
In budding yeast, the mitochondrial DNA (mtDNA) replication pathway involving the homologous DNA pairing protein Mhr1 promotes mitochondrial allele segregation. Mitochondrial fusion facilitates the recombination-mediated replication pathway; however, the role of fission remains largely unknown. By monitoring mitochondrial allele segregation during zygotic division, we found that the absence of fission proteins Fis1 or Mdv1, but not Dnm1, resulted in increased initial homoplasmy levels and decreased mtDNA copy number. However, decreases in mtDNA copy number alone were not sufficient for rapid establishment of homoplasmy, suggesting that inhibiting the activities of certain fission proteins promotes homoplasmy by reducing the number of mtDNA segregation units.
Collapse
Affiliation(s)
- Elliot Bradshaw
- Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan
| | | | | |
Collapse
|
45
|
Mbantenkhu M, Wang X, Nardozzi JD, Wilkens S, Hoffman E, Patel A, Cosgrove MS, Chen XJ. Mgm101 is a Rad52-related protein required for mitochondrial DNA recombination. J Biol Chem 2011; 286:42360-42370. [PMID: 22027892 DOI: 10.1074/jbc.m111.307512] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination is a conserved molecular process that has primarily evolved for the repair of double-stranded DNA breaks and stalled replication forks. However, the recombination machinery in mitochondria is poorly understood. Here, we show that the yeast mitochondrial nucleoid protein, Mgm101, is related to the Rad52-type recombination proteins that are widespread in organisms from bacteriophage to humans. Mgm101 is required for repeat-mediated recombination and suppression of mtDNA fragmentation in vivo. It preferentially binds to single-stranded DNA and catalyzes the annealing of ssDNA precomplexed with the mitochondrial ssDNA-binding protein, Rim1. Transmission electron microscopy showed that Mgm101 forms large oligomeric rings of ∼14-fold symmetry and highly compressed helical filaments. Specific mutations affecting ring formation reduce protein stability in vitro. The data suggest that the ring structure may provide a scaffold for stabilization of Mgm101 by preventing the aggregation of the otherwise unstable monomeric conformation. Upon binding to ssDNA, Mgm101 is remobilized from the rings to form distinct nucleoprotein filaments. These studies reveal a recombination protein of likely bacteriophage origin in mitochondria and support the notion that recombination is indispensable for mtDNA integrity.
Collapse
Affiliation(s)
- MacMillan Mbantenkhu
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Xiaowen Wang
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Jonathan D Nardozzi
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Elizabeth Hoffman
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Anamika Patel
- Department of Biology, Syracuse University, Syracuse, New York 13244
| | | | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
46
|
Hori A, Yoshida M, Ling F. Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast. Genes Cells 2011; 16:527-44. [PMID: 21463454 DOI: 10.1111/j.1365-2443.2011.01504.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mitochondrial fusion plays an important role in mitochondrial DNA (mtDNA) maintenance, although the underlying mechanisms are unclear. In budding yeast, certain levels of reactive oxygen species (ROS) can promote recombination-mediated mtDNA replication, and mtDNA maintenance depends on the homologous DNA pairing protein Mhr1. Here, we show that the fusion of isolated yeast mitochondria, which can be monitored by the bimolecular fluorescence complementation-derived green fluorescent protein (GFP) fluorescence, increases the mtDNA copy number in a manner dependent on Mhr1. The fusion event, accompanied by the degradation of dissociated electron transport chain complex IV and transient reductions in the complex IV subunits by the inner membrane AAA proteases such as Yme1, increases ROS levels. Analysis of the initial stage of mitochondrial fusion in early log-phase cells produced similar results. Moreover, higher ROS levels in mitochondrial fusion-deficient mutant cells increased the amount of newly synthesized mtDNA, resulting in increases in the mtDNA copy number. In contrast, reducing ROS levels in yme1 null mutant cells significantly decreased the mtDNA copy number, leading to an increase in cells lacking mtDNA. Our results indicate that mitochondrial fusion induces mtDNA synthesis by facilitating ROS-triggered, recombination-mediated replication and thereby prevents the generation of mitochondria lacking DNA.
Collapse
Affiliation(s)
- Akiko Hori
- Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Hirosawa, Wako-shi, Saitama, Japan
| | | | | |
Collapse
|
47
|
Ling F, Mikawa T, Shibata T. Enlightenment of yeast mitochondrial homoplasmy: diversified roles of gene conversion. Genes (Basel) 2011; 2:169-90. [PMID: 24710143 PMCID: PMC3924846 DOI: 10.3390/genes2010169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 11/29/2022] Open
Abstract
Mitochondria have their own genomic DNA. Unlike the nuclear genome, each cell contains hundreds to thousands of copies of mitochondrial DNA (mtDNA). The copies of mtDNA tend to have heterogeneous sequences, due to the high frequency of mutagenesis, but are quickly homogenized within a cell ("homoplasmy") during vegetative cell growth or through a few sexual generations. Heteroplasmy is strongly associated with mitochondrial diseases, diabetes and aging. Recent studies revealed that the yeast cell has the machinery to homogenize mtDNA, using a common DNA processing pathway with gene conversion; i.e., both genetic events are initiated by a double-stranded break, which is processed into 3' single-stranded tails. One of the tails is base-paired with the complementary sequence of the recipient double-stranded DNA to form a D-loop (homologous pairing), in which repair DNA synthesis is initiated to restore the sequence lost by the breakage. Gene conversion generates sequence diversity, depending on the divergence between the donor and recipient sequences, especially when it occurs among a number of copies of a DNA sequence family with some sequence variations, such as in immunoglobulin diversification in chicken. MtDNA can be regarded as a sequence family, in which the members tend to be diversified by a high frequency of spontaneous mutagenesis. Thus, it would be interesting to determine why and how double-stranded breakage and D-loop formation induce sequence homogenization in mitochondria and sequence diversification in nuclear DNA. We will review the mechanisms and roles of mtDNA homoplasmy, in contrast to nuclear gene conversion, which diversifies gene and genome sequences, to provide clues toward understanding how the common DNA processing pathway results in such divergent outcomes.
Collapse
Affiliation(s)
- Feng Ling
- Chemical Genetics Laboratory, RIKEN Advanced Science Institute/2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Tsutomu Mikawa
- Biometal Science Laboratory, RIKEN SPring-8 Center/Mikazuki cho, Hyogo 679-5148 Japan.
| | - Takehiko Shibata
- Division of Molecular and Cellular Physiology, Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University/1-7-29 Suehiro cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
48
|
Abstract
In this issue of Molecular Cell, Gerhold et al. (2010) find no circular DNA during mitochondrial DNA (mtDNA) replication in the aerobic yeast Candida albicans, a result with important implications for mtDNA replication in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Arnold J Bendich
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
49
|
Solieri L. Mitochondrial inheritance in budding yeasts: towards an integrated understanding. Trends Microbiol 2010; 18:521-30. [PMID: 20832322 DOI: 10.1016/j.tim.2010.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/23/2010] [Accepted: 08/04/2010] [Indexed: 01/08/2023]
Abstract
Recent advances in yeast mitogenomics have significantly contributed to our understanding of the diversity of organization, structure and topology in the mitochondrial genome of budding yeasts. In parallel, new insights on mitochondrial DNA (mtDNA) inheritance in the model organism Saccharomyces cerevisiae highlighted an integrated scenario where recombination, replication and segregation of mtDNA are intricately linked to mitochondrial nucleoid (mt-nucleoid) structure and organelle sorting. In addition to this, recent discoveries of bifunctional roles of some mitochondrial proteins have interesting implications on mito-nuclear genome interactions and the relationship between mtDNA inheritance, yeast fitness and speciation. This review summarizes the current knowledge on yeast mitogenomics, mtDNA inheritance with regard to mt-nucleoid structure and organelle dynamics, and mito-nuclear genome interactions.
Collapse
Affiliation(s)
- Lisa Solieri
- Department of Agricultural and Food Sciences, University of Modena and Reggio Emilia, via Amendola 2, Padiglione Besta, 42100 Reggio Emilia, Italy.
| |
Collapse
|
50
|
Gerhold JM, Aun A, Sedman T, Jõers P, Sedman J. Strand Invasion Structures in the Inverted Repeat of Candida albicans Mitochondrial DNA Reveal a Role for Homologous Recombination in Replication. Mol Cell 2010; 39:851-61. [DOI: 10.1016/j.molcel.2010.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 03/18/2010] [Accepted: 07/28/2010] [Indexed: 11/16/2022]
|