1
|
Jiang Z. SLC25A19 is required for NADH homeostasis and mitochondrial respiration. Free Radic Biol Med 2024; 222:317-330. [PMID: 38944213 DOI: 10.1016/j.freeradbiomed.2024.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/12/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Mitochondrial transporters facilitate the translocation of metabolites between the cytoplasm and mitochondria and are critical for mitochondrial functional integrity. Although many mitochondrial transporters are associated with metabolic diseases, how they regulate mitochondrial function and their metabolic contributions at the cellular level are largely unknown. Here, we show that mitochondrial thiamine pyrophosphate (TPP) transporter SLC25A19 is required for mitochondrial respiration. SLC25A19 deficiency leads to reduced cell viability, increased integrated stress response (ISR), enhanced glycolysis and elevated cell sensitivity to 2-deoxyglucose (2-DG) treatment. Through a series of biochemical assays, we found that the depletion of mitochondrial NADH is the primary cause of the impaired mitochondrial respiration in SLC25A19 deficient cells. We also showed involvement of SLC25A19 in regulating the enzymatic activities of complexes I and III, the tricarboxylic acid (TCA) cycle, malate-aspartate shuttle and amino acid metabolism. Consistently, addition of idebenone, an analog of coenzyme Q10, restores mitochondrial respiration and cell viability in SLC25A19 deficient cells. Together, our findings provide new insight into the functions of SLC25A19 in mitochondrial and cellular physiology, and suggest that restoring mitochondrial respiration could be a novel strategy for treating SLC25A19-associated disorders.
Collapse
Affiliation(s)
- Zongsheng Jiang
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China.
| |
Collapse
|
2
|
Abstract
Saccharomyces cerevisiae, whose evolutionary past includes a whole-genome duplication event, is characterized by a mosaic genome configuration with substantial apparent genetic redundancy. This apparent redundancy raises questions about the evolutionary driving force for genomic fixation of “minor” paralogs and complicates modular and combinatorial metabolic engineering strategies. While isoenzymes might be important in specific environments, they could be dispensable in controlled laboratory or industrial contexts. The present study explores the extent to which the genetic complexity of the central carbon metabolism (CCM) in S. cerevisiae, here defined as the combination of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and a limited number of related pathways and reactions, can be reduced by elimination of (iso)enzymes without major negative impacts on strain physiology. Cas9-mediated, groupwise deletion of 35 of the 111 genes yielded a “minimal CCM” strain which, despite the elimination of 32% of CCM-related proteins, showed only a minimal change in phenotype on glucose-containing synthetic medium in controlled bioreactor cultures relative to a congenic reference strain. Analysis under a wide range of other growth and stress conditions revealed remarkably few phenotypic changes from the reduction of genetic complexity. Still, a well-documented context-dependent role of GPD1 in osmotolerance was confirmed. The minimal CCM strain provides a model system for further research into genetic redundancy of yeast genes and a platform for strategies aimed at large-scale, combinatorial remodeling of yeast CCM.
Collapse
|
3
|
Hsieh WY, Wang HM, Chung YH, Lee KT, Liao HS, Hsieh MH. THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1383-1396. [PMID: 35791282 DOI: 10.1111/tpj.15895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The THIAMIN REQUIRING2 (TH2) protein comprising a mitochondrial targeting peptide followed by a transcription enhancement A and a haloacid dehalogenase domain is a thiamin monophosphate (TMP) phosphatase in the vitamin B1 biosynthetic pathway. The Arabidopsis th2-3 T-DNA insertion mutant was chlorotic and deficient in thiamin diphosphate (TDP). Complementation assays confirmed that haloacid dehalogenase domain alone was sufficient to rescue the th2-3 mutant. In pTH2:TH2-GFP/th2-3 complemented plants, the TH2-GFP was localized to the cytosol, mitochondrion, and nucleus, indicating that the vitamin B1 biosynthetic pathway extended across multi-subcellular compartments. Engineered TH2-GFP localized to the cytosol, mitochondrion, nucleus, and chloroplast, could complement the th2 mutant. Together, these results highlight the importance of intracellular TMP and thiamin trafficking in vitamin B1 biosynthesis. In an attempt to enhance the production of thiamin, we created various constructs to overexpress TH2-GFP in the cytosol, mitochondrion, chloroplast, and nucleus. Unexpectedly, overexpressing TH2-GFP resulted in an increase rather than a decrease in TMP. While studies on th2 mutants support TH2 as a TMP phosphatase, analyses of TH2-GFP overexpression lines implicating TH2 may also function as a TDP phosphatase in planta. We propose a working model that the TMP/TDP phosphatase activity of TH2 connects TMP, thiamin, and TDP into a metabolic cycle. The TMP phosphatase activity of TH2 is required for TDP biosynthesis, and the TDP phosphatase activity of TH2 may modulate TDP homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Mei Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
4
|
Palmieri F, Monné M, Fiermonte G, Palmieri L. Mitochondrial transport and metabolism of the vitamin B-derived cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD + , and related diseases: A review. IUBMB Life 2022; 74:592-617. [PMID: 35304818 PMCID: PMC9311062 DOI: 10.1002/iub.2612] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/19/2023]
Abstract
Multiple mitochondrial matrix enzymes playing key roles in metabolism require cofactors for their action. Due to the high impermeability of the mitochondrial inner membrane, these cofactors need to be synthesized within the mitochondria or be imported, themselves or one of their precursors, into the organelles. Transporters belonging to the protein family of mitochondrial carriers have been identified to transport the coenzymes: thiamine pyrophosphate, coenzyme A, FAD and NAD+ , which are all structurally similar to nucleotides and derived from different B-vitamins. These mitochondrial cofactors bind more or less tightly to their enzymes and, after having been involved in a specific reaction step, are regenerated, spontaneously or by other enzymes, to return to their active form, ready for the next catalysis round. Disease-causing mutations in the mitochondrial cofactor carrier genes compromise not only the transport reaction but also the activity of all mitochondrial enzymes using that particular cofactor and the metabolic pathways in which the cofactor-dependent enzymes are involved. The mitochondrial transport, metabolism and diseases of the cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD+ are the focus of this review.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- Department of SciencesUniversity of BasilicataPotenzaItaly
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| |
Collapse
|
5
|
Learning from Yeast about Mitochondrial Carriers. Microorganisms 2021; 9:microorganisms9102044. [PMID: 34683364 PMCID: PMC8539049 DOI: 10.3390/microorganisms9102044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are organelles that play an important role in both energetic and synthetic metabolism of eukaryotic cells. The flow of metabolites between the cytosol and mitochondrial matrix is controlled by a set of highly selective carrier proteins localised in the inner mitochondrial membrane. As defects in the transport of these molecules may affect cell metabolism, mutations in genes encoding for mitochondrial carriers are involved in numerous human diseases. Yeast Saccharomyces cerevisiae is a traditional model organism with unprecedented impact on our understanding of many fundamental processes in eukaryotic cells. As such, the yeast is also exceptionally well suited for investigation of mitochondrial carriers. This article reviews the advantages of using yeast to study mitochondrial carriers with the focus on addressing the involvement of these carriers in human diseases.
Collapse
|
6
|
Duran L, López JM, Avalos JL. ¡Viva la mitochondria!: harnessing yeast mitochondria for chemical production. FEMS Yeast Res 2021; 20:5863938. [PMID: 32592388 DOI: 10.1093/femsyr/foaa037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
The mitochondria, often referred to as the powerhouse of the cell, offer a unique physicochemical environment enriched with a distinct set of enzymes, metabolites and cofactors ready to be exploited for metabolic engineering. In this review, we discuss how the mitochondrion has been engineered in the traditional sense of metabolic engineering or completely bypassed for chemical production. We then describe the more recent approach of harnessing the mitochondria to compartmentalize engineered metabolic pathways, including for the production of alcohols, terpenoids, sterols, organic acids and other valuable products. We explain the different mechanisms by which mitochondrial compartmentalization benefits engineered metabolic pathways to boost chemical production. Finally, we discuss the key challenges that need to be overcome to expand the applicability of mitochondrial engineering and reach the full potential of this emerging field.
Collapse
Affiliation(s)
- Lisset Duran
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - José Montaño López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - José L Avalos
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
- Princeton Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Jasper L, Scarcia P, Rust S, Reunert J, Palmieri F, Marquardt T. Uridine Treatment of the First Known Case of SLC25A36 Deficiency. Int J Mol Sci 2021; 22:ijms22189929. [PMID: 34576089 PMCID: PMC8470663 DOI: 10.3390/ijms22189929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
SLC25A36 is a pyrimidine nucleotide carrier playing an important role in maintaining mitochondrial biogenesis. Deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction. In human beings, diseases triggered by SLC25A36 mutations have not been described yet. We report the first known case of SLC25A36 deficiency in a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. Whole exome analysis identified the homozygous mutation c.803dupT, p.Ser269llefs*35 in the SLC25A36 gene. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with oral uridine led to an improvement of thyroid function and obstipation, increase of growth and developmental progress. Our findings suggest an important role of SLC25A36 in hormonal regulations and oral uridine as a safe and effective treatment.
Collapse
Affiliation(s)
- Luisa Jasper
- Department of Pediatrics, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude A13, 48149 Münster, Germany; (L.J.); (S.R.); (J.R.)
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy;
| | - Stephan Rust
- Department of Pediatrics, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude A13, 48149 Münster, Germany; (L.J.); (S.R.); (J.R.)
| | - Janine Reunert
- Department of Pediatrics, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude A13, 48149 Münster, Germany; (L.J.); (S.R.); (J.R.)
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy;
- Correspondence: (F.P.); (T.M.)
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude A13, 48149 Münster, Germany; (L.J.); (S.R.); (J.R.)
- Correspondence: (F.P.); (T.M.)
| |
Collapse
|
8
|
Molecular mechanism of thiamine pyrophosphate import into mitochondria: a molecular simulation study. J Comput Aided Mol Des 2021; 35:987-1007. [PMID: 34406552 DOI: 10.1007/s10822-021-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The import of thiamine pyrophosphate (TPP) through both mitochondrial membranes was studied using a total of 3-µs molecular dynamics simulations. Regarding the translocation through the mitochondrial outer membrane, our simulations support the conjecture that TPP uses the voltage-dependent anion channel, the major pore of this membrane, for its passage to the intermembrane space, as its transport presents significant analogies with that used by other metabolites previously studied, in particular with ATP. As far as passing through the mitochondrial inner membrane is concerned, our simulations show that the specific carrier of TPP has a single binding site that becomes accessible, through an alternating access mechanism. The preference of this transporter for TPP can be rationalized mainly by three residues located in the binding site that differ from those identified in the ATP/ADP carrier, the most studied member of the mitochondrial carrier family. The simulated transport mechanism of TPP highlights the essential role, at the energetic level, of the contributions coming from the formation and breakage of two networks of salt bridges, one on the side of the matrix and the other on the side of the intermembrane space, as well as the interactions, mainly of an ionic nature, formed by TPP upon its binding. The energy contribution provided by the cytosolic network establishes a lower barrier than that of the matrix network, which can be explained by the lower interaction energy of TPP on the matrix side or possibly a uniport activity.
Collapse
|
9
|
Ferramosca A, Zara V. Mitochondrial Carriers and Substrates Transport Network: A Lesson from Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22168496. [PMID: 34445202 PMCID: PMC8395155 DOI: 10.3390/ijms22168496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is one of the most widely used model organisms for investigating various aspects of basic cellular functions that are conserved in human cells. This organism, as well as human cells, can modulate its metabolism in response to specific growth conditions, different environmental changes, and nutrient depletion. This adaptation results in a metabolic reprogramming of specific metabolic pathways. Mitochondrial carriers play a fundamental role in cellular metabolism, connecting mitochondrial with cytosolic reactions. By transporting substrates across the inner membrane of mitochondria, they contribute to many processes that are central to cellular function. The genome of Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family, most of which have been functionally characterized. The aim of this review is to describe the role of the so far identified yeast mitochondrial carriers in cell metabolism, attempting to show the functional connections between substrates transport and specific metabolic pathways, such as oxidative phosphorylation, lipid metabolism, gluconeogenesis, and amino acids synthesis. Analysis of the literature reveals that these proteins transport substrates involved in the same metabolic pathway with a high degree of flexibility and coordination. The understanding of the role of mitochondrial carriers in yeast biology and metabolism could be useful for clarifying unexplored aspects related to the mitochondrial carrier network. Such knowledge will hopefully help in obtaining more insight into the molecular basis of human diseases.
Collapse
|
10
|
Labuschagne P, Divol B. Thiamine: a key nutrient for yeasts during wine alcoholic fermentation. Appl Microbiol Biotechnol 2021; 105:953-973. [PMID: 33404836 DOI: 10.1007/s00253-020-11080-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022]
Abstract
Alcoholic fermentation is a crucial step of winemaking, during which yeasts convert sugars to alcohol and also produce or biotransform numerous flavour compounds. In this context, nutrients are essential compounds to support yeast growth and ultimately ensure complete fermentation, as well as optimized production of flavour compounds over that of off-flavour compounds. In particular, the vitamin thiamine not only plays an essential cofactor role for several enzymes involved in various metabolic pathways, including those leading to the production of wine-relevant flavour compounds, but also aids yeast survival via thiamine-dependent stress protection functions. Most yeast species are able to both assimilate exogenous thiamine into the cell and synthesize thiamine de novo. However, the mechanism and level of thiamine accumulation depend on several factors. This review provides an in-depth overview of thiamine utilization and metabolism in the model yeast species Saccharomyces cerevisiae, as well as the current knowledge on (1) the intracellular functions of thiamine, (2) the balance between and regulation of uptake and synthesis of thiamine and (3) the multitude of factors influencing thiamine availability and utilization. For the latter, a particular emphasis is placed on conditions occurring during wine fermentation. The adequacy of thiamine concentration in grape must to ensure successful fermentation is discussed together with the effect of thiamine concentration on fermentation kinetics and on wine sensory properties. This knowledge may serve as a resource to optimise thiamine concentrations for optimal industrial application of yeasts. KEY POINTS: • Thiamine uptake is preferred over biosynthesis and is transcriptionally repressed. • Multiple factors affect thiamine synthesis, availability and uptake for wine yeast. • Thiamine availability impacts fermentation kinetics and wine's sensory properties.
Collapse
Affiliation(s)
- Pwj Labuschagne
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland, 7602, South Africa
| | - B Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
11
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
12
|
Fernie AR, Cavalcanti JHF, Nunes-Nesi A. Metabolic Roles of Plant Mitochondrial Carriers. Biomolecules 2020; 10:E1013. [PMID: 32650612 PMCID: PMC7408384 DOI: 10.3390/biom10071013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial carriers (MC) are a large family (MCF) of inner membrane transporters displaying diverse, yet often redundant, substrate specificities, as well as differing spatio-temporal patterns of expression; there are even increasing examples of non-mitochondrial subcellular localization. The number of these six trans-membrane domain proteins in sequenced plant genomes ranges from 39 to 141, rendering the size of plant families larger than that found in Saccharomyces cerevisiae and comparable with Homo sapiens. Indeed, comparison of plant MCs with those from these better characterized species has been highly informative. Here, we review the most recent comprehensive studies of plant MCFs, incorporating the torrent of genomic data emanating from next-generation sequencing techniques. As such we present a more current prediction of the substrate specificities of these carriers as well as review the continuing quest to biochemically characterize this feature of the carriers. Taken together, these data provide an important resource to guide direct genetic studies aimed at addressing the relevance of these vital carrier proteins.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Instiute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - João Henrique F. Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá 69800-000, Amazonas, Brazil;
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
13
|
Cao X, Yang S, Cao C, Zhou YJ. Harnessing sub-organelle metabolism for biosynthesis of isoprenoids in yeast. Synth Syst Biotechnol 2020; 5:179-186. [PMID: 32637671 PMCID: PMC7332497 DOI: 10.1016/j.synbio.2020.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022] Open
Abstract
Current yeast metabolic engineering in isoprenoids production mainly focuses on rewiring of cytosolic metabolic pathway. However, the precursors, cofactors and the enzymes are distributed in various sub-cellular compartments, which may hamper isoprenoid biosynthesis. On the other side, pathway compartmentalization provides several advantages for improving metabolic flux toward target products. We here summarize the recent advances on harnessing sub-organelle for isoprenoids biosynthesis in yeast, and analyze the knowledge about the localization of enzymes, cofactors and metabolites for guiding the rewiring of the sub-organelle metabolism. This review may provide some insights for constructing efficient yeast cell factories for production of isoprenoids and even other natural products.
Collapse
Affiliation(s)
- Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Shan Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chunyang Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| |
Collapse
|
14
|
Noordally ZB, Trichtinger C, Dalvit I, Hofmann M, Roux C, Zamboni N, Pourcel L, Gas-Pascual E, Gisler A, Fitzpatrick TB. The coenzyme thiamine diphosphate displays a daily rhythm in the Arabidopsis nucleus. Commun Biol 2020; 3:209. [PMID: 32372067 PMCID: PMC7200797 DOI: 10.1038/s42003-020-0927-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/25/2020] [Indexed: 12/27/2022] Open
Abstract
In plants, metabolic homeostasis—the driving force of growth and development—is achieved through the dynamic behavior of a network of enzymes, many of which depend on coenzymes for activity. The circadian clock is established to influence coordination of supply and demand of metabolites. Metabolic oscillations independent of the circadian clock, particularly at the subcellular level is unexplored. Here, we reveal a metabolic rhythm of the essential coenzyme thiamine diphosphate (TDP) in the Arabidopsis nucleus. We show there is temporal separation of the clock control of cellular biosynthesis and transport of TDP at the transcriptional level. Taking advantage of the sole reported riboswitch metabolite sensor in plants, we show that TDP oscillates in the nucleus. This oscillation is a function of a light-dark cycle and is independent of circadian clock control. The findings are important to understand plant fitness in terms of metabolite rhythms. Noordally et al. show that the essential coenzyme thiamine diphosphate exhibits a daily rhythm in the Arabidopsis nucleus, which is driven by light-dark cycles and not by the circadian clock. This study provides insight into our understanding of the optimization of plant fitness.
Collapse
Affiliation(s)
- Zeenat B Noordally
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Celso Trichtinger
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Ivan Dalvit
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Manuel Hofmann
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Céline Roux
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Lucille Pourcel
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Elisabet Gas-Pascual
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Alexandra Gisler
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
15
|
Palmieri F, Scarcia P, Monné M. Diseases Caused by Mutations in Mitochondrial Carrier Genes SLC25: A Review. Biomolecules 2020; 10:biom10040655. [PMID: 32340404 PMCID: PMC7226361 DOI: 10.3390/biom10040655] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
In the 1980s, after the mitochondrial DNA (mtDNA) had been sequenced, several diseases resulting from mtDNA mutations emerged. Later, numerous disorders caused by mutations in the nuclear genes encoding mitochondrial proteins were found. A group of these diseases are due to defects of mitochondrial carriers, a family of proteins named solute carrier family 25 (SLC25), that transport a variety of solutes such as the reagents of ATP synthase (ATP, ADP, and phosphate), tricarboxylic acid cycle intermediates, cofactors, amino acids, and carnitine esters of fatty acids. The disease-causing mutations disclosed in mitochondrial carriers range from point mutations, which are often localized in the substrate translocation pore of the carrier, to large deletions and insertions. The biochemical consequences of deficient transport are the compartmentalized accumulation of the substrates and dysfunctional mitochondrial and cellular metabolism, which frequently develop into various forms of myopathy, encephalopathy, or neuropathy. Examples of diseases, due to mitochondrial carrier mutations are: combined D-2- and L-2-hydroxyglutaric aciduria, carnitine-acylcarnitine carrier deficiency, hyperornithinemia-hyperammonemia-homocitrillinuria (HHH) syndrome, early infantile epileptic encephalopathy type 3, Amish microcephaly, aspartate/glutamate isoform 1 deficiency, congenital sideroblastic anemia, Fontaine progeroid syndrome, and citrullinemia type II. Here, we review all the mitochondrial carrier-related diseases known until now, focusing on the connections between the molecular basis, altered metabolism, and phenotypes of these inherited disorders.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy;
- Correspondence: (F.P.); (M.M.); Tel.: +39-0805443323 (F.P.)
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy;
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy;
- Department of Sciences, University of Basilicata, via Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence: (F.P.); (M.M.); Tel.: +39-0805443323 (F.P.)
| |
Collapse
|
16
|
Huang J, Ma Z, Zhong G, Sheppard DC, Lu L, Zhang S. The mitochondrial thiamine pyrophosphate transporter TptA promotes adaptation to low iron conditions and virulence in fungal pathogen Aspergillus fumigatus. Virulence 2019; 10:234-247. [PMID: 30880633 PMCID: PMC6527022 DOI: 10.1080/21505594.2019.1596505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aspergillus fumigatus is the most prevalent airborne fungal pathogen that causes invasive fungal infections in immunosuppressed individuals. Adaptation to iron limited conditions is crucial for A. fumigatus virulence. To identify novel genes that play roles in adaptation to low iron conditions we performed an insertional mutagenesis screen in A. fumigatus. Using this approach, we identified the tptA gene in A. fumigatus, which shares homology with the Saccharomyces cerevisiae thiamine pyrophosphate (ThPP) transporter encoding gene tpc1. Heterologous expression of tpc1 in the tptA deletion mutant completely restored the ThPP auxotrophy phenotype, suggesting that Tpc1 and TptA are functional orthologues. Importantly, TptA was required for adaptation to low iron conditions in A. fumigatus. The ΔtptA mutant had decreased resistance to the iron chelator bathophenanthroline disulfonate (BPS) with severe growth defects. Moreover, loss of tptA decreased the expression of hapX, which is a major transcription factor indispensable for adaptation to iron starvation in A. fumigatus. Overexpression of hapX in the ΔtptA strain greatly rescued the growth defect and siderophore production by A. fumigatus in iron-depleted conditions. Mutagenesis experiments demonstrated that the conserved residues related to ThPP uptake in TptA were also required for low iron adaptation. Furthermore, TptA-mediated adaptation to low iron conditions was found to be dependent on carbon sources. Finally, loss of tptA resulted in the attenuation of virulence in a murine model of aspergillosis. Taken together, this study demonstrated that the mitochondrial ThPP transporter TptA promotes low iron adaptation and virulence in A. fumigatus.
Collapse
Affiliation(s)
- Jingjing Huang
- a Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences , Nanjing Normal University , Nanjing , China
| | - Zhihua Ma
- a Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences , Nanjing Normal University , Nanjing , China
| | - Guowei Zhong
- b Department of Hygiene Analysis and Detection, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Donald C Sheppard
- c Departments of Medicine, Microbiology & Immunology , McGill University , Montréal , QC , Canada.,d Infectious Diseases and Immunity in Global Health Program , Research Institute of the McGill University Health Centre , Montreal , QC , Canada
| | - Ling Lu
- a Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences , Nanjing Normal University , Nanjing , China
| | - Shizhu Zhang
- a Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences , Nanjing Normal University , Nanjing , China
| |
Collapse
|
17
|
Park EJ, Garcia CV, Youn SJ, Park CD, Lee SP. Fortification of γ-aminobutyric acid and bioactive compounds in Cucurbita moschata by novel two-step fermentation using Bacillus subtilis and Lactobacillus plantarum. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.07.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Harborne SPD, Kunji ERS. Calcium-regulated mitochondrial ATP-Mg/P i carriers evolved from a fusion of an EF-hand regulatory domain with a mitochondrial ADP/ATP carrier-like domain. IUBMB Life 2018; 70:1222-1232. [PMID: 30281880 PMCID: PMC6283063 DOI: 10.1002/iub.1931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 02/02/2023]
Abstract
The mitochondrial ATP-Mg/Pi carrier is responsible for the calcium-dependent regulation of adenosine nucleotide concentrations in the mitochondrial matrix, which allows mitochondria to respond to changing energy requirements of the cell. The carrier is expressed in mitochondria of fungi, plants and animals and belongs to the family of mitochondrial carriers. The carrier is unusual as it consists of three separate domains: (i) an N-terminal regulatory domain with four calcium-binding EF-hands similar to calmodulin, (ii) a loop domain containing an amphipathic α-helix and (iii) a mitochondrial carrier domain related to the mitochondrial ADP/ATP carrier. This striking example of three domains coming together from different origins to provide new functions represents an interesting quirk of evolution. In this review, we outline how the carrier was identified and how its physiological role was established with a focus on human isoforms. We exploit the sequence and structural information of the domains to explore the similarities and differences to their closest counterparts; mitochondrial ADP/ATP carriers and proteins with four EF-hands. We discuss how their combined function has led to a mechanism for calcium-regulated transport of adenosine nucleotides. Finally, we compare the ATP-Mg/Pi carrier with the mitochondrial aspartate/glutamate carrier, the only other mitochondrial carrier regulated by calcium, and we will argue that they have arisen by convergent rather than divergent evolution. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1222-1232, 2018.
Collapse
Affiliation(s)
- Steven P. D. Harborne
- School of Biomedical Sciences and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| |
Collapse
|
19
|
Scarcia P, Agrimi G, Germinario L, Ibrahim A, Rottensteiner H, Palmieri F, Palmieri L. In Saccharomyces cerevisiae grown in synthetic minimal medium supplemented with non-fermentable carbon sources glutamate is synthesized within mitochondria. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0687-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Scarcia P, Palmieri L, Agrimi G, Palmieri F, Rottensteiner H. Three mitochondrial transporters of Saccharomyces cerevisiae are essential for ammonium fixation and lysine biosynthesis in synthetic minimal medium. Mol Genet Metab 2017; 122:54-60. [PMID: 28784321 DOI: 10.1016/j.ymgme.2017.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
The nuclear genes of Saccharomyces cerevisiae YHM2, ODC1 and ODC2 encode three transporters that are localized in the inner mitochondrial membrane. In this study, the roles of YHM2, ODC1 and ODC2 in the assimilation of nitrogen and in the biosynthesis of lysine have been investigated. Both the odc1Δodc2Δ double knockout and the yhm2Δ mutant grew similarly as the YPH499 wild-type strain on synthetic minimal medium (SM) containing 2% glucose and ammonia as the main nitrogen source. In contrast, the yhm2Δodc1Δodc2Δ triple knockout exhibited a marked growth defect under the same conditions. This defect was fully restored by the individual expression of YHM2, ODC1 or ODC2 in the triple deletion strain. Furthermore, the lack of growth of yhm2Δodc1Δodc2Δ on 2% glucose SM was rescued by the addition of glutamate, but not glutamine, to the medium. Using lysine-prototroph YPH499-derived strains, the yhm2Δodc1Δodc2Δ knockout (but not the odc1Δodc2Δ and yhm2Δ mutants) also displayed a growth defect in lysine biosynthesis on 2% glucose SM, which was rescued by the addition of lysine and, to a lesser extent, by the addition of 2-aminoadipate. Additional analysis of the triple mutant showed that it is not respiratory-deficient and does not display mitochondrial DNA instability. These results provide evidence that only the simultaneous absence of YHM2, ODC1 and ODC2 impairs the export from the mitochondrial matrix of i) 2-oxoglutarate which is necessary for the synthesis of glutamate and ammonium fixation in the cytosol and ii) 2-oxoadipate which is required for lysine biosynthesis in the cytosol. Finally, the data presented allow one to suggest that the yhm2Δodc1Δodc2Δ triple knockout is suitable in complementation studies aimed at assessing the pathogenic potential of human SLC25A21 (ODC) mutations.
Collapse
Affiliation(s)
- P Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - L Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, via Orabona 4, 70125 Bari, Italy
| | - G Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - F Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, via Orabona 4, 70125 Bari, Italy.
| | - H Rottensteiner
- Department of Physiological Chemistry, Ruhr-University of Bochum, 44780 Bochum, Germany
| |
Collapse
|
21
|
Monné M, Daddabbo L, Giannossa LC, Nicolardi MC, Palmieri L, Miniero DV, Mangone A, Palmieri F. Mitochondrial ATP-Mg/phosphate carriers transport divalent inorganic cations in complex with ATP. J Bioenerg Biomembr 2017; 49:369-380. [PMID: 28695448 DOI: 10.1007/s10863-017-9721-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022]
Abstract
The ATP-Mg/phosphate carriers (APCs) modulate the intramitochondrial adenine nucleotide pool size. In this study the concentration-dependent effects of Mg2+ and other divalent cations (Me2+) on the transport of [3H]ATP in liposomes reconstituted with purified human and Arabidopsis APCs (hAPCs and AtAPCs, respectively, including some lacking their N-terminal domains) have been investigated. The transport of Me2+ mediated by these proteins was also measured. In the presence of a low external concentration of [3H]ATP (12 μM) and increasing concentrations of Me2+, Mg2+ stimulated the activity (measured as initial transport rate of [3H]ATP) of hAPCs and decreased that of AtAPCs; Fe2+ and Zn2+ stimulated markedly hAPCs and moderately AtAPCs; Ca2+ and Mn2+ markedly AtAPCs and moderately hAPCs; and Cu2+ decreased the activity of both hAPCs and AtAPCs. All the Me2+-dependent effects correlated well with the amount of ATP-Me complex present. The transport of [14C]AMP, which has a much lower ability of complexation than ATP, was not affected by the presence of the Me2+ tested, except Cu2+. Furthermore, the transport of [3H]ATP catalyzed by the ATP/ADP carrier, which is known to transport only free ATP and ADP, was inhibited by all the Me2+ tested in an inverse relationship with the formation of the ATP-Me complex. Finally, direct measurements of Mg2+, Mn2+, Fe2+, Zn2+ and Cu2+ showed that they are cotransported with ATP by both hAPCs and AtAPCs. It is likely that in vivo APCs transport free ATP and ATP-Mg complex to different degrees, and probably trace amounts of other Me2+ in complex with ATP.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy.,Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100, Potenza, Italy
| | - Lucia Daddabbo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | | | - Maria Cristina Nicolardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Annarosa Mangone
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70126, Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy. .,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126, Bari, Italy.
| |
Collapse
|
22
|
Bunik V, Aleshin V. Analysis of the Protein Binding Sites for Thiamin and Its Derivatives to Elucidate the Molecular Mechanisms of the Noncoenzyme Action of Thiamin (Vitamin B1). STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00011-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Biochemistry and Physiology of Vitamins in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:65-90. [DOI: 10.1007/978-3-319-54910-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Palmieri F, Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2362-78. [PMID: 26968366 DOI: 10.1016/j.bbamcr.2016.03.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Mitochondrial carriers (MCs) are a superfamily of nuclear-encoded proteins that are mostly localized in the inner mitochondrial membrane and transport numerous metabolites, nucleotides, cofactors and inorganic anions. Their unique sequence features, i.e., a tripartite structure, six transmembrane α-helices and a three-fold repeated signature motif, allow MCs to be easily recognized. This review describes how the functions of MCs from Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana (listed in the first table) were discovered after the genome sequence of S. cerevisiae was determined in 1996. In the genomic era, more than 50 previously unknown MCs from these organisms have been identified and characterized biochemically using a method consisting of gene expression, purification of the recombinant proteins, their reconstitution into liposomes and transport assays (EPRA). Information derived from studies with intact mitochondria, genetic and metabolic evidence, sequence similarity, phylogenetic analysis and complementation of knockout phenotypes have guided the choice of substrates that were tested in the transport assays. In addition, the diseases associated to defects of human MCs have been briefly reviewed. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
25
|
Hucker B, Wakeling L, Vriesekoop F. Vitamins in brewing: presence and influence of thiamine and riboflavin on wort fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Barry Hucker
- Faculty of Science and Technology; Federation University Australia; Ballarat Victoria Australia
| | - Lara Wakeling
- Faculty of Science and Technology; Federation University Australia; Ballarat Victoria Australia
| | - Frank Vriesekoop
- Faculty of Science and Technology; Federation University Australia; Ballarat Victoria Australia
- Department of Food Science and Agri-Food Supply Chain Management; Harper Adams University; Newport TF10 8NB UK
| |
Collapse
|
26
|
Kesten D, Kummer U, Sahle S, Hübner K. A new model for the aerobic metabolism of yeast allows the detailed analysis of the metabolic regulation during glucose pulse. Biophys Chem 2015; 206:40-57. [DOI: 10.1016/j.bpc.2015.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023]
|
27
|
Bettendorff L, Lakaye B, Kohn G, Wins P. Thiamine triphosphate: a ubiquitous molecule in search of a physiological role. Metab Brain Dis 2014; 29:1069-82. [PMID: 24590690 DOI: 10.1007/s11011-014-9509-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/12/2014] [Indexed: 01/12/2023]
Abstract
Thiamine triphosphate (ThTP) was discovered over 60 years ago and it was long thought to be a specifically neuroactive compound. Its presence in most cell types, from bacteria to mammals, would suggest a more general role but this remains undefined. In contrast to thiamine diphosphate (ThDP), ThTP is not a coenzyme. In E. coli cells, ThTP is transiently produced in response to amino acid starvation, while in mammalian cells, it is constitutively produced at a low rate. Though it was long thought that ThTP was synthesized by a ThDP:ATP phosphotransferase, more recent studies indicate that it can be synthesized by two different enzymes: (1) adenylate kinase 1 in the cytosol and (2) FoF1-ATP synthase in brain mitochondria. Both mechanisms are conserved from bacteria to mammals. Thus ThTP synthesis does not seem to require a specific enzyme. In contrast, its hydrolysis is catalyzed, at least in mammalian tissues, by a very specific cytosolic thiamine triphosphatase (ThTPase), controlling the steady-state cellular concentration of ThTP. In some tissues where adenylate kinase activity is high and ThTPase is absent, ThTP accumulates, reaching ≥ 70% of total thiamine, with no obvious physiological consequences. In some animal tissues, ThTP was able to phosphorylate proteins, and activate a high-conductance anion channel in vitro. These observations raise the possibility that ThTP is part of a still uncharacterized cellular signaling pathway. On the other hand, its synthesis by a chemiosmotic mechanism in mitochondria and respiring bacteria might suggest a role in cellular energetics.
Collapse
Affiliation(s)
- Lucien Bettendorff
- GIGA-Neurosciences, University of Liège, Avenue de l'Hôpital, 1, 4000, Liège, Belgium,
| | | | | | | |
Collapse
|
28
|
Monné M, Palmieri F. Antiporters of the mitochondrial carrier family. CURRENT TOPICS IN MEMBRANES 2014; 73:289-320. [PMID: 24745987 DOI: 10.1016/b978-0-12-800223-0.00008-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The eukaryotic transport protein family SLC25 consists of mitochondrial carriers (MCs) that are recognized on the sequence level by a threefold repeated and conserved signature motif. The majority of MCs characterized so far catalyzes strict exchanges of substrates across the mitochondrial inner membrane. The substrates are nucleotides, metabolic intermediates, and cofactors that are required in cytoplasmic and matrix metabolism. This review summarizes and discusses the current knowledge of the antiport mechanism(s) of MCs that has been deduced from determining transport characteristics and by analyzing structural, sequence, and mutagenesis data. The mode of transport varies among different MCs with respect to how the substrate translocation depends on the electrical and pH gradients across the mitochondrial inner membrane, for example, the ADP/ATP carrier is electrogenic (electrophoretic), the GTP/GDP carrier is dependent on the pH gradient, the aspartate/glutamate carrier is dependent on both, and the oxoglutarate/malate carrier is independent of them. The structure of the bovine ADP/ATP carrier consists of a six-transmembrane α-helix bundle with a pseudo-threefold symmetry and a closed matrix gate. By using this structure as a template in homology modeling, residues engaged in substrate binding and the formation of a cytoplasmic gate in MCs have been proposed. The functional importance of the residues of the binding site, the matrix, and the cytoplasmic gates is supported by transport activities of different MCs with single point mutations. Cumulative evidence has been used to postulate a general transport mechanism for MCs.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnology and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy; Department of Sciences, University of Basilicata, Potenza, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy.
| |
Collapse
|
29
|
Hucker B, Wakeling L, Vriesekoop F. Vitamins in brewing: the impact of wort production on the thiamine and riboflavin vitamer content of boiled sweet wort. JOURNAL OF THE INSTITUTE OF BREWING 2014. [DOI: 10.1002/jib.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Barry Hucker
- School of Health Sciences; Federation University Australia; Ballarat Victoria Australia
| | - Lara Wakeling
- School of Health Sciences; Federation University Australia; Ballarat Victoria Australia
| | - Frank Vriesekoop
- School of Health Sciences; Federation University Australia; Ballarat Victoria Australia
- Department of Food Science and Agri-Food Supply Chain Management; Harper Adams University; Newport TF10 8NB UK
| |
Collapse
|
30
|
Ersoy Tunalı N, Marobbio CMT, Tiryakioğlu NO, Punzi G, Saygılı SK, Onal H, Palmieri F. A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: functional analysis of the mutant protein. Mol Genet Metab 2014; 112:25-9. [PMID: 24721342 PMCID: PMC4015418 DOI: 10.1016/j.ymgme.2014.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 01/13/2023]
Abstract
The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome is a rare autosomal recessive disorder caused by the functional deficiency of the mitochondrial ornithine transporter 1 (ORC1). ORC1 is encoded by the SLC25A15 gene and catalyzes the transport of cytosolic ornithine into mitochondria in exchange for citrulline. Although the age of onset and the severity of the symptoms vary widely, the disease usually manifests in early infancy. The typical clinical features include protein intolerance, lethargy, episodic confusion, cerebellar ataxia, seizures and mental retardation. In this study, we identified a novel p.Ala15Val (c.44C>T) mutation by genomic DNA sequencing in a Turkish child presenting severe tantrum, confusion, gait disturbances and loss of speech abilities in addition to hyperornithinemia, hyperammonemia and homocitrullinuria. One hundred Turkish control chromosomes did not possess this variant. The functional effect of the novel mutation was assessed by both complementation of the yeast ORT1 null mutant and transport assays. Our study demonstrates that the A15V mutation dramatically interferes with the transport properties of ORC1 since it was shown to inhibit ornithine transport nearly completely.
Collapse
Affiliation(s)
- Nagehan Ersoy Tunalı
- Department of Molecular Biology and Genetics, Haliç University, Istanbul, Turkey.
| | - Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - N Ozan Tiryakioğlu
- Department of Molecular Biology and Genetics, Haliç University, Istanbul, Turkey
| | - Giuseppe Punzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Seha K Saygılı
- Istanbul Medical Faculty, Department of Pediatrics, Istanbul University, Istanbul, Turkey
| | - Hasan Onal
- Department of Pediatric Metabolism and Nutrition, Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
| |
Collapse
|
31
|
Porcelli V, Fiermonte G, Longo A, Palmieri F. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J Biol Chem 2014; 289:13374-84. [PMID: 24652292 DOI: 10.1074/jbc.m114.547448] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.
Collapse
Affiliation(s)
- Vito Porcelli
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology and
| | | | | | | |
Collapse
|
32
|
Overexpression in E. coli and Purification of the L. pneumophila Lpp2981 Protein. Mol Biotechnol 2013; 56:157-65. [DOI: 10.1007/s12033-013-9691-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Mitochondrial glutamate carriers from Drosophila melanogaster: biochemical, evolutionary and modeling studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1245-55. [PMID: 23850633 DOI: 10.1016/j.bbabio.2013.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 12/13/2022]
Abstract
The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata.
Collapse
|
34
|
Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D. The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes. Annu Rev Genet 2012; 46:233-64. [DOI: 10.1146/annurev-genet-110410-132544] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Michel Matringe
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| |
Collapse
|
35
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
36
|
The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+. Biochem J 2012; 443:241-7. [PMID: 22185573 DOI: 10.1042/bj20111420] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The essential cofactors CoA, FAD and NAD+ are synthesized outside the peroxisomes and therefore must be transported into the peroxisomal matrix where they are required for important processes. In the present study we have functionally identified and characterized SLC25A17 (solute carrier family 25 member 17), which is the only member of the mitochondrial carrier family that has previously been shown to be localized in the peroxisomal membrane. Recombinant and purified SLC25A17 was reconstituted into liposomes. Its transport properties and kinetic parameters demonstrate that SLC25A17 is a transporter of CoA, FAD, FMN and AMP, and to a lesser extent of NAD+, PAP (adenosine 3',5'-diphosphate) and ADP. SLC25A17 functioned almost exclusively by a counter-exchange mechanism, was saturable and was inhibited by pyridoxal 5'-phosphate and other mitochondrial carrier inhibitors. It was expressed to various degrees in all of the human tissues examined. Its main function is probably to transport free CoA, FAD and NAD+ into peroxisomes in exchange for intraperoxisomally generated PAP, FMN and AMP. The present paper is the first report describing the identification and characterization of a transporter for multiple free cofactors in peroxisomes.
Collapse
|
37
|
Frelin O, Agrimi G, Laera VL, Castegna A, Richardson LGL, Mullen RT, Lerma-Ortiz C, Palmieri F, Hanson AD. Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize. Funct Integr Genomics 2012; 12:317-26. [DOI: 10.1007/s10142-012-0273-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/17/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
|
38
|
Monné M, Miniero DV, Daddabbo L, Robinson AJ, Kunji ERS, Palmieri F. Substrate specificity of the two mitochondrial ornithine carriers can be swapped by single mutation in substrate binding site. J Biol Chem 2012; 287:7925-34. [PMID: 22262851 DOI: 10.1074/jbc.m111.324855] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial carriers are a large family of proteins that transport specific metabolites across the inner mitochondrial membrane. Sequence and structure analysis has indicated that these transporters have substrate binding sites in a similar location of the central cavity consisting of three major contact points. Here we have characterized mutations of the proposed substrate binding site in the human ornithine carriers ORC1 and ORC2 by carrying out transport assays with a set of different substrates. The different substrate specificities of the two isoforms, which share 87% identical amino acids, were essentially swapped by exchanging a single residue located at position 179 that is arginine in ORC1 and glutamine in ORC2. Altogether the substrate specificity changes demonstrate that Arg-179 and Glu-180 of contact point II bind the C(α) carboxylate and amino group of the substrates, respectively. Residue Glu-77 of contact point I most likely interacts with the terminal amino group of the substrate side chain. Furthermore, it is likely that all three contact points are involved in the substrate-induced conformational changes required for substrate translocation because Arg-179 is probably connected with Arg-275 of contact point III through Trp-224 by cation-π interactions. Mutations at position 179 also affected the turnover number of the ornithine carrier severely, implying that substrate binding to residue 179 is a rate-limiting step of the catalytic transport cycle. Given that Arg-179 is located in the vicinity of the matrix gate, it is concluded that it is a key residue in the opening of the carrier to the matrix side.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Haferkamp I, Schmitz-Esser S. The plant mitochondrial carrier family: functional and evolutionary aspects. FRONTIERS IN PLANT SCIENCE 2012; 3:2. [PMID: 22639632 PMCID: PMC3355725 DOI: 10.3389/fpls.2012.00002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/03/2012] [Indexed: 05/19/2023]
Abstract
Mitochondria play a key role in respiration and energy production and are involved in multiple eukaryotic but also in several plant specific metabolic pathways. Solute carriers in the inner mitochondrial membrane connect the internal metabolism with that of the surrounding cell. Because of their common basic structure, these transport proteins affiliate to the mitochondrial carrier family (MCF). Generally, MCF proteins consist of six membrane spanning helices, exhibit typical conserved domains and appear as homodimers in the native membrane. Although structurally related, MCF proteins catalyze the specific transport of various substrates, such as nucleotides, amino acids, dicarboxylates, cofactors, phosphate or H(+). Recent investigations identified MCF proteins also in several other cellular compartments and therefore their localization and physiological function is not only restricted to mitochondria. MCF proteins are a characteristic feature of eukaryotes and bacterial genomes lack corresponding sequences. Therefore, the evolutionary origin of MCF proteins is most likely associated with the establishment of mitochondria. It is not clear whether the host cell, the symbiont, or the chimerical organism invented the ancient MCF sequence. Here, we try to explain the establishment of different MCF proteins and focus on the characteristics of members from plants, in particular from Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Zelluläre Physiologie/Membrantransport, Technische Universität KaiserslauternKaiserslautern, Germany
- *Correspondence: Ilka Haferkamp, Biologie, Zelluläre Physiologie/Membrantransport, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 22, 67653 Kaiserslautern, Germany. e-mail:
| | | |
Collapse
|
40
|
Traba J, Satrústegui J, del Arco A. Adenine nucleotide transporters in organelles: novel genes and functions. Cell Mol Life Sci 2011; 68:1183-206. [PMID: 21207102 PMCID: PMC11114886 DOI: 10.1007/s00018-010-0612-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/16/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
Abstract
In eukaryotes, cellular energy in the form of ATP is produced in the cytosol via glycolysis or in the mitochondria via oxidative phosphorylation and, in photosynthetic organisms, in the chloroplast via photophosphorylation. Transport of adenine nucleotides among cell compartments is essential and is performed mainly by members of the mitochondrial carrier family, among which the ADP/ATP carriers are the best known. This work reviews the carriers that transport adenine nucleotides into the organelles of eukaryotic cells together with their possible functions. We focus on novel mechanisms of adenine nucleotide transport, including mitochondrial carriers found in organelles such as peroxisomes, plastids, or endoplasmic reticulum and also mitochondrial carriers found in the mitochondrial remnants of many eukaryotic parasites of interest. The extensive repertoire of adenine nucleotide carriers highlights an amazing variety of new possible functions of adenine nucleotide transport across eukaryotic organelles.
Collapse
Affiliation(s)
- Javier Traba
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, CIBER de Enfermedades Raras, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | |
Collapse
|
41
|
Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR. Evolution, structure and function of mitochondrial carriers: a review with new insights. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:161-81. [PMID: 21443630 DOI: 10.1111/j.1365-313x.2011.04516.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The mitochondrial carriers (MC) constitute a large family (MCF) of inner membrane transporters displaying different substrate specificities, patterns of gene expression and even non-mitochondrial organelle localization. In Arabidopsis thaliana 58 genes encode these six trans-membrane domain proteins. The number in other sequenced plant genomes varies from 37 to 125, thus being larger than that of Saccharomyces cerevisiae and comparable with that of Homo sapiens. In addition to displaying highly similar secondary structures, the proteins of the MCF can be subdivided into subfamilies on the basis of substrate specificity and the presence of specific symmetry-related amino acid triplets. We assessed the predictive power of these triplets by comparing predictions with experimentally determined data for Arabidopsis MCs, and applied these predictions to the not yet functionally characterized mitochondrial carriers of the grass, Brachypodium distachyon, and the alga, Ostreococcus lucimarinus. We additionally studied evolutionary aspects of the plant MCF by comparing sequence data of the Arabidopsis MCF with those of Saccharomyces cerevisiae and Homo sapiens, then with those of Brachypodium distachyon and Ostreococcus lucimarinus, employing intra- and inter-genome comparisons. Finally, we discussed the importance of the approaches of global gene expression analysis and in vivo characterizations in order to address the relevance of these vital carrier proteins.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Pharmaco-Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy.
| | | | | | | | | |
Collapse
|
42
|
Iacopetta D, Carrisi C, De Filippis G, Calcagnile VM, Cappello AR, Chimento A, Curcio R, Santoro A, Vozza A, Dolce V, Palmieri F, Capobianco L. The biochemical properties of the mitochondrial thiamine pyrophosphate carrier from Drosophila melanogaster. FEBS J 2010; 277:1172-81. [PMID: 20121944 DOI: 10.1111/j.1742-4658.2009.07550.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides and cofactors across the inner mitochondrial membrane. The genome of Drosophila melanogaster encodes at least 46 members of this family. Only five of these have been characterized, whereas the transport functions of the remainder cannot be assessed with certainty. In the present study, we report the functional identification of two D. melanogaster genes distantly related to the human and yeast thiamine pyrophosphate carrier (TPC) genes as well as the corresponding expression pattern throughout development. Furthermore, the functional characterization of the D. melanogaster mitochondrial thiamine pyrophosphate carrier protein (DmTpc1p) is described. DmTpc1p was over-expressed in bacteria, the purified protein was reconstituted into liposomes, and its transport properties and kinetic parameters were characterized. Reconstituted DmTpc1p transports thiamine pyrophosphate and, to a lesser extent, pyrophosphate, ADP, ATP and other nucleotides. The expression of DmTpc1p in Saccharomyces cerevisiaeTPC1 null mutant abolishes the growth defect on fermentable carbon sources. The main role of DmTpc1p is to import thiamine pyrophosphate into mitochondria by exchange with intramitochondrial ATP and/or ADP.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gangolf M, Wins P, Thiry M, El Moualij B, Bettendorff L. Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain. J Biol Chem 2009; 285:583-94. [PMID: 19906644 DOI: 10.1074/jbc.m109.054379] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In animals, thiamine deficiency leads to specific brain lesions, generally attributed to decreased levels of thiamine diphosphate, an essential cofactor in brain energy metabolism. However, another far less abundant derivative, thiamine triphosphate (ThTP), may also have a neuronal function. Here, we show that in the rat brain, ThTP is essentially present and synthesized in mitochondria. In mitochondrial preparations from brain (but not liver), ThTP can be produced from thiamine diphosphate and P(i). This endergonic process is coupled to the oxidation of succinate or NADH through the respiratory chain but cannot be energized by ATP hydrolysis. ThTP synthesis is strongly inhibited by respiratory chain inhibitors, such as myxothiazol and inhibitors of the H(+) channel of F(0)F(1)-ATPase. It is also impaired by disruption of the mitochondria or by depolarization of the inner membrane (by protonophores or valinomycin), indicating that a proton-motive force (Deltap) is required. Collapsing Deltap after ThTP synthesis causes its rapid disappearance, suggesting that both synthesis and hydrolysis are catalyzed by a reversible H(+)-translocating ThTP synthase. The synthesized ThTP can be released from mitochondria in the presence of external P(i). However, ThTP probably does not accumulate in the cytoplasm in vivo, because it is not detected in the cytosolic fraction obtained from a brain homogenate. Our results show for the first time that a high energy triphosphate compound other than ATP can be produced by a chemiosmotic type of mechanism. This might shed a new light on our understanding of the mechanisms of thiamine deficiency-induced brain lesions.
Collapse
Affiliation(s)
- Marjorie Gangolf
- GIGA-Neurosciences (B36), University of Liège, Avenue de l'Hôpital 1, B-4000 Liège 1 (Sart Tilman), Belgium B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
44
|
Spiegel R, Shaag A, Edvardson S, Mandel H, Stepensky P, Shalev SA, Horovitz Y, Pines O, Elpeleg O. SLC25A19mutation as a cause of neuropathy and bilateral striatal necrosis. Ann Neurol 2009; 66:419-24. [DOI: 10.1002/ana.21752] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Bettendorff L, Wins P. Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors. FEBS J 2009; 276:2917-25. [DOI: 10.1111/j.1742-4658.2009.07019.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Makarchikov AF. Vitamin B1: Metabolism and functions. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Traba J, Satrústegui J, del Arco A. Transport of adenine nucleotides in the mitochondria of Saccharomyces cerevisiae: interactions between the ADP/ATP carriers and the ATP-Mg/Pi carrier. Mitochondrion 2009; 9:79-85. [PMID: 19460304 DOI: 10.1016/j.mito.2009.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/09/2008] [Accepted: 01/05/2009] [Indexed: 01/09/2023]
Abstract
The ADP/ATP and ATP-Mg/Pi carriers are widespread among eukaryotes and constitute two systems to transport adenine nucleotides in mitochondria. ADP/ATP carriers carry out an electrogenic exchange of ADP for ATP essential for oxidative phosphorylation, whereas ATP-Mg/Pi carriers perform an electroneutral exchange of ATP-Mg for phosphate and are able to modulate the net content of adenine nucleotides in mitochondria. The functional interplay between both carriers has been shown to modulate viability in Saccharomyces cerevisiae. The simultaneous absence of both carriers is lethal. In the light of the new evidence we suggest that, in addition to exchange of cytosolic ADP for mitochondrial ATP, the specific function of the ADP/ATP carriers required for respiration, both transporters have a second function, which is the import of cytosolic ATP in mitochondria. The participation of these carriers in the generation of mitochondrial membrane potential is discussed. Both are necessary for the function of the mitochondrial protein import and assembly systems, which are the only essential mitochondrial functions in S. cerevisiae.
Collapse
Affiliation(s)
- Javier Traba
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma, CIBER de Enfermedades Raras, c/Nicolas Cabrera 1, 28049 Madrid, Spain.
| | | | | |
Collapse
|
48
|
Palmieri L, Santoro A, Carrari F, Blanco E, Nunes-Nesi A, Arrigoni R, Genchi F, Fernie AR, Palmieri F. Identification and characterization of ADNT1, a novel mitochondrial adenine nucleotide transporter from Arabidopsis. PLANT PHYSIOLOGY 2008; 148:1797-808. [PMID: 18923018 PMCID: PMC2593658 DOI: 10.1104/pp.108.130310] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 10/10/2008] [Indexed: 05/20/2023]
Abstract
Despite the fundamental importance and high level of compartmentation of mitochondrial nucleotide metabolism in plants, our knowledge concerning the transport of nucleotides across intracellular membranes remains far from complete. Study of a previously uncharacterized Arabidopsis (Arabidopsis thaliana) gene (At4g01100) revealed it to be a novel adenine nucleotide transporter, designated ADNT1, belonging to the mitochondrial carrier family. The ADNT1 gene shows broad expression at the organ level. Green fluorescent protein-based cell biological analysis demonstrated targeting of ADNT1 to mitochondria. While analysis of the expression of beta-glucuronidase fusion proteins suggested that it was expressed across a broad range of tissue types, it was most highly expressed in root tips. Direct transport assays with recombinant and reconstituted ADNT1 were utilized to demonstrate that this protein displays a relatively narrow substrate specificity largely confined to adenylates and their closest analogs. ATP uptake was markedly inhibited by the presence of other adenylates and general inhibitors of mitochondrial transport but not by bongkrekate or carboxyatractyloside, inhibitors of the previously characterized ADP/ATP carrier. Furthermore, the kinetics are substantially different from those of this carrier, with ADNT1 preferring AMP to ADP. Finally, isolation and characterization of a T-DNA insertional knockout mutant of ADNT1, alongside complementation and antisense approaches, demonstrated that although deficiency of this transporter did not seem to greatly alter photosynthetic metabolism, it did result in reduced root growth and respiration. These findings are discussed in the context of a potential function for ADNT1 in the provision of the energy required to support growth in heterotrophic plant tissues.
Collapse
Affiliation(s)
- Luigi Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Robinson AJ, Overy C, Kunji ERS. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci U S A 2008; 105:17766-71. [PMID: 19001266 PMCID: PMC2582046 DOI: 10.1073/pnas.0809580105] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Indexed: 11/18/2022] Open
Abstract
The structures of mitochondrial transporters and uncoupling proteins are 3-fold pseudosymmetrical, but their substrates and coupling ions are not. Thus, deviations from symmetry are to be expected in the substrate and ion-binding sites in the central aqueous cavity. By analyzing the 3-fold pseudosymmetrical repeats from which their sequences are made, conserved asymmetric residues were found to cluster in a region of the central cavity identified previously as the common substrate-binding site. Conserved symmetrical residues required for the transport mechanism were found at the water-membrane interfaces, and they include the three PX[DE]XX[RK] motifs, which form a salt bridge network on the matrix side of the cavity when the substrate-binding site is open to the mitochondrial intermembrane space. Symmetrical residues in three [FY][DE]XX[RK] motifs are on the cytoplasmic side of the cavity and could form a salt bridge network when the substrate-binding site is accessible from the mitochondrial matrix. It is proposed that the opening and closing of the carrier may be coupled to the disruption and formation of the 2 salt bridge networks via a 3-fold rotary twist induced by substrate binding. The interaction energies of the networks allow members of the transporter family to be classified as strict exchangers or uniporters.
Collapse
Affiliation(s)
- Alan J. Robinson
- Medical Research Council, Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Catherine Overy
- Medical Research Council, Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Edmund R. S. Kunji
- Medical Research Council, Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
50
|
Eijssen LMT, Lindsey PJ, Peeters R, Westra RL, van Eijsden RGE, Bolotin-Fukuhara M, Smeets HJM, Vlietinck RFM. A novel stepwise analysis procedure of genome-wide expression profiles identifies transcript signatures of thiamine genes as classifiers of mitochondrial mutants. Yeast 2008; 25:129-40. [PMID: 18081196 DOI: 10.1002/yea.1573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To extract functional information on genes and processes from large expression datasets, analysis methods are required that can computationally deal with these amounts of data, are tunable to specific research questions, and construct classifiers that are not overspecific to the dataset at hand. To satisfy these requirements, a stepwise procedure that combines elements from principal component analysis and discriminant analysis, was developed to specifically retrieve genes involved in processes of interest and classify samples based upon those genes. In a global expression dataset of 300 gene knock-outs in Saccharomyces cerevisiae, the procedure successfully classified samples with similar 'cellular component' Gene Ontology annotations of the knock-out gene by expression signatures of limited numbers of genes. The genes discriminating 'mitochondrion' from the other subgroups were evaluated in more detail. The thiamine pathway turned out to be one of the processes involved and was successfully evaluated in a logistic model to predict whether yeast knock-outs were mitochondrial or not. Further, this pathway is biologically related to the mitochondrial system. Hence, this strongly indicates that our approach is effective and efficient in extracting meaningful information from large microarray experiments and assigning functions to yet uncharacterized genes.
Collapse
Affiliation(s)
- L M T Eijssen
- Department of Genetics and Cell Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|