1
|
Cipakova I, Jurcik M, Selicky T, Lalakova LO, Jakubikova J, Cipak L. Dysfunction of Gpl1-Gih35-Wdr83 Complex in S. pombe Affects the Splicing of DNA Damage Repair Factors Resulting in Increased Sensitivity to DNA Damage. Int J Mol Sci 2024; 25:4192. [PMID: 38673778 PMCID: PMC11049892 DOI: 10.3390/ijms25084192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.
Collapse
Affiliation(s)
- Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (M.J.); (T.S.); (L.O.L.)
| | - Matus Jurcik
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (M.J.); (T.S.); (L.O.L.)
| | - Tomas Selicky
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (M.J.); (T.S.); (L.O.L.)
| | - Laura Olivia Lalakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (M.J.); (T.S.); (L.O.L.)
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia;
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (M.J.); (T.S.); (L.O.L.)
| |
Collapse
|
2
|
Kuse R, Ishii K. Flexible Attachment and Detachment of Centromeres and Telomeres to and from Chromosomes. Biomolecules 2023; 13:1016. [PMID: 37371596 DOI: 10.3390/biom13061016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Accurate transmission of genomic information across multiple cell divisions and generations, without any losses or errors, is fundamental to all living organisms. To achieve this goal, eukaryotes devised chromosomes. Eukaryotic genomes are represented by multiple linear chromosomes in the nucleus, each carrying a centromere in the middle, a telomere at both ends, and multiple origins of replication along the chromosome arms. Although all three of these DNA elements are indispensable for chromosome function, centromeres and telomeres possess the potential to detach from the original chromosome and attach to new chromosomal positions, as evident from the events of telomere fusion, centromere inactivation, telomere healing, and neocentromere formation. These events seem to occur spontaneously in nature but have not yet been elucidated clearly, because they are relatively infrequent and sometimes detrimental. To address this issue, experimental setups have been developed using model organisms such as yeast. In this article, we review some of the key experiments that provide clues as to the extent to which these paradoxical and elusive features of chromosomally indispensable elements may become valuable in the natural context.
Collapse
Affiliation(s)
- Riku Kuse
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| | - Kojiro Ishii
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| |
Collapse
|
3
|
Pai CC, Durley SC, Cheng WC, Chiang NY, Peters J, Kasparek T, Blaikley E, Wee BY, Walker C, Kearsey SE, Buffa F, Murray JM, Humphrey TC. Homologous recombination suppresses transgenerational DNA end resection and chromosomal instability in fission yeast. Nucleic Acids Res 2023; 51:3205-3222. [PMID: 36951111 PMCID: PMC10123110 DOI: 10.1093/nar/gkad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/24/2023] Open
Abstract
Chromosomal instability (CIN) drives cell-to-cell heterogeneity, and the development of genetic diseases, including cancer. Impaired homologous recombination (HR) has been implicated as a major driver of CIN, however, the underlying mechanism remains unclear. Using a fission yeast model system, we establish a common role for HR genes in suppressing DNA double-strand break (DSB)-induced CIN. Further, we show that an unrepaired single-ended DSB arising from failed HR repair or telomere loss is a potent driver of widespread CIN. Inherited chromosomes carrying a single-ended DSB are subject to cycles of DNA replication and extensive end-processing across successive cell divisions. These cycles are enabled by Cullin 3-mediated Chk1 loss and checkpoint adaptation. Subsequent propagation of unstable chromosomes carrying a single-ended DSB continues until transgenerational end-resection leads to fold-back inversion of single-stranded centromeric repeats and to stable chromosomal rearrangements, typically isochromosomes, or to chromosomal loss. These findings reveal a mechanism by which HR genes suppress CIN and how DNA breaks that persist through mitotic divisions propagate cell-to-cell heterogeneity in the resultant progeny.
Collapse
Affiliation(s)
- Chen-Chun Pai
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Samuel C Durley
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Wei-Chen Cheng
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Nien-Yi Chiang
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jennifer Peters
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Torben Kasparek
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Elizabeth Blaikley
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Boon-Yu Wee
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Carol Walker
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stephen E Kearsey
- Department of Biology, University of Oxford, Zoology Research and Administration Building, Mansfield Road, Oxford OX1 3SZ, UK
| | - Francesca Buffa
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Johanne M Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, SussexBN1 9RQ, UK
| | - Timothy C Humphrey
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
4
|
DNA Repair in Haploid Context. Int J Mol Sci 2021; 22:ijms222212418. [PMID: 34830299 PMCID: PMC8620282 DOI: 10.3390/ijms222212418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022] Open
Abstract
DNA repair is a well-covered topic as alteration of genetic integrity underlies many pathological conditions and important transgenerational consequences. Surprisingly, the ploidy status is rarely considered although the presence of homologous chromosomes dramatically impacts the repair capacities of cells. This is especially important for the haploid gametes as they must transfer genetic information to the offspring. An understanding of the different mechanisms monitoring genetic integrity in this context is, therefore, essential as differences in repair pathways exist that differentiate the gamete’s role in transgenerational inheritance. Hence, the oocyte must have the most reliable repair capacity while sperm, produced in large numbers and from many differentiation steps, are expected to carry de novo variations. This review describes the main DNA repair pathways with a special emphasis on ploidy. Differences between Saccharomyces cerevisiae and Schizosaccharomyces pombe are especially useful to this aim as they can maintain a diploid and haploid life cycle respectively.
Collapse
|
5
|
Li T, Petreaca RC, Forsburg SL. Schizosaccharomyces pombe KAT5 contributes to resection and repair of a DNA double-strand break. Genetics 2021; 218:6173406. [PMID: 33723569 DOI: 10.1093/genetics/iyab042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 11/14/2022] Open
Abstract
Chromatin remodeling is essential for effective repair of a DNA double-strand break (DSB). KAT5 (Schizosaccharomyces pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that coordinates various DNA damage response activities at a DNA DSB, including histone remodeling and activation of the DNA damage checkpoint. In S. pombe, mutations in mst1+ causes sensitivity to DNA damaging drugs. Here we show that Mst1 is recruited to DSBs. Mutation of mst1+ disrupts recruitment of repair proteins and delays resection. These defects are partially rescued by deletion of pku70, which has been previously shown to antagonize repair by homologous recombination (HR). These phenotypes of mst1 are similar to pht1-4KR, a nonacetylatable form of histone variant H2A.Z, which has been proposed to affect resection. Our data suggest that Mst1 functions to direct repair of DSBs toward HR pathways by modulating resection at the DSB.
Collapse
Affiliation(s)
- Tingting Li
- Program of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Ruben C Petreaca
- Program of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA
- Department of Molecular Genetics, Ohio State University, Marion, OH 43302, USA
| | - Susan L Forsburg
- Program of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
6
|
Davé A, Pai CC, Durley SC, Hulme L, Sarkar S, Wee BY, Prudden J, Tinline-Purvis H, Cullen JK, Walker C, Watson A, Carr AM, Murray JM, Humphrey TC. Homologous recombination repair intermediates promote efficient de novo telomere addition at DNA double-strand breaks. Nucleic Acids Res 2020; 48:1271-1284. [PMID: 31828313 PMCID: PMC7026635 DOI: 10.1093/nar/gkz1109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/23/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.
Collapse
Affiliation(s)
- Anoushka Davé
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Chen-Chun Pai
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Samuel C Durley
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Lydia Hulme
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sovan Sarkar
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Boon-Yu Wee
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - John Prudden
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Helen Tinline-Purvis
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Jason K Cullen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Carol Walker
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Adam Watson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Johanne M Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Timothy C Humphrey
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
7
|
Schizosaccharomyces pombe Assays to Study Mitotic Recombination Outcomes. Genes (Basel) 2020; 11:genes11010079. [PMID: 31936815 PMCID: PMC7016768 DOI: 10.3390/genes11010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/16/2023] Open
Abstract
The fission yeast—Schizosaccharomyces pombe—has emerged as a powerful tractable system for studying DNA damage repair. Over the last few decades, several powerful in vivo genetic assays have been developed to study outcomes of mitotic recombination, the major repair mechanism of DNA double strand breaks and stalled or collapsed DNA replication forks. These assays have significantly increased our understanding of the molecular mechanisms underlying the DNA damage response pathways. Here, we review the assays that have been developed in fission yeast to study mitotic recombination.
Collapse
|
8
|
Zhurinsky J, Salas-Pino S, Iglesias-Romero AB, Torres-Mendez A, Knapp B, Flor-Parra I, Wang J, Bao K, Jia S, Chang F, Daga RR. Effects of the microtubule nucleator Mto1 on chromosomal movement, DNA repair, and sister chromatid cohesion in fission yeast. Mol Biol Cell 2019; 30:2695-2708. [PMID: 31483748 PMCID: PMC6761766 DOI: 10.1091/mbc.e19-05-0301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 11/11/2022] Open
Abstract
Although the function of microtubules (MTs) in chromosomal segregation during mitosis is well characterized, much less is known about the role of MTs in chromosomal functions during interphase. In the fission yeast Schizosaccharomyces pombe, dynamic cytoplasmic MT bundles move chromosomes in an oscillatory manner during interphase via linkages through the nuclear envelope (NE) at the spindle pole body (SPB) and other sites. Mto1 is a cytoplasmic factor that mediates the nucleation and attachment of cytoplasmic MTs to the nucleus. Here, we test the function of these cytoplasmic MTs and Mto1 on DNA repair and recombination during interphase. We find that mto1Δ cells exhibit defects in DNA repair and homologous recombination (HR) and abnormal DNA repair factory dynamics. In these cells, sister chromatids are not properly paired, and binding of Rad21 cohesin subunit along chromosomal arms is reduced. Our findings suggest a model in which cytoplasmic MTs and Mto1 facilitate efficient DNA repair and HR by promoting dynamic chromosomal organization and cohesion in the nucleus.
Collapse
Affiliation(s)
- Jacob Zhurinsky
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Silvia Salas-Pino
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Ana B. Iglesias-Romero
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Antonio Torres-Mendez
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Benjamin Knapp
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Ignacio Flor-Parra
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Jiyong Wang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Kehan Bao
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Songtao Jia
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Fred Chang
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Rafael R. Daga
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| |
Collapse
|
9
|
Lucas BE, McPherson MT, Hawk TM, Wilson LN, Kroh JM, Hickman KG, Fitzgerald SR, Disbennett WM, Rollins PD, Hylton HM, Baseer MA, Montgomery PN, Wu JQ, Petreaca RC. An Assay to Study Intra-Chromosomal Deletions in Yeast. Methods Protoc 2019; 2:mps2030074. [PMID: 31454903 PMCID: PMC6789737 DOI: 10.3390/mps2030074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/30/2023] Open
Abstract
An accurate DNA damage response pathway is critical for the repair of DNA double-strand breaks. Repair may occur by homologous recombination, of which many different sub-pathways have been identified. Some recombination pathways are conservative, meaning that the chromosome sequences are preserved, and others are non-conservative, leading to some alteration of the DNA sequence. We describe an in vivo genetic assay to study non-conservative intra-chromosomal deletions at regions of non-tandem direct repeats in Schizosaccharomyces pombe. This assay can be used to study both spontaneous breaks arising during DNA replication and induced double-strand breaks created with the S. cerevisiae homothallic endonuclease (HO). The preliminary genetic validation of this assay shows that spontaneous breaks require rad52+ but not rad51+, while induced breaks require both genes, in agreement with previous studies. This assay will be useful in the field of DNA damage repair for studying mechanisms of intra-chromosomal deletions.
Collapse
Affiliation(s)
- Bailey E Lucas
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Matthew T McPherson
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Tila M Hawk
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Lexia N Wilson
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Jacob M Kroh
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Kyle G Hickman
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Sean R Fitzgerald
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | | | - P Daniel Rollins
- Molecular Genetics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hannah M Hylton
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Mohammed A Baseer
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Paige N Montgomery
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA.
| |
Collapse
|
10
|
Barnum KJ, Nguyen YT, O'Connell MJ. XPG-related nucleases are hierarchically recruited for double-stranded rDNA break resection. J Biol Chem 2019; 294:7632-7643. [PMID: 30885940 DOI: 10.1074/jbc.ra118.005415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
dsDNA breaks (DSBs) are resected in a 5'→3' direction, generating single-stranded DNA (ssDNA). This promotes DNA repair by homologous recombination and also assembly of signaling complexes that activate the DNA damage checkpoint effector kinase Chk1. In fission yeast (Schizosaccharomyces pombe), genetic screens have previously uncovered a family of three xeroderma pigmentosum G (XPG)-related nucleases (XRNs), known as Ast1, Exo1, and Rad2. Collectively, these XRNs are recruited to a euchromatic DSB and are required for ssDNA production and end resection across the genome. Here, we studied why there are three related but distinct XRN enzymes that are all conserved across a range of species, including humans, whereas all other DSB response proteins are present as single species. Using S. pombe as a model, ChIP and DSB resection analysis assays, and highly efficient I-PpoI-induced DSBs in the 28S rDNA gene, we observed a hierarchy of recruitment for each XRN, with a progressive compensatory recruitment of the other XRNs as the responding enzymes are deleted. Importantly, we found that this hierarchy reflects the requirement for different XRNs to effect efficient DSB resection in the rDNA, demonstrating that the presence of three XRN enzymes is not a simple division of labor. Furthermore, we uncovered a specificity of XRN function with regard to the direction of transcription. We conclude that the DSB-resection machinery is complex, is nonuniform across the genome, and has built-in fail-safe mechanisms, features that are in keeping with the highly pathological nature of DSB lesions.
Collapse
Affiliation(s)
- Kevin J Barnum
- From the Department of Oncological Sciences and.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Y Tram Nguyen
- From the Department of Oncological Sciences and.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Matthew J O'Connell
- From the Department of Oncological Sciences and .,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
11
|
Abstract
DNA double-strand breaks (DSBs), arising during normal DNA metabolism or following exposure to mutagenic agents such as ionizing radiation can lead to chromosomal rearrangements and genome instability, and are potentially lethal if unrepaired. Therefore, understanding the mechanisms of DSB repair and misrepair, and identifying the factors involved in these processes is of biological as well as medical interest. Here we describe a DSB assay in Schizosaccharomyces pombe that can be used to identify and quantify different repair, misrepair, and failed repair events resulting from a site-specific DSB within the context of a nonessential minichromosome, Ch16 This assay can be used to determine the contribution of most genes or genetic backgrounds to DSB repair and genome stability, and can also provide mechanistic insights into their function.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Institute for Radiation Oncology, University of Oxford, Department of Oncology, ORCRB, Oxford OX3 7DQ, United Kingdom
| | - Elizabeth Blaikley
- CRUK-MRC Institute for Radiation Oncology, University of Oxford, Department of Oncology, ORCRB, Oxford OX3 7DQ, United Kingdom
| | - Timothy C Humphrey
- CRUK-MRC Institute for Radiation Oncology, University of Oxford, Department of Oncology, ORCRB, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
12
|
Abstract
The fission yeast Schizosaccharomyces pombe is an excellent model organism to study DNA metabolism, in which the DNA replication and repair mechanisms are evolutionarily conserved. In this introduction we describe a range of methods commonly used to study aspects of DNA metabolism in fission yeast, focusing on approaches used for the analysis of genome stability, DNA replication, and DNA repair. We describe the use of a minichromosome, Ch16, for monitoring different aspects of genome stability. We introduce two-dimensional gel electrophoresis and immunofluorescent visualization of combed DNA molecules for the analysis of DNA replication. Further, we introduce a pulsed field gel electrophoresis (PFGE) assay to physically monitor chromosome integrity, which can be used in conjunction with a DNA double-strand break (DSB) repair assay to genetically quantitate different DSB repair and misrepair outcomes, including gross chromosomal rearrangements, in fission yeast.
Collapse
Affiliation(s)
- Francisco Antequera
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Timothy C Humphrey
- CRUK-MRC Oxford Institute for Radiation Oncology, University of Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
13
|
Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization. Genetics 2016; 203:1669-78. [PMID: 27343236 PMCID: PMC4981269 DOI: 10.1534/genetics.116.189118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022] Open
Abstract
Uncontrolled propagation of retrotransposons is potentially detrimental to host genome integrity. Therefore, cells have evolved surveillance mechanisms to restrict the mobility of these elements. In Schizosaccharomyces pombe the Tf2 LTR retrotransposons are transcriptionally silenced and are also clustered in the nucleus into structures termed Tf bodies. Here we describe the impact of silencing and clustering on the mobility of an endogenous Tf2 element. Deletion of genes such as set1+ (histone H3 lysine 4 methyltransferase) or abp1+ (CENP-B homolog) that both alleviate silencing and clustering, result in a corresponding increase in mobilization. Furthermore, expression of constitutively active Sre1, a transcriptional activator of Tf2 elements, also alleviates clustering and induces mobilization. In contrast, clustering is not disrupted by loss of the HIRA histone chaperone, despite high levels of expression, and in this background, mobilization frequency is only marginally increased. Thus, mutations that compromise transcriptional silencing but not Tf bodies are insufficient to drive mobilization. Furthermore, analyses of mutant alleles that separate the transcriptional repression and clustering functions of Set1 are consistent with control of Tf2 propagation via a combination of silencing and spatial organization. Our results indicate that host surveillance mechanisms operate at multiple levels to restrict Tf2 retrotransposon mobilization.
Collapse
|
14
|
Guarino E, Cojoc G, García-Ulloa A, Tolić IM, Kearsey SE. Real-time imaging of DNA damage in yeast cells using ultra-short near-infrared pulsed laser irradiation. PLoS One 2014; 9:e113325. [PMID: 25409521 PMCID: PMC4237433 DOI: 10.1371/journal.pone.0113325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/22/2014] [Indexed: 01/12/2023] Open
Abstract
Analysis of accumulation of repair and checkpoint proteins at repair sites in yeast nuclei has conventionally used chemical agents, ionizing radiation or induction of endonucleases to inflict localized damage. In addition to these methods, similar studies in mammalian cells have used laser irradiation, which has the advantage that damage is inflicted at a specific nuclear region and at a precise time, and this allows accurate kinetic analysis of protein accumulation at DNA damage sites. We show here that it is feasible to use short pulses of near-infrared laser irradiation to inflict DNA damage in subnuclear regions of yeast nuclei by multiphoton absorption. In conjunction with use of fluorescently-tagged proteins, this allows quantitative analysis of protein accumulation at damage sites within seconds of damage induction. PCNA accumulated at damage sites rapidly, such that maximum accumulation was seen approximately 50 s after damage, then levels declined linearly over 200-1000 s after irradiation. RPA accumulated with slower kinetics such that hardly any accumulation was detected within 60 s of irradiation, and levels subsequently increased linearly over the next 900 s, after which levels were approximately constant (up to ca. 2700 s) at the damage site. This approach complements existing methodologies to allow analysis of key damage sensors and chromatin modification changes occurring within seconds of damage inception.
Collapse
Affiliation(s)
- Estrella Guarino
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Gheorghe Cojoc
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Iva M. Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Stephen E. Kearsey
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Increased meiotic crossovers and reduced genome stability in absence of Schizosaccharomyces pombe Rad16 (XPF). Genetics 2014; 198:1457-72. [PMID: 25293972 DOI: 10.1534/genetics.114.171355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Schizosaccharomyces pombe Rad16 is the ortholog of the XPF structure-specific endonuclease, which is required for nucleotide excision repair and implicated in the single strand annealing mechanism of recombination. We show that Rad16 is important for proper completion of meiosis. In its absence, cells suffer reduced spore viability and abnormal chromosome segregation with evidence for fragmentation. Recombination between homologous chromosomes is increased, while recombination within sister chromatids is reduced, suggesting that Rad16 is not required for typical homolog crossovers but influences the balance of recombination between the homolog and the sister. In vegetative cells, rad16 mutants show evidence for genome instability. Similar phenotypes are associated with mutants affecting Rhp14(XPA) but are independent of other nucleotide excision repair proteins such as Rad13(XPG). Thus, the XPF/XPA module of the nucleotide excision repair pathway is incorporated into multiple aspects of genome maintenance even in the absence of external DNA damage.
Collapse
|
16
|
Zhang JM, Liu XM, Ding YH, Xiong LY, Ren JY, Zhou ZX, Wang HT, Zhang MJ, Yu Y, Dong MQ, Du LL. Fission yeast Pxd1 promotes proper DNA repair by activating Rad16XPF and inhibiting Dna2. PLoS Biol 2014; 12:e1001946. [PMID: 25203555 PMCID: PMC4159138 DOI: 10.1371/journal.pbio.1001946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/31/2014] [Indexed: 01/31/2023] Open
Abstract
Structure-specific nucleases play crucial roles in many DNA repair pathways. They must be precisely controlled to ensure optimal repair outcomes; however, mechanisms of their regulation are not fully understood. Here, we report a fission yeast protein, Pxd1, that binds to and regulates two structure-specific nucleases: Rad16XPF-Swi10ERCC1 and Dna2-Cdc24. Strikingly, Pxd1 influences the activities of these two nucleases in opposite ways: It activates the 3' endonuclease activity of Rad16-Swi10 but inhibits the RPA-mediated activation of the 5' endonuclease activity of Dna2. Pxd1 is required for Rad16-Swi10 to function in single-strand annealing, mating-type switching, and the removal of Top1-DNA adducts. Meanwhile, Pxd1 attenuates DNA end resection mediated by the Rqh1-Dna2 pathway. Disabling the Dna2-inhibitory activity of Pxd1 results in enhanced use of a break-distal repeat sequence in single-strand annealing and a greater loss of genetic information. We propose that Pxd1 promotes proper DNA repair by differentially regulating two structure-specific nucleases.
Collapse
Affiliation(s)
- Jia-Min Zhang
- National Institute of Biological Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences, Beijing, China
| | - Yue-He Ding
- National Institute of Biological Sciences, Beijing, China
| | | | - Jing-Yi Ren
- National Institute of Biological Sciences, Beijing, China
| | - Zhi-Xiong Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Hai-Tao Wang
- National Institute of Biological Sciences, Beijing, China
| | - Mei-Jun Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Yang Yu
- National Institute of Biological Sciences, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
17
|
Tsutsui Y, Kurokawa Y, Ito K, Siddique MSP, Kawano Y, Yamao F, Iwasaki H. Multiple regulation of Rad51-mediated homologous recombination by fission yeast Fbh1. PLoS Genet 2014; 10:e1004542. [PMID: 25165823 PMCID: PMC4148199 DOI: 10.1371/journal.pgen.1004542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
Fbh1, an F-box helicase related to bacterial UvrD, has been proposed to modulate homologous recombination in fission yeast. We provide several lines of evidence for such modulation. Fbh1, but not the related helicases Srs2 and Rqh1, suppressed the formation of crossover recombinants from single HO-induced DNA double-strand breaks. Purified Fbh1 in complex with Skp1 (Fbh1-Skp1 complex) inhibited Rad51-driven DNA strand exchange by disrupting Rad51 nucleoprotein filaments in an ATP-dependent manner; this disruption was alleviated by the Swi5-Sfr1 complex, an auxiliary activator of Rad51. In addition, the reconstituted SCFFbh1 complex, composed of purified Fbh1-Skp1 and Pcu1-Rbx1, displayed ubiquitin-ligase E3 activity toward Rad51. Furthermore, Fbh1 reduced the protein level of Rad51 in stationary phase in an F-box-dependent, but not in a helicase domain-independent manner. These results suggest that Fbh1 negatively regulates Rad51-mediated homologous recombination via its two putative, unrelated activities, namely DNA unwinding/translocation and ubiquitin ligation. In addition to its anti-recombinase activity, we tentatively suggest that Fbh1 might also have a pro-recombination role in vivo, because the Fbh1-Skp1 complex stimulated Rad51-mediated strand exchange in vitro after strand exchange had been initiated. Homologous recombination is required for repairing DNA double-strand breaks (DSBs), which are induced by exogenous factors such as DNA damaging agents or by endogenous factors such as collapse of DNA replication fork in mitotic cells. If improperly processed, DSBs could lead to chromosome rearrangement, cell death, or tumorigenesis in mammals, and thus HR is strictly controlled at several steps, including Rad51 recombinase-driven DNA strand exchange reaction. Specifically, DNA helicases have been shown to be important for suppression of inappropriate recombination events. In this study, we analyzed one such DNA helicase, fission yeast Fbh1. We used an in vivo single-DSB repair assay to show that Fbh1 suppresses crossover formation between homologous chromosomes. Next, we obtained in vitro evidence that Fbh1 acts as an inhibitor of the strand-exchange reaction in the absence of Swi5-Sfr1, but stimulates the reaction after it starts. Furthermore, we found that SCFFbh1 has ubiquitin-ligase activity toward Rad51 in vitro and that Fbh1 regulates the protein level of Rad51 in the stationary phase. These results suggest Fbh1 regulates Rad51-mediated homologous recombination by its seemingly-unrelated two activities, DNA helicase/translocase and ubiquitin ligase.
Collapse
Affiliation(s)
- Yasuhiro Tsutsui
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
- * E-mail: (YT); (HI)
| | - Yumiko Kurokawa
- Education Academy of Computational Life Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Kentaro Ito
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Md. Shahjahan P. Siddique
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Yumiko Kawano
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Fumiaki Yamao
- International Institute for Advanced Studies, Kizugawa, Kyoto, Japan
| | - Hiroshi Iwasaki
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
- * E-mail: (YT); (HI)
| |
Collapse
|
18
|
Swartz RK, Rodriguez EC, King MC. A role for nuclear envelope-bridging complexes in homology-directed repair. Mol Biol Cell 2014; 25:2461-71. [PMID: 24943839 PMCID: PMC4142617 DOI: 10.1091/mbc.e13-10-0569] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Persistent double-strand DNA breaks (DSBs) are recruited to the nuclear periphery, where they induce formation of associated nuclear envelope–spanning LINC complexes made up of the SUN protein Sad1 and the KASH protein Kms1. The LINC complex couples DSBs within the nucleus to cytoplasmic microtubules, which alters DSB repair pathway choice. Unless efficiently and faithfully repaired, DNA double-strand breaks (DSBs) cause genome instability. We implicate a Schizosaccharomyces pombe nuclear envelope–spanning linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of the Sad1/Unc84 protein Sad1 and Klarsicht/Anc1/SYNE1 homology protein Kms1, in the repair of DSBs. An induced DSB associates with Sad1 and Kms1 in S/G2 phases of the cell cycle, connecting the DSB to cytoplasmic microtubules. DSB resection to generate single-stranded DNA and the ATR kinase drive the formation of Sad1 foci in response to DNA damage. Depolymerization of microtubules or loss of Kms1 leads to an increase in the number and size of DSB-induced Sad1 foci. Further, Kms1 and the cytoplasmic microtubule regulator Mto1 promote the repair of an induced DSB by gene conversion, a type of homology-directed repair. kms1 genetically interacts with a number of genes involved in homology-directed repair; these same gene products appear to attenuate the formation or promote resolution of DSB-induced Sad1 foci. We suggest that the connection of DSBs with the cytoskeleton through the LINC complex may serve as an input to repair mechanism choice and efficiency.
Collapse
Affiliation(s)
- Rebecca K Swartz
- Department of Cell Biology, Yale School of Medicine, New Haven, CT -06520
| | - Elisa C Rodriguez
- Department of Cell Biology, Yale School of Medicine, New Haven, CT -06520
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT -06520
| |
Collapse
|
19
|
Litvinov SV. Main repair pathways of double-strand breaks in the genomic DNA and interactions between them. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714030062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Mahyous Saeyd SA, Ewert-Krzemieniewska K, Liu B, Caspari T. Hyperactive Cdc2 kinase interferes with the response to broken replication forks by trapping S.pombe Crb2 in its mitotic T215 phosphorylated state. Nucleic Acids Res 2014; 42:7734-47. [PMID: 24861625 PMCID: PMC4081076 DOI: 10.1093/nar/gku452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although it is well established that Cdc2 kinase phosphorylates the DNA damage checkpoint protein Crb2(53BP1) in mitosis, the full impact of this modification is still unclear. The Tudor-BRCT domain protein Crb2 binds to modified histones at DNA lesions to mediate the activation of Chk1 by Rad3ATR kinase. We demonstrate here that fission yeast cells harbouring a hyperactive Cdc2CDK1 mutation (cdc2.1w) are specifically sensitive to the topoisomerase 1 inhibitor camptothecin (CPT) which breaks DNA replication forks. Unlike wild-type cells, which delay only briefly in CPT medium by activating Chk1 kinase, cdc2.1w cells bypass Chk1 to enter an extended cell-cycle arrest which depends on Cds1 kinase. Intriguingly, the ability to bypass Chk1 requires the mitotic Cdc2 phosphorylation site Crb2-T215. This implies that the presence of the mitotic phosphorylation at Crb2-T215 channels Rad3 activity towards Cds1 instead of Chk1 when forks break in S phase. We also provide evidence that hyperactive Cdc2.1w locks cells in a G1-like DNA repair mode which favours non-homologous end joining over interchromosomal recombination. Taken together, our data support a model such that elevated Cdc2 activity delays the transition of Crb2 from its G1 to its G2 mode by blocking Srs2 DNA helicase and Casein Kinase 1 (Hhp1).
Collapse
Affiliation(s)
- Salah Adam Mahyous Saeyd
- Genome Biology Group, College of Natural Sciences, School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor LL57 2UW, Wales, United Kingdom
| | - Katarzyna Ewert-Krzemieniewska
- Genome Biology Group, College of Natural Sciences, School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor LL57 2UW, Wales, United Kingdom
| | - Boyin Liu
- Genome Biology Group, College of Natural Sciences, School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor LL57 2UW, Wales, United Kingdom
| | - Thomas Caspari
- Genome Biology Group, College of Natural Sciences, School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor LL57 2UW, Wales, United Kingdom
| |
Collapse
|
21
|
Blaikley EJ, Tinline-Purvis H, Kasparek TR, Marguerat S, Sarkar S, Hulme L, Hussey S, Wee BY, Deegan RS, Walker CA, Pai CC, Bähler J, Nakagawa T, Humphrey TC. The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast. Nucleic Acids Res 2014; 42:5644-56. [PMID: 24623809 PMCID: PMC4027169 DOI: 10.1093/nar/gku190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3ATR, Rad26ATRIP, Crb253BP1 or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability.
Collapse
Affiliation(s)
- Elizabeth J Blaikley
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Helen Tinline-Purvis
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Torben R Kasparek
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Samuel Marguerat
- Department of Genetics, Evolution and Environment, and UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Sovan Sarkar
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Lydia Hulme
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Sharon Hussey
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Boon-Yu Wee
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Rachel S Deegan
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Carol A Walker
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Chen-Chun Pai
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, and UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Timothy C Humphrey
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| |
Collapse
|
22
|
Dziadkowiec D, Kramarz K, Kanik K, Wisniewski P, Carr AM. Involvement of Schizosaccharomyces pombe rrp1+ and rrp2+ in the Srs2- and Swi5/Sfr1-dependent pathway in response to DNA damage and replication inhibition. Nucleic Acids Res 2013; 41:8196-209. [PMID: 23828040 PMCID: PMC3783160 DOI: 10.1093/nar/gkt564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previously we identified Rrp1 and Rrp2 as two proteins required for the Sfr1/Swi5-dependent branch of homologous recombination (HR) in Schizosaccharomyces pombe. Here we use a yeast two-hybrid approach to demonstrate that Rrp1 and Rrp2 can interact with each other and with Swi5, an HR mediator protein. Rrp1 and Rrp2 form co-localizing methyl methanesulphonate-induced foci in nuclei, further suggesting they function as a complex. To place the Rrp1/2 proteins more accurately within HR sub-pathways, we carried out extensive epistasis analysis between mutants defining Rrp1/2, Rad51 (recombinase), Swi5 and Rad57 (HR-mediators) plus the anti-recombinogenic helicases Srs2 and Rqh1. We confirm that Rrp1 and Rrp2 act together with Srs2 and Swi5 and independently of Rad57 and show that Rqh1 also acts independently of Rrp1/2. Mutants devoid of Srs2 are characterized by elevated recombination frequency with a concomitant increase in the percentage of conversion-type recombinants. Strains devoid of Rrp1 or Rrp2 did not show a change in HR frequency, but the number of conversion-type recombinants was increased, suggesting a possible function for Rrp1/2 with Srs2 in counteracting Rad51 activity. Our data allow us to propose a model placing Rrp1 and Rrp2 functioning together with Swi5 and Srs2 in a synthesis-dependent strand annealing HR repair pathway.
Collapse
Affiliation(s)
- Dorota Dziadkowiec
- Faculty of Biotechnology, Wrocław University, Przybyszewskiego 63-77, 51-148 Wrocław, Poland, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław, Poland and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | | | | | | | | |
Collapse
|
23
|
Tange Y, Kurabayashi A, Goto B, Hoe KL, Kim DU, Park HO, Hayles J, Chikashige Y, Tsutumi C, Hiraoka Y, Yamao F, Nurse P, Niwa O. The CCR4-NOT complex is implicated in the viability of aneuploid yeasts. PLoS Genet 2012; 8:e1002776. [PMID: 22737087 PMCID: PMC3380822 DOI: 10.1371/journal.pgen.1002776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/05/2012] [Indexed: 12/23/2022] Open
Abstract
To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability.
Collapse
Affiliation(s)
- Yoshie Tange
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | - Bunshiro Goto
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Kwang-Lae Hoe
- Chungnam National University, Graduate School of New Drug Discovery and Development, Yusong-gu, Daejeon, Korea
| | - Dong-Uk Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yusong-gu, Daejeon, Korea
| | | | - Jacqueline Hayles
- Cancer Research UK, The London Research Institute, London, United Kingdom
| | - Yuji Chikashige
- National Institute of Information and Communications Technology, Kobe, Japan
| | - Chihiro Tsutumi
- National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- National Institute of Information and Communications Technology, Kobe, Japan
| | - Fumiaki Yamao
- National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Paul Nurse
- Cancer Research UK, The London Research Institute, London, United Kingdom
- The Rockefeller University, New York, New York, United States of America
| | - Osami Niwa
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
- The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
24
|
Sunder S, Greeson-Lott NT, Runge KW, Sanders SL. A new method to efficiently induce a site-specific double-strand break in the fission yeast Schizosaccharomyces pombe. Yeast 2012; 29:275-91. [PMID: 22674789 DOI: 10.1002/yea.2908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
Double-strand DNA breaks are a serious threat to cellular viability and yeast systems have proved invaluable in helping to understand how these potentially toxic lesions are sensed and repaired. An important method to study the processing of DNA breaks in the budding yeast Saccharomyces cerevisiae is to introduce a unique double-strand break into the genome by regulating the expression of the site-specific HO endonuclease with a galactose inducible promoter. Variations of the HO site-specific DSB assay have been adapted to many organisms, but the methodology has seen only limited use in the fission yeast Schizosaccharomyces pombe because of the lack of a promoter capable of inducing endonuclease expression on a relatively short time scale (~1 h). We have overcome this limitation by developing a new assay in which expression of the homing endonuclease I-PpoI is tightly regulated with a tetracycline-inducible promoter. We show that induction of the I-PpoI endonuclease produces rapid cutting of a defined cleavage site (> 80% after 1 h), efficient cell cycle arrest and significant accumulation of the checkpoint protein Crb2 at break-adjacent regions in a manner that is analogous to published findings with DSBs produced by an acute exposure to ionizing irradiation. This assay provides an important new tool for the fission yeast community and, because many aspects of mammalian chromatin organization have been well-conserved in Sz. pombe but not in S. cerevisiae, also offers an attractive system to decipher the role of chromatin structure in modulating the repair of double-stranded DNA breaks.
Collapse
Affiliation(s)
- Sham Sunder
- Department of Biochemistry and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|
25
|
Boei JJWA, Vermeulen S, Skubakova MM, Meijers M, Loenen WAM, Wolterbeek R, Mullenders LHF, Vrieling H, Giphart-Gassler M. No threshold for the induction of chromosomal damage at clinically relevant low doses of X rays. Radiat Res 2012; 177:602-13. [PMID: 22468706 DOI: 10.1667/rr2718.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The recent steep increase in population dose from radiation-based medical diagnostics, such as computed tomography (CT) scans, requires insight into human health risks, especially in terms of cancer development. Since the induction of genetic damage is considered a prominent cause underlying the carcinogenic potential of ionizing radiation, we quantified the induction of micronuclei and loss of heterozygosity events in human cells after exposure to clinically relevant low doses of X rays. A linear dose-response relationship for induction of micronuclei was observed in human fibroblasts with significantly increased frequencies at doses as low as 20 mGy. Strikingly, cells exposed during S-phase displayed the highest induction, whereas non S-phase cells showed no significant induction below 100 mGy. Similarly, the induction of loss of heterozygosity in human lymphoblastoid cells quantified at HLA loci, was linear with dose and reached significance at 50 mGy. Together the findings favor a linear-no-threshold model for genetic damage induced by acute exposure to ionizing radiation. We speculate that the higher radiosensitivity of S-phase cells might relate to the excessive cancer risk observed in highly proliferative tissues in radiation exposed organisms.
Collapse
Affiliation(s)
- Jan J W A Boei
- aDepartment of Toxicogenetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Moss J, Tinline-Purvis H, Walker CA, Folkes LK, Stratford MR, Hayles J, Hoe KL, Kim DU, Park HO, Kearsey SE, Fleck O, Holmberg C, Nielsen O, Humphrey TC. Break-induced ATR and Ddb1-Cul4(Cdt)² ubiquitin ligase-dependent nucleotide synthesis promotes homologous recombination repair in fission yeast. Genes Dev 2010; 24:2705-16. [PMID: 21123655 DOI: 10.1101/gad.1970810] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nucleotide synthesis is a universal response to DNA damage, but how this response facilitates DNA repair and cell survival is unclear. Here we establish a role for DNA damage-induced nucleotide synthesis in homologous recombination (HR) repair in fission yeast. Using a genetic screen, we found the Ddb1-Cul4(Cdt)² ubiquitin ligase complex and ribonucleotide reductase (RNR) to be required for HR repair of a DNA double-strand break (DSB). The Ddb1-Cul4(Cdt)² ubiquitin ligase complex is required for degradation of Spd1, an inhibitor of RNR in fission yeast. Accordingly, deleting spd1(+) suppressed the DNA damage sensitivity and the reduced HR efficiency associated with loss of ddb1(+) or cdt2(+). Furthermore, we demonstrate a role for nucleotide synthesis in postsynaptic gap filling of resected ssDNA ends during HR repair. Finally, we define a role for Rad3 (ATR) in nucleotide synthesis and HR through increasing Cdt2 nuclear levels in response to DNA damage. Our findings support a model in which break-induced Rad3 and Ddb1-Cul4(Cdt)² ubiquitin ligase-dependent Spd1 degradation and RNR activation promotes postsynaptic ssDNA gap filling during HR repair.
Collapse
Affiliation(s)
- Jennifer Moss
- Department of Oncology, Cancer Research UK-Medical Research Council Gray Institute for Radiation Oncology and Biology, University of Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
DNA double-strand break repair and the evolution of intron density. Trends Genet 2010; 27:1-6. [PMID: 21106271 PMCID: PMC3020277 DOI: 10.1016/j.tig.2010.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/18/2010] [Accepted: 10/18/2010] [Indexed: 01/23/2023]
Abstract
The density of introns is both an important feature of genome architecture and a highly variable trait across eukaryotes. This heterogeneity has posed an evolutionary puzzle for the last 30 years. Recent evidence is consistent with novel introns being the outcome of the error-prone repair of DNA double-stranded breaks (DSBs) via non-homologous end joining (NHEJ). Here we suggest that deletion of pre-existing introns could occur via the same pathway. We propose a novel framework in which species-specific differences in the activity of NHEJ and homologous recombination (HR) during the repair of DSBs underlie changes in intron density.
Collapse
|
28
|
Tinline-Purvis H, Savory AP, Cullen JK, Davé A, Moss J, Bridge WL, Marguerat S, Bähler J, Ragoussis J, Mott R, Walker CA, Humphrey TC. Failed gene conversion leads to extensive end processing and chromosomal rearrangements in fission yeast. EMBO J 2009; 28:3400-12. [PMID: 19798055 DOI: 10.1038/emboj.2009.265] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 08/17/2009] [Indexed: 01/06/2023] Open
Abstract
Loss of heterozygosity (LOH), a causal event in cancer and human genetic diseases, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms by which such extensive LOH arises, and how it is suppressed in normal cells is poorly understood. We have developed a genetic system to investigate the mechanisms of DNA double-strand break (DSB)-induced extensive LOH, and its suppression, using a non-essential minichromosome, Ch(16), in fission yeast. We find extensive LOH to arise from a new break-induced mechanism of isochromosome formation. Our data support a model in which Rqh1 and Exo1-dependent end processing from an unrepaired DSB leads to removal of the broken chromosome arm and to break-induced replication of the intact arm from the centromere, a considerable distance from the initial lesion. This process also promotes genome-wide copy number variation. A genetic screen revealed Rhp51, Rhp55, Rhp57 and the MRN complex to suppress both isochromosome formation and chromosome loss, in accordance with these events resulting from extensive end processing associated with failed homologous recombination repair.
Collapse
Affiliation(s)
- Helen Tinline-Purvis
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, Oxfordshire, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Outwin EA, Irmisch A, Murray JM, O'Connell MJ. Smc5-Smc6-dependent removal of cohesin from mitotic chromosomes. Mol Cell Biol 2009; 29:4363-75. [PMID: 19528228 PMCID: PMC2725735 DOI: 10.1128/mcb.00377-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/14/2009] [Accepted: 06/03/2009] [Indexed: 11/20/2022] Open
Abstract
The function of the essential cohesin-related Smc5-Smc6 complex has remained elusive, though hypomorphic mutants have defects late in recombination, in checkpoint maintenance, and in chromosome segregation. Recombination and checkpoints are not essential for viability, and Smc5-Smc6-null mutants die in lethal mitoses. This suggests that the chromosome segregation defects may be the source of lethality in irradiated Smc5-Smc6 hypomorphs. We show that in smc6 mutants, following DNA damage in interphase, chromosome arm segregation fails due to an aberrant persistence of cohesin, which is normally removed by the Separase-independent pathway. This postanaphase persistence of cohesin is not dependent on DNA damage, since the synthetic lethality of smc6 hypomorphs with a topoisomerase II mutant, defective in mitotic chromosome structure, is also due to the retention of cohesin on undamaged chromosome arms. In both cases, Separase overexpression bypasses the defect and restores cell viability, showing that defective cohesin removal is a major determinant of the mitotic lethality of Smc5-Smc6 mutants.
Collapse
Affiliation(s)
- Emily A Outwin
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
30
|
The fission yeast HIRA histone chaperone is required for promoter silencing and the suppression of cryptic antisense transcripts. Mol Cell Biol 2009; 29:5158-67. [PMID: 19620282 DOI: 10.1128/mcb.00698-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The assembly of nucleosomes by histone chaperones is an important component of transcriptional regulation. Here, we have assessed the global roles of the HIRA histone chaperone in Schizosaccharomyces pombe. Microarray analysis indicates that inactivation of the HIRA complex results in increased expression of at least 4% of fission yeast genes. HIRA-regulated genes overlap with those which are normally repressed in vegetatively growing cells, such as targets of the Clr6 histone deacetylase and silenced genes located in subtelomeric regions. HIRA is also required for silencing of all 13 intact copies of the Tf2 long terminal repeat (LTR) retrotransposon. However, the role of HIRA is not restricted to bona fide promoters, because HIRA also suppresses noncoding transcripts from solo LTR elements and spurious antisense transcripts from cryptic promoters associated with transcribed regions. Furthermore, the HIRA complex is essential in the absence of the quality control provided by nuclear exosome-mediated degradation of illegitimate transcripts. This suggests that HIRA restricts genomic accessibility, and consistent with this, the chromosomes of cells lacking HIRA are more susceptible to genotoxic agents that cause double-strand breaks. Thus, the HIRA histone chaperone is required to maintain the protective functions of chromatin.
Collapse
|
31
|
Williams JS, Hayashi T, Yanagida M, Russell P. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol Cell 2009; 33:287-98. [PMID: 19217403 PMCID: PMC2677390 DOI: 10.1016/j.molcel.2009.01.017] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 10/13/2008] [Accepted: 01/27/2009] [Indexed: 11/17/2022]
Abstract
Mis16 and Mis18 are subunits of a protein complex required for incorporation of the histone H3 variant CenH3 (Cnp1/CENP-A) into centromeric chromatin in Schizosaccharomyces pombe and mammals. How the Mis16-Mis18 complex performs this function is unknown. Here, we report that the Mis16-Mis18 complex is required for centromere localization of Scm3(Sp), a Cnp1-binding protein related to Saccharomyces cerevisiae Scm3. Scm3(Sp) is required for centromeric localization of Cnp1, while Scm3(Sp) localizes at centromeres independently of Cnp1. Like the Mis16-Mis18 complex but unlike Cnp1, Scm3(Sp) dissociates from centromeres during mitosis. Inactivation of Scm3(Sp) or Mis18 increases centromere localization of histones H3 and H2A/H2B, which are largely absent from centromeres in wild-type cells. Whereas S. cerevisiae Scm3 is proposed to replace histone H2A/H2B in centromeric nucleosomes, the dynamic behavior of S. pombe Scm3 suggests that it acts as a Cnp1 assembly/maintenance factor that directly mediates the stable deposition of Cnp1 into centromeric chromatin.
Collapse
Affiliation(s)
- Jessica S. Williams
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 90237, USA
| | - Takeshi Hayashi
- CREST Research Program, Japan Science and Technology Corporation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuhiro Yanagida
- CREST Research Program, Japan Science and Technology Corporation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Paul Russell
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 90237, USA
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 90237, USA
| |
Collapse
|
32
|
Dziadkowiec D, Petters E, Dyjankiewicz A, Karpiński P, Garcia V, Watson A, Carr AM. The role of novel genes rrp1(+) and rrp2(+) in the repair of DNA damage in Schizosaccharomyces pombe. DNA Repair (Amst) 2009; 8:627-36. [PMID: 19185548 DOI: 10.1016/j.dnarep.2008.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 12/08/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
Abstract
We identified two predicted proteins in Schizosaccharomyces pombe, Rrp1 (SPAC17A2.12) and Rrp2 (SPBC23E6.02) that share 34% and 36% similarity to Saccharomyces cerevisiae Ris1p, respectively. Ris1p is a DNA-dependent ATP-ase involved in gene silencing and DNA repair. Rrp1 and Rrp2 also share similarity with S. cerevisiae Rad5 and S. pombe Rad8, containing SNF2-N, RING finger and Helicase-C domains. To investigate the function of the Rrp proteins, we studied the DNA damage sensitivities and genetic interactions of null mutants with known DNA repair mutants. Single Deltarrp1 and Deltarrp2 mutants were not sensitive to CPT, 4NQO, CDPP, MMS, HU, UV or IR. The double mutants Deltarrp1 Deltarhp51 and Deltarrp2 Deltarhp51 plus the triple Deltarrp1 Deltarrp2 Deltarhp51 mutant did not display significant additional sensitivity. However, the double mutants Deltarrp1 Deltarhp57 and Deltarrp2 Deltarhp57 were significantly more sensitive to MMS, CPT, HU and IR than the Deltarhp57 single mutant. The checkpoint response in these strains was functional. In S. pombe, Rhp55/57 acts in parallel with a second mediator complex, Swi5/Sfr1, to facilitate Rhp51-dependent DNA repair. Deltarrp1 Deltasfr1 and Deltarrp2 Deltasfr1 double mutants did not show significant additional sensitivity, suggesting a function for Rrp proteins in the Swi5/Sfr1 pathway of DSB repair. Consistent with this, Deltarrp1 Deltarhp57 and Deltarrp2 Deltarhp57 mutants, but not Deltarrp1 Deltasfr1 or Deltarrp2 Deltasfr1 double mutants, exhibited slow growth and aberrations in cell and nuclear morphology that are typical of Deltarhp51.
Collapse
Affiliation(s)
- Dorota Dziadkowiec
- Faculty of Biotechnology, Wrocław University, Przybyszewskiego 63-77, 51-148 Wrocław, Poland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Rad51 suppresses gross chromosomal rearrangement at centromere in Schizosaccharomyces pombe. EMBO J 2008; 27:3036-46. [PMID: 18923422 DOI: 10.1038/emboj.2008.215] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 09/19/2008] [Indexed: 11/08/2022] Open
Abstract
Centromere that plays a pivotal role in chromosome segregation is composed of repetitive elements in many eukaryotes. Although chromosomal regions containing repeats are the hotspots of rearrangements, little is known about the stability of centromere repeats. Here, by using a minichromosome that has a complete set of centromere sequences, we have developed a fission yeast system to detect gross chromosomal rearrangements (GCRs) that occur spontaneously. Southern and comprehensive genome hybridization analyses of rearranged chromosomes show two types of GCRs: translocation between homologous chromosomes and formation of isochromosomes in which a chromosome arm is replaced by a copy of the other. Remarkably, all the examined isochromosomes contain the breakpoint in centromere repeats, showing that isochromosomes are produced by centromere rearrangement. Mutations in the Rad3 checkpoint kinase increase both types of GCRs. In contrast, the deletion of Rad51 recombinase preferentially elevates isochromosome formation. Chromatin immunoprecipitation analysis shows that Rad51 localizes at centromere around S phase. These data suggest that Rad51 suppresses rearrangements of centromere repeats that result in isochromosome formation.
Collapse
|
34
|
Cullen JK, Hussey SP, Walker C, Prudden J, Wee BY, Davé A, Findlay JS, Savory AP, Humphrey TC. Break-induced loss of heterozygosity in fission yeast: dual roles for homologous recombination in promoting translocations and preventing de novo telomere addition. Mol Cell Biol 2007; 27:7745-57. [PMID: 17724078 PMCID: PMC2169035 DOI: 10.1128/mcb.00462-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of heterozygosity (LOH), a causal event in tumorigenesis, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms leading to such extensive LOH are poorly understood. We investigated the mechanisms of DNA double-strand break (DSB)-induced extensive LOH by screening for auxotrophic marker loss approximately 25 kb distal to an HO endonuclease break site within a nonessential minichromosome in Schizosaccharomyces pombe. Extensive break-induced LOH was infrequent, resulting from large translocations through both allelic crossovers and break-induced replication. These events required the homologous recombination (HR) genes rad32(+), rad50(+), nbs1(+), rhp51(+), rad22(+), rhp55(+), rhp54(+), and mus81(+). Surprisingly, LOH was still observed in HR mutants, which resulted predominantly from de novo telomere addition at the break site. De novo telomere addition was most frequently observed in rad22Delta and rhp55Delta backgrounds, which disrupt HR following end resection. Further, levels of de novo telomere addition, while increased in ku70Delta rhp55Delta strains, were reduced in exo1Delta rhp55Delta and an rhp55Delta strain overexpressing rhp51. These findings support a model in which HR prevents de novo telomere addition at DSBs by competing for resected ends. Together, these results suggest that the mechanisms of break-induced LOH may be predicted from the functional status of the HR machinery.
Collapse
Affiliation(s)
- Jason K Cullen
- MRC Radiation Oncology and Biology Unit, Harwell, Didcot, Oxfordshire OX11 0RD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Haruta N, Akamatsu Y, Tsutsui Y, Kurokawa Y, Murayama Y, Arcangioli B, Iwasaki H. Fission yeast Swi5 protein, a novel DNA recombination mediator. DNA Repair (Amst) 2007; 7:1-9. [PMID: 17716957 DOI: 10.1016/j.dnarep.2007.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/09/2007] [Indexed: 11/26/2022]
Abstract
The Schizosaccharomyces pombe Swi5 protein forms two distinct protein complexes, Swi5-Sfr1 and Swi5-Swi2, each of which plays an important role in the related but functionally distinct processes of homologous recombination and mating-type switching, respectively. The Swi5-Sfr1 mediator complex has been shown to associate with the two RecA-like recombinases, Rhp51 (spRad51) and Dmc1, and to stimulate in vitro DNA strand exchange reactions mediated by these proteins. Genetic analysis indicates that Swi5-Sfr1 works independently of another mediator complex, Rhp55-Rhp57, during Rhp51-dependent recombinational repair. In addition, mutations affecting the two mediators generate distinct repair spectra of HO endonuclease-induced DNA double strand breaks, suggesting that these recombination mediators differently regulate recombination outcomes in an independent manner.
Collapse
Affiliation(s)
- Nami Haruta
- International Graduate School of Arts and Sciences, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Dovey CL, Russell P. Mms22 preserves genomic integrity during DNA replication in Schizosaccharomyces pombe. Genetics 2007; 177:47-61. [PMID: 17660542 PMCID: PMC2013719 DOI: 10.1534/genetics.107.077255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The faithful replication of the genome, coupled with the accurate repair of DNA damage, is essential for the maintenance of chromosomal integrity. The MMS22 gene of Saccharomyces cerevisiae plays an important but poorly understood role in preservation of genome integrity. Here we describe a novel gene in Schizosaccharomyces pombe that we propose is a highly diverged ortholog of MMS22. Fission yeast Mms22 functions in the recovery from replication-associated DNA damage. Loss of Mms22 results in the accumulation of spontaneous DNA damage in the S- and G2-phases of the cell cycle and elevated genomic instability. There are severe synthetic interactions involving mms22 and most of the homologous recombination proteins but not the structure-specific endonuclease Mus81-Eme1, which is required for survival of broken replication forks. Mms22 forms spontaneous nuclear foci and colocalizes with Rad22 in cells treated with camptothecin, suggesting that it has a direct role in repair of broken replication forks. Moreover, genetic interactions with components of the DNA replication fork suggest that Mms2 functions in the coordination of DNA synthesis following damage. We propose that Mms22 functions directly at the replication fork to maintain genomic integrity in a pathway involving Mus81-Eme1.
Collapse
Affiliation(s)
- Claire L Dovey
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 90237, USA
| | | |
Collapse
|
37
|
Hope JC, Cruzata LD, Duvshani A, Mitsumoto J, Maftahi M, Freyer GA. Mus81-Eme1-dependent and -independent crossovers form in mitotic cells during double-strand break repair in Schizosaccharomyces pombe. Mol Cell Biol 2007; 27:3828-38. [PMID: 17353272 PMCID: PMC1900003 DOI: 10.1128/mcb.01596-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 09/18/2006] [Accepted: 03/02/2007] [Indexed: 11/20/2022] Open
Abstract
During meiosis, double-strand breaks (DSBs) lead to crossovers, thought to arise from the resolution of double Holliday junctions (HJs) by an HJ resolvase. In Schizosaccharomyces pombe, meiotic crossovers are produced primarily through a mechanism requiring the Mus81-Eme1 endonuclease complex. Less is known about the processes that produces crossovers during the repair of DSBs in mitotic cells. We employed an inducible DSB system to determine the role of Rqh1-Top3 and Mus81-Eme1 in mitotic DSB repair and crossover formation in S. pombe. In agreement with the meiotic data, crossovers are suppressed in cells lacking Mus81-Eme1. And relative to the wild type, rqh1Delta cells show a fourfold increase in crossover frequency. This suppression of crossover formation by Rqh1 is dependent on its helicase activity. We found that the synthetic lethality of cells lacking both Rqh1 and Eme1 is suppressed by loss of swi5(+), which allowed us to show that the excess crossovers formed in an rqh1Delta background are independent of Mus81-Eme1. This result suggests that a second process for crossover formation exists in S. pombe and is consistent with our finding that deletion of swi5(+) restored meiotic crossovers in eme1Delta cells. Evidence suggesting that Rqh1 also acts downstream of Swi5 in crossover formation was uncovered in these studies. Our results suggest that during Rhp51-dependent repair of DSBs, Rqh1-Top3 suppresses crossovers in the Rhp57-dependent pathway while Mus81-Eme1 and possibly Rqh1 promote crossovers in the Swi5-dependent pathway.
Collapse
Affiliation(s)
- Justin C Hope
- Graduate Program in Anatomy and Cell Biology, Columbia University, 722 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
38
|
Raji H, Hartsuiker E. Double-strand break repair and homologous recombination in Schizosaccharomyces pombe. Yeast 2007; 23:963-76. [PMID: 17072889 DOI: 10.1002/yea.1414] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The study of double-strand break repair and homologous recombination in Saccharomyces cerevisiae meiosis has provided important information about the mechanisms involved. However, it has become clear that the resulting recombination models are only partially applicable to repair in mitotic cells, where crossover formation is suppressed. In recent years our understanding of double-strand break repair and homologous recombination in Schizosaccharomyces pombe has increased significantly, and the identification of novel pathways and genes with homologues in higher eukaryotes has increased its value as a model organism for double-strand break repair. In this review we will focus on the involvement of homologous recombination and repair in different aspects of genome stability in Sz. pombe meiosis, replication and telomere maintenance. We will also discuss anti-recombination pathways (that suppress crossover formation), non-homologous end-joining, single-strand annealing and factors that influence the choice and prevalence of the different repair pathways in Sz. pombe.
Collapse
Affiliation(s)
- Hayatu Raji
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | |
Collapse
|
39
|
Akamatsu Y, Tsutsui Y, Morishita T, Siddique MDSP, Kurokawa Y, Ikeguchi M, Yamao F, Arcangioli B, Iwasaki H. Fission yeast Swi5/Sfr1 and Rhp55/Rhp57 differentially regulate Rhp51-dependent recombination outcomes. EMBO J 2007; 26:1352-62. [PMID: 17304215 PMCID: PMC1817630 DOI: 10.1038/sj.emboj.7601582] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 01/08/2007] [Indexed: 12/28/2022] Open
Abstract
Several accessory proteins referred to as mediators are required for the full activity of the Rad51 (Rhp51 in fission yeast) recombinase. In this study, we analyzed in vivo functions of the recently discovered Swi5/Sfr1 complex from fission yeast. In normally growing cells, the Swi5-GFP protein localizes to the nucleus, where it forms a diffuse nuclear staining pattern with a few distinct foci. These spontaneous foci do not form in swi2Delta mutants. Upon UV irradiation, Swi5 focus formation is induced in swi2Delta mutants, a response that depends on Sfr1 function, and Sfr1 also forms foci that colocalize with damage-induced Rhp51 foci. The number of UV-induced Rhp51 foci is partially reduced in swi5Delta and rhp57Delta mutants and completely abolished in an swi5Delta rhp57Delta double mutant. An assay for products generated by HO endonuclease-induced DNA double-strand breaks (DSBs) reveals that Rhp51 and Rhp57, but not Swi5/Sfr1, are essential for crossover production. These results suggest that Swi5/Sfr1 functions as an Rhp51 mediator but processes DSBs in a manner different from that of the Rhp55/57 mediator.
Collapse
Affiliation(s)
- Yufuko Akamatsu
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yasuhiro Tsutsui
- Division of Mutagenesis, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takashi Morishita
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa, Japan
| | - MD Shahjahan P Siddique
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yumiko Kurokawa
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Mitsunori Ikeguchi
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Fumiaki Yamao
- Division of Mutagenesis, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Benoit Arcangioli
- Departement de la Structure et Dynamique des Genomes, Institut Pasteur, Paris Cedex 15, France
| | - Hiroshi Iwasaki
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa, Japan
- Division of Molecular and Cellular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Tel.: +81 45 508 7238; Fax: +81 45 508 7269; E-mail:
| |
Collapse
|
40
|
Cavero S, Chahwan C, Russell P. Xlf1 is required for DNA repair by nonhomologous end joining in Schizosaccharomyces pombe. Genetics 2007; 175:963-7. [PMID: 17151234 PMCID: PMC1800613 DOI: 10.1534/genetics.106.067850] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Accepted: 11/07/2006] [Indexed: 11/18/2022] Open
Abstract
The accurate repair of DNA double-strand breaks is essential for cell survival and maintenance of genome integrity. Here we describe xlf1+, a gene in the fission yeast Schizosaccharomyces pombe that is required for repair of double-strand breaks by nonhomologous end joining during G1 phase of the cell cycle. Xlf1 is the ortholog of budding yeast Nej1 and human XLF/Cernunnos proteins.
Collapse
Affiliation(s)
- Santiago Cavero
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 90237, USA
| | | | | |
Collapse
|
41
|
Analyzing the dose-dependence of the Saccharomyces cerevisiae global transcriptional response to methyl methanesulfonate and ionizing radiation. BMC Genomics 2006; 7:305. [PMID: 17140446 PMCID: PMC1698923 DOI: 10.1186/1471-2164-7-305] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 12/01/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most crucial tasks for a cell to ensure its long term survival is preserving the integrity of its genetic heritage via maintenance of DNA structure and sequence. While the DNA damage response in the yeast Saccharomyces cerevisiae, a model eukaryotic organism, has been extensively studied, much remains to be elucidated about how the organism senses and responds to different types and doses of DNA damage. We have measured the global transcriptional response of S. cerevisiae to multiple doses of two representative DNA damaging agents, methyl methanesulfonate (MMS) and gamma radiation. RESULTS Hierarchical clustering of genes with a statistically significant change in transcription illustrated the differences in the cellular responses to MMS and gamma radiation. Overall, MMS produced a larger transcriptional response than gamma radiation, and many of the genes modulated in response to MMS are involved in protein and translational regulation. Several clusters of coregulated genes whose responses varied with DNA damaging agent dose were identified. Perhaps the most interesting cluster contained four genes exhibiting biphasic induction in response to MMS dose. All of the genes (DUN1, RNR2, RNR4, and HUG1) are involved in the Mec1p kinase pathway known to respond to MMS, presumably due to stalled DNA replication forks. The biphasic responses of these genes suggest that the pathway is induced at lower levels as MMS dose increases. The genes in this cluster with a threefold or greater transcriptional response to gamma radiation all showed an increased induction with increasing gamma radiation dosage. CONCLUSION Analyzing genome-wide transcriptional changes to multiple doses of external stresses enabled the identification of cellular responses that are modulated by magnitude of the stress, providing insights into how a cell deals with genotoxicity.
Collapse
|
42
|
Hope JC, Mense SM, Jalakas M, Mitsumoto J, Freyer GA. Rqh1 blocks recombination between sister chromatids during double strand break repair, independent of its helicase activity. Proc Natl Acad Sci U S A 2006; 103:5875-80. [PMID: 16595622 PMCID: PMC1458666 DOI: 10.1073/pnas.0601571103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many questions remain about the process of DNA double strand break (DSB) repair by homologous recombination (HR), particularly concerning the exact function played by individual proteins and the details of specific steps in this process. Some recent studies have shown that RecQ DNA helicases have a function in HR. We studied the role of the RecQ helicase Rqh1 with HR proteins in the repair of a DSB created at a unique site within the Schizosaccharomyces pombe genome. We found that DSBs in rqh1(+) cells, are predominantly repaired by interchromosomal gene conversion, with HR between sister chromatids [sister-chromatid conversion (SCC)], occurring less frequently. In Deltarqh1 cells, repair by SCC is favored, and gene conversion rates slow significantly. When we limited the potential for SCC in Deltarqh1 cells by reducing the length of the G2 phase of the cell cycle, DSB repair continued to be predominated by SCC, whereas it was essentially eliminated in wild-type cells. These data indicate that Rqh1 acts to regulate DSB repair by blocking SCC. Interestingly, we found that this role for Rqh1 is independent of its helicase activity. In the course of these studies, we also found nonhomologous end joining to be largely faithful in S. pombe, contrary to current belief. These findings provide insight into the regulation of DSB repair by RecQ helicases.
Collapse
Affiliation(s)
| | - Sarah M. Mense
- Graduate Program in Environmental Health Sciences, Columbia University, Kolb Building Room 140, 722 West 168th Street, New York, NY 10032
| | - Merle Jalakas
- Graduate Program in Environmental Health Sciences, Columbia University, Kolb Building Room 140, 722 West 168th Street, New York, NY 10032
| | - Jun Mitsumoto
- Graduate Program in Environmental Health Sciences, Columbia University, Kolb Building Room 140, 722 West 168th Street, New York, NY 10032
| | - Greg A. Freyer
- *Graduate Program in Anatomy and Cell Biology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Preston CR, Flores CC, Engels WR. Differential usage of alternative pathways of double-strand break repair in Drosophila. Genetics 2005; 172:1055-68. [PMID: 16299390 PMCID: PMC1456205 DOI: 10.1534/genetics.105.050138] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Double-strand DNA breaks can be repaired by any of several alternative mechanisms that differ greatly in the nature of the final repaired products. We used a reporter construct, designated "Repair reporter 3" (Rr3), to measure the relative usage of these pathways in Drosophila germ cells. The method works by creating a double-strand break at a specific location such that expression of the red fluorescent protein, DsRed, in the next generation can be used to infer the frequency at which each pathway was used. A key feature of this approach is that most data come from phenotypic scoring, thus allowing large sample sizes and considerable precision in measurements. Specifically, we measured the proportion of breaks repaired by (1) conversion repair, (2) nonhomologous end joining (NHEJ), or (3) single-strand annealing (SSA). For conversion repair, the frequency of mitotic crossing over in the germ line indicates the relative prevalence of repair by double Holliday junction (DHJ) formation vs. the synthesis-dependent strand annealing (SDSA) pathway. We used this method to show that breaks occurring early in germ-line development were much more frequently repaired via single-strand annealing and much less likely to be repaired by end joining compared with identical breaks occurring later in development. Conversion repair was relatively rare when breaks were made either very early or very late in development, but was much more frequent in between. Significantly, the changes in relative usage occurred in a compensatory fashion, such that an increase in one pathway was accompanied by decreases in others. This negative correlation is interpreted to mean that the pathways for double-strand break repair compete with each other to handle a given breakage event.
Collapse
Affiliation(s)
- Christine R Preston
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
44
|
Keely SP, Renauld H, Wakefield AE, Cushion MT, Smulian AG, Fosker N, Fraser A, Harris D, Murphy L, Price C, Quail MA, Seeger K, Sharp S, Tindal CJ, Warren T, Zuiderwijk E, Barrell BG, Stringer JR, Hall N. Gene arrays at Pneumocystis carinii telomeres. Genetics 2005; 170:1589-600. [PMID: 15965256 PMCID: PMC1449779 DOI: 10.1534/genetics.105.040733] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the fungus Pneumocystis carinii, at least three gene families (PRT1, MSR, and MSG) have the potential to generate high-frequency antigenic variation, which is likely to be a strategy by which this parasitic fungus is able to prolong its survival in the rat lung. Members of these gene families are clustered at chromosome termini, a location that fosters recombination, which has been implicated in selective expression of MSG genes. To gain insight into the architecture, evolution, and regulation of these gene clusters, six telomeric segments of the genome were sequenced. Each of the segments began with one or more unique genes, after which were members of different gene families, arranged in a head-to-tail array. The three-gene repeat PRT1-MSR-MSG was common, suggesting that duplications of these repeats have contributed to expansion of all three families. However, members of a gene family in an array were no more similar to one another than to members in other arrays, indicating rapid divergence after duplication. The intergenic spacers were more conserved than the genes and contained sequence motifs also present in subtelomeres, which in other species have been implicated in gene expression and recombination. Long mononucleotide tracts were present in some MSR genes. These unstable sequences can be expected to suffer frequent frameshift mutations, providing P. carinii with another mechanism to generate antigen variation.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Fungal
- Base Sequence
- Chromosome Mapping
- Chromosomes, Fungal
- Cloning, Molecular
- Cosmids
- DNA, Fungal
- Evolution, Molecular
- Gene Duplication
- Gene Expression Regulation, Fungal
- Gene Library
- Genes, Fungal
- Genetic Linkage
- Genome, Fungal
- Open Reading Frames
- Pneumocystis carinii/genetics
- RNA, Messenger/genetics
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Selection, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Telomere/genetics
Collapse
Affiliation(s)
- Scott P Keely
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Genome stability is of primary importance for the survival and proper functioning of all organisms. Double-strand breaks (DSBs) arise spontaneously during growth, or can be created by external insults. In response to even a single DSB, organisms must trigger a series of events to promote repair of the DNA damage in order to survive and restore chromosomal integrity. In doing so, cells must regulate a fine balance between potentially competing DSB repair pathways. These are generally classified as either homologous recombination (HR) or non-homologous end joining (NHEJ). The yeast Saccharomyces cerevisiae is an ideal model organism for studying these repair processes. Indeed, much of what we know today on the mechanisms of repair in eukaryotes come from studies carried out in budding yeast. Many of the proteins involved in the various repair pathways have been isolated and the details of their mode of action are currently being unraveled at the molecular level. In this review, we focus on exciting new work eminating from yeast research that provides fresh insights into the DSB repair process. This recent work supplements and complements the wealth of classical genetic research that has been performed in yeast systems over the years. Given the conservation of the repair mechanisms and genes throughout evolution, these studies have profound implications for other eukaryotic organisms.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
46
|
Aylon Y, Kupiec M. New insights into the mechanism of homologous recombination in yeast. Mutat Res 2004; 566:231-48. [PMID: 15082239 DOI: 10.1016/j.mrrev.2003.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 10/02/2003] [Indexed: 01/09/2023]
Abstract
Genome stability is of primary importance for the survival and proper functioning of all organisms. Double-strand breaks (DSBs) arise spontaneously during growth, or can be created by external insults. Repair of DSBs by homologous recombination provides an efficient and fruitful pathway to restore chromosomal integrity. Exciting new work in yeast has lately provided insights into this complex process. Many of the proteins involved in recombination have been isolated and the details of the repair mechanism are now being unraveled at the molecular level. In this review, we focus on recent studies which dissect the recombinational repair of a single broken chromosome. After DSB formation, a decision is made regarding the mechanism of repair (recombination or non-homologous end-joining). This decision is under genetic control. Once committed to the recombination pathway, the broken chromosomal ends are resected by a still unclear mechanism in which the DNA damage checkpoint protein Rad24 participates. At this stage several proteins are recruited to the broken ends, including Rad51p, Rad52p, Rad55p, Rad57p, and possibly Rad54p. A genomic search for homology ensues, followed by strand invasion, promoted by the Rad51 filament with the participation of Rad55p, Rad57p and Rad54p. DNA synthesis then takes place, restoring the resected ends. Crossing-over formation depends on the length of the homologous recombining sequences, and is usually counteracted by the activity of the mismatch repair system. Given the conservation of the repair mechanisms and genes throughout evolution, these studies have profound implications for other eukaryotic organisms.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
47
|
Abstract
Werner syndrome (WS) is one of three heritable human genetic instability/cancer predisposition syndromes that result from mutations in a member of the gene family encoding human RecQ helicases. Cellular defects are a prominent part of the WS phenotype. Here we review recent work to identify in vivo functions of the WS protein and discuss how loss of function leads to cellular defects. These new results provide clues to the origin of cell lineage-specific defects in WS patients and suggest a broader role for Werner protein function in determining disease risk in the general population.
Collapse
Affiliation(s)
- Raymond J Monnat
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
48
|
Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, Chung JH, Powell SN, Xia F. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 2004; 24:708-18. [PMID: 14701743 PMCID: PMC343805 DOI: 10.1128/mcb.24.2.708-718.2004] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 09/04/2003] [Accepted: 10/23/2003] [Indexed: 12/29/2022] Open
Abstract
The pathway determining malignant cellular transformation, which depends upon mutation of the BRCA1 tumor suppressor gene, is poorly defined. A growing body of evidence suggests that promotion of DNA double-strand break repair by homologous recombination (HR) may be the means by which BRCA1 maintains genomic stability, while a role of BRCA1 in error-prone nonhomologous recombination (NHR) processes has just begun to be elucidated. The BRCA1 protein becomes phosphorylated in response to DNA damage, but the effects of phosphorylation on recombinational repair are unknown. In this study, we tested the hypothesis that the BRCA1-mediated regulation of recombination requires the Chk2- and ATM-dependent phosphorylation sites. We studied Rad51-dependent HR and random chromosomal integration of linearized plasmid DNA, a subtype of NHR, which we demonstrate to be dependent on the Mre11-Rad50-Nbs1 complex. Prevention of Chk2-mediated phosphorylation via mutation of the serine 988 residue of BRCA1 disrupted both the BRCA1-dependent promotion of HR and the suppression of NHR. Similar results were obtained when endogenous Chk2 kinase activity was inhibited by expression of a dominant-negative Chk2 mutant. Surprisingly, the opposing regulation of HR and NHR did not require the ATM phosphorylation sites on serines 1423 and 1524. Together, these data suggest a functional link between recombination control and breast cancer predisposition in carriers of Chk2 and BRCA1 germ line mutations. We propose a dual regulatory role for BRCA1 in maintaining genome integrity, whereby BRCA1 phosphorylation status controls the selectivity of repair events dictated by HR and error-prone NHR.
Collapse
Affiliation(s)
- Junran Zhang
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Storici F, Durham CL, Gordenin DA, Resnick MA. Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc Natl Acad Sci U S A 2003; 100:14994-9. [PMID: 14630945 PMCID: PMC299876 DOI: 10.1073/pnas.2036296100] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Indexed: 11/18/2022] Open
Abstract
The repair of chromosomal double-strand breaks (DSBs) can be accomplished through homologous recombination in most organisms. We report here that exogenous oligonucleotides can efficiently target for repair a single DSB induced in a chromosome of yeast. The efficiency of recombinational targeting leading to a desired DNA change can be as high as 20% of cells. The DSB was generated either by a regulatable I-SceI endonuclease just before transformation or appeared spontaneously at the site of a long inverted repeat composed of human Alu sequences. The approach used features of our previously described delitto perfetto system for selecting transformants with integrative recombinant oligonucleotides. The DSB repair mediated by pairs of complementary integrative recombinant oligonucleotides was efficient for targeting to homologous sequences that were close to or distant from the DSB and in the presence of a competing homologous chromosome in diploid cells. We also demonstrate that a DSB can strongly stimulate recombination with single-stranded DNA, without strand bias. These findings expand current models of DSB repair. In addition, we establish a high-throughput system for rapid genome-wide modification with oligonucleotides.
Collapse
Affiliation(s)
- Francesca Storici
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
50
|
Kibe T, Tomita K, Matsuura A, Izawa D, Kodaira T, Ushimaru T, Uritani M, Ueno M. Fission yeast Rhp51 is required for the maintenance of telomere structure in the absence of the Ku heterodimer. Nucleic Acids Res 2003; 31:5054-63. [PMID: 12930956 PMCID: PMC212814 DOI: 10.1093/nar/gkg718] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Schizosaccharomyces pombe Ku70-Ku80 heterodimer is required for telomere length regulation. Lack of pku70+ results in telomere shortening and striking rearrangements of telomere-associated sequences. We found that the rearrangements of telomere-associated sequences in pku80+ mutants are Rhp51 dependent, but not Rad50 dependent. Rhp51 bound to telomere ends when the Ku heterodimer was not present at telomere ends. We also found that the single-stranded G-rich tails increased in S phase in wild-type strains, while deletion of pku70+ increased the single-stranded overhang in both G2 and S phase. Based on these observations, we propose that Rhp51 binds to the G-rich overhang and promotes homologous pairing between two different telomere ends in the absence of Ku heterodimer. Moreover, pku80 rhp51 double mutants showed a significantly reduced telomere hybridization signal. Our results suggest that, although Ku heterodimer sequesters Rhp51 from telomere ends to inhibit homologous recombination activity, Rhp51 plays important roles for the maintenance of telomere ends in the absence of the Ku heterodimer.
Collapse
Affiliation(s)
- Tatsuya Kibe
- Department of Chemistry, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | | | |
Collapse
|