1
|
Zhang C, Zhu JX, Abou El-Ela AS, Wang N, Ali SA, Shi ZY, Zhou Y, Khan MM, Zhou WW, Zhu ZR. Role of AMP-activated protein kinase in regulating hatching of Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2025; 81:3186-3195. [PMID: 39902473 DOI: 10.1002/ps.8689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/16/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND RNA interference (RNAi) has been proposed as a promising strategy for sustainable and eco-friendly pest management. Nutrient and energy signals are vital for embryonic development and hatching in insects. A key player in cellular energy sensing is adenosine monophosphate (AMP)-activated protein kinase (AMPK), which functions in embryonic development and hatching, and remains poorly understood. RESULTS In this study, we identified the three subunits of the NlAMPK gene, NlAMPKα, NlAMPKβ, and NlAMPKγ, in the brown planthopper (BPH), Nilaparvata lugens. Quantitative real-time PCR analysis showed that all these three subunits were highly expressed in eggs and ovaries. RNAi of NlAMPKα, NlAMPKβ, and NlAMPKγ in newly emerged BPH females resulted in hatching failure of the eggs they laid. Transcriptomic analysis identified a significant down-regulation of a chitinase (NlChit) gene's transcription on the NlAMPK subunits' knockdown. Notably, NlChit knockdown led to up-regulation of the three NlAMPK subunits, and reduced hatchability and thicker serosal cuticle. CONCLUSION Our findings demonstrate that NlAMPK could serve as a potential RNAi target for BPH control, and its mechanism is probably by down-regulating the expression of NlChit. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Jin-Xian Zhu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Amr S Abou El-Ela
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ni Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Soomro Abid Ali
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Zhe-Yi Shi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Ying Zhou
- Zhejiang University, Hainan Institute, Sanya, China
| | | | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| |
Collapse
|
2
|
Nithianandam V, Bukhari H, Leventhal MJ, Battaglia RA, Dong X, Fraenkel E, Feany MB. Integrative analysis reveals a conserved role for the amyloid precursor protein in proteostasis during aging. Nat Commun 2023; 14:7034. [PMID: 37923712 PMCID: PMC10624868 DOI: 10.1038/s41467-023-42822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Aβ peptides derived from the amyloid precursor protein (APP) have been strongly implicated in the pathogenesis of Alzheimer's disease. However, the normal function of APP and the importance of that role in neurodegenerative disease is less clear. We recover the Drosophila ortholog of APP, Appl, in an unbiased forward genetic screen for neurodegeneration mutants. We perform comprehensive single cell transcriptional and proteomic studies of Appl mutant flies to investigate Appl function in the aging brain. We find an unexpected role for Appl in control of multiple cellular pathways, including translation, mitochondrial function, nucleic acid and lipid metabolism, cellular signaling and proteostasis. We mechanistically define a role for Appl in regulating autophagy through TGFβ signaling and document the broader relevance of our findings using mouse genetic, human iPSC and in vivo tauopathy models. Our results demonstrate a conserved role for APP in controlling age-dependent proteostasis with plausible relevance to Alzheimer's disease.
Collapse
Affiliation(s)
- Vanitha Nithianandam
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Hassan Bukhari
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Matthew J Leventhal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, MA, USA
| | - Rachel A Battaglia
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xianjun Dong
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, MA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
3
|
Hang L, Wang Z, Foo ASC, Goh GWY, Choong HC, Thundyil J, Xu S, Lam KP, Lim KL. Conditional disruption of AMP kinase in dopaminergic neurons promotes Parkinson's disease-associated phenotypes in vivo. Neurobiol Dis 2021; 161:105560. [PMID: 34767944 DOI: 10.1016/j.nbd.2021.105560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
Emerging studies implicate energy dysregulation as an underlying trigger for Parkinson's disease (PD), suggesting that a better understanding of the molecular pathways governing energy homeostasis could help elucidate therapeutic targets for the disease. A critical cellular energy regulator is AMP kinase (AMPK), which we have previously shown to be protective in PD models. However, precisely how AMPK function impacts on dopaminergic neuronal survival and disease pathogenesis remains elusive. Here, we showed that Drosophila deficient in AMPK function exhibits PD-like features, including dopaminergic neuronal loss and climbing impairment that progress with age. We also created a tissue-specific AMPK-knockout mouse model where the catalytic subunits of AMPK are ablated in nigral dopaminergic neurons. Using this model, we demonstrated that loss of AMPK function promotes dopaminergic neurodegeneration and associated locomotor aberrations. Accompanying this is an apparent reduction in the number of mitochondria in the surviving AMPK-deficient nigral dopaminergic neurons, suggesting that an impairment in mitochondrial biogenesis may underlie the observed PD-associated phenotypes. Importantly, the loss of AMPK function enhances the susceptibility of nigral dopaminergic neurons in these mice to 6-hydroxydopamine-induced toxicity. Notably, we also found that AMPK activation is reduced in post-mortem PD brain samples. Taken together, these findings highlight the importance of neuronal energy homeostasis by AMPK in PD and position AMPK pathway as an attractive target for future therapeutic exploitation.
Collapse
Affiliation(s)
- Liting Hang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Physiology, National University of Singapore, Singapore; Department of Research, National Neuroscience Institute, Singapore
| | - Ziyin Wang
- Department of Research, National Neuroscience Institute, Singapore
| | - Aaron S C Foo
- Department of Physiology, National University of Singapore, Singapore; Department of Research, National Neuroscience Institute, Singapore
| | - Geraldine W Y Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Department of Research, National Neuroscience Institute, Singapore
| | | | - John Thundyil
- Department of Research, National Neuroscience Institute, Singapore
| | - Shengli Xu
- Department of Physiology, National University of Singapore, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Kong-Peng Lam
- Department of Microbiology & Immunology, National University of Singapore, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Department of Research, National Neuroscience Institute, Singapore; Department of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom.
| |
Collapse
|
4
|
Muraleedharan R, Dasgupta B. AMPK in the brain: its roles in glucose and neural metabolism. FEBS J 2021; 289:2247-2262. [PMID: 34355526 DOI: 10.1111/febs.16151] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
The adenosine monophosphate-activated protein kinase (AMPK) is an integrative metabolic sensor that maintains energy balance at the cellular level and plays an important role in orchestrating intertissue metabolic signaling. AMPK regulates cell survival, metabolism, and cellular homeostasis basally as well as in response to various metabolic stresses. Studies so far show that the AMPK pathway is associated with neurodegeneration and CNS pathology, but the mechanisms involved remain unclear. AMPK dysregulation has been reported in neurodegenerative diseases such as amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and other neuropathies. AMPK activation appears to be both neuroprotective and pro-apoptotic, possibly dependent upon neural cell types, the nature of insults, and the intensity and duration of AMPK activation. While embryonic brain development in AMPK null mice appears to proceed normally without any overt structural abnormalities, our recent study confirmed the full impact of AMPK loss in the postnatal and aging brain. Our studies revealed that Ampk deletion in neurons increased basal neuronal excitability and reduced latency to seizure upon stimulation. Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in the brain. AMPK's regulation of aerobic glycolysis in astrocytic metabolism warrants further deliberation, particularly glycogen turnover and shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation. In this minireview, we focus on recent advances in AMPK and energy-sensing in the brain.
Collapse
Affiliation(s)
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, OH, USA
| |
Collapse
|
5
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
6
|
Khan A, Paro S, McGurk L, Sambrani N, Hogg MC, Brindle J, Pennetta G, Keegan LP, O'Connell MA. Membrane and synaptic defects leading to neurodegeneration in Adar mutant Drosophila are rescued by increased autophagy. BMC Biol 2020; 18:15. [PMID: 32059717 PMCID: PMC7020516 DOI: 10.1186/s12915-020-0747-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background In fly brains, the Drosophila Adar (adenosine deaminase acting on RNA) enzyme edits hundreds of transcripts to generate edited isoforms of encoded proteins. Nearly all editing events are absent or less efficient in larvae but increase at metamorphosis; the larger number and higher levels of editing suggest editing is most required when the brain is most complex. This idea is consistent with the fact that Adar mutations affect the adult brain most dramatically. However, it is unknown whether Drosophila Adar RNA editing events mediate some coherent physiological effect. To address this question, we performed a genetic screen for suppressors of Adar mutant defects. Adar5G1 null mutant flies are partially viable, severely locomotion defective, aberrantly accumulate axonal neurotransmitter pre-synaptic vesicles and associated proteins, and develop an age-dependent vacuolar brain neurodegeneration. Results A genetic screen revealed suppression of all Adar5G1 mutant phenotypes tested by reduced dosage of the Tor gene, which encodes a pro-growth kinase that increases translation and reduces autophagy in well-fed conditions. Suppression of Adar5G1 phenotypes by reduced Tor is due to increased autophagy; overexpression of Atg5, which increases canonical autophagy initiation, reduces aberrant accumulation of synaptic vesicle proteins and suppresses all Adar mutant phenotypes tested. Endosomal microautophagy (eMI) is another Tor-inhibited autophagy pathway involved in synaptic homeostasis in Drosophila. Increased expression of the key eMI protein Hsc70-4 also reduces aberrant accumulation of synaptic vesicle proteins and suppresses all Adar5G1 mutant phenotypes tested. Conclusions These findings link Drosophila Adar mutant synaptic and neurotransmission defects to more general cellular defects in autophagy; presumably, edited isoforms of CNS proteins are required for optimum synaptic response capabilities in the brain during the behaviorally complex adult life stage.
Collapse
Affiliation(s)
- Anzer Khan
- CEITEC Masaryk University, Kamenice 735/5, A35, CZ 62 500, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Simona Paro
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Leeanne McGurk
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Nagraj Sambrani
- CEITEC Masaryk University, Kamenice 735/5, A35, CZ 62 500, Brno, Czech Republic
| | - Marion C Hogg
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - James Brindle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Giuseppa Pennetta
- Centre for Integrative Physiology, Euan MacDonald Centre for Motor Neurone Disease Research, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Liam P Keegan
- CEITEC Masaryk University, Kamenice 735/5, A35, CZ 62 500, Brno, Czech Republic. .,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| | - Mary A O'Connell
- CEITEC Masaryk University, Kamenice 735/5, A35, CZ 62 500, Brno, Czech Republic. .,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
7
|
Nagy S, Maurer GW, Hentze JL, Rose M, Werge TM, Rewitz K. AMPK signaling linked to the schizophrenia-associated 1q21.1 deletion is required for neuronal and sleep maintenance. PLoS Genet 2018; 14:e1007623. [PMID: 30566533 PMCID: PMC6317821 DOI: 10.1371/journal.pgen.1007623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/03/2019] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
The human 1q21.1 deletion of ten genes is associated with increased risk of schizophrenia. This deletion involves the β-subunit of the AMP-activated protein kinase (AMPK) complex, a key energy sensor in the cell. Although neurons have a high demand for energy and low capacity to store nutrients, the role of AMPK in neuronal physiology is poorly defined. Here we show that AMPK is important in the nervous system for maintaining neuronal integrity and for stress survival and longevity in Drosophila. To understand the impact of this signaling system on behavior and its potential contribution to the 1q21.1 deletion syndrome, we focused on sleep, an important role of which is proposed to be the reestablishment of neuronal energy levels that are diminished during energy-demanding wakefulness. Sleep disturbances are one of the most common problems affecting individuals with psychiatric disorders. We show that AMPK is required for maintenance of proper sleep architecture and for sleep recovery following sleep deprivation. Neuronal AMPKβ loss specifically leads to sleep fragmentation and causes dysregulation of genes believed to play a role in sleep homeostasis. Our data also suggest that AMPKβ loss may contribute to the increased risk of developing mental disorders and sleep disturbances associated with the human 1q21.1 deletion. The human 1q21.1 chromosomal deletion is associated with increased risk of schizophrenia. Because this deletion affects only a small number of genes, it provides a unique opportunity to identify the specific disease-causing gene(s) using animal models. Here, we report the use of a Drosophila model to identify the potential contribution of one gene affected by the 1q21.1 deletion–PRKAB2 –to the pathology of the 1q21.1 deletion syndrome. PRKAB2 encodes a subunit of the AMP-activated protein kinase (AMPK) complex, the main cellular energy sensor. We show that AMPK deficiency reduces lifespan and causes structural abnormalities in neuronal dendritic structures, a phenotype which has been linked to schizophrenia. Furthermore, cognitive impairment and altered sleep patterning are some of the most common symptoms of schizophrenia. Therefore, to understand the potential contribution of PRKAB2 to the 1q21.1 syndrome, we tested whether AMPK alterations might cause defects in learning and sleep. Our studies show that lack of PRKAB2 and AMPK-complex activity in the nervous system leads to reduced learning and to dramatic sleep disturbances. Thus, our data links a single 1q21.1-related gene with phenotypes that resemble common symptoms of neuropsychiatric disorders, suggesting that this gene, PRKAB2, may contribute to the risk of developing schizophrenia.
Collapse
Affiliation(s)
- Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gianna W Maurer
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Julie L Hentze
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark.,Department of Pathology, Herlev Hospital, Herlev, Denmark
| | - Morten Rose
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas M Werge
- Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Zhang S, Glukhova SA, Caldwell KA, Caldwell GA. NCEH-1 modulates cholesterol metabolism and protects against α-synuclein toxicity in a C. elegans model of Parkinson's disease. Hum Mol Genet 2018; 26:3823-3836. [PMID: 28934392 DOI: 10.1093/hmg/ddx269] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disease affecting millions worldwide. Misfolding, oligomerization and accumulation of the human α-synuclein protein is a key pathological hallmark of PD and is associated with the progressive loss of dopaminergic neurons over the course of aging. Lifespan extension via the suppression of IGF-1/insulin-like signaling (IIS) offers a possibility to retard disease onset through induction of metabolic changes that provide neuroprotection. The nceh-1 gene of Caenorhabditis elegans encodes an ortholog of neutral cholesterol ester hydrolase 1 (NCEH-1), an IIS downstream protein that was identified in a screen as a modulator of α-synuclein accumulation in vivo. The mechanism whereby cholesterol metabolism functionally impacts neurodegeneration induced by α-synuclein is undefined. Here we report that NCEH-1 protects dopaminergic neurons from α-synuclein-dependent neurotoxicity in C. elegans via a mechanism that is independent of lifespan extension. We discovered that the presence of cholesterol, LDLR-mediated cholesterol endocytosis, and cholesterol efflux are all essential to NCEH-1-mediated neuroprotection. In protecting from α-synuclein neurotoxicity, NCEH-1 also stimulates cholesterol-derived neurosteroid formation and lowers cellular reactive oxygen species in mitochondria. Collectively, this study augments our understanding of how cholesterol metabolism can modulate a neuroprotective mechanism that attenuates α-synuclein neurotoxicity, thereby pointing toward regulation of neuronal cholesterol turnover as a potential therapeutic avenue for PD.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Samantha A Glukhova
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama School of Medicine at Birmingham, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama School of Medicine at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Abstract
The evolutionary conserved energy sensor AMPK plays crucial roles in many biological processes-both during normal development and pathology. Loss-of-function genetic studies in mice as well as in lower organisms underscore its importance in embryonic development, stress physiology in the adult, and in key metabolic disorders including cardiovascular disease, diabetes, cancer, and metabolic syndrome. In contrast to several other kinases important in human health and medicine where specific/selective inhibitors are available, no AMPK-specific inhibitors are available. The only reagent called dorsomorphin or compound C that is occasionally used as an AMPK inhibitor unfortunately inhibits several other kinases much more potently than AMPK and is therefore highly non-specific. In this chapter, we discuss the pros and cons of using this reagent to study AMPK functions.
Collapse
Affiliation(s)
- Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - William Seibel
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
10
|
Abstract
Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are neurodegenerative disorders that are characterized by a progressive degeneration of nerve cells eventually leading to dementia. While these diseases affect different neuronal populations and present distinct clinical features, they share in common several features and signaling pathways. In particular, energy metabolism defects, oxidative stress, and excitotoxicity are commonly described and might be correlated with AMP-activated protein kinase (AMPK) deregulation. AMPK is a master energy sensor which was reported to be overactivated in the brain of patients affected by these neurodegenerative disorders. While the exact role played by AMPK in these diseases remains to be clearly established, several studies reported the implication of AMPK in various signaling pathways that are involved in these diseases' progression. In this chapter, we review the current literature regarding the involvement of AMPK in the development of these diseases and discuss the common pathways involved.
Collapse
|
11
|
Nagarkar-Jaiswal S, Manivannan SN, Zuo Z, Bellen HJ. A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells. eLife 2017; 6. [PMID: 28561736 PMCID: PMC5493436 DOI: 10.7554/elife.26420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
Here, we describe a novel method based on intronic MiMIC insertions described in Nagarkar-Jaiswal et al. (2015) to perform conditional gene inactivation in Drosophila. Mosaic analysis in Drosophila cannot be easily performed in post-mitotic cells. We therefore, therefore, developed Flip-Flop, a flippase-dependent in vivo cassette-inversion method that marks wild-type cells with the endogenous EGFP-tagged protein, whereas mutant cells are marked with mCherry upon inversion. We document the ease and usefulness of this strategy in differential tagging of wild-type and mutant cells in mosaics. We use this approach to phenotypically characterize the loss of SNF4Aγ, encoding the γ subunit of the AMP Kinase complex. The Flip-Flop method is efficient and reliable, and permits conditional gene inactivation based on both spatial and temporal cues, in a cell cycle-, and developmental stage-independent fashion, creating a platform for systematic screens of gene function in developing and adult flies with unprecedented detail. DOI:http://dx.doi.org/10.7554/eLife.26420.001 The instructions needed to build and maintain cells in an organism are encoded in their DNA. There are many different cell types, and each type only needs a small portion of the information found in the DNA to do its job. Hence, only some of the instructions, in the form of genes, need to be active or ‘expressed’ in any given cell type. To understand how a gene works, it is necessary to know in which cell the gene is expressed and where in the cell the gene product – normally a protein – is located. Researchers may study a gene by deleting it, which prevents the protein from being made, or by attaching a new instruction into the gene, which generates a fluorescent tag on the protein to determine where and when it is expressed. Until now, it was not possible to selectively inactivate a gene and simultaneously mark both normal cells containing the protein and mutant cells lacking the protein. Based on an existing tagging approach, Nagarkar-Jaiswal et al. have now developed a method in which normal and mutant cells of fruit flies are marked differently. A gene of interest is tagged with a fluorescent marker called green fluorescent protein (or GFP). The same gene is then inactivated in some of the cells, which are tagged with a red marker called mCherry. Nagarkar-Jaiswal et al. compared normal and mutant cells, and were able to determine how long it takes before the mutant cells become abnormal. With this new method, the role of numerous genes in any tissue of adult flies can be reassessed. This will allow to investigate what happens when a protein is removed in specific cells in adult flies. A future goal will be to apply this method to other animals that are more closely related to humans, such as mice, to gain a clearer picture of the role of genes in different cell types and how faulty genes may cause disease. DOI:http://dx.doi.org/10.7554/eLife.26420.002
Collapse
Affiliation(s)
| | - Sathiya N Manivannan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| |
Collapse
|
12
|
Marín-Aguilar F, Pavillard LE, Giampieri F, Bullón P, Cordero MD. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds. Int J Mol Sci 2017; 18:E288. [PMID: 28146060 PMCID: PMC5343824 DOI: 10.3390/ijms18020288] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.
Collapse
Affiliation(s)
- Fabiola Marín-Aguilar
- Research Laboratory, Oral Medicine Department, University of Sevilla, Sevilla 41009, Spain.
| | - Luis E Pavillard
- Research Laboratory, Oral Medicine Department, University of Sevilla, Sevilla 41009, Spain.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica, Università Politecnica delle Marche, Ancona 60100, Italy.
| | - Pedro Bullón
- Research Laboratory, Oral Medicine Department, University of Sevilla, Sevilla 41009, Spain.
| | - Mario D Cordero
- Research Laboratory, Oral Medicine Department, University of Sevilla, Sevilla 41009, Spain.
| |
Collapse
|
13
|
Ramaker JM, Cargill RS, Swanson TL, Quirindongo H, Cassar M, Kretzschmar D, Copenhaver PF. Amyloid Precursor Proteins Are Dynamically Trafficked and Processed during Neuronal Development. Front Mol Neurosci 2016; 9:130. [PMID: 27932950 PMCID: PMC5122739 DOI: 10.3389/fnmol.2016.00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023] Open
Abstract
Proteolytic processing of the Amyloid Precursor Protein (APP) produces beta-amyloid (Aβ) peptide fragments that accumulate in Alzheimer's Disease (AD), but APP may also regulate multiple aspects of neuronal development, albeit via mechanisms that are not well understood. APP is a member of a family of transmembrane glycoproteins expressed by all higher organisms, including two mammalian orthologs (APLP1 and APLP2) that have complicated investigations into the specific activities of APP. By comparison, insects express only a single APP-related protein (APP-Like, or APPL) that contains the same protein interaction domains identified in APP. However, unlike its mammalian orthologs, APPL is only expressed by neurons, greatly simplifying an analysis of its functions in vivo. Like APP, APPL is processed by secretases to generate a similar array of extracellular and intracellular cleavage fragments, as well as an Aβ-like fragment that can induce neurotoxic responses in the brain. Exploiting the complementary advantages of two insect models (Drosophila melanogaster and Manduca sexta), we have investigated the regulation of APPL trafficking and processing with respect to different aspects of neuronal development. By comparing the behavior of endogenously expressed APPL with fluorescently tagged versions of APPL and APP, we have shown that some full-length protein is consistently trafficked into the most motile regions of developing neurons both in vitro and in vivo. Concurrently, much of the holoprotein is rapidly processed into N- and C-terminal fragments that undergo bi-directional transport within distinct vesicle populations. Unexpectedly, we also discovered that APPL can be transiently sequestered into an amphisome-like compartment in developing neurons, while manipulations targeting APPL cleavage altered their motile behavior in cultured embryos. These data suggest that multiple mechanisms restrict the bioavailability of the holoprotein to regulate APPL-dependent responses within the nervous system. Lastly, targeted expression of our double-tagged constructs (combined with time-lapse imaging) revealed that APP family proteins are subject to complex patterns of trafficking and processing that vary dramatically between different neuronal subtypes. In combination, our results provide a new perspective on how the regulation of APP family proteins can be modulated to accommodate a variety of cell type-specific responses within the embryonic and adult nervous system.
Collapse
Affiliation(s)
- Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science UniversityPortland, OR, USA; Neuroscience Graduate Program, Oregon Health and Science UniversityPortland, OR, USA
| | - Robert S Cargill
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Tracy L Swanson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| | - Hanil Quirindongo
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Marlène Cassar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
14
|
Cassar M, Kretzschmar D. Analysis of Amyloid Precursor Protein Function in Drosophila melanogaster. Front Mol Neurosci 2016; 9:61. [PMID: 27507933 PMCID: PMC4960247 DOI: 10.3389/fnmol.2016.00061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/13/2016] [Indexed: 01/10/2023] Open
Abstract
The Amyloid precursor protein (APP) has mainly been investigated in connection with its role in Alzheimer’s Disease (AD) due to its cleavage resulting in the production of the Aβ peptides that accumulate in the plaques characteristic for this disease. However, APP is an evolutionary conserved protein that is not only found in humans but also in many other species, including Drosophila, suggesting an important physiological function. Besides Aβ, several other fragments are produced by the cleavage of APP; large secreted fragments derived from the N-terminus and a small intracellular C-terminal fragment. Although these fragments have received much less attention than Aβ, a picture about their function is finally emerging. In contrast to mammals, which express three APP family members, Drosophila expresses only one APP protein called APP-like or APPL. Therefore APPL functions can be studied in flies without the complication that other APP family members may have redundant functions. Flies lacking APPL are viable but show defects in neuronal outgrowth in the central and peripheral nervous system (PNS) in addition to synaptic changes. Furthermore, APPL has been connected with axonal transport functions. In the adult nervous system, APPL, and more specifically its secreted fragments, can protect neurons from degeneration. APPL cleavage also prevents glial death. Lastly, APPL was found to be involved in behavioral deficits and in regulating sleep/activity patterns. This review, will describe the role of APPL in neuronal development and maintenance and briefly touch on its emerging function in circadian rhythms while an accompanying review will focus on its role in learning and memory formation.
Collapse
Affiliation(s)
- Marlène Cassar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
15
|
Sivachenko A, Gordon HB, Kimball SS, Gavin EJ, Bonkowsky JL, Letsou A. Neurodegeneration in a Drosophila model of adrenoleukodystrophy: the roles of the Bubblegum and Double bubble acyl-CoA synthetases. Dis Model Mech 2016; 9:377-87. [PMID: 26893370 PMCID: PMC4852500 DOI: 10.1242/dmm.022244] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
Debilitating neurodegenerative conditions with metabolic origins affect millions of individuals worldwide. Still, for most of these neurometabolic disorders there are neither cures nor disease-modifying therapies, and novel animal models are needed for elucidation of disease pathology and identification of potential therapeutic agents. To date, metabolic neurodegenerative disease has been modeled in animals with only limited success, in part because existing models constitute analyses of single mutants and have thus overlooked potential redundancy within metabolic gene pathways associated with disease. Here, we present the first analysis of a very-long-chain acyl-CoA synthetase (ACS) double mutant. We show that the Drosophila bubblegum(bgm) and double bubble(dbb) genes have overlapping functions, and that the consequences of double knockout of both bubblegum and double bubble in the fly brain are profound, affecting behavior and brain morphology, and providing the best paradigm to date for an animal model of adrenoleukodystrophy (ALD), a fatal childhood neurodegenerative disease associated with the accumulation of very-long-chain fatty acids. Using this more fully penetrant model of disease to interrogate brain morphology at the level of electron microscopy, we show that dysregulation of fatty acid metabolism via disruption of ACS function in vivois causal of neurodegenerative pathologies that are evident in both neuronal cells and their supporting cell populations, and leads ultimately to lytic cell death in affected areas of the brain. Finally, in an extension of our model system to the study of human disease, we describe our identification of an individual with leukodystrophy who harbors a rare mutation in SLC27a6(encoding a very-long-chain ACS), a human homolog of bgm and dbb.
Collapse
Affiliation(s)
- Anna Sivachenko
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hannah B Gordon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Suzanne S Kimball
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin J Gavin
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
16
|
Clozapine Improves Memory Impairment and Reduces Aβ Level in the Tg-APPswe/PS1dE9 Mouse Model of Alzheimer’s Disease. Mol Neurobiol 2016; 54:450-460. [DOI: 10.1007/s12035-015-9636-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/15/2015] [Indexed: 01/05/2023]
|
17
|
Abstract
In the fruit fly, Drosophila melanogaster, mono-allelic expression of AMPK-α, -β, and -γ yields a single heterotrimeric energy sensor that regulates cellular and whole-body energetic homeostasis. The genetic simplicity of Drosophila, with only a single gene for each subunit, makes the fruit fly an appealing organism for elucidating the effects of AMPK mutations on signaling pathways and phenotypes. In addition, Drosophila presents researchers with an opportunity to use straightforward genetic approaches to elucidate metabolic signaling pathways that contain a level of complexity similar to that observed in mammalian pathways. Just as in mammals, however, the regulatory realm of AMPK function extends beyond metabolic rates and lipid metabolism. Indeed, experiments using Drosophila have shown that AMPK may exert protective effects with regard to life span and neurodegeneration. This chapter addresses a few of the research areas in which Drosophila has been used to elucidate the physiological functions of AMPK. In doing so, this chapter provides a primer for basic Drosophila nomenclature, thereby eliminating a communication barrier that persists for AMPK researchers trained in mammalian genetics.
Collapse
Affiliation(s)
- Sarah E Sinnett
- Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, NC, USA.
| | - Jay E Brenman
- Department of Cell Biology and Physiology, Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Abstract
AMPK is an evolutionary conserved energy sensor involved in the regulation of energy metabolism. Based on biochemical studies, AMPK has brought much of interest in recent years due to its potential impact on metabolic disorders. Suitable animal models are therefore essential to promote our understanding of the molecular and functional roles of AMPK but also to bring novel information for the development of novel therapeutic strategies. The organism systems include pig (Sus scrofa), mouse (Mus musculus), fly (Drosophila melanogaster), worm (Caenorhabditis elegans), and fish (Danio rerio) models. These animal models have provided reliable experimental evidence demonstrating the crucial role of AMPK in the regulation of metabolism but also of cell polarity, autophagy, and oxidative stress. In this chapter, we update the new development in the generation and application of animal models for the study of AMPK biology. We also discuss recent breakthroughs from studies in mice, flies, and worms showing how AMPK has a primary role in initiating or promoting pathological or beneficial impact on health.
Collapse
Affiliation(s)
- Benoit Viollet
- INSERM U1016, Institut Cochin, Paris, France. .,CNRS UMR 8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Marc Foretz
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
19
|
Weisová P, Pfeiffer S, Prehn JHM. AMP‐Activated Protein Kinase (AMPK) as a Cellular Energy Sensor and Therapeutic Target for Neuroprotection. THE FUNCTIONS, DISEASE‐RELATED DYSFUNCTIONS, AND THERAPEUTIC TARGETING OF NEURONAL MITOCHONDRIA 2015:130-145. [DOI: 10.1002/9781119017127.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Hindupur SK, González A, Hall MN. The opposing actions of target of rapamycin and AMP-activated protein kinase in cell growth control. Cold Spring Harb Perspect Biol 2015; 7:a019141. [PMID: 26238356 DOI: 10.1101/cshperspect.a019141] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell growth is a highly regulated, plastic process. Its control involves balancing positive regulation of anabolic processes with negative regulation of catabolic processes. Although target of rapamycin (TOR) is a major promoter of growth in response to nutrients and growth factors, AMP-activated protein kinase (AMPK) suppresses anabolic processes in response to energy stress. Both TOR and AMPK are conserved throughout eukaryotic evolution. Here, we review the fundamentally important roles of these two kinases in the regulation of cell growth with particular emphasis on their mutually antagonistic signaling.
Collapse
Affiliation(s)
| | - Asier González
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| |
Collapse
|
21
|
Abstract
The exact mechanisms underlying the lysosomal storage disorder (LSD) mucolipidosis type IV (MLIV) are unclear. In the present study, we provide evidence that mTOR regulates the opening and closing of the lysosomal channel responsible for MLIV through phosphorylation. Autophagy is a complex pathway regulated by numerous signalling events that recycles macromolecules and may be perturbed in lysosomal storage disorders (LSDs). During autophagy, aberrant regulation of the lysosomal Ca2+ efflux channel TRPML1 [transient receptor potential mucolipin 1 (MCOLN1)], also known as MCOLN1, is solely responsible for the human LSD mucolipidosis type IV (MLIV); however, the exact mechanisms involved in the development of the pathology of this LSD are unknown. In the present study, we provide evidence that the target of rapamycin (TOR), a nutrient-sensitive protein kinase that negatively regulates autophagy, directly targets and inactivates the TRPML1 channel and thereby functional autophagy, through phosphorylation. Further, mutating these phosphorylation sites to unphosphorylatable residues proved to block TOR regulation of the TRPML1 channel. These findings suggest a mechanism for how TOR activity may regulate the TRPML1 channel.
Collapse
|
22
|
Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster. PLoS One 2015; 10:e0131250. [PMID: 26148013 PMCID: PMC4493057 DOI: 10.1371/journal.pone.0131250] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022] Open
Abstract
Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain’s LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain.
Collapse
|
23
|
Hang L, Thundyil J, Lim KL. Mitochondrial dysfunction and Parkinson disease: a Parkin-AMPK alliance in neuroprotection. Ann N Y Acad Sci 2015; 1350:37-47. [DOI: 10.1111/nyas.12820] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Liting Hang
- Neurodegeneration Research Laboratory; National Neuroscience Institute; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; Singapore
| | - John Thundyil
- Neurodegeneration Research Laboratory; National Neuroscience Institute; Singapore
| | - Kah-Leong Lim
- Neurodegeneration Research Laboratory; National Neuroscience Institute; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; Singapore
- Neuroscience and Behavioral Disorders Program; Duke-NUS Graduate Medical School; Singapore
- Department of Physiology; National University of Singapore; Singapore
| |
Collapse
|
24
|
Modeling the complex pathology of Alzheimer's disease in Drosophila. Exp Neurol 2015; 274:58-71. [PMID: 26024860 DOI: 10.1016/j.expneurol.2015.05.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and the most common neurodegenerative disorder. AD is mostly a sporadic disorder and its main risk factor is age, but mutations in three genes that promote the accumulation of the amyloid-β (Aβ42) peptide revealed the critical role of amyloid precursor protein (APP) processing in AD. Neurofibrillary tangles enriched in tau are the other pathological hallmark of AD, but the lack of causative tau mutations still puzzles researchers. Here, we describe the contribution of a powerful invertebrate model, the fruit fly Drosophila melanogaster, to uncover the function and pathogenesis of human APP, Aβ42, and tau. APP and tau participate in many complex cellular processes, although their main function is microtubule stabilization and the to-and-fro transport of axonal vesicles. Additionally, expression of secreted Aβ42 induces prominent neuronal death in Drosophila, a critical feature of AD, making this model a popular choice for identifying intrinsic and extrinsic factors mediating Aβ42 neurotoxicity. Overall, Drosophila has made significant contributions to better understand the complex pathology of AD, although additional insight can be expected from combining multiple transgenes, performing genome-wide loss-of-function screens, and testing anti-tau therapies alone or in combination with Aβ42.
Collapse
|
25
|
Arsalandeh F, Ahmadian S, Foolad F, Khodagholi F, Farimani MM, Shaerzadeh F. Beneficial Effect of Flavone Derivatives on Aβ-Induced Memory Deficit Is Mediated by Peroxisome Proliferator-Activated Receptor γ Coactivator 1α: A Comparative Study. Int J Toxicol 2015; 34:274-83. [PMID: 25972379 DOI: 10.1177/1091581815584165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
In the present study, the neuroprotective effect of 5-hydroxy-6,7,4'-trimethoxyflavone (flavone 1), a natural flavone, was investigated in comparison with another flavone, 5,7,4'-trihydroxyflavone (flavone 2) on the hippocampus of amyloid beta (Aβ)-injected rats. Rats were treated with the 2 flavones (1 mg/kg/d) for 1 week before Aβ injection. Seven days after Aβ administration, memory function of rats was assessed in a passive avoidance test (PAT). Changes in the levels of mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α), phospho-adenosine monophosphate (AMP)-activated protein kinase (pAMPK), AMPK, phospho-cAMP-responsive element-binding protein (CREB), CREB, and nuclear respiratory factor 1 (NRF-1) proteins were determined by Western blot analysis. Our results showed an improvement in memory in rats pretreated with flavonoids. At the molecular level, phosphorylation of CREB, known as the master modulator of memory processes, increased. On the other hand, the level of mitochondrial biogenesis factors, PGC-1α and its downstream molecules NRF-1 and TFAM significantly increased by dietary administration of 2 flavones. In addition, flavone 1 and flavone 2 prevented mitochondrial swelling and mitochondrial membrane potential reduction. Our results provided evidence that flavone 1 is more effective than flavone 2 presumably due to its O-methylated groups. In conclusion, it seems that in addition to classical antioxidant effect, flavones exert part of their protective effects through mitochondrial biogenesis.
Collapse
Affiliation(s)
- Farshad Arsalandeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Forough Foolad
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi M Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| | - Fatemeh Shaerzadeh
- Department of Physiology, Faculty of Medicine, Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Kim J, Shin J, Ha J. Screening methods for AMP-activated protein kinase modulators: a patent review. Expert Opin Ther Pat 2014; 25:261-77. [PMID: 25535089 DOI: 10.1517/13543776.2014.995626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION AMP-activated protein kinase (AMPK) functions as a cellular energy gauge that maintains cellular homeostasis and has been suggested to play important roles in tumorigenesis, lifespan and autophagy. Accordingly, AMPK is a potential target of drugs for controlling a growing number of human diseases ranging from metabolic disorders to cancer, highlighting the need for rational and robust screening systems for identifying compounds that modulate AMPK. AREAS COVERED The relevant screening methods in the patent and scientific literature were analyzed, and key features of direct AMPK modulators are discussed in the context of their physiological relevance and the three-dimensional structure of the AMPK complex. EXPERT OPINION The mechanism of action of modulators is important in designing drugs with enhanced efficacy, specificity and stability. Most patented assay formats for identifying AMPK modulators are based on classical enzyme assays that monitor AMPK activity or changes in AMPK-dependent cellular physiology. However, these systems do not provide information about underlying mechanisms. Two patented assay systems use a specific domain or the three-dimensional structure of AMPK to identify AMPK modulators. The recent identification of two AMPK modulators, A-769662 and C-2 (or its prodrug, C-13), suggests the promise of structure-based assays in discovering more potent and specific modulators of AMPK.
Collapse
Affiliation(s)
- Joungmok Kim
- Kyung Hee University, School of Dentistry, Oral Biochemistry and Molecular Biology , Seoul , Republic of Korea
| | | | | |
Collapse
|
27
|
Long DM, Blake MR, Dutta S, Holbrook SD, Kotwica-Rolinska J, Kretzschmar D, Giebultowicz JM. Relationships between the circadian system and Alzheimer's disease-like symptoms in Drosophila. PLoS One 2014; 9:e106068. [PMID: 25171136 PMCID: PMC4149435 DOI: 10.1371/journal.pone.0106068] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks coordinate physiological, neurological, and behavioral functions into circa 24 hour rhythms, and the molecular mechanisms underlying circadian clock oscillations are conserved from Drosophila to humans. Clock oscillations and clock-controlled rhythms are known to dampen during aging; additionally, genetic or environmental clock disruption leads to accelerated aging and increased susceptibility to age-related pathologies. Neurodegenerative diseases, such as Alzheimer's disease (AD), are associated with a decay of circadian rhythms, but it is not clear whether circadian disruption accelerates neuronal and motor decline associated with these diseases. To address this question, we utilized transgenic Drosophila expressing various Amyloid-β (Aβ) peptides, which are prone to form aggregates characteristic of AD pathology in humans. We compared development of AD-like symptoms in adult flies expressing Aβ peptides in the wild type background and in flies with clocks disrupted via a null mutation in the clock gene period (per01). No significant differences were observed in longevity, climbing ability and brain neurodegeneration levels between control and clock-deficient flies, suggesting that loss of clock function does not exacerbate pathogenicity caused by human-derived Aβ peptides in flies. However, AD-like pathologies affected the circadian system in aging flies. We report that rest/activity rhythms were impaired in an age-dependent manner. Flies expressing the highly pathogenic arctic Aβ peptide showed a dramatic degradation of these rhythms in tune with their reduced longevity and impaired climbing ability. At the same time, the central pacemaker remained intact in these flies providing evidence that expression of Aβ peptides causes rhythm degradation downstream from the central clock mechanism.
Collapse
Affiliation(s)
- Dani M. Long
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Matthew R. Blake
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Sudeshna Dutta
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Scott D. Holbrook
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Joanna Kotwica-Rolinska
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jadwiga M. Giebultowicz
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kruer MC, Jepperson T, Dutta S, Steiner RD, Cottenie E, Sanford L, Merkens M, Russman BS, Blasco PA, Fan G, Pollock J, Green S, Woltjer RL, Mooney C, Kretzschmar D, Paisán-Ruiz C, Houlden H. Mutations in γ adducin are associated with inherited cerebral palsy. Ann Neurol 2014; 74:805-14. [PMID: 23836506 PMCID: PMC3952628 DOI: 10.1002/ana.23971] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/27/2013] [Accepted: 06/07/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Cerebral palsy is estimated to affect nearly 1 in 500 children, and although prenatal and perinatal contributors have been well characterized, at least 20% of cases are believed to be inherited. Previous studies have identified mutations in the actin-capping protein KANK1 and the adaptor protein-4 complex in forms of inherited cerebral palsy, suggesting a role for components of the dynamic cytoskeleton in the genesis of the disease. METHODS We studied a multiplex consanguineous Jordanian family by homozygosity mapping and exome sequencing, then used patient-derived fibroblasts to examine functional consequences of the mutation we identified in vitro. We subsequently studied the effects of adducin loss of function in Drosophila. RESULTS We identified a homozygous c.1100G>A (p.G367D) mutation in ADD3, encoding gamma adducin in all affected members of the index family. Follow-up experiments in patient fibroblasts found that the p.G367D mutation, which occurs within the putative oligomerization critical region, impairs the ability of gamma adducin to associate with the alpha subunit. This mutation impairs the normal actin-capping function of adducin, leading to both abnormal proliferation and migration in cultured patient fibroblasts. Loss of function studies of the Drosophila adducin ortholog hts confirmed a critical role for adducin in locomotion. INTERPRETATION Although likely a rare cause of cerebral palsy, our findings indicate a critical role for adducins in regulating the activity of the actin cytoskeleton, suggesting that impaired adducin function may lead to neuromotor impairment and further implicating abnormalities of the dynamic cytoskeleton as a pathogenic mechanism contributing to cerebral palsy.
Collapse
|
29
|
Cook M, Bolkan BJ, Kretzschmar D. Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKγ mutant Loechrig. PLoS One 2014; 9:e89847. [PMID: 24587072 PMCID: PMC3934941 DOI: 10.1371/journal.pone.0089847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
loechrig (loe) mutant flies are characterized by progressive neuronal degeneration, behavioral deficits, and early death. The mutation is due to a P-element insertion in the gene for the γ-subunit of the trimeric AMP-activated protein kinase (AMPK) complex, whereby the insertion affects only one of several alternative transcripts encoding a unique neuronal isoform. AMPK is a cellular energy sensor that regulates a plethora of signaling pathways, including cholesterol and isoprenoid synthesis via its downstream target hydroxy-methylglutaryl (HMG)-CoA reductase. We recently showed that loe interferes with isoprenoid synthesis and increases the prenylation and thereby activation of RhoA. During development, RhoA plays an important role in neuronal outgrowth by activating a signaling cascade that regulates actin dynamics. Here we show that the effect of loe/AMPKγ on RhoA prenylation leads to a hyperactivation of this signaling pathway, causing increased phosphorylation of the actin depolymerizating factor cofilin and accumulation of filamentous actin. Furthermore, our results show that the resulting cytoskeletal changes in loe interfere with neuronal growth and disrupt axonal integrity. Surprisingly, these phenotypes were enhanced by expressing the Slingshot (SSH) phosphatase, which during development promotes actin depolymerization by dephosphorylating cofilin. However, our studies suggest that in the adult SSH promotes actin polymerization, supporting in vitro studies using human SSH1 that suggested that SSH can also stabilize and bundle filamentous actin. Together with the observed increase in SSH levels in the loe mutant, our experiments suggest that in mature neurons SSH may function as a stabilization factor for filamentous actin instead of promoting actin depolymerization.
Collapse
Affiliation(s)
- Mandy Cook
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Bonnie J. Bolkan
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
30
|
Organophosphate-induced changes in the PKA regulatory function of Swiss Cheese/NTE lead to behavioral deficits and neurodegeneration. PLoS One 2014; 9:e87526. [PMID: 24558370 PMCID: PMC3928115 DOI: 10.1371/journal.pone.0087526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 12/31/2013] [Indexed: 12/02/2022] Open
Abstract
Organophosphate-induced delayed neuropathy (OPIDN) is a Wallerian-type axonopathy that occurs weeks after exposure to certain organophosphates (OPs). OPs have been shown to bind to Neuropathy Target Esterase (NTE), thereby inhibiting its enzymatic activity. However, only OPs that also induce the so-called aging reaction cause OPIDN. This reaction results in the release and possible transfer of a side group from the bound OP to NTE and it has been suggested that this induces an unknown toxic function of NTE. To further investigate the mechanisms of aging OPs, we used Drosophila, which expresses a functionally conserved orthologue of NTE named Swiss Cheese (SWS). Treating flies with the organophosporous compound tri-ortho-cresyl phosphate (TOCP) resulted in behavioral deficits and neurodegeneration two weeks after exposure, symptoms similar to the delayed effects observed in other models. In addition, we found that primary neurons showed signs of axonal degeneration within an hour after treatment. Surprisingly, increasing the levels of SWS, and thereby its enzymatic activity after exposure, did not ameliorate these phenotypes. In contrast, reducing SWS levels protected from TOCP-induced degeneration and behavioral deficits but did not affect the axonopathy observed in cell culture. Besides its enzymatic activity as a phospholipase, SWS also acts as regulatory PKA subunit, binding and inhibiting the C3 catalytic subunit. Measuring PKA activity in TOCP treated flies revealed a significant decrease that was also confirmed in treated rat hippocampal neurons. Flies expressing additional PKA-C3 were protected from the behavioral and degenerative phenotypes caused by TOCP exposure whereas primary neurons were not. In addition, knocking-down PKA-C3 caused similar behavioral and degenerative phenotypes as TOCP treatment. We therefore propose a model in which OP-modified SWS cannot release PKA-C3 and that the resulting loss of PKA-C3 activity plays a crucial role in developing the delayed symptoms of OPIDN but not in the acute toxicity.
Collapse
|
31
|
Chiang MC, Cheng YC, Chen HM, Liang YJ, Yen CH. Rosiglitazone promotes neurite outgrowth and mitochondrial function in N2A cells via PPARgamma pathway. Mitochondrion 2014; 14:7-17. [DOI: 10.1016/j.mito.2013.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 12/21/2022]
|
32
|
Swick LL, Kazgan N, Onyenwoke RU, Brenman JE. Isolation of AMP-activated protein kinase (AMPK) alleles required for neuronal maintenance in Drosophila melanogaster. Biol Open 2013; 2:1321-3. [PMID: 24337116 PMCID: PMC3863416 DOI: 10.1242/bio.20136775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The maintenance of energetic homeostasis in the face of limited available nutrients is a complex problem faced by all organisms. One important mechanism to maintain energetic homeostasis involves the activation of the energy sensor AMP-activated protein kinase (AMPK). AMPK is a cell-autonomous energy sensor that is highly sensitive to and regulated by the ATP to ADP and ATP to AMP ratios. However, the genetic analysis of AMPK signaling in vertebrates has been complicated by the existence of multiple redundant AMPK subunits. Here, we describe the identification of mutations in the single Drosophila melanogaster AMPK catalytic subunit (AMPKα) and their implications for neural maintenance and integrity. This article provides a citation replacement for previously published ampkα alleles, transgenes and neuronal phenotypes, which remain accurate; however, they were used in a previously published study that has subsequently been retracted (Mirouse et al., 2013).
Collapse
Affiliation(s)
- Lance L Swick
- Department of Cell Biology and Physiology, and Neuroscience Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
33
|
Shi JQ, Wang BR, Tian YY, Xu J, Gao L, Zhao SL, Jiang T, Xie HG, Zhang YD. Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice. CNS Neurosci Ther 2013; 19:871-81. [PMID: 23889921 DOI: 10.1111/cns.12144] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The close relationship between epileptic seizure and Alzheimer's disease (AD) has been demonstrated in the past decade. Valproic acid, a traditional first-line antiepileptic drug, exerted protective effects in transgenic models of AD. It remains uncertain whether new antiepileptic drugs could reverse neuropathology and behavioral deficits in AD transgenic mice. AIMS APPswe/PS1dE9 transgenic mice were used in this study, which over express the Swedish mutation of amyloid precursor protein together with presenilin 1 deleted in exon 9. 7-month-old APPswe/PS1dE9 transgenic mice were treated daily with 20 mg/kg topiramate (TPM) and 50 mg/kg levetiracetam (LEV) for 30 days by intraperitoneal injection to explore the effects of TPM and LEV on the neuropathology and behavioral deficits. RESULTS The results indicated that TPM and LEV alleviated behavioral deficits and reduced amyloid plaques in APPswe/PS1dE9 transgenic mice. TPM and LEV increased Aβ clearance and up-regulated Aβ transport and autophagic degradation. TPM and LEV inhibited Aβ generation and suppressed γ-secretase activity. TPM and LEV inhibited GSK-3β activation and increased the activation of AMPK/Akt activation. Further, TPM and LEV inhibited histone deacetylase activity in vivo. CONCLUSIONS Therefore, TPM and LEV might have the potential to treat AD effectively in patient care.
Collapse
Affiliation(s)
- Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Effects of diet and development on the Drosophila lipidome. Mol Syst Biol 2013; 8:600. [PMID: 22864382 PMCID: PMC3421444 DOI: 10.1038/msb.2012.29] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/25/2012] [Indexed: 12/12/2022] Open
Abstract
Cells produce tens of thousands of different lipid species, but the importance of this complexity in vivo is unclear. Analysis of individual tissues and cell types has revealed differences in abundance of individual lipid species, but there has been no comprehensive study comparing tissue lipidomes within a single developing organism. Here, we used quantitative shotgun profiling by high-resolution mass spectrometry to determine the absolute (molar) content of 250 species of 14 major lipid classes in 6 tissues of animals at 27 developmental stages raised on 4 different diets. Comparing these lipidomes revealed unexpected insights into lipid metabolism. Surprisingly, the fatty acids present in dietary lipids directly influence tissue phospholipid composition throughout the animal. Furthermore, Drosophila differentially regulates uptake, mobilization and tissue accumulation of specific sterols, and undergoes unsuspected shifts in fat metabolism during larval and pupal development. Finally, we observed striking differences between tissue lipidomes that are conserved between phyla. This study provides a comprehensive, quantitative and expandable resource for further pharmacological and genetic studies of metabolic disorders and molecular mechanisms underlying dietary response.
Collapse
|
35
|
Cook M, Mani P, Wentzell JS, Kretzschmar D. Increased RhoA prenylation in the loechrig (loe) mutant leads to progressive neurodegeneration. PLoS One 2012; 7:e44440. [PMID: 22970217 PMCID: PMC3435293 DOI: 10.1371/journal.pone.0044440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/03/2012] [Indexed: 01/08/2023] Open
Abstract
The Drosophila mutant loechrig (loe) shows age-dependent degeneration of the nervous system and is caused by the loss of a neuronal isoform of the AMP-activated protein kinase (AMPK) γ-subunit (also known as SNF4Aγ). The trimeric AMPK complex is activated by low energy levels and metabolic insults and regulates multiple important signal pathways that control cell metabolism. A well-known downstream target of AMPK is hydroxyl-methylglutaryl-CoA reductase (HMGR), a key enzyme in isoprenoid synthesis, and we have previously shown that HMGR genetically interacts with loe and affects the severity of the degenerative phenotype. Prenylation of proteins like small G-proteins is an important posttranslational modification providing lipid moieties that allow the association of these proteins with membranes, thereby facilitating their subsequent activation. Rho proteins have been extensively studied in neuronal outgrowth, however, much less is known about their function in neuronal maintenance. Here we show that the loe mutation interferes with isoprenoid synthesis, leading to increased prenylation of the small GTPase Rho1, the fly orthologue of vertebrate RhoA. We also demonstrate that increased prenylation and Rho1 activity causes neurodegeneration and aggravates the behavioral and degenerative phenotypes of loe. Because we cannot detect defects in the development of the central nervous system in loe, this suggests that loe only interferes with the function of the RhoA pathway in maintaining neuronal integrity during adulthood. In addition, our results show that alterations in isoprenoids can result in progressive neurodegeneration, supporting findings in vertebrates that prenylation may play a role in neurodegenerative diseases like Alzheimer’s Disease.
Collapse
Affiliation(s)
- Mandy Cook
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Priya Mani
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Jill S. Wentzell
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Doris Kretzschmar
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Sciences University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
36
|
Poels J, Spasić MR, Gistelinck M, Mutert J, Schellens A, Callaerts P, Norga KK. Autophagy and phagocytosis-like cell cannibalism exert opposing effects on cellular survival during metabolic stress. Cell Death Differ 2012; 19:1590-601. [PMID: 22498699 DOI: 10.1038/cdd.2012.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Understanding mechanisms controlling neuronal cell death and survival under conditions of altered energy supply (e.g., during stroke) is fundamentally important for the development of therapeutic strategies. The function of autophagy herein is unclear, as both its beneficial and detrimental roles have been described. We previously demonstrated that loss of AMP-activated protein kinase (AMPK), an evolutionarily conserved enzyme that maintains cellular energy balance, leads to activity-dependent degeneration in neuronal tissue. Here, we show that energy depletion in Drosophila AMPK mutants results in increased autophagy that convincingly promotes, rather than rescues, neurodegeneration. The generated excessive autophagic response is accompanied by increased TOR and S6K activity in the absence of an AMPK-mediated negative regulatory feedback loop. Moreover, energy-depleted neurons use a phagocytic-like process as a means to cellular survival at the expense of surrounding cells. Consequently, phagocytosis stimulation by expression of the scavenger receptor Croquemort significantly delays neurodegeneration. This study thus reveals a potentially novel strategy for cellular survival during conditions of extreme energy depletion, resembling xeno-cannibalistic events seen in metastatic tumors. We provide new insights into the roles of autophagy and phagocytosis in the neuronal metabolic stress response and open new avenues into understanding of human disease and development of therapeutic strategies.
Collapse
Affiliation(s)
- J Poels
- Laboratory of Behavioral and Developmental Genetics, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
Cai Z, Yan LJ, Li K, Quazi SH, Zhao B. Roles of AMP-activated protein kinase in Alzheimer's disease. Neuromolecular Med 2012; 14:1-14. [PMID: 22367557 DOI: 10.1007/s12017-012-8173-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 02/04/2012] [Indexed: 12/22/2022]
Abstract
AMP-activated protein kinase (AMPK), a master regulator of cellular energy homeostasis and a central player in glucose and lipid metabolism, is potentially implicated in the pathogenesis of Alzheimer's disease (AD). AMPK activity decreases in AD brain, indicating decreased mitochondrial biogenesis and function. Emerging evidence demonstrates that AMPK activation is a potential target for improving perturbed brain energy metabolism that is involved in the pathogenesis of AD. The roles of AMPK in the pathogenesis of AD include β-amyloid protein (Aβ) generation and tau phosphorylation. In particular, AMPK may regulate Aβ generation through modulating neuronal cholesterol and sphingomyelin levels and through regulating APP distribution in the lipid rafts. AMPK is activated by phosphorylation of Thr-172 by LKB1 complex in response to increase in the AMP/ATP ratio and by calmodulin-dependent protein kinase kinase-beta in response to elevated Ca(2+) levels, which contributes to regulating Aβ generation. AMPK is a physiological tau kinase and can increase the phosphorylation of tau at Ser-262. AMPK can also directly phosphorylate tau at Thr-231 and Ser-396/404. Furthermore, AMPK activation decreases mTOR signaling activity to facilitate autophagy and promotes lysosomal degradation of Aβ. However, AMPK activation has non-neuroprotective property and may lead to detrimental outcomes, including Aβ generation and tau phosphorylation. Therefore, it is still unclear whether AMPK could serve a potential therapeutic target for AD, and hence, further studies will be needed to clarify the role of AMPK in AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, The Affiliated Hospital of Guangdong Medical College, District of Xiashan, Zhanjiang 524001, Guangdong, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Novel protein kinase signaling systems regulating lifespan identified by small molecule library screening using Drosophila. PLoS One 2012; 7:e29782. [PMID: 22363408 PMCID: PMC3282711 DOI: 10.1371/journal.pone.0029782] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
Protein kinase signaling cascades control most aspects of cellular function. The ATP binding domains of signaling protein kinases are the targets of most available inhibitors. These domains are highly conserved from mammals to flies. Herein we describe screening of a library of small molecule inhibitors of protein kinases for their ability to increase Drosophila lifespan. We developed an assay system which allowed screening using the small amounts of materials normally present in commercial chemical libraries. The studies identified 17 inhibitors, the majority of which targeted tyrosine kinases associated with the epidermal growth factor receptor (EGFR), platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF) receptors, G-protein coupled receptor (GPCR), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), the insulin and insulin-like growth factor (IGFI) receptors. Comparison of the protein kinase signaling effects of the inhibitors in vitro defined a consensus intracellular signaling profile which included decreased signaling by p38MAPK (p38), c-Jun N-terminal kinase (JNK) and protein kinase C (PKC). If confirmed, many of these kinases will be novel additions to the signaling cascades known to regulate metazoan longevity.
Collapse
|
39
|
Wentzell JS, Bolkan BJ, Carmine-Simmen K, Swanson TL, Musashe DT, Kretzschmar D. Amyloid precursor proteins are protective in Drosophila models of progressive neurodegeneration. Neurobiol Dis 2012; 46:78-87. [PMID: 22266106 DOI: 10.1016/j.nbd.2011.12.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/06/2011] [Accepted: 12/31/2011] [Indexed: 12/11/2022] Open
Abstract
The processing of Amyloid Precursor Proteins (APPs) results in several fragments, including soluble N-terminal ectodomains (sAPPs) and C-terminal intracellular domains (AICD). sAPPs have been ascribed neurotrophic or neuroprotective functions in cell culture, although β-cleaved sAPPs can have deleterious effects and trigger neuronal cell death. Here we describe a neuroproprotective function of APP and fly APPL (Amyloid Precursor Protein-like) in vivo in several Drosophila mutants with progressive neurodegeneration. We show that expression of the N-terminal ectodomain is sufficient to suppress the progressive degeneration in these mutants and that the secretion of the ectodomain is required for this function. In addition, a protective effect is achieved by expressing kuzbanian (which has α-secretase activity) whereas expression of fly and human BACE aggravates the phenotypes, suggesting that the protective function is specifically mediated by the α-cleaved ectodomain. Furthermore, genetic and molecular studies suggest that the N-terminal fragments interact with full-length APPL activating a downstream signaling pathway via the AICD. Because we show protective effects in mutants that affect different genes (AMP-activated protein kinase, MAP1b, rasGAP), we propose that the protective effect is not due to a genetic interaction between APPL and these genes but a more general aspect of APP proteins. The result that APP proteins and specifically their soluble α-cleaved ectodomains can protect against progressive neurodegeneration in vivo provides support for the hypothesis that a disruption of the physiological function of APP could play a role in the pathogenesis of Alzheimer's Disease.
Collapse
Affiliation(s)
- Jill S Wentzell
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Sciences University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
40
|
Krishnan N, Rakshit K, Chow ES, Wentzell JS, Kretzschmar D, Giebultowicz JM. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants. Neurobiol Dis 2011; 45:1129-35. [PMID: 22227001 DOI: 10.1016/j.nbd.2011.12.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/30/2011] [Accepted: 12/18/2011] [Indexed: 10/14/2022] Open
Abstract
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila.
Collapse
Affiliation(s)
- Natraj Krishnan
- Department of Zoology, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, Rolland F, Winderickx J. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 2011; 278:3978-90. [PMID: 21883929 DOI: 10.1111/j.1742-4658.2011.08315.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
All life forms on earth require a continuous input and monitoring of carbon and energy supplies. The AMP-activated kinase (AMPK)/sucrose non-fermenting1 (SNF1)/Snf1-related kinase1 (SnRK1) protein kinases are evolutionarily conserved metabolic sensors found in all eukaryotic organisms from simple unicellular fungi (yeast SNF1) to animals (AMPK) and plants (SnRK1). Activated by starvation and energy-depleting stress conditions, they enable energy homeostasis and survival by up-regulating energy-conserving and energy-producing catabolic processes, and by limiting energy-consuming anabolic metabolism. In addition, they control normal growth and development as well as metabolic homeostasis at the organismal level. As such, the AMPK/SNF1/SnRK1 kinases act in concert with other central signaling components to control carbohydrate uptake and metabolism, fatty acid and lipid biosynthesis and the storage of carbon energy reserves. Moreover, they have a tremendous impact on developmental processes that are triggered by environmental changes such as nutrient depletion or stress. Although intensive research by many groups has partly unveiled the factors that regulate AMPK/SNF1/SnRK1 kinase activity as well as the pathways and substrates they control, several fundamental issues still await to be clarified. In this review, we will highlight these issues and focus on the structure, function and regulation of the AMPK/SNF1/SnRK1 kinases.
Collapse
Affiliation(s)
- Ruben Ghillebert
- Department of Biology, Laboratory for Functional Biology, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Analysis of amyloid precursor protein function in Drosophila melanogaster. Exp Brain Res 2011; 217:413-21. [PMID: 21912928 DOI: 10.1007/s00221-011-2860-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
Amyloid precursor proteins (APPs) are evolutionary conserved from nematodes to man (Jacobsen and Iverfeldt in Cell Mol Life Sci 66:2299-2318, 2009) suggesting an important physiological function of these proteins. Human APP is a key factor in the pathogenesis of Alzheimer's Disease because its proteolytic processing results in the production of the neurotoxic Aβ-peptide, which accumulates in the amyloid plaques characteristic for this disease (Selkoe in Physiol Rev 81(2):741-766, 2001). However, the processing also leads to the production of several other fragments and the role of these products, as well as the function of the full-length protein is so far not well understood. The functional analysis of APP in vertebrates has been hampered by the fact that two close relatives, APLP1 and APLP2, exist and that knock-out mice for APP only show subtle defects. In contrast, invertebrates like Caenorhabditis elegans and Drosophila express only one APP-like protein but whereas a null mutation in the C. elegans APL-1 protein is lethal, flies lacking APPL (Amyloid Precursor Protein-like) are viable but show synaptic defects and behavioral abnormalities. Together with the analyses of flies that express APP proteins ectoptically or xenotopically, these studies show that APP proteins are involved in neuronal differentiation, neuritic outgrowth, and synapse formation. In addition, they play a role in long-term memory formation and maintaining brain integrity in adult flies.
Collapse
|
43
|
AMP-activated kinase mediates adipose stem cell-stimulated neuritogenesis of PC12 cells. Neuroscience 2011; 181:40-7. [DOI: 10.1016/j.neuroscience.2011.02.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 12/21/2022]
|
44
|
Abstract
The last 10 years have seen a rebirth of interest in lipid biology in the fields of Drosophila development and neurobiology, and sphingolipids have emerged as controlling many processes that have not previously been studied from the viewpoint of lipid biochemistry. Mutations in sphingolipid regulatory enzymes have been pinpointed as affecting cell survival and growth in tissues ranging from muscle to retina. Specification of cell types are also influenced by sphingolipid regulatory pathways, as genetic interactions of glycosphingolipid biosynthetic enzymes with many well-known signaling receptors such as Notch and epidermal growth factor receptor reveal. Furthermore, studies in flies are now uncovering unexpected roles of sphingolipids in controlling lipid storage and response to nutrient availability. The sophisticated genetics of Drosophila is particularly well suited to uncover the roles of sphingolipid regulatory enzymes in development and metabolism, especially in light of conserved pathways that are present in both flies and mammals. The challenges that remain in the field of sphingolipid biology in Drosophila are to combine traditional developmental genetics with more analytical biochemical and biophysical methods, to quantify and localize the responses of these lipids to genetic and metabolic perturbations.
Collapse
Affiliation(s)
- Rachel Kraut
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
45
|
Spindler SR. Caloric restriction: from soup to nuts. Ageing Res Rev 2010; 9:324-53. [PMID: 19853062 DOI: 10.1016/j.arr.2009.10.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/07/2009] [Accepted: 10/09/2009] [Indexed: 12/25/2022]
Abstract
Caloric restriction (CR), reduced protein, methionine, or tryptophan diets; and reduced insulin and/or IGFI intracellular signaling can extend mean and/or maximum lifespan and delay deleterious age-related physiological changes in animals. Mice and flies can shift readily between the control and CR physiological states, even at older ages. Many health benefits are induced by even brief periods of CR in flies, rodents, monkeys, and humans. In humans and nonhuman primates, CR produces most of the physiologic, hematologic, hormonal, and biochemical changes it produces in other animals. In primates, CR provides protection from type 2 diabetes, cardiovascular and cerebral vascular diseases, immunological decline, malignancy, hepatotoxicity, liver fibrosis and failure, sarcopenia, inflammation, and DNA damage. It also enhances muscle mitochondrial biogenesis, affords neuroprotection; and extends mean and maximum lifespan. CR rapidly induces antineoplastic effects in mice. Most claims of lifespan extension in rodents by drugs or nutrients are confounded by CR effects. Transcription factors and co-activators involved in the regulation of mitochondrial biogenesis and energy metabolism, including SirT1, PGC-1alpha, AMPK and TOR may be involved in the lifespan effects of CR. Paradoxically, low body weight in middle aged and elderly humans is associated with increased mortality. Thus, enhancement of human longevity may require pharmaceutical interventions.
Collapse
|
46
|
Wang X, Meng D, Chang Q, Pan J, Zhang Z, Chen G, Ke Z, Luo J, Shi X. Arsenic inhibits neurite outgrowth by inhibiting the LKB1-AMPK signaling pathway. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:627-34. [PMID: 20439172 PMCID: PMC2866677 DOI: 10.1289/ehp.0901510] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/22/2009] [Indexed: 05/25/2023]
Abstract
BACKGROUND Arsenic (As) is an environmental pollutant that induces numerous pathological effects, including neurodevelopmental disorders. OBJECTIVES AND METHODS We evaluated the role of the LKB1-AMPK pathway in As-induced developmental neurotoxicity using Neuro-2a (N2a) neuroblastoma cells as a model of developing neurons. RESULTS The addition of low concentrations of As (<or= 5 microM) during differentiation caused an inhibitory effect on the neurite outgrowth in N2a cells in the absence of cell death. Activation of adenosine monophosphate-activated kinase (AMPK) induced by retinoic acid in differentiating cells was blocked by As. Pretreatment with the AMPK-specific activator 5-aminoimidazole-4-carboxamide riboside or overexpression of a constitutively active AMPK-alpha1 plasmid reversed As-induced inhibition of neurite outgrowth. The activation of LKB1 (serine/threonine kinase 11), a major AMPK kinase, was also suppressed by As by inhibiting both the phosphorylation and the translocation of LKB1 from nucleus to cytoplasm. Antioxidants, such as N-acetyl cysteine and superoxide dismutase, but not catalase, protected against As-induced inactivation of the LKB1-AMPK pathway and reversed the inhibitory effect of As on neurite outgrowth. CONCLUSIONS Reduced neurite outgrowth induced by As results from deficient activation of AMPK as a consequence of a lack of activation of LKB1. Oxidative stress induced by As, especially excessive superoxide, plays a critical role in blocking the LKB1-AMPK pathway. Our studies provide insight into the mechanisms underlying As-induced developmental neurotoxicity, which is important for designing a new strategy for protecting children against this neurotoxic substance.
Collapse
Affiliation(s)
- Xin Wang
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| | - Dan Meng
- Key Laboratory of Nutrition and Metabolism Institute, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Qingshan Chang
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| | - Jingju Pan
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| | - Gang Chen
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Zunji Ke
- Key Laboratory of Nutrition and Metabolism Institute, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jia Luo
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Xianglin Shi
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
47
|
Wentzell J, Kretzschmar D. Alzheimer's disease and tauopathy studies in flies and worms. Neurobiol Dis 2010; 40:21-8. [PMID: 20302939 DOI: 10.1016/j.nbd.2010.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 12/24/2022] Open
Abstract
Progressive dementias like Alzheimer's Disease (AD) and other tauopathies are an increasing threat to human health worldwide. Although significant progress has been made in understanding the pathogenesis of these diseases using cell culture and mouse models, the complexity of these diseases has still prevented a comprehensive understanding of their underlying causes. As with other neurological diseases, invertebrate models have provided novel genetic approaches for investigating the molecular pathways that are affected in tauopathies, including AD. This review focuses on transgenic models that have been established in Drosophila melanogaster and Caenorhabditis elegans to investigate these diseases, and the insights that have been gained from these studies. Also included are a brief description of the endogenous versions of human "disease genes" (like tau and the Amyloid Precursor Protein) that are expressed in invertebrates, and an overview of results that have been obtained from animals lacking or overexpressing these genes. These diverse models can be used to advance our knowledge about how these proteins acquire a pathogenic function and how disrupting their normal functions may contribute to neurological pathologies. They also provide powerful assays for identifying molecular and genetic interactions that are important in developing or preventing the deleterious effects.
Collapse
Affiliation(s)
- Jill Wentzell
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
48
|
Profenno LA, Porsteinsson AP, Faraone SV. Meta-analysis of Alzheimer's disease risk with obesity, diabetes, and related disorders. Biol Psychiatry 2010; 67:505-12. [PMID: 19358976 DOI: 10.1016/j.biopsych.2009.02.013] [Citation(s) in RCA: 486] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 02/10/2009] [Accepted: 02/19/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND Late-onset Alzheimer's disease (AD) is a multifactorial and heterogeneous disorder with major risk factors including advanced age, presence of an apolipoprotein E epsilon4 (APOE4) allele, and family history of AD. Other risk factors may be obesity and diabetes and related disorders, which are highly prevalent. METHODS We reviewed longitudinal epidemiological studies of body mass, diabetes, metabolic syndrome, and glucose and insulin levels on risk for AD. We conducted meta-analyses of the results from these studies. RESULTS For obesity assessed by body mass index, the pooled effect size for AD was 1.59 (95% confidence interval [CI] 1.02-2.5; z = 2.0; p = .042), and for diabetes, the pooled effect size for AD was 1.54 (95% CI 1.33-1.79; z = 5.7; p < .001). Egger's test did not find significant evidence for publication bias in the meta-analysis for obesity (t = -1.4, p = .21) or for diabetes (t = -.86, p = .42). Since these disorders are highly comorbid, we conducted a meta-analysis combining all studies of obesity, diabetes, and abnormal glucose or insulin levels, which yielded a highly significant pooled effect size for AD of 1.63 (95% CI 1.39-1.92; z = 5.9; p < .001). CONCLUSIONS Obesity and diabetes significantly and independently increase risk for AD. Though the level of risk is less than that with the APOE4 allele, the high prevalence of these disorders may result in substantial increases in future incidence of AD. Physiological changes common to obesity and diabetes plausibly promote AD.
Collapse
Affiliation(s)
- Louis A Profenno
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, New York, USA.
| | | | | |
Collapse
|
49
|
Hortsch R, Lee E, Erathodiyil N, Hebbar S, Steinert S, Lee JY, Chua DSK, Kraut R. Glycolipid trafficking in Drosophila undergoes pathway switching in response to aberrant cholesterol levels. Mol Biol Cell 2010; 21:778-90. [PMID: 20053687 PMCID: PMC2828964 DOI: 10.1091/mbc.e09-01-0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 11/24/2009] [Accepted: 12/22/2009] [Indexed: 01/29/2023] Open
Abstract
In lipid storage diseases, the intracellular trafficking of sphingolipids is altered by conditions of aberrant cholesterol accumulation. Drosophila has been used recently to model lipid storage diseases, but the effects of sterol accumulation on sphingolipid trafficking are not known in the fly, and the trafficking of sphingolipids in general has not been studied in this model organism. Here, we examined the uptake and intracellular distribution of a fluorescent glycolipid analog, BODIPY-lactosyl-ceramide, in Drosophila neurons. The uptake mechanism and intracellular trafficking route of this simple glycolipid are largely conserved. Our principle finding is that cholesterol steers trafficking of the glycolipid between Golgi, lysosome, and recycling compartments. Our analyses support the idea that cholesterol storage in Drosophila triggers a switch in glycolipid trafficking from the biosynthetic to the degradative endolysosomal pathway, whereas cholesterol depletion eliminates recycling of the glycolipid. Unexpectedly, we observe a novel phenomenon we term "hijacking," whereby lactosyl-ceramide diverts the trafficking pathway of an endocytic cargo, dextran, completely away from its lysosomal target. This work establishes that glycolipid trafficking in Drosophila undergoes changes similar to those seen in mammalian cells under conditions of cholesterol storage and therefore validates Drosophila as a suitable model organism in which to study lipid storage diseases.
Collapse
Affiliation(s)
- Ralf Hortsch
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology, and Research, Singapore 138669; and
| | - Esther Lee
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology, and Research, Singapore 138669; and
| | - Nandanan Erathodiyil
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology, and Research, Singapore 138669; and
| | - Sarita Hebbar
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology, and Research, Singapore 138669; and
| | - Steffen Steinert
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology, and Research, Singapore 138669; and
| | - Jun Yu Lee
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Doreen See Kin Chua
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Rachel Kraut
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| |
Collapse
|
50
|
Ceramide and cholesterol: possible connections between normal aging of the brain and Alzheimer's disease. Just hypotheses or molecular pathways to be identified? Alzheimers Dement 2009; 1:43-50. [PMID: 19595816 DOI: 10.1016/j.jalz.2005.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Even though it is known that aging is the single most important risk factor for Alzheimer's disease (AD), there is a lack of information on the molecular pathway(s) that connect normal aging of the brain to this form of neuropathology. Because of the rise in average lifespan, the number of individuals that reach the seventh or eighth decade of life and become at high risk for AD is rapidly increasing. Current estimations predict that by 2050 about 45 to 50 million individuals will be affected by AD worldwide. Here, we discuss the need for more age-directed research to understand AD neuropathology. We also elaborate on the possible role of cholesterol and ceramide as molecular connections between aging and AD, and as novel therapeutic targets for the prevention of late-onset AD.
Collapse
|