1
|
Abdelaziz R, Tomczak AP, Neef A, Pardo LA. Revealing a hidden conducting state by manipulating the intracellular domains in K V10.1 exposes the coupling between two gating mechanisms. eLife 2024; 12:RP91420. [PMID: 39259196 PMCID: PMC11390113 DOI: 10.7554/elife.91420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
The KCNH family of potassium channels serves relevant physiological functions in both excitable and non-excitable cells, reflected in the massive consequences of mutations or pharmacological manipulation of their function. This group of channels shares structural homology with other voltage-gated K+ channels, but the mechanisms of gating in this family show significant differences with respect to the canonical electromechanical coupling in these molecules. In particular, the large intracellular domains of KCNH channels play a crucial role in gating that is still only partly understood. Using KCNH1(KV10.1) as a model, we have characterized the behavior of a series of modified channels that could not be explained by the current models. With electrophysiological and biochemical methods combined with mathematical modeling, we show that the uncovering of an open state can explain the behavior of the mutants. This open state, which is not detectable in wild-type channels, appears to lack the rapid flicker block of the conventional open state. Because it is accessed from deep closed states, it elucidates intermediate gating events well ahead of channel opening in the wild type. This allowed us to study gating steps prior to opening, which, for example, explain the mechanism of gating inhibition by Ca2+-Calmodulin and generate a model that describes the characteristic features of KCNH channels gating.
Collapse
Affiliation(s)
- Reham Abdelaziz
- Oncophysiology Group. Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Adam P Tomczak
- Oncophysiology Group. Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Andreas Neef
- Neurophysics Laboratory, Göttingen Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - Luis A Pardo
- Oncophysiology Group. Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| |
Collapse
|
2
|
Kohansal E, Naderi N, Fazelifar AF, Maleki M, Kalayinia S. Detection of a novel pathogenic variant in KCNH2 associated with long QT syndrome 2 using whole exome sequencing. BMC Med Genomics 2024; 17:126. [PMID: 38715010 PMCID: PMC11077719 DOI: 10.1186/s12920-024-01900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Long QT syndrome (LQTS) is a cardiac channelopathy characterized by impaired myocardial repolarization that predisposes to life-threatening arrhythmias. This study aimed to elucidate the genetic basis of LQTS in an affected Iranian family using whole exome sequencing (WES). METHODS A 37-year-old woman with a personal and family history of sudden cardiac arrest and LQTS was referred for genetic study after losing her teenage daughter due to sudden cardiac death (SCD). WES was performed and variants were filtered and prioritized based on quality, allele frequency, pathogenicity predictions, and conservation scores. Sanger sequencing confirmed segregation in the family. RESULTS WES identified a novel heterozygous frameshift variant (NM_000238.4:c.3257_3258insG; pGly1087Trpfs*32) in the KCNH2 encoding the α-subunit of the rapid delayed rectifier potassium channel responsible for cardiac repolarization. This variant, predicted to cause a truncated protein, is located in the C-terminal region of the channel and was classified as likely pathogenic based on ACMG guidelines. The variant was absent in population databases and unaffected family members. CONCLUSION This study reports a novel KCNH2 frameshift variant in an Iranian family with LQTS, expanding the spectrum of disease-causing variants in this gene. Our findings highlight the importance of the C-terminal region in KCNH2 for proper channel function and the utility of WES in identifying rare variants in genetically heterogeneous disorders like LQTS. Functional characterization of this variant is warranted to fully elucidate its pathogenic mechanisms and inform personalized management strategies.
Collapse
Affiliation(s)
- Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Dermady APC, DeFazio DL, Hensley EM, Ruiz DL, Chavez AD, Iannone SA, Dermady NM, Grandel LV, Hill AS. Neuronal excitability modulates developmental time of Drosophila melanogaster. Dev Biol 2024; 508:38-45. [PMID: 38224932 DOI: 10.1016/j.ydbio.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Developmental time is a fundamental life history trait that affects the reproductive success of animals. Developmental time is known to be regulated by many genes and environmental conditions, yet mechanistic understandings of how various cellular processes influence the developmental timing of an organism are lacking. The nervous system is known to control key processes that affect developmental time, including the release of hormones that signal transitions between developmental stages. Here we show that the excitability of neurons plays a crucial role in modulating developmental time. Genetic manipulation of neuronal excitability in Drosophila melanogaster alters developmental time, which is faster in animals with increased neuronal excitability. We find that selectively modulating the excitability of peptidergic neurons is sufficient to alter developmental time, suggesting the intriguing hypothesis that the impact of neuronal excitability on DT may be at least partially mediated by peptidergic regulation of hormone release. This effect of neuronal excitability on developmental time is seen during embryogenesis and later developmental stages. Observed phenotypic plasticity in the effect of genetically increasing neuronal excitability at different temperatures, a condition also known to modulate excitability, suggests there is an optimal level of neuronal excitability, in terms of shortening DT. Together, our data highlight a novel connection between neuronal excitability and developmental time, with broad implications related to organismal physiology and evolution.
Collapse
Affiliation(s)
- Aidan P C Dermady
- College of the Holy Cross, Department of Biology, Worcester, MA, USA
| | - Dionna L DeFazio
- College of the Holy Cross, Department of Biology, Worcester, MA, USA
| | - Emily M Hensley
- College of the Holy Cross, Department of Biology, Worcester, MA, USA
| | - Daniel L Ruiz
- College of the Holy Cross, Department of Biology, Worcester, MA, USA
| | | | - Sarah A Iannone
- College of the Holy Cross, Department of Biology, Worcester, MA, USA
| | - Niall M Dermady
- College of the Holy Cross, Department of Biology, Worcester, MA, USA
| | - Lexis V Grandel
- College of the Holy Cross, Department of Biology, Worcester, MA, USA
| | - Alexis S Hill
- College of the Holy Cross, Department of Biology, Worcester, MA, USA.
| |
Collapse
|
4
|
Blomquist VG, Niu J, Choudhury P, Al Saneh A, Colecraft HM, Ahern CA. Transfer RNA-mediated restoration of potassium current and electrical correction in premature termination long-QT syndrome hERG mutants. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102032. [PMID: 37842167 PMCID: PMC10568093 DOI: 10.1016/j.omtn.2023.102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Disease-causing premature termination codons (PTCs) individually disrupt the functional expression of hundreds of genes and represent a pernicious clinical challenge. In the heart, loss-of-function mutations in the hERG potassium channel account for approximately 30% of long-QT syndrome arrhythmia, a lethal cardiac disorder with limited treatment options. Premature termination of ribosomal translation produces a truncated and, for potassium channels, a potentially dominant-negative protein that impairs the functional assembly of the wild-type homotetrameric hERG channel complex. We used high-throughput flow cytometry and patch-clamp electrophysiology to assess the trafficking and voltage-dependent activity of hERG channels carrying patient PTC variants that have been corrected by anticodon engineered tRNA. Adenoviral-mediated expression of mutant hERG channels in cultured adult guinea pig cardiomyocytes prolonged action potential durations, and this deleterious effect was corrected upon adenoviral delivery of a human ArgUGA tRNA to restore full-length hERG protein. The results demonstrate mutation-specific, context-agnostic PTC correction and elevate the therapeutic potential of this approach for rare genetic diseases caused by stop codons.
Collapse
Affiliation(s)
- Viggo G. Blomquist
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Jacqueline Niu
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Papiya Choudhury
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Ahmad Al Saneh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
5
|
Emerging mechanisms involving brain Kv7 channel in the pathogenesis of hypertension. Biochem Pharmacol 2022; 206:115318. [PMID: 36283445 DOI: 10.1016/j.bcp.2022.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Hypertension is a prevalent health problem inducing many organ damages. The pathogenesis of hypertension involves a complex integration of different organ systems including the brain. The elevated sympathetic nerve activity is closely related to the etiology of hypertension. Ion channels are critical regulators of neuronal excitability. Several mechanisms have been proposed to contribute to hypothalamic-driven elevated sympathetic activity, including altered ion channel function. Recent findings indicate one of the voltage-gated potassium channels, Kv7 channels (M channels), plays a vital role in regulating cardiovascular-related neurons activity, and the expression of Kv7 channels is downregulated in hypertension. This review highlights recent findings that the Kv7 channels in the brain, blood vessels, and kidneys are emerging targets involved in the pathogenesis of hypertension, suggesting new therapeutic targets for treating drug-resistant, neurogenic hypertension.
Collapse
|
6
|
Abstract
Monoclonal antibodies combine specificity and high affinity binding with excellent pharmacokinetic properties and are rapidly being developed for a wide range of drug targets including clinically important potassium ion channels. Nonetheless, while therapeutic antibodies come with great promise, K+ channels represent particularly difficult targets for biologics development for a variety of reasons that include their dynamic structures and relatively small extracellular loops, their high degree of sequence conservation (leading to immune tolerance), and their generally low-level expression in vivo. The process is made all the more difficult when large numbers of antibody candidates must be screened for a given target, or when lead candidates fail to cross-react with orthologous channels in animal disease models due to their highly selective binding properties. While the number of antibodies targeting potassium channels in preclinical or clinical development is still modest, significant advances in the areas of protein expression and antibody screening are converging to open the field to an avalanche of new drugs. Here, the opportunities and constraints associated with the discovery of antibodies against K+ channels are discussed, with an emphasis on novel technologies that are opening the field to exciting new possibilities for biologics development.
Collapse
|
7
|
Toplak Ž, Hendrickx LA, Abdelaziz R, Shi X, Peigneur S, Tomašič T, Tytgat J, Peterlin-Mašič L, Pardo LA. Overcoming challenges of HERG potassium channel liability through rational design: Eag1 inhibitors for cancer treatment. Med Res Rev 2021; 42:183-226. [PMID: 33945158 DOI: 10.1002/med.21808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Two decades of research have proven the relevance of ion channel expression for tumor progression in virtually every indication, and it has become clear that inhibition of specific ion channels will eventually become part of the oncology therapeutic arsenal. However, ion channels play relevant roles in all aspects of physiology, and specificity for the tumor tissue remains a challenge to avoid undesired effects. Eag1 (KV 10.1) is a voltage-gated potassium channel whose expression is very restricted in healthy tissues outside of the brain, while it is overexpressed in 70% of human tumors. Inhibition of Eag1 reduces tumor growth, but the search for potent inhibitors for tumor therapy suffers from the structural similarities with the cardiac HERG channel, a major off-target. Existing inhibitors show low specificity between the two channels, and screenings for Eag1 binders are prone to enrichment in compounds that also bind HERG. Rational drug design requires knowledge of the structure of the target and the understanding of structure-function relationships. Recent studies have shown subtle structural differences between Eag1 and HERG channels with profound functional impact. Thus, although both targets' structure is likely too similar to identify leads that exclusively bind to one of the channels, the structural information combined with the new knowledge of the functional relevance of particular residues or areas suggests the possibility of selective targeting of Eag1 in cancer therapies. Further development of selective Eag1 inhibitors can lead to first-in-class compounds for the treatment of different cancers.
Collapse
Affiliation(s)
- Žan Toplak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Louise A Hendrickx
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Reham Abdelaziz
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Xiaoyi Shi
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Steve Peigneur
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Tytgat
- Department of Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | | | - Luis A Pardo
- AG Oncophysiology, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
8
|
van der Horst J, Greenwood IA, Jepps TA. Cyclic AMP-Dependent Regulation of Kv7 Voltage-Gated Potassium Channels. Front Physiol 2020; 11:727. [PMID: 32695022 PMCID: PMC7338754 DOI: 10.3389/fphys.2020.00727] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/04/2020] [Indexed: 01/08/2023] Open
Abstract
Voltage-gated Kv7 potassium channels, encoded by KCNQ genes, have major physiological impacts cardiac myocytes, neurons, epithelial cells, and smooth muscle cells. Cyclic adenosine monophosphate (cAMP), a well-known intracellular secondary messenger, can activate numerous downstream effector proteins, generating downstream signaling pathways that regulate many functions in cells. A role for cAMP in ion channel regulation has been established, and recent findings show that cAMP signaling plays a role in Kv7 channel regulation. Although cAMP signaling is recognized to regulate Kv7 channels, the precise molecular mechanism behind the cAMP-dependent regulation of Kv7 channels is complex. This review will summarize recent research findings that support the mechanisms of cAMP-dependent regulation of Kv7 channels.
Collapse
Affiliation(s)
- Jennifer van der Horst
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Hartung F, Krüwel T, Shi X, Pfizenmaier K, Kontermann R, Chames P, Alves F, Pardo LA. A Novel Anti-Kv10.1 Nanobody Fused to Single-Chain TRAIL Enhances Apoptosis Induction in Cancer Cells. Front Pharmacol 2020; 11:686. [PMID: 32528281 PMCID: PMC7246340 DOI: 10.3389/fphar.2020.00686] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 01/11/2023] Open
Abstract
Antibody-based therapies hold promise for a safe and efficient treatment of cancer. The identification of target tumor cells through a specific antigen enriched on their surface and the subsequent delivery of the therapeutic agent only to those cells requires, besides the efficacy of the therapeutic agent itself, the identification of an antigen enriched on the surface of tumor cells, the generation of high affinity antibodies against that antigen. We have generated single-domain antibodies (nanobodies) against the voltage-gated potassium channel Kv10.1, which outside of the brain is detectable almost exclusively in tumor cells. The nanobody with highest affinity was fused to an improved form of the tumor necrosis factor-related apoptosis inducing ligand TRAIL, to target this cytokine to the surface of tumor cells. The resulting construct, VHH-D9-scTRAIL, shows rapid and strong apoptosis induction in different tumor models in cell culture. The construct combines two sources of specificity, the expression of the antigen restricted to tumor cells and the tumor selectivity of TRAIL. Such specificity combined with the high affinity obtained through nanobodies make the novel agent a promising concept for cancer therapy.
Collapse
Affiliation(s)
- Franziska Hartung
- Oncophysiology Group, Max Planck, Institute of Experimental Medicine, Göttingen, Germany
| | - Thomas Krüwel
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaoyi Shi
- Oncophysiology Group, Max Planck, Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus Pfizenmaier
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Stuttgart, Germany
| | - Roland Kontermann
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Stuttgart, Germany
| | - Patrick Chames
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Frauke Alves
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany.,Translational Molecular Imaging Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Luis A Pardo
- Oncophysiology Group, Max Planck, Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
10
|
Núñez E, Muguruza-Montero A, Villarroel A. Atomistic Insights of Calmodulin Gating of Complete Ion Channels. Int J Mol Sci 2020; 21:ijms21041285. [PMID: 32075037 PMCID: PMC7072864 DOI: 10.3390/ijms21041285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Intracellular calcium is essential for many physiological processes, from neuronal signaling and exocytosis to muscle contraction and bone formation. Ca2+ signaling from the extracellular medium depends both on membrane potential, especially controlled by ion channels selective to K+, and direct permeation of this cation through specialized channels. Calmodulin (CaM), through direct binding to these proteins, participates in setting the membrane potential and the overall permeability to Ca2+. Over the past years many structures of complete channels in complex with CaM at near atomic resolution have been resolved. In combination with mutagenesis-function, structural information of individual domains and functional studies, different mechanisms employed by CaM to control channel gating are starting to be understood at atomic detail. Here, new insights regarding four types of tetrameric channels with six transmembrane (6TM) architecture, Eag1, SK2/SK4, TRPV5/TRPV6 and KCNQ1–5, and its regulation by CaM are described structurally. Different CaM regions, N-lobe, C-lobe and EF3/EF4-linker play prominent signaling roles in different complexes, emerging the realization of crucial non-canonical interactions between CaM and its target that are only evidenced in the full-channel structure. Different mechanisms to control gating are used, including direct and indirect mechanical actuation over the pore, allosteric control, indirect effect through lipid binding, as well as direct plugging of the pore. Although each CaM lobe engages through apparently similar alpha-helices, they do so using different docking strategies. We discuss how this allows selective action of drugs with great therapeutic potential.
Collapse
|
11
|
De Zio R, Gerbino A, Forleo C, Pepe M, Milano S, Favale S, Procino G, Svelto M, Carmosino M. Functional study of a KCNH2 mutant: Novel insights on the pathogenesis of the LQT2 syndrome. J Cell Mol Med 2019; 23:6331-6342. [PMID: 31361068 PMCID: PMC6714209 DOI: 10.1111/jcmm.14521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 12/29/2022] Open
Abstract
The K+ voltage-gated channel subfamily H member 2 (KCNH2) transports the rapid component of the cardiac delayed rectifying K+ current. The aim of this study was to characterize the biophysical properties of a C-terminus-truncated KCNH2 channel, G1006fs/49 causing long QT syndrome type II in heterozygous members of an Italian family. Mutant carriers underwent clinical workup, including 12-lead electrocardiogram, transthoracic echocardiography and 24-hour ECG recording. Electrophysiological experiments compared the biophysical properties of G1006fs/49 with those of KCNH2 both expressed either as homotetramers or as heterotetramers in HEK293 cells. Major findings of this work are as follows: (a) G1006fs/49 is functional at the plasma membrane even when co-expressed with KCNH2, (b) G1006fs/49 exerts a dominant-negative effect on KCNH2 conferring specific biophysical properties to the heterotetrameric channel such as a significant delay in the voltage-sensitive transition to the open state, faster kinetics of both inactivation and recovery from the inactivation and (c) the activation kinetics of the G1006fs/49 heterotetrameric channels is partially restored by a specific KCNH2 activator. The functional characterization of G1006fs/49 homo/heterotetramers provided crucial findings about the pathogenesis of LQTS type II in the mutant carriers, thus providing a new and potential pharmacological strategy.
Collapse
Affiliation(s)
- Roberta De Zio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Cinzia Forleo
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Martino Pepe
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Favale
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Monica Carmosino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
12
|
Chang A, Abderemane-Ali F, Hura GL, Rossen ND, Gate RE, Minor DL. A Calmodulin C-Lobe Ca 2+-Dependent Switch Governs Kv7 Channel Function. Neuron 2018; 97:836-852.e6. [PMID: 29429937 DOI: 10.1016/j.neuron.2018.01.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/07/2017] [Accepted: 01/12/2018] [Indexed: 12/22/2022]
Abstract
Kv7 (KCNQ) voltage-gated potassium channels control excitability in the brain, heart, and ear. Calmodulin (CaM) is crucial for Kv7 function, but how this calcium sensor affects activity has remained unclear. Here, we present X-ray crystallographic analysis of CaM:Kv7.4 and CaM:Kv7.5 AB domain complexes that reveal an Apo/CaM clamp conformation and calcium binding preferences. These structures, combined with small-angle X-ray scattering, biochemical, and functional studies, establish a regulatory mechanism for Kv7 CaM modulation based on a common architecture in which a CaM C-lobe calcium-dependent switch releases a shared Apo/CaM clamp conformation. This C-lobe switch inhibits voltage-dependent activation of Kv7.4 and Kv7.5 but facilitates Kv7.1, demonstrating that mechanism is shared by Kv7 isoforms despite the different directions of CaM modulation. Our findings provide a unified framework for understanding how CaM controls different Kv7 isoforms and highlight the role of membrane proximal domains for controlling voltage-gated channel function. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Aram Chang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nathan D Rossen
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rachel E Gate
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Global versus local mechanisms of temperature sensing in ion channels. Pflugers Arch 2018; 470:733-744. [PMID: 29340775 DOI: 10.1007/s00424-017-2102-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNaV) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.
Collapse
|
14
|
Alaimo A, Nuñez E, Aivar P, Fernández-Orth J, Gomis-Perez C, Bernardo-Seisdedos G, Malo C, Villarroel A. Calmodulin confers calcium sensitivity to the stability of the distal intracellular assembly domain of Kv7.2 channels. Sci Rep 2017; 7:13425. [PMID: 29044210 PMCID: PMC5647379 DOI: 10.1038/s41598-017-13811-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/29/2017] [Indexed: 01/03/2023] Open
Abstract
Tetrameric coiled-coil structures are present in many ion channels, often adjacent to a calmodulin (CaM) binding site, although the relationship between the two is not completely understood. Here we examine the dynamic properties of the ABCD domain located in the intracellular C-terminus of tetrameric, voltage-dependent, potassium selective Kv7.2 channels. This domain encompasses the CaM binding site formed by helices A and B, followed by helix C, which is linked to the helix D coiled-coil. The data reveals that helix D stabilizes CaM binding, promoting trans-binding (CaM embracing neighboring subunits), and they suggest that the ABCD domain can be exchanged between subunits of the tetramer. Exchange is faster when mutations in AB weaken the CaM interaction. The exchange of ABCD domains is slower in the presence of Ca2+, indicating that CaM stabilization of the tetrameric assembly is enhanced when loaded with this cation. Our observations are consistent with a model that involves a dynamic mechanism of helix D assembly, which supports reciprocal allosteric coupling between the A-B module and the coiled-coil formed by the helix D. Thus, formation of the distal helix D tetramer influences CaM binding and CaM-dependent Kv7.2 properties, whereas reciprocally, CaM and Ca2+ influence the dynamic behavior of the helix D coiled-coil.
Collapse
Affiliation(s)
- Alessandro Alaimo
- Instituto Biofisika, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Eider Nuñez
- Instituto Biofisika, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Paloma Aivar
- Instituto Biofisika, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Juncal Fernández-Orth
- Instituto Biofisika, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Carolina Gomis-Perez
- Instituto Biofisika, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Ganeko Bernardo-Seisdedos
- Instituto Biofisika, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Covadonga Malo
- Instituto Biofisika, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Alvaro Villarroel
- Instituto Biofisika, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain.
| |
Collapse
|
15
|
Li Z, Zhu K, Gong X, Vasilescu S, Sun Y, Hong K, Li H, Li L, Shan Y. Inducing Polyclonal Eag1-Specific Antibodies by Vaccination with a Linear Epitope Immunogen and Its Relation to Breast Tumorigenesis. Pathol Oncol Res 2017; 23:761-767. [DOI: 10.1007/s12253-016-0158-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022]
|
16
|
Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, Kass RS. Molecular Pathophysiology of Congenital Long QT Syndrome. Physiol Rev 2017; 97:89-134. [PMID: 27807201 PMCID: PMC5539372 DOI: 10.1152/physrev.00008.2016] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ion channels represent the molecular entities that give rise to the cardiac action potential, the fundamental cellular electrical event in the heart. The concerted function of these channels leads to normal cyclical excitation and resultant contraction of cardiac muscle. Research into cardiac ion channel regulation and mutations that underlie disease pathogenesis has greatly enhanced our knowledge of the causes and clinical management of cardiac arrhythmia. Here we review the molecular determinants, pathogenesis, and pharmacology of congenital Long QT Syndrome. We examine mechanisms of dysfunction associated with three critical cardiac currents that comprise the majority of congenital Long QT Syndrome cases: 1) IKs, the slow delayed rectifier current; 2) IKr, the rapid delayed rectifier current; and 3) INa, the voltage-dependent sodium current. Less common subtypes of congenital Long QT Syndrome affect other cardiac ionic currents that contribute to the dynamic nature of cardiac electrophysiology. Through the study of mutations that cause congenital Long QT Syndrome, the scientific community has advanced understanding of ion channel structure-function relationships, physiology, and pharmacological response to clinically employed and experimental pharmacological agents. Our understanding of congenital Long QT Syndrome continues to evolve rapidly and with great benefits: genotype-driven clinical management of the disease has improved patient care as precision medicine becomes even more a reality.
Collapse
Affiliation(s)
- M S Bohnen
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - G Peng
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - S H Robey
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - C Terrenoire
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - V Iyer
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - K J Sampson
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - R S Kass
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| |
Collapse
|
17
|
Solé L, Roig SR, Vallejo-Gracia A, Serrano-Albarrás A, Martínez-Mármol R, Tamkun MM, Felipe A. The C-terminal domain of Kv1.3 regulates functional interactions with the KCNE4 subunit. J Cell Sci 2016; 129:4265-4277. [PMID: 27802162 DOI: 10.1242/jcs.191650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
The voltage-dependent K+ channel Kv1.3 (also known as KCNA3), which plays crucial roles in leukocytes, physically interacts with KCNE4. This interaction inhibits the K+ currents because the channel is retained within intracellular compartments. Thus, KCNE subunits are regulators of K+ channels in the immune system. Although the canonical interactions of KCNE subunits with Kv7 channels are under intensive investigation, the molecular determinants governing the important Kv1.3- KCNE4 association in the immune system are unknown. Our results suggest that the tertiary structure of the C-terminal domain of Kv1.3 is necessary and sufficient for such an interaction. However, this element is apparently not involved in modulating Kv1.3 gating. Furthermore, the KCNE4-dependent intracellular retention of the channel, which negatively affects the activity of Kv1.3, is mediated by two independent and additive mechanisms. First, KCNE4 masks the YMVIEE signature at the C-terminus of Kv1.3, which is crucial for the surface targeting of the channel. Second, we identify a potent endoplasmic reticulum retention motif in KCNE4 that further limits cell surface expression. Our results define specific molecular determinants that play crucial roles in the physiological function of Kv1.3 in leukocytes.
Collapse
Affiliation(s)
- Laura Solé
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain.,Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Sara R Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Albert Vallejo-Gracia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Antonio Serrano-Albarrás
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Ramón Martínez-Mármol
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain.,Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| |
Collapse
|
18
|
Puckerin A, Aromolaran KA, Chang DD, Zukin RS, Colecraft HM, Boutjdir M, Aromolaran AS. hERG 1a LQT2 C-terminus truncation mutants display hERG 1b-dependent dominant negative mechanisms. Heart Rhythm 2016; 13:1121-1130. [PMID: 26775140 DOI: 10.1016/j.hrthm.2016.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND The human ether-à-go-go-related gene (hERG 1a) potassium channel is critical for cardiac repolarization. hERG 1b, another variant subunit, co-assembles with hERG 1a, modulates channel biophysical properties and plays an important role in repolarization. Mutations of hERG 1a lead to type 2 long QT syndrome (LQT2), and increased risk for fatal arrhythmias. The functional consequences of these mutations in the presence of hERG 1b are not known. OBJECTIVE To investigate whether hERG 1a mutants exert dominant negative gating and trafficking defects when co-expressed with hERG 1b. METHODS Electrophysiology, co-immunoprecipitation, and fluorescence resonance energy transfer (FRET) experiments in HEK293 cells and guinea pig cardiomyocytes were used to assess the mutants on gating and trafficking. Mutations of 1a-G965X and 1a-R1014X, relevant to gating and trafficking were introduced in the C-terminus region. RESULTS The hERG 1a mutants when expressed alone did not result in decreased current amplitude. Compared to wild-type hERG 1a currents, 1a-G965X currents were significantly larger, whereas those produced by the 1a-R1014X mutant were similar in magnitude. Only when co-expressed with wild-type hERG 1a and 1b did a mutant phenotype emerge, with a marked reduction in surface expression, current amplitude, and a corresponding positive shift in the V1/2 of the activation curve. Co-immunoprecipitation and FRET assays confirmed association of mutant and wild-type subunits. CONCLUSION Heterologously expressed hERG 1a C-terminus truncation mutants, exert a dominant negative gating and trafficking effect only when co-expressed with hERG 1b. These findings may have potentially profound implications for LQT2 therapy.
Collapse
Affiliation(s)
- Akil Puckerin
- Department of Physiology & Cellular Biophysics, Columbia University, New York, New York
| | - Kelly A Aromolaran
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York
| | - Donald D Chang
- Department of Physiology & Cellular Biophysics, Columbia University, New York, New York
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York
| | - Henry M Colecraft
- Department of Physiology & Cellular Biophysics, Columbia University, New York, New York
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, New York; Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York,; Department of Medicine, New York University School of Medicine, New York, New York
| | - Ademuyiwa S Aromolaran
- Department of Physiology & Cellular Biophysics, Columbia University, New York, New York.
| |
Collapse
|
19
|
Kv10.1 K+ channel: from physiology to cancer. Pflugers Arch 2016; 468:751-62. [DOI: 10.1007/s00424-015-1784-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/11/2015] [Accepted: 12/27/2015] [Indexed: 12/18/2022]
|
20
|
Ramos Gomes F, Romaniello V, Sánchez A, Weber C, Narayanan P, Psol M, Pardo LA. Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes. J Biol Chem 2015; 290:30351-65. [PMID: 26518875 PMCID: PMC4683259 DOI: 10.1074/jbc.m115.668749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 12/18/2022] Open
Abstract
KV10.1 is a voltage-gated potassium channel expressed selectively in the mammalian brain but also aberrantly in cancer cells. In this study we identified short splice variants of KV10.1 resulting from exon-skipping events (E65 and E70) in human brain and cancer cell lines. The presence of the variants was confirmed by Northern blot and RNase protection assays. Both variants completely lacked the transmembrane domains of the channel and produced cytoplasmic proteins without channel function. In a reconstituted system, both variants co-precipitated with the full-length channel and induced a robust down-regulation of KV10.1 current when co-expressed with the full-length form, but their effect was mechanistically different. E65 required a tetramerization domain and induced a reduction in the overall expression of full-length KV10.1, whereas E70 mainly affected its glycosylation pattern. E65 triggered the activation of cyclin-dependent kinases in Xenopus laevis oocytes, suggesting a role in cell cycle control. Our observations highlight the relevance of noncanonical functions for the oncogenicity of KV10.1, which need to be considered when ion channels are targeted for cancer therapy.
Collapse
Affiliation(s)
| | - Vincenzo Romaniello
- the Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Araceli Sánchez
- the Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Claudia Weber
- From the Department of Molecular Biology of Neuronal Signals and
| | | | - Maryna Psol
- From the Department of Molecular Biology of Neuronal Signals and
| | - Luis A Pardo
- the Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| |
Collapse
|
21
|
Alberdi A, Gomis-Perez C, Bernardo-Seisdedos G, Alaimo A, Malo C, Aldaregia J, Lopez-Robles C, Areso P, Butz E, Wahl-Schott C, Villarroel A. Uncoupling PIP2-calmodulin regulation of Kv7.2 channels by an assembly destabilizing epileptogenic mutation. J Cell Sci 2015; 128:4014-23. [PMID: 26359296 DOI: 10.1242/jcs.176420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
We show that the combination of an intracellular bi-partite calmodulin (CaM)-binding site and a distant assembly region affect how an ion channel is regulated by a membrane lipid. Our data reveal that regulation by phosphatidylinositol(4,5)bisphosphate (PIP2) and stabilization of assembled Kv7.2 subunits by intracellular coiled-coil regions far from the membrane are coupled molecular processes. Live-cell fluorescence energy transfer measurements and direct binding studies indicate that remote coiled-coil formation creates conditions for different CaM interaction modes, each conferring different PIP2 dependency to Kv7.2 channels. Disruption of coiled-coil formation by epilepsy-causing mutation decreases apparent CaM-binding affinity and interrupts CaM influence on PIP2 sensitivity.
Collapse
Affiliation(s)
- Araitz Alberdi
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Carolina Gomis-Perez
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Ganeko Bernardo-Seisdedos
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Alessandro Alaimo
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Covadonga Malo
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Juncal Aldaregia
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Carlos Lopez-Robles
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Pilar Areso
- Departament de Farmacología, UPV/EHU, Universidad del País Vasco, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Elisabeth Butz
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Alvaro Villarroel
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
22
|
Lörinczi É, Gómez-Posada JC, de la Peña P, Tomczak AP, Fernández-Trillo J, Leipscher U, Stühmer W, Barros F, Pardo LA. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains. Nat Commun 2015; 6:6672. [PMID: 25818916 PMCID: PMC4389246 DOI: 10.1038/ncomms7672] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/18/2015] [Indexed: 12/25/2022] Open
Abstract
Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4–S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4–S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules. The pore of voltage-gated ion channels opens in response to membrane depolarization sensed by a separate voltage-sensing domain. Here, Lörinczi et al. show that, contrary to assumptions, no physical linker is required to transmit changes from the voltage-sensing to the permeation domain of KCNH channels.
Collapse
Affiliation(s)
- Éva Lörinczi
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Juan Camilo Gómez-Posada
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Pilar de la Peña
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Campus de El Cristo, 33006 Oviedo, Spain
| | - Adam P Tomczak
- Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Jorge Fernández-Trillo
- Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Ulrike Leipscher
- Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Walter Stühmer
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany
| | - Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Campus de El Cristo, 33006 Oviedo, Spain
| | - Luis A Pardo
- Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| |
Collapse
|
23
|
Mousavi Nik A, Gharaie S, Jeong Kim H. Cellular mechanisms of mutations in Kv7.1: auditory functions in Jervell and Lange-Nielsen syndrome vs. Romano-Ward syndrome. Front Cell Neurosci 2015; 9:32. [PMID: 25705178 PMCID: PMC4319400 DOI: 10.3389/fncel.2015.00032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/19/2015] [Indexed: 01/06/2023] Open
Abstract
As a result of cell-specific functions of voltage-activated K+ channels, such as Kv7.1, mutations in this channel produce profound cardiac and auditory defects. At the same time, the massive diversity of K+ channels allows for compensatory substitution of mutant channels by other functional channels of their type to minimize defective phenotypes. Kv7.1 represents a clear example of such functional dichotomy. While several point mutations in the channel result in a cardio-auditory syndrome called Jervell and Lange-Nielsen syndrome (JLNS), about 100-fold mutations result in long QT syndrome (LQTS) denoted as Romano–Ward syndrome (RWS), which has an intact auditory phenotype. To determine whether the cellular mechanisms for the diverse phenotypic outcome of Kv7.1 mutations, are dependent on the tissue-specific function of the channel and/or specialized functions of the channel, we made series of point mutations in hKv7.1 ascribed to JLNS and RWS. For JLNS mutations, all except W248F yielded non-functional channels when expressed alone. Although W248F at the end of the S4 domain yielded a functional current, it underwent marked inactivation at positive voltages, rendering the channel non-functional. We demonstrate that by definition, none of the JLNS mutants operated in a dominant negative (DN) fashion. Instead, the JLNS mutants have impaired membrane trafficking, trapped in the endoplasmic reticulum (ER) and Cis-Golgi. The RWS mutants exhibited varied functional phenotypes. However, they can be summed up as exhibiting DN effects. Phenotypic differences between JLNS and RWS may stem from tissue-specific functional requirements of cardiac vs. inner ear non-sensory cells.
Collapse
Affiliation(s)
- Atefeh Mousavi Nik
- Department of Anesthesiology and Pain Medicine, Center for Neuroscience, School of Medicine, University of California, Davis Davis, CA, USA
| | - Somayeh Gharaie
- Department of Anesthesiology and Pain Medicine, Center for Neuroscience, School of Medicine, University of California, Davis Davis, CA, USA
| | - Hyo Jeong Kim
- Department of Anesthesiology and Pain Medicine, Center for Neuroscience, School of Medicine, University of California, Davis Davis, CA, USA
| |
Collapse
|
24
|
Church TW, Weatherall KL, Corrêa SAL, Prole DL, Brown JT, Marrion NV. Preferential assembly of heteromeric small conductance calcium-activated potassium channels. Eur J Neurosci 2014; 41:305-15. [PMID: 25421315 DOI: 10.1111/ejn.12789] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 11/27/2022]
Abstract
The activation of small conductance calcium-dependent (SK) channels regulates membrane excitability by causing membrane hyperpolarization. Three subtypes (SK1-3) have been cloned, with each subtype expressed within the nervous system. The locations of channel subunits overlap, with SK1 and SK2 subunits often expressed in the same brain region. We showed that expressed homomeric rat SK1 subunits did not form functional channels, because subunits accumulated in the Golgi. This raised the question of whether heteromeric channels could form with SK1 subunits. The co-expression of SK1 and SK2 subunits in HEK293 cells preferentially co-assembled to produce heteromeric channels with a fixed stoichiometry of alternating subunits. The expression in hippocampal CA1 neurons of mutant rat SK1 subunits [rat SK1(LV213/4YA)] that produced an apamin-sensitive current changed the amplitude and pharmacology of the medium afterhyperpolarization. The overexpression of rat SK1(LV213/4YA) subunits reduced the sensitivity of the medium afterhyperpolarization to apamin, substantiating the preferential co-assembly of SK1 and SK2 subunits to form heteromeric channels. Species-specific channel assembly occurred as the co-expression of human SK1 with rat SK2 did not form functional heteromeric channels. The replacement of two amino acids within the C-terminus of rat SK2 with those from human SK2 permitted the assembly of heteromeric channels when co-expressed with human SK1. These data showed that species-specific co-assembly was mediated by interaction between the C-termini of SK channel subunits. The finding that SK channels preferentially co-assembled to form heteromeric channels suggested that native heteromeric channels will predominate in cells expressing multiple SK channel subunits.
Collapse
Affiliation(s)
- Timothy W Church
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
25
|
Large-scale mutational analysis of Kv11.1 reveals molecular insights into type 2 long QT syndrome. Nat Commun 2014; 5:5535. [PMID: 25417810 PMCID: PMC4243539 DOI: 10.1038/ncomms6535] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
It has been suggested that deficient protein trafficking to the cell membrane is the dominant mechanism associated with type 2 Long QT syndrome (LQT2) caused by Kv11.1 potassium channel missense mutations, and that for many mutations the trafficking defect can be corrected pharmacologically. However, this inference was based on expression of a small number of Kv11.1 mutations. We performed a comprehensive analysis of 167 LQT2-linked missense mutations in four Kv11.1 structural domains and found that deficient protein trafficking is the dominant mechanism for all domains except for the distal carboxy-terminus. Also, most pore mutations--in contrast to intracellular domain mutations--were found to have severe dominant-negative effects when co-expressed with wild-type subunits. Finally, pharmacological correction of the trafficking defect in homomeric mutant channels was possible for mutations within all structural domains. However, pharmacological correction is dramatically improved for pore mutants when co-expressed with wild-type subunits to form heteromeric channels.
Collapse
|
26
|
Morais-Cabral JH, Robertson GA. The enigmatic cytoplasmic regions of KCNH channels. J Mol Biol 2014; 427:67-76. [PMID: 25158096 DOI: 10.1016/j.jmb.2014.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 01/09/2023]
Abstract
KCNH channels are expressed across a vast phylogenetic and evolutionary spectrum. In humans, they function in a wide range of tissues and serve as biomarkers and targets for diseases such as cancer and cardiac arrhythmias. These channels share a general architecture with other voltage-gated ion channels but are distinguished by the presence of an N-terminal PAS (Per-Arnt-Sim) domain and a C-terminal domain with homology to cyclic nucleotide binding domains (referred to as the CNBh domain). Cytosolic regions outside these domains show little conservation between KCNH families but are strongly conserved across species within a family, likely reflecting variability that confers specificity to individual channel types. PAS and CNBh domains participate in channel gating, but at least twice in evolutionary history, the PAS domain has been lost and it is omitted by alternate transcription to create a distinct channel subunit in one family. In this focused review, we present current knowledge of the structure and function of these cytosolic regions, discuss their evolution as modular domains and provide our perspective on the important questions moving forward.
Collapse
Affiliation(s)
- João H Morais-Cabral
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.
| | - Gail A Robertson
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
27
|
Lin TF, Lin IW, Chen SC, Wu HH, Yang CS, Fang HY, Chiu MM, Jeng CJ. The subfamily-specific assembly of Eag and Erg K+ channels is determined by both the amino and the carboxyl recognition domains. J Biol Chem 2014; 289:22815-22834. [PMID: 25008323 DOI: 10.1074/jbc.m114.574814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A functional voltage-gated K(+) (Kv) channel comprises four pore-forming α-subunits, and only members of the same Kv channel subfamily may co-assemble to form heterotetramers. The ether-à-go-go family of Kv channels (KCNH) encompasses three distinct subfamilies: Eag (Kv10), Erg (Kv11), and Elk (Kv12). Members of different ether-à-go-go subfamilies, such as Eag and Erg, fail to form heterotetramers. Although a short stretch of amino acid sequences in the distal C-terminal section has been implicated in subfamily-specific subunit assembly, it remains unclear whether this region serves as the sole and/or principal subfamily recognition domain for Eag and Erg. Here we aim to ascertain the structural basis underlying the subfamily specificity of ether-à-go-go channels by generating various chimeric constructs between rat Eag1 and human Erg subunits. Biochemical and electrophysiological characterizations of the subunit interaction properties of a series of different chimeric and truncation constructs over the C terminus suggested that the putative C-terminal recognition domain is dispensable for subfamily-specific assembly. Further chimeric analyses over the N terminus revealed that the N-terminal region may also harbor a subfamily recognition domain. Importantly, exchanging either the N-terminal or the C-terminal domain alone led to a virtual loss of the intersubfamily assembly boundary. By contrast, simultaneously swapping both recognition domains resulted in a reversal of subfamily specificity. Our observations are consistent with the notion that both the N-terminal and the C-terminal recognition domains are required to sustain the subfamily-specific assembly of rat Eag1 and human Erg.
Collapse
Affiliation(s)
- Ting-Feng Lin
- Institute of Anatomy and Cell Biology, School of Medicine, and National Yang-Ming University, No. 155, Section 2, Li-Non Street, Taipei 12212, Taiwan
| | - I-Wen Lin
- Institute of Anatomy and Cell Biology, School of Medicine, and National Yang-Ming University, No. 155, Section 2, Li-Non Street, Taipei 12212, Taiwan
| | - Shu-Ching Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Hao-Han Wu
- Institute of Anatomy and Cell Biology, School of Medicine, and National Yang-Ming University, No. 155, Section 2, Li-Non Street, Taipei 12212, Taiwan
| | - Chi-Sheng Yang
- Institute of Anatomy and Cell Biology, School of Medicine, and National Yang-Ming University, No. 155, Section 2, Li-Non Street, Taipei 12212, Taiwan
| | - Hsin-Yu Fang
- Institute of Anatomy and Cell Biology, School of Medicine, and National Yang-Ming University, No. 155, Section 2, Li-Non Street, Taipei 12212, Taiwan
| | - Mei-Miao Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, and National Yang-Ming University, No. 155, Section 2, Li-Non Street, Taipei 12212, Taiwan
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, and National Yang-Ming University, No. 155, Section 2, Li-Non Street, Taipei 12212, Taiwan; Brain Research Center, National Yang-Ming University, No. 155, Section 2, Li-Non Street, Taipei 12212, Taiwan and.
| |
Collapse
|
28
|
HAN SHENGNA, YANG SONGHUA, ZHANG YU, SUN XIAOYAN, DUAN YANYAN, HU XIANGJIE, FAN TIANLI, HUANG CHENZHENG, YANG GE, ZHANG ZHAO, ZHANG LIRONG. Identification and functional characterization of the human ether-a-go-go-related gene Q738X mutant associated with hereditary long QT syndrome type 2. Int J Mol Med 2014; 34:810-5. [DOI: 10.3892/ijmm.2014.1827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/23/2014] [Indexed: 11/06/2022] Open
|
29
|
Oliveras A, Roura-Ferrer M, Solé L, de la Cruz A, Prieto A, Etxebarria A, Manils J, Morales-Cano D, Condom E, Soler C, Cogolludo A, Valenzuela C, Villarroel A, Comes N, Felipe A. Functional assembly of Kv7.1/Kv7.5 channels with emerging properties on vascular muscle physiology. Arterioscler Thromb Vasc Biol 2014; 34:1522-30. [PMID: 24855057 DOI: 10.1161/atvbaha.114.303801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. APPROACH AND RESULTS Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. CONCLUSIONS Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Anna Oliveras
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Meritxell Roura-Ferrer
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Laura Solé
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Alicia de la Cruz
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Angela Prieto
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Ainhoa Etxebarria
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Joan Manils
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Daniel Morales-Cano
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Enric Condom
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Concepció Soler
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Angel Cogolludo
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Carmen Valenzuela
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Alvaro Villarroel
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Núria Comes
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Antonio Felipe
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.).
| |
Collapse
|
30
|
Liu W, Devaux JJ. Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons. Mol Cell Neurosci 2013; 58:40-52. [PMID: 24333508 DOI: 10.1016/j.mcn.2013.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/25/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022] Open
Abstract
Mutations in KCNQ2 and KCNQ3 genes are responsible for benign familial neonatal seizures and epileptic encephalopathies. Some of these mutations have been shown to alter the binding of calmodulin (CaM) to specific C-terminal motifs of KCNQ subunits, known as the A and B helices. Here, we show that the mutation I342A in the A helix of KCNQ3 abolishes CaM interaction and strongly decreases the heteromeric association with KCNQ2. The assembly of KCNQ2 with KCNQ3 is essential for their expression at the axon initial segment (AIS). We find that the I342A mutation alters the targeting of KCNQ2/3 subunits at the AIS. However, the traffic of the mutant channels was rescued by provision of exogenous CaM. We show that CaM enhances the heteromeric association of KCNQ2/KCNQ3-I342A subunits by binding to their B helices in a calcium-dependent manner. To further assert the implication of CaM in channel assembly, we inserted a mutation in the second coil-coil domain of KCNQ2 (KCNQ2-L638P) to prevent its heteromerization with KCNQ3. We observe that the expression of a Ca(2+)-insensitive form of CaM favours the assembly of KCNQ3 with KCNQ2-L638P. Our data thus indicate that both apoCaM and Ca(2+)/CaM bind to the C-terminal domains of KCNQ2 and KCNQ3 subunits, and regulate their heteromeric assembly. Hence, CaM may control the composition and distribution of KCNQ channels in neurons.
Collapse
Affiliation(s)
- Wenjing Liu
- Aix Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille Cedex 15, Marseille, France
| | - Jérôme J Devaux
- Aix Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille Cedex 15, Marseille, France.
| |
Collapse
|
31
|
Herrmann S, Ninkovic M, Kohl T, Lörinczi É, Pardo LA. Cortactin controls surface expression of the voltage-gated potassium channel K(V)10.1. J Biol Chem 2012; 287:44151-63. [PMID: 23144454 PMCID: PMC3531731 DOI: 10.1074/jbc.m112.372540] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
KV10.1 is a voltage-gated potassium channel aberrantly expressed in many cases of cancer, and participates in cancer initiation and tumor progression. Its action as an oncoprotein can be inhibited by a functional monoclonal antibody, indicating a role for channels located at the plasma membrane, accessible to the antibody. Cortactin is an actin-interacting protein implicated in cytoskeletal architecture and often amplified in several types of cancer. In this study, we describe a physical and functional interaction between cortactin and KV10.1. Binding of these two proteins occurs between the C terminus of KV10.1 and the proline-rich domain of cortactin, regions targeted by many post-translational modifications. This interaction is specific for KV10.1 and does not occur with KV10.2. Cortactin controls the abundance of KV10.1 at the plasma membrane and is required for functional expression of KV10.1 channels.
Collapse
Affiliation(s)
- Solveig Herrmann
- Oncophysiology Group, Max-Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|
32
|
Isoform-specific dominant-negative effects associated with hERG1 G628S mutation in long QT syndrome. PLoS One 2012; 7:e42552. [PMID: 22876326 PMCID: PMC3411645 DOI: 10.1371/journal.pone.0042552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/09/2012] [Indexed: 11/25/2022] Open
Abstract
Background Mutations in the human ether-a-go-go-related gene 1 (hERG1) cause type 2 long QT syndrome (LQT2). The hERG1 gene encodes a K+ channel with properties similar to the rapidly activating delayed rectifying K+ current in the heart. Several hERG1 isoforms with unique structural and functional properties have been identified. To date, the pathogenic mechanisms of LQT2 mutations have been predominantly described in the context of the hERG1a isoform. In the present study, we investigated the functional consequences of the LQT2 mutation G628S in the hERG1b and hERG1aUSO isoforms. Methods A double-stable, mammalian expression system was developed to characterize isoform-specific dominant-negative effects of G628S-containing channels when co-expressed at equivalent levels with wild-type hERG1a. Western blot and co-immunoprecipitation studies were performed to study the trafficking and co-assembly of wild-type and mutant hERG1 isoforms. Patch-clamp electrophysiology was performed to characterize hERG1 channel function and the isoform-specific dominant-negative effects associated with the G628S mutation. Conclusions The non-functional hERG1a-G628S and hERG1b-G628S channels co-assembled with wild-type hERG1a and dominantly suppressed hERG1 current. In contrast, G628S-induced dominant-negative effects were absent in the context of the hERG1aUSO isoform. hERG1aUSO-G628S channels did not appreciably associate with hERG1a and did not significantly suppress hERG1 current when co-expressed at equivalent ratios or at ratios that approximate those found in cardiac tissue. These results suggest that the dominant-negative effects of LQT2 mutations may primarily occur in the context of the hERG1a and hERG1b isoforms.
Collapse
|
33
|
Ninkovic M, Mitkovski M, Kohl T, Stühmer W, Pardo LA. Physical and functional interaction of KV10.1 with Rabaptin-5 impacts ion channel trafficking. FEBS Lett 2012; 586:3077-84. [PMID: 22841712 DOI: 10.1016/j.febslet.2012.07.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
Abstract
K(V)10.1 is a potassium channel expressed in brain and implicated in tumor progression. We have searched for proteins interacting with K(V)10.1 and identified Rabaptin-5, an effector of the Rab5 GTPase. Both proteins co-localize on large early endosomes induced by Rab5 hyperactivity. Silencing of Rabaptin-5 induces down-regulation of recycling of K(V)10.1 channel in transfected cells and reduction of K(V)10.1 current density in cells natively expressing K(V)10.1, indicating a role of Rabaptin-5 in channel trafficking. K(V)10.1 co-localizes, but does not physically interact, with Rab7 and Rab11. Our data highlights the complex control of the amount of K(V)10.1 channels on the cell surface.
Collapse
Affiliation(s)
- Milena Ninkovic
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | |
Collapse
|
34
|
Human cytomegalovirus inhibition by cardiac glycosides: evidence for involvement of the HERG gene. Antimicrob Agents Chemother 2012; 56:4891-9. [PMID: 22777050 DOI: 10.1128/aac.00898-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with human cytomegalovirus (HCMV) continues to be a major threat for pregnant women and the immunocompromised population. Although several anti-HCMV therapies are available, the development of new anti-HCMV agents is highly desired. There is growing interest in identifying compounds that might inhibit HCMV by modulating the cellular milieu. Interest in cardiac glycosides (CG), used in patients with congestive heart failure, has increased because of their established anticancer and their suggested antiviral activities. We report that the several CG--digoxin, digitoxin, and ouabain--are potent inhibitors of HCMV at nM concentrations. HCMV inhibition occurred prior to DNA replication, but following binding to its cellular receptors. The levels of immediate early, early, and late viral proteins and cellular NF-κB were significantly reduced in CG-treated cells. The activity of CG in infected cells correlated with the expression of the potassium channel gene, hERG. CMV infection upregulated hERG, whereas CG significantly downregulated its expression. Infection with mouse CMV upregulated mouse ERG (mERG), but treatment with CG did not inhibit virus replication or mERG transcription. These findings suggest that CG may inhibit HCMV by modulating human cellular targets associated with hERG and that these compounds should be studied for their antiviral activities.
Collapse
|
35
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
36
|
Krishnan Y, Li Y, Zheng R, Kanda V, McDonald TV. Mechanisms underlying the protein-kinase mediated regulation of the HERG potassium channel synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1273-84. [PMID: 22613764 DOI: 10.1016/j.bbamcr.2012.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 12/11/2022]
Abstract
The HERG (human ether-a-go-go related gene) potassium channel aids in the repolarization of the cardiomyocyte membrane at the end of each action potential. We have previously shown that sustained protein kinase A or C (PKA and PKC) activity specifically enhances channel synthesis over the course of hours to days in heterologous expression and cardiac myocytes. The kinase-mediated augmentation of the channel is post-transcriptional and occurs near or at the endoplasmic reticulum. Here we report our further investigations into the mechanisms of kinase-mediated augmentation of HERG channel protein. We show that HERG channel phosphorylation alone is not sufficient for the PKA-dependent increase to occur. In vitro translation studies indicate that an additional factor is required for the process. Pharmacologic inhibitors suggest that the channel augmentation is not due to kinase-mediated alteration in proteasome or lysosome activity. PKA activation had no effect on stability of HERG mRNA and polyribosomal profiling showed that kinase activity did not elevate translation from low to high rates. Transcriptional inhibition results suggest that the additional cellular factor is a PKA-regulated protein. Together, these findings suggest that PKA-mediated augmentation of HERG abundance is more complex than previously appreciated involving enhancement of already active translation rates, phosphorylation of the channel protein and at least one other cyclic-AMP/PKA-responsive protein. Further exploration of molecular components of this regulatory pathway will be necessary to determine exact mechanism and the biomedical impact of this process in vivo.
Collapse
Affiliation(s)
- Yamini Krishnan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
37
|
Rodríguez-Rasgado JA, Acuña-Macías I, Camacho J. Eag1 channels as potential cancer biomarkers. SENSORS 2012; 12:5986-95. [PMID: 22778627 PMCID: PMC3386726 DOI: 10.3390/s120505986] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 03/27/2012] [Accepted: 04/05/2012] [Indexed: 12/26/2022]
Abstract
Cancer is a leading cause of death worldwide. New early tumor markers are needed to treat the disease at curable stages. In addition, new therapeutic targets are required to treat patients not responding to available treatments. Ion channels play major roles in health and disease, including cancer. Actually, several ion channels have been suggested as potential tumor markers and therapeutic targets for different types of malignancies. One of most studied ion channels in cancer is the voltage-gated potassium channel Eag1 (ether à go-go 1), which has a high potential to be used as a cancer biomarker. Eag1 is expressed in most human tumors, in contrast to its restricted distribution in healthy tissues. Several findings suggest Eag1 as a potential early marker for cervical, colon, and breast cancer. In addition, because Eag1 amplification/expression is associated with poor survival in leukemia, colon and ovarian cancer patients, it has also been proposed as a prognosis marker. Moreover, inhibition of either expression or activity of Eag1 leads to reduced proliferation of cancer cells, making Eag1 a potential anticancer target. Using Eag1 in cancer detection programs could help to reduce mortality from this disease.
Collapse
Affiliation(s)
- Jesús Adrián Rodríguez-Rasgado
- Department of Pharmacology, Centro de Investigación y Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico.
| | | | | |
Collapse
|
38
|
Aguado-Llera D, Bacarizo J, Gregorio-Teruel L, Taberner FJ, Cámara-Artigas A, Neira JL. Biophysical characterization of the isolated C-terminal region of the transient receptor potential vanilloid 1. FEBS Lett 2012; 586:1154-9. [DOI: 10.1016/j.febslet.2012.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 11/28/2022]
|
39
|
Kohl T, Lörinczi E, Pardo LA, Stühmer W. Rapid internalization of the oncogenic K+ channel K(V)10.1. PLoS One 2011; 6:e26329. [PMID: 22022602 PMCID: PMC3192180 DOI: 10.1371/journal.pone.0026329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/24/2011] [Indexed: 11/18/2022] Open
Abstract
K(V)10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V)10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V)10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V)10.1 intracellular distribution and life cycle. To follow plasma membrane K(V)10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected K(V)10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V)10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V)10.1 surface levels. Brief K(V)10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V)10.1 on tumor cells.
Collapse
Affiliation(s)
- Tobias Kohl
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | - Eva Lörinczi
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | - Luis A. Pardo
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | - Walter Stühmer
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany
| |
Collapse
|
40
|
Shuart NG, Haitin Y, Camp SS, Black KD, Zagotta WN. Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels. Nat Commun 2011; 2:457. [PMID: 21878911 PMCID: PMC3265371 DOI: 10.1038/ncomms1466] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/01/2011] [Indexed: 11/20/2022] Open
Abstract
Molecular determinants of ion channel tetramerization are well characterized, but those involved in heteromeric channel assembly are less clearly understood. The heteromeric composition of native channels is often precisely controlled. Cyclic nucleotide-gated (CNG) channels from rod photoreceptors exhibit a 3:1 stoichiometry of CNGA1 and CNGB1 subunits that tunes the channels for their specialized role in phototransduction. Here we show, using electrophysiology, fluorescence, biochemistry, and X-ray crystallography, that the mechanism for this controlled assembly is the formation of a parallel 3-helix coiled-coil domain of the carboxy-terminal leucine zipper region of CNGA1 subunits, constraining the channel to contain three CNGA1 subunits, followed by preferential incorporation of a single CNGB1 subunit. Deletion of the carboxy-terminal leucine zipper domain relaxed the constraint and permitted multiple CNGB1 subunits in the channel. The X-ray crystal structures of the parallel 3-helix coiled-coil domains of CNGA1 and CNGA3 subunits were similar, suggesting that a similar mechanism controls the stoichiometry of cone CNG channels. The assembly mechanisms of heteromeric ion channels are poorly understood. Using a range of techniques, Shuartet al.determine the mechanism by which rod photoreceptor cyclic nucleotide-gated channels assume a 3:1 stoichiometry of CNGA1 and CNGB1 subunits.![]()
Collapse
Affiliation(s)
- Noah G Shuart
- Howard Hughes Medical Institute and Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
![]()
In excitable cells, the main mediators of sodium conductance
across
membranes are voltage-gated sodium channels (NaVs). Eukaryotic
NaVs are essential elements in neuronal signaling and muscular
contraction and in humans have been causally related to a variety
of neurological and cardiovascular channelopathies. They are complex
heavily glycosylated intrinsic membrane proteins present in only trace
quantities that have proven to be challenging objects of study. However,
in recent years, a number of simpler prokaryotic sodium channels have
been identified, with NaChBac from Bacillus halodurans being the most well-characterized to date. The availability of a
bacterial NaV that is amenable to heterologous expression
and functional characterization in both bacterial and mammalian systems
has provided new opportunities for structure–function studies.
This review describes features of NaChBac as an exemplar of this class
of bacterial channels, compares prokaryotic and eukaryotic NaVs with respect to their structural organization, pharmacological
profiling, and functional kinetics, and discusses how voltage-gated
ion channels may have evolved to deal with the complex functional
demands of higher organisms.
Collapse
Affiliation(s)
- Kalypso Charalambous
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | | |
Collapse
|
42
|
Chen IH, Hu JH, Jow GM, Chuang CC, Lee TT, Liu DC, Jeng CJ. Distal end of carboxyl terminus is not essential for the assembly of rat Eag1 potassium channels. J Biol Chem 2011; 286:27183-96. [PMID: 21646358 DOI: 10.1074/jbc.m111.233825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The assembly of four pore-forming α-subunits into tetramers is a prerequisite for the formation of functional K(+) channels. A short carboxyl assembly domain (CAD) in the distal end of the cytoplasmic carboxyl terminus has been implicated in the assembly of Eag α-subunits, a subfamily of the ether-à-go-go K(+) channel family. The precise role of CAD in the formation of Eag tetrameric channels, however, remains unclear. Moreover, it has not been determined whether other protein regions also contribute to the assembly of Eag subunits. We addressed these questions by studying the biophysical properties of a series of different rat Eag1 (rEag1) truncation mutants. Two truncation mutants without CAD (K848X and W823X) yielded functional phenotypes similar to those for wild-type (WT) rEag1 channels. Furthermore, nonfunctional rEag1 truncation mutants lacking the distal region of the carboxyl terminus displayed substantial dominant-negative effects on the functional expression of WT as well as K848X and W823X channels. Our co-immunoprecipitation studies further revealed that truncation mutants containing no CAD indeed displayed significant association with rEag1-WT subunits. Finally, surface biotinylation and protein glycosylation analyses demonstrated that progressive truncations of the carboxyl terminus resulted in aggravating disruptions of membrane trafficking and glycosylation of rEag1 proteins. Overall, our data suggest that the distal carboxyl terminus, including CAD, is dispensable for the assembly of rEag1 K(+) channels but may instead be essential for ensuring proper protein biosynthesis. We propose that the S6 segment and the proximal carboxyl terminus may constitute the principal subunit recognition site for the assembly of rEag1 channels.
Collapse
Affiliation(s)
- I-Hsiu Chen
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 12212, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Mihic A, Chauhan VS, Gao X, Oudit GY, Tsushima RG. Trafficking defect and proteasomal degradation contribute to the phenotype of a novel KCNH2 long QT syndrome mutation. PLoS One 2011; 6:e18273. [PMID: 21483829 PMCID: PMC3069070 DOI: 10.1371/journal.pone.0018273] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/25/2011] [Indexed: 12/26/2022] Open
Abstract
The Kv11.1 (hERG) K+ channel plays a fundamental role in cardiac repolarization. Missense mutations in KCNH2, the gene encoding Kv11.1, cause long QT syndrome (LQTS) and frequently cause channel trafficking-deficiencies. This study characterized the properties of a novel KCNH2 mutation discovered in a LQT2 patient resuscitated from a ventricular fibrillation arrest. Proband genotyping was performed by SSCP and DNA sequencing. The electrophysiological and biochemical properties of the mutant channel were investigated after expression in HEK293 cells. The proband manifested a QTc of 554 ms prior to electrolyte normalization. Mutation analysis revealed an autosomal dominant frameshift mutation at proline 1086 (P1086fs+32X; 3256InsG). Co-immunoprecipitation demonstrated that wild-type Kv11.1 and mutant channels coassemble. Western blot showed that the mutation did not produce mature complex-glycosylated Kv11.1 channels and coexpression resulted in reduced channel maturation. Electrophysiological recordings revealed mutant channel peak currents to be similar to untransfected cells. Co-expression of channels in a 1∶1 ratio demonstrated dominant negative suppression of peak Kv11.1 currents. Immunocytochemistry confirmed that mutant channels were not present at the plasma membrane. Mutant channel trafficking rescue was attempted by incubation at reduced temperature or with the pharmacological agents E-4031. These treatments did not significantly increase peak mutant currents or induce the formation of mature complex-glycosylated channels. The proteasomal inhibitor lactacystin increased the protein levels of the mutant channels demonstrating proteasomal degradation, but failed to induce mutant Kv11.1 protein trafficking. Our study demonstrates a novel dominant-negative Kv11.1 mutation, which results in degraded non-functional channels leading to a LQT2 phenotype.
Collapse
Affiliation(s)
- Anton Mihic
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Vijay S. Chauhan
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| | - Xiaodong Gao
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Gavin Y. Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute and Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (GYO); (RGT)
| | - Robert G. Tsushima
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail: (GYO); (RGT)
| |
Collapse
|
44
|
Asher V, Sowter H, Shaw R, Bali A, Khan R. Eag and HERG potassium channels as novel therapeutic targets in cancer. World J Surg Oncol 2010; 8:113. [PMID: 21190577 PMCID: PMC3022597 DOI: 10.1186/1477-7819-8-113] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/29/2010] [Indexed: 12/03/2022] Open
Abstract
Voltage gated potassium channels have been extensively studied in relation to cancer. In this review, we will focus on the role of two potassium channels, Ether à-go-go (Eag), Human ether à-go-go related gene (HERG), in cancer and their potential therapeutic utility in the treatment of cancer. Eag and HERG are expressed in cancers of various organs and have been implicated in cell cycle progression and proliferation of cancer cells. Inhibition of these channels has been shown to reduce proliferation both in vitro and vivo studies identifying potassium channel modulators as putative inhibitors of tumour progression. Eag channels in view of their restricted expression in normal tissue may emerge as novel tumour biomarkers.
Collapse
Affiliation(s)
- Viren Asher
- Department of Obstetrics and Gynaecology, School of Graduate Medicine and Health, Royal Derby Hospital, Uttoxeter road, Derby DE22 3DT, UK.
| | | | | | | | | |
Collapse
|
45
|
Li Y, Liu X, Wu Y, Xu Z, Li H, Griffith LC, Zhou Y. Intracellular regions of the Eag potassium channel play a critical role in generation of voltage-dependent currents. J Biol Chem 2010; 286:1389-99. [PMID: 21059657 DOI: 10.1074/jbc.m110.184077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Folding, assembly, and trafficking of ion channels are tightly controlled processes and are important for biological functions relevant to health and disease. Here, we report that functional expression of the Eag channel is temperature-sensitive by a mechanism that is independent of trafficking or surface targeting of the channel protein. Eag channels in cells grown at 37 °C exhibit voltage-evoked gating charge movements but fail to conduct K(+) ions. By mutagenesis and chimeric channel studies, we show that the N- and C-terminal regions are involved in controlling a step after movement of the voltage sensor, as well as in regulating biophysical properties of the Eag channel. Synthesis and assembly of Eag at high temperature disrupt the ability of these domains to carry out their function. These results suggest an important role of the intracellular regions in the generation of Eag currents.
Collapse
Affiliation(s)
- Yong Li
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Tuteja D, Rafizadeh S, Timofeyev V, Wang S, Zhang Z, Li N, Mateo RK, Singapuri A, Young JN, Knowlton AA, Chiamvimonvat N. Cardiac small conductance Ca2+-activated K+ channel subunits form heteromultimers via the coiled-coil domains in the C termini of the channels. Circ Res 2010; 107:851-9. [PMID: 20689065 DOI: 10.1161/circresaha.109.215269] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Ca(2+)-activated K(+) channels are present in a wide variety of cells. We have previously reported the presence of small conductance Ca(2+)-activated K(+) (SK or K(Ca)) channels in human and mouse cardiac myocytes that contribute functionally toward the shape and duration of cardiac action potentials. Three isoforms of SK channel subunits (SK1, SK2, and SK3) are found to be expressed. Moreover, there is differential expression with more abundant SK channels in the atria and pacemaking tissues compared with the ventricles. SK channels are proposed to be assembled as tetramers similar to other K(+) channels, but the molecular determinants driving their subunit interaction and assembly are not defined in cardiac tissues. OBJECTIVE To investigate the heteromultimeric formation and the domain necessary for the assembly of 3 SK channel subunits (SK1, SK2, and SK3) into complexes in human and mouse hearts. METHODS AND RESULTS Here, we provide evidence to support the formation of heteromultimeric complexes among different SK channel subunits in native cardiac tissues. SK1, SK2, and SK3 subunits contain coiled-coil domains (CCDs) in the C termini. In vitro interaction assay supports the direct interaction between CCDs of the channel subunits. Moreover, specific inhibitory peptides derived from CCDs block the Ca(2+)-activated K(+) current in atrial myocytes, which is important for cardiac repolarization. CONCLUSIONS The data provide evidence for the formation of heteromultimeric complexes among different SK channel subunits in atrial myocytes. Because SK channels are predominantly expressed in atrial myocytes, specific ligands of the different isoforms of SK channel subunits may offer a unique therapeutic opportunity to directly modify atrial cells without interfering with ventricular myocytes.
Collapse
Affiliation(s)
- Dipika Tuteja
- Department of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Synchrotron radiation circular dichroism spectroscopy-defined structure of the C-terminal domain of NaChBac and its role in channel assembly. Proc Natl Acad Sci U S A 2010; 107:14064-9. [PMID: 20663949 DOI: 10.1073/pnas.1001793107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extramembranous domains play important roles in the structure and function of membrane proteins, contributing to protein stability, forming association domains, and binding ancillary subunits and ligands. However, these domains are generally flexible, making them difficult or unsuitable targets for obtaining high-resolution X-ray and NMR structural information. In this study we show that the highly sensitive method of synchrotron radiation circular dichroism (SRCD) spectroscopy can be used as a powerful tool to investigate the structure of the extramembranous C-terminal domain (CTD) of the prokaryotic voltage-gated sodium channel (Na(V)) from Bacillus halodurans, NaChBac. Sequence analyses predict its CTD will consist of an unordered region followed by an alpha-helix, which has a propensity to form a multimeric coiled-coil motif, and which could form an association domain in the homotetrameric NaChBac channel. By creating a number of shortened constructs we have shown experimentally that the CTD does indeed contain a stretch of approximately 20 alpha-helical residues preceded by a nonhelical region adjacent to the final transmembrane segment and that the efficiency of assembly of channels in the membrane progressively decreases as the CTD residues are removed. Analyses of the CTDs of 32 putative prokaryotic Na(V) sequences suggest that a CTD helical bundle is a structural feature conserved throughout the bacterial sodium channel family.
Collapse
|
48
|
Calmodulin interaction with hEAG1 visualized by FRET microscopy. PLoS One 2010; 5:e10873. [PMID: 20523736 PMCID: PMC2877719 DOI: 10.1371/journal.pone.0010873] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/04/2010] [Indexed: 11/19/2022] Open
Abstract
Background Ca2+-mediated regulation of ion channels provides a link between intracellular signaling pathways and membrane electrical activity. Intracellular Ca2+ inhibits the voltage-gated potassium channel EAG1 through the direct binding of calmodulin (CaM). Three CaM binding sites (BD-C1: 674-683, BD-C2: 711-721, BD-N: 151-165) have been identified in a peptide screen and were proposed to mediate binding. The participation of the three sites in CaM binding to the native channel, however, remains unclear. Methodology/Principal Findings Here we studied the binding of Ca2+/CaM to the EAG channel by visualizing the interaction between YFP-labeled CaM and Cerulean-labeled hEAG1 in mammalian cells by FRET. The results of our cellular approach substantiate that two CaM binding sites are predominantly involved; the high-affinity 1-8-14 based CaM binding domain in the N-terminus and the second C-terminal binding domain BD-C2. Mutations at these sites completely abolished CaM binding to hEAG1. Conclusions/Significance We demonstrated that the BD-N and BD-C2 binding domains are sufficient for CaM binding to the native channel, and, therefore, that BD-C1 is unable to bind CaM independently.
Collapse
|
49
|
Mio K, Mio M, Arisaka F, Sato M, Sato C. The C-terminal coiled-coil of the bacterial voltage-gated sodium channel NaChBac is not essential for tetramer formation, but stabilizes subunit-to-subunit interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:111-21. [PMID: 20678983 DOI: 10.1016/j.pbiomolbio.2010.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 04/10/2010] [Accepted: 05/19/2010] [Indexed: 11/26/2022]
Abstract
The NaChBac is a prokaryotic homologue of the voltage-gated sodium channel found in the genome of the alkalophilic bacterium Bacillus halodurans C-125. Like a repeating cassette of mammalian sodium channel, the NaChBac possesses hydrophobic domains corresponding to six putative transmembrane segments and a pore loop, and exerts channel function by forming a tetramer although detailed mechanisms of subunit assembly remain unclear. We generated truncated mutants from NaChBac, and investigated their ability to form tetramers in relation to their channel functions. A mutant that deletes almost all of the C-terminal coiled-coil structure lost its voltage-dependent ion permeability, although it was properly translocated to the cell surface. The mutant protein was purified as a tetramer using a reduced concentration of detergent, but the association between the subunits was shown to be much weaker than the wild type. The chemical cross-linking, blue native PAGE, sedimentation velocity experiments, size exclusion chromatography, immunoprecipitation, and electron microscopy all supported its tetrameric assembly. We further purified the C-terminal cytoplasmic domain alone and confirmed its self-oligomerization. These data suggest that the C-terminal coiled-coil structure stabilizes subunit-to-subunit interactions of NaChBac, but is not critical for their tetramer formation.
Collapse
Affiliation(s)
- Kazuhiro Mio
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Aomi 2-3-26, Koto-ku, Tokyo 135-0064, Japan.
| | | | | | | | | |
Collapse
|
50
|
Giamarchi A, Feng S, Rodat-Despoix L, Xu Y, Bubenshchikova E, Newby LJ, Hao J, Gaudioso C, Crest M, Lupas AN, Honoré E, Williamson MP, Obara T, Ong ACM, Delmas P. A polycystin-2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes. EMBO J 2010; 29:1176-91. [PMID: 20168298 PMCID: PMC2857461 DOI: 10.1038/emboj.2010.18] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/25/2010] [Indexed: 01/26/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Earlier work has shown that PC1 and PC2 assemble into a polycystin complex implicated in kidney morphogenesis. PC2 also assembles into homomers of uncertain functional significance. However, little is known about the molecular mechanisms that direct polycystin complex assembly and specify its functions. We have identified a coiled coil in the C-terminus of PC2 that functions as a homodimerization domain essential for PC1 binding but not for its self-oligomerization. Dimerization-defective PC2 mutants were unable to reconstitute PC1/PC2 complexes either at the plasma membrane (PM) or at PM-endoplasmic reticulum (ER) junctions but could still function as ER Ca(2+)-release channels. Expression of dimerization-defective PC2 mutants in zebrafish resulted in a cystic phenotype but had lesser effects on organ laterality. We conclude that C-terminal dimerization of PC2 specifies the formation of polycystin complexes but not formation of ER-localized PC2 channels. Mutations that affect PC2 C-terminal homo- and heteromerization are the likely molecular basis of cyst formation in ADPKD.
Collapse
Affiliation(s)
- Aurélie Giamarchi
- Centre de Recherche en Neurophysiologie et Neurobiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, Bd Pierre Dramard, Marseille Cedex 15, France
| | - Shuang Feng
- Kidney Genetics Group, Academic Unit of Nephrology, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield, UK
| | - Lise Rodat-Despoix
- Centre de Recherche en Neurophysiologie et Neurobiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, Bd Pierre Dramard, Marseille Cedex 15, France
| | - Yaoxian Xu
- Kidney Genetics Group, Academic Unit of Nephrology, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield, UK
| | - Ekaterina Bubenshchikova
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, MetroHealth Drive, Cleveland, OH, USA
| | - Linda J Newby
- Kidney Genetics Group, Academic Unit of Nephrology, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield, UK
| | - Jizhe Hao
- Centre de Recherche en Neurophysiologie et Neurobiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, Bd Pierre Dramard, Marseille Cedex 15, France
| | - Christelle Gaudioso
- Centre de Recherche en Neurophysiologie et Neurobiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, Bd Pierre Dramard, Marseille Cedex 15, France
| | - Marcel Crest
- Centre de Recherche en Neurophysiologie et Neurobiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, Bd Pierre Dramard, Marseille Cedex 15, France
| | - Andrei N Lupas
- Department of Protein Evolution at the Max-Planck-Institute for Developmental Biology, Tuebingen, Germany
| | - Eric Honoré
- IPMC-CNRS UMR 6097, route des Lucioles, Valbonne, France
| | - Michael P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Tomoko Obara
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, MetroHealth Drive, Cleveland, OH, USA
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | - Albert CM Ong
- Kidney Genetics Group, Academic Unit of Nephrology, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield, UK
| | - Patrick Delmas
- Centre de Recherche en Neurophysiologie et Neurobiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, Bd Pierre Dramard, Marseille Cedex 15, France
| |
Collapse
|