1
|
Akula S, Alvarado-Vazquez A, Haide Mendez Enriquez E, Bal G, Franke K, Wernersson S, Hallgren J, Pejler G, Babina M, Hellman L. Characterization of Freshly Isolated Human Peripheral Blood B Cells, Monocytes, CD4+ and CD8+ T Cells, and Skin Mast Cells by Quantitative Transcriptomics. Int J Mol Sci 2024; 25:13050. [PMID: 39684762 DOI: 10.3390/ijms252313050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Quantitative transcriptomics offers a new way to obtain a detailed picture of freshly isolated cells. By direct isolation, the cells are unaffected by in vitro culture, and the isolation at cold temperatures maintains the cells relatively unaltered in phenotype by avoiding activation through receptor cross-linking or plastic adherence. Simultaneous analysis of several cell types provides the opportunity to obtain detailed pictures of transcriptomic differences between them. Here, we present such an analysis focusing on four human blood cell populations and compare those to isolated human skin mast cells. Pure CD19+ peripheral blood B cells, CD14+ monocytes, and CD4+ and CD8+ T cells were obtained by fluorescence-activated cell sorting, and KIT+ human connective tissue mast cells (MCs) were purified by MACS sorting from healthy skin. Detailed information concerning expression levels of the different granule proteases, protease inhibitors, Fc receptors, other receptors, transcription factors, cell signaling components, cytoskeletal proteins, and many other protein families relevant to the functions of these cells were obtained and comprehensively discussed. The MC granule proteases were found exclusively in the MC samples, and the T-cell granzymes in the T cells, of which several were present in both CD4+ and CD8+ T cells. High levels of CD4 were also observed in MCs and monocytes. We found a large variation between the different cell populations in the expression of Fc receptors, as well as for lipid mediators, proteoglycan synthesis enzymes, cytokines, cytokine receptors, and transcription factors. This detailed quantitative comparative analysis of more than 780 proteins of importance for the function of these populations can now serve as a good reference material for research into how these entities shape the role of these cells in immunity and tissue homeostasis.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Abigail Alvarado-Vazquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Erika Haide Mendez Enriquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gürkan Bal
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sara Wernersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
2
|
Cai C, Liu Q, Shan H, Zhong C, Chen G, Cai Z, Zheng Y, Lu J, Tang J, Lin Z. Aberrant Super-Enhancer Landscape in Enzalutamide-Resistant Prostate Cancer Cells. Genet Test Mol Biomarkers 2024; 28:243-256. [PMID: 38722048 DOI: 10.1089/gtmb.2023.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Background: Castration-resistant prostate cancer (CRPC), which has developed resistance to next-generation antiandrogens, such as enzalutamide (Enz), is a lethal disease. Furthermore, transcriptional regulation by super enhancers (SEs) is crucial for the growth and spread of prostate cancer, as well as drug resistance. The functions of SEs, a significant class of noncoding DNA cis-regulatory elements, have been the subject of numerous recent studies in the field of cancer research. Materials and Methods: The goal of this research was to identify SEs associated with Enz resistance in C4-2B cells using chromatin immunoprecipitation sequencing and cleavage under targets and tagmentation (CUT&Tag). Using HOMER analysis to predict protein/gene-binding motifs, we identified master transcription factors (TFs) that may bind to SE sites. Using small interfering RNA, WST-1 assays, and qRT-PCR, we then confirmed the associations between TFs of SEs and Enz resistance. Results: A total of 999 SEs were screened from C4-2B EnzR cells in total. Incorporating analysis with RNA-seq data revealed 41 SEs to be strongly associated with the promotion of Enz resistance. In addition, we finally predicted that master TFs bind to SE-binding regions. Subsequently, we selected zinc finger protein 467 (ZFP467) and SMAD family member 3 to confirm the functional connections of master TFs with Enz resistance through SEs (ZNF467). Conclusions: In this study, SMAD3 and ZNF467 were found to be closely related to Enz-resistant CRPC. Our research uncovered a sizable group of SEs linked to Enz resistance in prostate cancer, dissected the mechanisms underlying SE Enz resistance, and shed light on potential clinical uses for SEs.
Collapse
Affiliation(s)
- Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Qinwei Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Haoran Shan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Chuanfan Zhong
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guidong Chen
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jianming Lu
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiaojiao Tang
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhuoyuan Lin
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Liu H, Wada A, Le I, Le PT, Lee AWF, Zhou J, Gori F, Baron R, Rosen CJ. PTH regulates osteogenesis and suppresses adipogenesis through Zfp467 in a feed-forward, PTH1R-cyclic AMP-dependent manner. eLife 2023; 12:e83345. [PMID: 37159501 PMCID: PMC10171860 DOI: 10.7554/elife.83345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
Conditional deletion of the PTH1R in mesenchymal progenitors reduces osteoblast differentiation, enhances marrow adipogenesis, and increases zinc finger protein 467 (Zfp467) expression. In contrast, genetic loss of Zfp467 increased Pth1r expression and shifts mesenchymal progenitor cell fate toward osteogenesis and higher bone mass. PTH1R and ZFP467 could constitute a feedback loop that facilitates PTH-induced osteogenesis and that conditional deletion of Zfp467 in osteogenic precursors would lead to high bone mass in mice. Prrx1Cre; Zfp467fl/fl but not AdipoqCre; Zfp467fl/fl mice exhibit high bone mass and greater osteogenic differentiation similar to the Zfp467-/- mice. qPCR results revealed that PTH suppressed Zfp467 expression primarily via the cyclic AMP/PKA pathway. Not surprisingly, PKA activation inhibited the expression of Zfp467 and gene silencing of Pth1r caused an increase in Zfp467 mRNA transcription. Dual fluorescence reporter assays and confocal immunofluorescence demonstrated that genetic deletion of Zfp467 resulted in higher nuclear translocation of NFκB1 that binds to the P2 promoter of the Pth1r and increased its transcription. As expected, Zfp467-/- cells had enhanced production of cyclic AMP and increased glycolysis in response to exogenous PTH. Additionally, the osteogenic response to PTH was also enhanced in Zfp467-/- COBs, and the pro-osteogenic effect of Zfp467 deletion was blocked by gene silencing of Pth1r or a PKA inhibitor. In conclusion, our findings suggest that loss or PTH1R-mediated repression of Zfp467 results in a pathway that increases Pth1r transcription via NFκB1 and thus cellular responsiveness to PTH/PTHrP, ultimately leading to enhanced bone formation.
Collapse
Affiliation(s)
- Hanghang Liu
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
- West China Hospital of Stomatology, Sichuan UniversitySichuanChina
| | - Akane Wada
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineBostonUnited States
- Harvard Medical School, Department of Medicine and Endocrine Unit, Massachusetts General HospitalBostonUnited States
| | - Isabella Le
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
- Graduate Medical Sciences, Boston University School of MedicineBostonUnited States
| | - Phuong T Le
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
| | - Andrew WF Lee
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
- University of New England, College of Osteopathic MedicineBiddefordUnited States
| | - Jun Zhou
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineBostonUnited States
- Harvard Medical School, Department of Medicine and Endocrine Unit, Massachusetts General HospitalBostonUnited States
| | - Francesca Gori
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineBostonUnited States
| | - Roland Baron
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineBostonUnited States
- Harvard Medical School, Department of Medicine and Endocrine Unit, Massachusetts General HospitalBostonUnited States
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Maine Medical CenterScarboroughUnited States
| |
Collapse
|
4
|
Guo G, Wang H, Tong X, Ye L, Shi X, Fang S, Hu Y, Han F, Chen C, Ding N, Su B, Xue X, Zhang H. Transcriptional Landscape of Enhancer RNAs in Peripheral Blood Mononuclear Cells from Patients with Systemic Lupus Erythematosus. J Inflamm Res 2022; 15:775-791. [PMID: 35153501 PMCID: PMC8824297 DOI: 10.2147/jir.s331188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Enhancer RNAs (eRNAs), a class of non-coding RNAs, play indispensable roles in regulating target gene transcription and maintaining cell identity in cooperation with promoters. In this study, we investigated the transcriptional landscape and potential functions of eRNAs in peripheral blood mononuclear cells (PBMCs) from patients with systemic lupus erythematosus (SLE). Methods PBMCs from five patients with stable SLE, five patients with active SLE, and ten healthy individuals (HCs) were subjected to RNA-sequencing. Putative regulators, differential expression, and pathways were analyzed. eRNAs that were significantly upregulated were first validated by RT-qPCR in 12 samples. Then, candidate eRNAs were confirmed in a validation cohort of 45 samples. We conducted comprehensive pathway analyses to explore the correlations between the candidate eRNAs and SLE pathology. Results By analyzing eRNA transcript data from PBMCs from SLE patients and HCs, we identified various eRNAs and functional super-enhancers potentially related with SLE. The SLE-specificity of eRNAs seemed to be largely driven by SLE-specific transcription factors (TFs). A Venn diagram of eRNAs differentially expressed in stable, active, and total SLE vs HCs revealed that 13 and 23 eRNAs were commonly upregulated and downregulated, respectively, in patients with stable SLE and those with active SLE. The commonly upregulated eRNAs participate in regulating SLE-related pathways. Only eRNA TCONS_00034326 was significantly (P < 0.05) upregulated in PBMCs of patients with SLE when compared with those of HCs as indicated by RT-qPCR. The area under the receiver-operating curve of TCONS_00034326 for distinguishing SLE patients from HCs was 0.691. Through its putative SLE-related master TF, TCONS_00034326 is involved in multiple SLE-relevant signaling pathways, especially tumor necrosis factor signaling. Conclusion This study unraveled the transcriptional landscape of eRNAs, eRNA-related TFs, and super-enhancers in PBMCs from SLE patients and HCs. We identified a panel of SLE-relevant eRNAs, providing potential targets in SLE pathogenesis.
Collapse
Affiliation(s)
- Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research & Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens & Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Huijing Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, People’s Republic of China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research & Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens & Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research & Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens & Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Xinyu Shi
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research & Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens & Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Su Fang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research & Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens & Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Ya Hu
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, People’s Republic of China
| | - Chaosheng Chen
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Ning Ding
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research & Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens & Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Bofeng Su
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
- Correspondence: Bofeng Su; Huidi Zhang, Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China, Email ;
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research & Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens & Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Huidi Zhang
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| |
Collapse
|
5
|
Le PT, Liu H, Alabdulaaly L, Vegting Y, Calle IL, Gori F, Lanske B, Baron R, Rosen CJ. The role of Zfp467 in mediating the pro-osteogenic and anti-adipogenic effects on bone and bone marrow niche. Bone 2021; 144:115832. [PMID: 33359894 PMCID: PMC8175945 DOI: 10.1016/j.bone.2020.115832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022]
Abstract
Conditional deletion of the PTH receptor (Pth1r) in mesenchymal progenitors reduces osteoblast differentiation and bone mass while enhancing adipogenesis and bone marrow adipose tissue. Mechanistically, PTH suppresses the expression of Zfp467, a pro-adipogenic zinc finger transcription factor. Consequently, Pth1r deficiency in mesenchymal progenitors leads to increased Zfp467 expression. Based on these observations, we hypothesized that genetic loss of Zfp467 would lead to a shift in marrow progenitor cell fate towards osteogenesis and increased bone mass. To test this hypothesis, we generated Zfp467-/- mice. Zfp467-/- mice (-/-) were significantly smaller than Zfp467+/+ mice (+/+). μCT showed significantly higher trabecular bone and cortical bone area in -/- vs. +/+, and histomorphometry showed higher structural and dynamic formation parameters in -/- mice vs. +/+. Femoral gene expression including Alpl, Sp7, and Acp5 were increased in -/-mice, whereas Adiponectin, Cebpa, Lepr, and Ppraγ mRNA were lower in -/- mice. Similarly, Fabp4 and Lep in the inguinal depot were also decreased in -/- mice. Moreover, marrow adipocyte numbers were reduced in -/- vs +/+ mice (p<0.007). In vitro, COBs and BMSCs-/- showed more positive ALP and Alizarin Red staining and a decrease in ORO droplets. Pth1r mRNA and protein levels were increased in COBs and BMSCs from -/- mice vs +/+ (p<0.02 for each parameter, -/- vs. +/+). -/- cells also exhibited enhanced endogenous levels of cAMP vs. control cells. Moreover, in an ovariectomy (OVX) mouse model, Zfp467-/- mice had significantly lower fat mass but similar bone mass compared to OVX +/+ mice. In contrast, in a high fat diet (HFD) mouse model, in addition to reduced adipocyte volume and adipogenesis related gene expression in both peripheral and bone marrow fat tissue, greater osteoblast number and higher osteogenesis related gene expression were also observed in -/- HFD mice vs. +/+ HFD mice. Taken together, these results demonstrate that ZFP467 negatively influences skeletal homeostasis and favors adipogenesis. Global deletion of Zfp467 increases PTHR1, cAMP and bone turnover, hence its repression is a component of PTH signaling and its regulation. These data support a critical role for Zfp467 in early lineage allocation and provide a novel potential mechanism by which PTH acts in an anabolic manner on the bone remodeling unit.
Collapse
Affiliation(s)
- Phuong T Le
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | - Hanghang Liu
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | - Lama Alabdulaaly
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Yosta Vegting
- University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Isabella L Calle
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA; Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA
| | - Francesca Gori
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Beate Lanske
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA; Harvard Medical School, Department of Medicine and Endocrine Unit, Massachusetts General Hospital, Boston, 02115, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
| |
Collapse
|
6
|
Functional expression of ZNF467 and PCBP2 supports adipogenic lineage commitment in adipose-derived mesenchymal stem cells. Gene 2020; 737:144437. [PMID: 32032745 DOI: 10.1016/j.gene.2020.144437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 01/13/2023]
Abstract
Bone marrow-derived mesenchymal stromal/stem cells (BMSCs) have the potential to be employed in many different skeletal therapies. A major limitation to utilizing BMSCs as a therapeutic strategy in human disease and tissue regeneration is the low cell numbers obtained from initial isolation necessitating multiple cell passages that can lead to decreased cell quality. Adipose-derived mesenchymal stromal/stem cells (AMSCs) have been proposed as an alternative cell source for regenerative therapies; however the differentiation capacity of these cells differs from BMSCs. To understand the differences between BMSCs and AMSCs, we compared the global gene expression profiles of BMSCs and AMSCs and identified two genes, PCBP2 and ZNF467 that were differentially expressed between AMSCs and BMSCs. We demonstrate that PCBP2 and ZNF467 impact adipogenic but not osteogenic differentiation, further supporting evidence that AMSCs and BMSCs appear to be adapted to their microenvironment.
Collapse
|
7
|
Tahara N, Akiyama R, Theisen JWM, Kawakami H, Wong J, Garry DJ, Kawakami Y. Gata6 restricts Isl1 to the posterior of nascent hindlimb buds through Isl1 cis-regulatory modules. Dev Biol 2018; 434:74-83. [PMID: 29197504 PMCID: PMC5785445 DOI: 10.1016/j.ydbio.2017.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 11/25/2017] [Indexed: 01/30/2023]
Abstract
Isl1 is required for two processes during hindlimb development: initiation of the processes directing hindlimb development in the lateral plate mesoderm and configuring posterior hindlimb field in the nascent hindlimb buds. During these processes, Isl1 expression is restricted to the posterior mesenchyme of hindlimb buds. How this dynamic change in Isl1 expression is regulated remains unknown. We found that two evolutionarily conserved sequences, located 3' to the Isl1 gene, regulate LacZ transgene expression in the hindlimb-forming region in mouse embryos. Both sequences contain GATA binding motifs, and expression pattern analysis identified that Gata6 is expressed in the flank and the anterior portion of nascent hindlimb buds. Recent studies have shown that conditional inactivation of Gata6 in mice causes hindlimb-specific pre-axial polydactyly, indicating a role of Gata6 in anterior-posterior patterning of hindlimbs. We studied whether Gata6 restricts Isl1 in the nascent hindlimb bud through the cis-regulatory modules. In vitro experiments demonstrate that GATA6 binds to the conserved GATA motifs in the cis-regulatory modules. GATA6 repressed expression of a luciferase reporter that contains the cis-regulatory modules by synergizing with Zfpm2. Analyses of Gata6 mutant embryos showed that ISL1 levels are higher in the anterior of nascent hindlimb buds than in wild type. Moreover, we detected a greater number of Isl1-transcribing cells in the anterior of nascent hindlimb buds in Gata6 mutants. Our results support a model in which Gata6 contributes to repression of Isl1 expression in the anterior of nascent hindlimb buds.
Collapse
Affiliation(s)
- Naoyuki Tahara
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Ryutaro Akiyama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Joshua W M Theisen
- Lillehei Heart Institute Regenerative Medicine and Sciences Program, University of Minnesota, Minneapolis, MN, United States
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Julia Wong
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J Garry
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Lillehei Heart Institute Regenerative Medicine and Sciences Program, University of Minnesota, Minneapolis, MN, United States; Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
8
|
You L, Chen L, Pan L, Gu WS, Chen JY. Zinc finger protein 467 regulates Wnt signaling by modulating the expression of sclerostin in adipose derived stem cells. Biochem Biophys Res Commun 2014; 456:598-604. [PMID: 25490389 DOI: 10.1016/j.bbrc.2014.11.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/23/2014] [Indexed: 01/30/2023]
Abstract
Osteoporosis is a metabolic disease in which a disruption of the balance between bone formation by osteoblasts and bone resorption by osteoclasts leads to the progressive deterioration of bone density and quality. Tissue engineering approaches to the treatment of osteoporosis depend on the identification of factors that promote the differentiation of progenitor cells towards an osteoblastic phenotype. In the present study, we expanded on prior findings on the role of zinc finger protein 467 (Zfp467) in the osteoblastic differentiation of adipose-derived stem cells (ADSCs) and explored the underlying mechanisms. We showed that Zfp467 binds to and regulates the expression of the SOST gene, which encodes a secreted glycoprotein named sclerostin (Sost) that is expressed exclusively by osteocytes and functions as a negative regulator of bone formation through the modulation of Wnt signaling. Overexpression of Zfp467 in ADSCs inhibited Wnt signaling by promoting binding of Sost to the Wnt coreceptors LRP5/6 and disrupting Wnt induced Frizzled-LRP6 complex formation, and siRNA mediated Sost silencing reversed the inhibition of Wnt signaling by Zfp467 in ADSCs. Our results indicate that Zfp467 regulates the differentiation of ADSCs via a mechanism involving Sost-mediated inhibition of Wnt signaling, suggesting potential therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Li You
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Lin Chen
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ling Pan
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wen-Sha Gu
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jin-Yu Chen
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
9
|
Mencalha AL, Corrêa S, Salles D, Du Rocher B, Santiago MF, Abdelhay E. Inhibition of STAT3-interacting protein 1 (STATIP1) promotes STAT3 transcriptional up-regulation and imatinib mesylate resistance in the chronic myeloid leukemia. BMC Cancer 2014; 14:866. [PMID: 25417721 PMCID: PMC4258947 DOI: 10.1186/1471-2407-14-866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/11/2014] [Indexed: 01/16/2023] Open
Abstract
Background Signal transducer and activator of transcription 3 (STAT3) is an important transcriptional factor frequently associated with the proliferation and survival of a large number of distinct cancer types. However, the signaling pathways and mechanisms that regulate STAT3 activation remain to be elucidated. Methods In this study we took advantage of existing cellular models for chronic myeloid leukemia resistance, western blot, in vitro signaling, real time PCR, flow cytometry approaches for cell cycle and apoptosis evaluation and siRNA assay in order to investigate the possible relationship between STATIP1, STAT3 and CML resistance. Results Here, we report the characterization of STAT3 protein regulation by STAT3-interacting protein (STATIP1) in the leukemia cell line K562, which demonstrates constitutive BCR-ABL TK activity. K562 cells exhibit high levels of phosphorylated STAT3 accumulated in the nucleus and enhanced BCR-ABL-dependent STAT3 transcriptional activity. Moreover, we demonstrate that STATIP1 is not involved in either BCR-ABL or STAT3 signaling but that STATIP1 is involved in the down-regulation of STAT3 transcription levels; STATIP1-depleted K562 cells display increased proliferation and increased levels of the anti-apoptosis STAT3 target genes CCND1 and BCL-XL, respectively. Furthermore, we demonstrated that Lucena, an Imatinib (IM)-resistant cell line, exhibits lower STATIP1 mRNA levels and undergoes apoptosis/cell cycle arrest in response to STAT3 inhibition together with IM treatment. We provide evidence that STATIP1 siRNA could confer therapy resistance in the K562 cells. Moreover, analysis of CML patients showed an inverse expression of STAIP1 and STAT3 mRNA levels, ratifying that IM-resistant patients present low STATIP1/high STAT3 mRNA levels. Conclusions Our data suggest that STATIP1 may be a negative regulator of STAT3 and demonstrate its involvement in IM therapy resistance in CML.
Collapse
Affiliation(s)
- André L Mencalha
- Bone Marrow Transplantation Unit (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
10
|
Sanders YY, Ambalavanan N, Halloran B, Zhang X, Liu H, Crossman DK, Bray M, Zhang K, Thannickal VJ, Hagood JS. Altered DNA methylation profile in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2012; 186:525-35. [PMID: 22700861 DOI: 10.1164/rccm.201201-0077oc] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE DNA methylation is an important epigenetic mechanism, which often occurs in response to environmental stimuli and is crucial in regulating gene expression. It is likely that epigenetic alterations contribute to pathogenesis in idiopathic pulmonary fibrosis (IPF). OBJECTIVES To determine the DNA methylation changes in IPF and their effects on gene expression. METHODS Total DNA methylation and DNA methyltransferase expression were compared in IPF and normal control lung tissues. IPF and normal tissues were subjected to comparative analysis of genome-wide DNA methylation and RNA expression using DNA hybridization to the Illumina HumanMethylation27 BeadChip and RNA hybridization to Illumina HumanHT-12 BeadChip. Functional analyses of differentially expressed and differentially methylated genes were done. Selected genes were validated at DNA, RNA, and protein levels. MEASUREMENTS AND MAIN RESULTS DNA methylation status was altered in IPF. IPF samples demonstrated higher DNA methyltransferase expression without observed alterations in global DNA methylation. Genome-wide differences in DNA methylation status and RNA expression were demonstrated by array hybridization. Among the genes whose DNA methylation status and RNA expression were both significantly altered, 16 genes were hypermethylated in DNA associated with decreased mRNA expression or vice versa. We validated CLDN5, ZNF467, TP53INP1, and DDAH1 genes at the level of DNA methylation status, RNA, and protein-level expression. CONCLUSIONS Changes in DNA methylation correspond to altered mRNA expression of a number of genes, some with known and others with previously uncharacterized roles in IPF, suggesting that DNA methylation is important in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19th Street South, BMRII Room 408, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schulz I, Engel C, Niestroj AJ, Zeitschel U, Menge K, Kehlen A, Meyer A, Rossner S, Demuth HU. Heteroarylketones inhibit astroglial interleukin-6 expression via a STAT3/NF-κB signaling pathway. J Neuroinflammation 2011; 8:86. [PMID: 21801384 PMCID: PMC3161871 DOI: 10.1186/1742-2094-8-86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/29/2011] [Indexed: 01/30/2023] Open
Abstract
Background Elevated brain levels of the pleiotropic cytokine interleukin-6, which is mainly secreted from activated local astrocytes, contribute to pathological events including neuroinflammation and neurodegeneration. Thus, inhibition of pathological IL-6 expression provides a rationale strategy for targeting the onset or further progression of neurological disorders including Alzheimer's disease, multiple sclerosis, Parkinson's disease and traumatic brain injury. The purpose of this study was to identify and to characterize new potent inhibitors of astrocytic IL-6 expression for further therapeutic development of novel anti-inflammatory and neuroprotective drugs. Methods Oncostatin M (OSM)-treated human glioma U343 cells were used as model for induction of astrocytic IL-6 expression. This model was characterized by immunoblotting, siRNA technique, ELISA and qRT-PCR and used to screen low molecular weight compound libraries for IL-6-lowering effects. To validate bioactive compounds identified from library screens, bacterial lipopolysaccharide was used to induce IL-6 expression in cultivated primary astrocytes and in mice in vivo. To dissect underlying molecular mechanisms, protein extracts from OSM-treated U343 cells were analyzed by phospho-specific immunoblotting and immunocytochemistry as well as by co-immunoprecipitation. Results OSM-treatment (100 ng/ml; 24 h) led to 30-fold increase of IL-6 secretion from U343 cells. The temporal profile of IL-6 mRNA induction displayed a biphasic induction pattern with peak synthesis at 1 h (6.5-fold) and 16 h (5.5-fold) post stimulation. IL-6 protein release did not show that biphasic pattern and was detected as early as 3 h post stimulation reaching a maximum at 24 h. The screen of compound libraries identified a set of heteroarylketones (HAKs) as potent inhibitors of IL-6 secretion. HAK compounds affected the second peak in IL-6 mRNA synthesis, whereas the first peak was insensitive to HAK treatment. HAK compounds also suppressed lipopolysaccharide-induced IL-6 expression in primary murine astrocytes as well as in brain and plasma samples from lipopolysaccharide-treated mice. Finally, HAK compounds were demonstrated to specifically suppress the OSM-induced phosphorylation of STAT3 at serine 727 and the physical interaction of pSTAT3S727 with p65. Conclusion Heteroarylketone compounds are potent inhibitors of IL-6 expression in vitro and in vivo and may represent a new class of potent anti-inflammatory and neuroprotective drugs.
Collapse
Affiliation(s)
- Ingo Schulz
- Probiodrug AG, Weinbergweg 22, Halle/Saale, 06120, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Quach JM, Walker EC, Allan E, Solano M, Yokoyama A, Kato S, Sims NA, Gillespie MT, Martin TJ. Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment. J Biol Chem 2010; 286:4186-98. [PMID: 21123171 DOI: 10.1074/jbc.m110.178251] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Osteoblasts and adipocytes are derived from common mesenchymal progenitor cells. The bone loss of osteoporosis is associated with altered progenitor differentiation from an osteoblastic to an adipocytic lineage. cDNA microarrays and quantitative real-time PCR (Q-PCR) were carried out in a differentiating mouse stromal osteoblastic cell line, Kusa 4b10, to identify gene targets of factors that stimulate osteoblast differentiation including parathyroid hormone (PTH) and gp130-binding cytokines, oncostatin M (OSM) and cardiotrophin-1 (CT-1). Zinc finger protein 467 (Zfp467) was rapidly down-regulated by PTH, OSM, and CT-1. Retroviral overexpression and RNA interference for Zfp467 in mouse stromal cells showed that this factor stimulated adipocyte formation and inhibited osteoblast commitment compared with controls. Regulation of adipocyte markers, including peroxisome proliferator-activated receptor (PPAR) γ, C/EBPα, adiponectin, and resistin, and late osteoblast/osteocyte markers (osteocalcin and sclerostin) by Zfp467 was confirmed by Q-PCR. Intra-tibial injection of calvarial cells transduced with retroviral Zfp467 doubled the number of marrow adipocytes in C57Bl/6 mice compared with vector control-transduced cells, providing in vivo confirmation of a pro-adipogenic role of Zfp467. Furthermore, Zfp467 transactivated a PPAR-response element reporter construct and recruited a histone deacetylase complex. Thus Zfp467 is a novel co-factor that promotes adipocyte differentiation and suppresses osteoblast differentiation. This has relevance to therapeutic interventions in osteoporosis, including PTH-based therapies currently available, and may be of relevance for the use of adipose-derived stem cells for tissue engineering.
Collapse
Affiliation(s)
- Julie M Quach
- St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 2009. [PMID: 19723038 DOI: 10.1111/j.1749-6632.2009.04911.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Signal transducer and activator of transcription-3 (STAT-3) is one of six members of a family of transcription factors. It was discovered almost 15 years ago as an acute-phase response factor. This factor has now been associated with inflammation, cellular transformation, survival, proliferation, invasion, angiogenesis, and metastasis of cancer. Various types of carcinogens, radiation, viruses, growth factors, oncogenes, and inflammatory cytokines have been found to activate STAT-3. STAT-3 is constitutively active in most tumor cells but not in normal cells. Phosphorylation of STAT-3 at tyrosine 705 leads to its dimerization, nuclear translocation, DNA binding, and gene transcription. The phosphorylation of STAT-3 at serine 727 may regulate its activity negatively or positively. STAT-3 regulates the expression of genes that mediate survival (survivin, bcl-xl, mcl-1, cellular FLICE-like inhibitory protein), proliferation (c-fos, c-myc, cyclin D1), invasion (matrix metalloproteinase-2), and angiogenesis (vascular endothelial growth factor). STAT-3 activation has also been associated with both chemoresistance and radioresistance. STAT-3 mediates these effects through its collaboration with various other transcription factors, including nuclear factor-kappaB, hypoxia-inducible factor-1, and peroxisome proliferator activated receptor-gamma. Because of its critical role in tumorigenesis, inhibitors of this factor's activation are being sought for both prevention and therapy of cancer. This has led to identification of small peptides, oligonucleotides, and small molecules as potential STAT-3 inhibitors. Several of these small molecules are chemopreventive agents derived from plants. This review discusses the intimate relationship between STAT-3, inflammation, and cancer in more detail.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, Cytokine Research Laboratory, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 2009; 1171:59-76. [PMID: 19723038 DOI: 10.1111/j.1749-6632.2009.04911.x] [Citation(s) in RCA: 551] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signal transducer and activator of transcription-3 (STAT-3) is one of six members of a family of transcription factors. It was discovered almost 15 years ago as an acute-phase response factor. This factor has now been associated with inflammation, cellular transformation, survival, proliferation, invasion, angiogenesis, and metastasis of cancer. Various types of carcinogens, radiation, viruses, growth factors, oncogenes, and inflammatory cytokines have been found to activate STAT-3. STAT-3 is constitutively active in most tumor cells but not in normal cells. Phosphorylation of STAT-3 at tyrosine 705 leads to its dimerization, nuclear translocation, DNA binding, and gene transcription. The phosphorylation of STAT-3 at serine 727 may regulate its activity negatively or positively. STAT-3 regulates the expression of genes that mediate survival (survivin, bcl-xl, mcl-1, cellular FLICE-like inhibitory protein), proliferation (c-fos, c-myc, cyclin D1), invasion (matrix metalloproteinase-2), and angiogenesis (vascular endothelial growth factor). STAT-3 activation has also been associated with both chemoresistance and radioresistance. STAT-3 mediates these effects through its collaboration with various other transcription factors, including nuclear factor-kappaB, hypoxia-inducible factor-1, and peroxisome proliferator activated receptor-gamma. Because of its critical role in tumorigenesis, inhibitors of this factor's activation are being sought for both prevention and therapy of cancer. This has led to identification of small peptides, oligonucleotides, and small molecules as potential STAT-3 inhibitors. Several of these small molecules are chemopreventive agents derived from plants. This review discusses the intimate relationship between STAT-3, inflammation, and cancer in more detail.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, Cytokine Research Laboratory, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 2009. [PMID: 19723038 DOI: 10.1111/j.1749-6632.2009.04911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Signal transducer and activator of transcription-3 (STAT-3) is one of six members of a family of transcription factors. It was discovered almost 15 years ago as an acute-phase response factor. This factor has now been associated with inflammation, cellular transformation, survival, proliferation, invasion, angiogenesis, and metastasis of cancer. Various types of carcinogens, radiation, viruses, growth factors, oncogenes, and inflammatory cytokines have been found to activate STAT-3. STAT-3 is constitutively active in most tumor cells but not in normal cells. Phosphorylation of STAT-3 at tyrosine 705 leads to its dimerization, nuclear translocation, DNA binding, and gene transcription. The phosphorylation of STAT-3 at serine 727 may regulate its activity negatively or positively. STAT-3 regulates the expression of genes that mediate survival (survivin, bcl-xl, mcl-1, cellular FLICE-like inhibitory protein), proliferation (c-fos, c-myc, cyclin D1), invasion (matrix metalloproteinase-2), and angiogenesis (vascular endothelial growth factor). STAT-3 activation has also been associated with both chemoresistance and radioresistance. STAT-3 mediates these effects through its collaboration with various other transcription factors, including nuclear factor-kappaB, hypoxia-inducible factor-1, and peroxisome proliferator activated receptor-gamma. Because of its critical role in tumorigenesis, inhibitors of this factor's activation are being sought for both prevention and therapy of cancer. This has led to identification of small peptides, oligonucleotides, and small molecules as potential STAT-3 inhibitors. Several of these small molecules are chemopreventive agents derived from plants. This review discusses the intimate relationship between STAT-3, inflammation, and cancer in more detail.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, Cytokine Research Laboratory, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Crif1 is a novel transcriptional coactivator of STAT3. EMBO J 2008; 27:642-53. [PMID: 18200042 DOI: 10.1038/sj.emboj.7601986] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 01/02/2008] [Indexed: 01/30/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor that performs a broad spectrum of biological functions in response to various stimuli. However, no specific coactivator that regulates the transcriptional activity of STAT3 has been identified. Here we report that CR6-interacting factor 1 (Crif1) is a specific transcriptional coactivator of STAT3, but not of STAT1 or STAT5a. Crif1 interacts with STAT3 and positively regulates its transcriptional activity. Crif1-/- embryos were lethal around embryonic day 6.5, and manifested developmental arrest accompanied with defective proliferation and massive apoptosis. The expression of STAT3 target genes was markedly reduced in a Crif1-/- blastocyst culture and in Oncostatin M-stimulated Crif1-deficient MEFs. Importantly, the key activities of constitutively active STAT3-C, such as transcription, DNA binding, and cellular transformation, were abolished in the Crif1-null MEFs, suggesting the essential role of Crif1 in the transcriptional activity of STAT3. Our results reveal that Crif1 is a novel and essential transcriptional coactivator of STAT3 that modulates its DNA binding ability, and shed light on the regulation of oncogenic STAT3.
Collapse
|
17
|
Saijou E, Itoh T, Kim KW, Iemura SI, Natsume T, Miyajima A. Nucleocytoplasmic Shuttling of the Zinc Finger Protein EZI Is Mediated by Importin-7-dependent Nuclear Import and CRM1-independent Export Mechanisms. J Biol Chem 2007; 282:32327-37. [PMID: 17848547 DOI: 10.1074/jbc.m706793200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nucleocytoplasmic translocation constitutes a foundation for nuclear proteins to exert their proper functions and hence for various biological reactions to occur normally in eukaryotic cells. We reported previously that EZI/Zfp467, a 12 zinc finger motif-containing protein, localizes predominantly in the nucleus, yet the underlying mechanism still remains elusive. Here we constructed a series of mutant forms of EZI and examined their subcellular localization. The results delineated a non-canonical nuclear localization signal in the region covering the 9th to the 12th zinc fingers, which was necessary for nuclear accumulation of EZI as well as sufficient to confer nuclear localizing ability to a heterologous protein. We also found that the N-terminal domain of EZI is necessary for its nuclear export, the process of which was not sensitive to the CRM1 inhibitor leptomycin B. An interaction proteomics approach and the following co-immunoprecipitation experiments identified the nuclear import receptor importin-7 as a molecule that associated with EZI and, importantly, short interfering RNA-mediated knockdown of importin-7 expression completely abrogated nuclear accumulation of EZI. Taken together, these results identify EZI as a novel cargo protein for importin-7 and demonstrate a nucleocytoplasmic shuttling mechanism that is mediated by importin-7-dependent nuclear localization and CRM1-independent nuclear export.
Collapse
Affiliation(s)
- Eiko Saijou
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Lui VWY, Boehm AL, Koppikar P, Leeman RJ, Johnson D, Ogagan M, Childs E, Freilino M, Grandis JR. Antiproliferative mechanisms of a transcription factor decoy targeting signal transducer and activator of transcription (STAT) 3: the role of STAT1. Mol Pharmacol 2007; 71:1435-43. [PMID: 17325127 DOI: 10.1124/mol.106.032284] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We previously developed a transcription factor decoy targeting signal transducer and activator of transcription 3 (STAT3) and reported antitumor activity in both in vitro and in vivo models of squamous cell carcinoma of the head and neck (SCCHN). Based on the known existence of STAT1-STAT3 heterodimers, the high sequence homology between STAT1 and STAT3, as well as expression of both STAT1 and STAT3 in SCCHN, we examined whether the STAT3 decoy interferes with STAT1 signaling. SCCHN cell lines with different STAT1 expression levels (but similar STAT3 levels) were used. Both cell lines were sensitive to the growth-inhibitory effects of the STAT3 decoy compared with a mutant control decoy. Intact STAT1 signaling was demonstrated by interferon-gamma (IFN-gamma)-mediated induction of STAT1 phosphorylation (Tyr701) and interferon-regulatory factor-1 (IRF-1) expression. Treatment with the STAT3 decoy (but not a mutant control decoy) resulted in inhibition of IRF-1 protein expression in both cell lines, indicating specific inhibition of STAT1 signaling by the STAT3 decoy. Because STAT1 is a potential tumor suppressor, we also investigated whether STAT1 signaling mitigated the therapeutic efficacy of the STAT3 decoy. In both PCI-15B and UM-22B cells, STAT1 siRNA treatment resulted in decreased STAT1 expression, without altering the antitumor activity of the STAT3 decoy. Likewise, the antitumor effects of the STAT3 decoy were not altered by STAT1 activation upon IFN-gamma treatment. These results suggest that the therapeutic mechanisms of STAT3 blockade using a transcription factor decoy are independent of STAT1 activation.
Collapse
Affiliation(s)
- Vivian Wai Yan Lui
- Department of Clinical Oncology, Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yamashina K, Yamamoto H, Chayama K, Nakajima K, Kikuchi A. Suppression of STAT3 activity by Duplin, which is a negative regulator of the Wnt signal. J Biochem 2007; 139:305-14. [PMID: 16452319 DOI: 10.1093/jb/mvj033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Duplin was originally isolated as a negative regulator of beta-catenin-dependent T-cell factor (Tcf) transcriptional activity in the Wnt signaling pathway. However, Duplin knockout mice exhibit embryonic lethality at 5.5-em day, suggesting that Duplin has important roles other than as a negative regulator of the Wnt signal. To identify new roles of Duplin, the Duplin-binding proteins were screened. PIAS3, which is a SUMO E3 ligase and acts as an inhibitor of signal transducer and activator of transcription (STAT3), was identified as a Duplin-binding protein. Duplin was sumoylated, but PIAS3 affected neither the sumoylation of Duplin nor its ability to inhibit Tcf-4 activity. Like PIAS3, Duplin suppressed the leukemia-inhibitory factor (LIF)-induced STAT3 transcriptional activity. Duplin did not affect the LIF-dependent tyrosine phosphorylation or nuclear localization of STAT3 but inhibited the formation of complex between STAT3 and DNA. Although STAT3 is not modified with SUMO, PIAS3 inhibited the STAT3 activity in a manner partially depending on its SUMO E3 ligase activity. Duplin suppressed the LIF-dependent STAT3 activity independently of sumoylation. These results demonstrate that Duplin inhibits not only Tcf-4 but also STAT3, suggesting that Duplin may act as a repressor for multiple transcriptional factors.
Collapse
Affiliation(s)
- Keitaro Yamashina
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima 734-8551, Japan
| | | | | | | | | |
Collapse
|
20
|
Ghildyal R, Ho A, Jans DA. Central role of the respiratory syncytial virus matrix protein in infection. FEMS Microbiol Rev 2006; 30:692-705. [PMID: 16911040 DOI: 10.1111/j.1574-6976.2006.00025.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Respiratory syncytial virus is the major respiratory pathogen of infants and children worldwide, with no effective treatment or vaccine available. Steady progress has been made in understanding the respiratory syncytial virus life cycle and the consequences of infection, but many areas of respiratory syncytial virus biology remain poorly understood, including the role of subcellular localisation of respiratory syncytial virus gene products such as the matrix protein in the infected host cell. The matrix protein plays a central role in viral assembly and, intriguingly, has been observed to traffic into and out of the nucleus at specific times during the respiratory syncytial virus infectious cycle. Further, the matrix protein has been shown to be able to inhibit transcription, which may be a key to respiratory syncytial virus pathogenesis. This review will focus on the role of the matrix protein in respiratory syncytial virus infection and what is known of its nucleocytoplasmic trafficking, the understanding of which may lead to new therapeutic approaches to combat respiratory syncytial virus, and/or vaccine development.
Collapse
Affiliation(s)
- Reena Ghildyal
- Department of Respiratory and Sleep Medicine, Monash Medical Centre, Clayton, Australia
| | | | | |
Collapse
|
21
|
Yin G, Ji C, Zeng L, Wang Z, Wang J, Shen Z, Wu T, Gu S, Xie Y, Mao Y. Cloning and Characterization of a Novel KRAB-domain-containing Zinc Finger Gene (ZNF284L)†. Mol Biol Rep 2006; 33:137-44. [PMID: 16817023 DOI: 10.1007/s11033-005-6405-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2005] [Indexed: 01/30/2023]
Abstract
The zinc finger gene (ZNF) family plays an important role in the regulation of transcription. This study reports the cloning and characterization of a novel human zinc finger protein cDNA (ZNF284L) from fetal brain cDNA library. The ZNF284L cDNA is 2223 bp in length encoding a 593-aa polypeptide. The protein contains a KRAB A+b box and eleven C2H2 type zinc finger motifs. ZNF284L gene is mapped to 19q13.2-19q13.3 with 5 exons, and the expression pattern of ZNF284L gene was also examined by reverse transcription polymerase chain reaction (RT-PCR). The transcripts were detected in the human lung, liver, pancreas, thymus, heart, placenta, spleen, prostate, ovary, small intestine and colon, but in human brain, skeletal muscle, kidney, testis and peripheral blood leukocyte, no expression was detected.
Collapse
Affiliation(s)
- Gang Yin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The signal transducers and activators of transcription (STATs) are a family of transcription factors, which were originally identified on the basis of their ability to transduce a signal from a cellular receptor into the nucleus and modulate the transcription of specific genes. Interestingly, recent studies have demonstrated that STAT-1 plays a key role in promoting apoptosis in a variety of cell types, whereas STAT-3 has an anti-apoptotic effect. Moreover, whilst STAT-3 promotes cellular proliferation and is activated in a variety of tumour cells, STAT-1 appears to have an anti-proliferative effect. Although the initially characterised signal transduction events mediated by STAT-1 and STAT-3 involve the DNA binding and transcriptional activation domains of the factor, some of their other effects appear not to require DNA binding. Therefore, STAT-1 and STAT-3 can mediate the regulation of gene transcription both by direct DNA binding and via a co-activator mechanism and despite their very similar structures, have antagonistic effects on cellular proliferation and apoptosis.
Collapse
Affiliation(s)
- A Stephanou
- Institute of Child Health, University College London, Medical Molecular Biology Unit, London, UK.
| | | |
Collapse
|
23
|
Tonozuka Y, Minoshima Y, Bao YC, Moon Y, Tsubono Y, Hatori T, Nakajima H, Nosaka T, Kawashima T, Kitamura T. A GTPase-activating protein binds STAT3 and is required for IL-6-induced STAT3 activation and for differentiation of a leukemic cell line. Blood 2004; 104:3550-7. [PMID: 15284113 DOI: 10.1182/blood-2004-03-1066] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We previously identified a guanosine triphosphatase (GTPase)-activating protein (GAP) male germ cell Rac GAP (MgcRacGAP) that enhanced interleukin-6 (IL-6)-induced macrophage differentiation of murine M1 leukemia cells. Later, MgcRacGAP was found to play crucial roles in cell division. However, how MgcRacGAP enhanced IL-6-induced differentiation remained elusive. Here we show that MgcRacGAP enhances IL-6-induced differentiation through enhancement of signal transducer and activator of transcription-3 (STAT3) activation. MgcRacGAP, Rac, and STAT3 formed a complex in IL-6-stimulated M1 cells, where MgcRacGAP interacted with Rac1 and STAT3 through its cysteine-rich domain and GAP domain. In reporter assays, the wild-type MgcRacGAP enhanced transcriptional activation of STAT3 while a GAP-domain deletion mutant (DeltaGAP) did not significantly enhance it, suggesting that the GAP domain was required for enhancement of STAT3-dependent transcription. Intriguingly, M1 cells expressing DeltaGAP had no effect on the differentiation signal of IL-6, while forced expression of MgcRacGAP rendered M1 cells hyperresponsive to the IL-6-induced differentiation. Moreover, knockdown of MgcRacGAP by RNA interference profoundly suppressed STAT3 activation, implicating MgcRacGAP in the STAT3-dependent transcription. All together, our data not only reveal an important role for MgcRacGAP in STAT3 activation, but also demonstrate that MgcRacGAP regulates IL-6-induced cellular differentiation in which STAT3 plays a pivotal role.
Collapse
Affiliation(s)
- Yukio Tonozuka
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Joo A, Aburatani H, Morii E, Iba H, Yoshimura A. STAT3 and MITF cooperatively induce cellular transformation through upregulation of c-fos expression. Oncogene 2004; 23:726-34. [PMID: 14737107 DOI: 10.1038/sj.onc.1207174] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The signal transducer and activator of transcription (STAT) family proteins are transcription factors critical in mediating cytokine signaling. Among them, STAT3 is frequently activated in a number of human cancers and transformed cell lines and is implicated in tumorigenesis. However, although constitutively activated STAT3 mutant (STAT3C) leads to cellular transformation, its transformation potential such as colony-forming activity in soft-agar is much weaker than that of v-src. To identify tumorigenic factors that cooperatively induce cellular transformation with STAT3C, we screened the retroviral cDNA library. We found that the microphthalmia-associated transcription factor (MITF), an essential transcription factor for melanocyte development and pigmentation, induces anchorage-independent growth of NIH-3T3 cells in cooperation with STAT3C. Microarray analysis revealed that c-fos is highly expressed in transformants expressing STAT3C and MITF. Promoter analysis and chromatin immunoprecipitation assay suggested that both STAT3 and MITF can cooperatively upregulate the c-fos gene. In addition, the transformation of NIH-3T3 cells by both MITF and STAT3C was significantly suppressed by a dominant-negative AP-1 retrovirus. These data indicate that MITF and STAT3 cooperatively induce c-fos, resulting in cellular transformation.
Collapse
Affiliation(s)
- Akiko Joo
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
25
|
Abstract
The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed.
Collapse
|
26
|
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374:1-20. [PMID: 12773095 PMCID: PMC1223585 DOI: 10.1042/bj20030407] [Citation(s) in RCA: 2389] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 04/30/2003] [Accepted: 05/29/2003] [Indexed: 12/11/2022]
Abstract
The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed.
Collapse
Affiliation(s)
- Peter C Heinrich
- Institut für Biochemie, RWTH Aachen, Universitätsklinikum, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
McBride KM, Reich NC. The ins and outs of STAT1 nuclear transport. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:RE13. [PMID: 12915721 DOI: 10.1126/stke.2003.195.re13] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
There is an inherent elegance in being in the right place at the right time. The STAT1 transcription factor possesses regulatory signals that ensure its distribution to the right cellular location at the right time. Latent STAT1 resides primarily in the cytoplasm, and there it responds to hormone signaling through tyrosine phosphorylation by Janus kinases or growth factor receptors. After phosphorylation, STAT1 dimerizes, and this conformational change reveals a nuclear import signal that is recognized by a specific nuclear import carrier. In the nucleus, the STAT1 dimer dissociates from the import carrier and binds to specific DNA target sites in the promoters of regulated genes. STAT1 is subsequently dephosphorylated in the nucleus by a constitutively active tyrosine phosphatase, leading to its dissociation from DNA. A nuclear export signal of STAT1 appears to be masked when dimers are bound to DNA, but it becomes accessible to the CRM1 export carrier after dissociation from DNA. CRM1 binds STAT1 and transports the transcription factor back to the cytoplasm. Studies show that the regulatory trafficking signals that guide the nuclear import and export of STAT1 reside within its DNA binding domain. The location of these signals indicates that their function has coevolved with the ability of STAT1 to bind DNA and regulate gene expression. The nuclear import and subsequent recycling of STAT1 to the cytoplasm are integral to its function as a signal transducer and activator of transcription.
Collapse
Affiliation(s)
- Kevin M McBride
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | |
Collapse
|
28
|
|