1
|
Sholes SL, Karimian K, Gershman A, Kelly TJ, Timp W, Greider CW. Chromosome-specific telomere lengths and the minimal functional telomere revealed by nanopore sequencing. Genome Res 2022; 32:616-628. [PMID: 34702734 PMCID: PMC8997346 DOI: 10.1101/gr.275868.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
We developed a method to tag telomeres and measure telomere length by nanopore sequencing in the yeast S. cerevisiae Nanopore allows long-read sequencing through the telomere, through the subtelomere, and into unique chromosomal sequence, enabling assignment of telomere length to a specific chromosome end. We observed chromosome end-specific telomere lengths that were stable over 120 cell divisions. These stable chromosome-specific telomere lengths may be explained by slow clonal variation or may represent a new biological mechanism that maintains equilibrium unique to each chromosome end. We examined the role of RIF1 and TEL1 in telomere length regulation and found that TEL1 is epistatic to RIF1 at most telomeres, consistent with the literature. However, at telomeres that lack subtelomeric Y' sequences, tel1Δ rif1Δ double mutants had a very small, but significant, increase in telomere length compared with the tel1Δ single mutant, suggesting an influence of Y' elements on telomere length regulation. We sequenced telomeres in a telomerase-null mutant (est2Δ) and found the minimal telomere length to be ∼75 bp. In these est2Δ mutants, there were apparent telomere recombination events at individual telomeres before the generation of survivors, and these events were significantly reduced in est2Δ rad52Δ double mutants. The rate of telomere shortening in the absence of telomerase was similar across all chromosome ends at ∼5 bp per generation. This new method gives quantitative, high-resolution telomere length measurement at each individual chromosome end and suggests possible new biological mechanisms regulating telomere length.
Collapse
Affiliation(s)
- Samantha L Sholes
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kayarash Karimian
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Thomas J Kelly
- Program in Molecular Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Carol W Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
2
|
Rosas Bringas FR, Stinus S, de Zoeten P, Cohn M, Chang M. Rif2 protects Rap1-depleted telomeres from MRX-mediated degradation in Saccharomyces cerevisiae. eLife 2022; 11:74090. [PMID: 35044907 PMCID: PMC8791636 DOI: 10.7554/elife.74090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
Rap1 is the main protein that binds double-stranded telomeric DNA in Saccharomyces cerevisiae. Examination of the telomere functions of Rap1 is complicated by the fact that it also acts as a transcriptional regulator of hundreds of genes and is encoded by an essential gene. In this study, we disrupt Rap1 telomere association by expressing a mutant telomerase RNA subunit (tlc1-tm) that introduces mutant telomeric repeats. tlc1-tm cells grow similar to wild-type cells, although depletion of Rap1 at telomeres causes defects in telomere length regulation and telomere capping. Rif2 is a protein normally recruited to telomeres by Rap1, but we show that Rif2 can still associate with Rap1-depleted tlc1-tm telomeres, and that this association is required to inhibit telomere degradation by the MRX complex. Rif2 and the Ku complex work in parallel to prevent tlc1-tm telomere degradation; tlc1-tm cells lacking Rif2 and the Ku complex are inviable. The partially redundant mechanisms may explain the rapid evolution of telomere components in budding yeast species.
Collapse
Affiliation(s)
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| | - Pien de Zoeten
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| | | | - Michael Chang
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| |
Collapse
|
3
|
Shubin CB, Greider CW. The role of Rif1 in telomere length regulation is separable from its role in origin firing. eLife 2020; 9:58066. [PMID: 32597753 PMCID: PMC7371424 DOI: 10.7554/elife.58066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
To examine the established link between DNA replication and telomere length, we tested whether firing of telomeric origins would cause telomere lengthening. We found that RIF1 mutants that block Protein Phosphatase 1 (PP1) binding activated telomeric origins but did not elongate telomeres. In a second approach, we found overexpression of ∆N-Dbf4 and Cdc7 increased DDK activity and activated telomeric origins, yet telomere length was unchanged. We tested a third mechanism to activate origins using the sld3-A mcm5-bob1 mutant that de-regulates the pre-replication complex, and again saw no change in telomere length. Finally, we tested whether mutations in RIF1 that cause telomere elongation would affect origin firing. We found that neither rif1-∆1322 nor rif1HOOK affected firing of telomeric origins. We conclude that telomeric origin firing does not cause telomere elongation, and the role of Rif1 in regulating origin firing is separable from its role in regulating telomere length.
Collapse
Affiliation(s)
- Calla B Shubin
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Carol W Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
4
|
Tomáška Ľ, Nosek J. Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. J Mol Evol 2020; 88:293-318. [PMID: 32157325 DOI: 10.1007/s00239-020-09935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
5
|
Asymmetric Processing of DNA Ends at a Double-Strand Break Leads to Unconstrained Dynamics and Ectopic Translocation. Cell Rep 2019; 24:2614-2628.e4. [PMID: 30184497 DOI: 10.1016/j.celrep.2018.07.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/07/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023] Open
Abstract
Multiple pathways regulate the repair of double-strand breaks (DSBs) to suppress potentially dangerous ectopic recombination. Both sequence and chromatin context are thought to influence pathway choice between non-homologous end-joining (NHEJ) and homology-driven recombination. To test the effect of repetitive sequences on break processing, we have inserted TG-rich repeats on one side of an inducible DSB at the budding yeast MAT locus on chromosome III. Five clustered Rap1 sites within a break-proximal TG repeat are sufficient to block Mre11-Rad50-Xrs2 recruitment, impair resection, and favor elongation by telomerase. The two sides of the break lose end-to-end tethering and show enhanced, uncoordinated movement. Only the TG-free side is resected and shifts to the nuclear periphery. In contrast to persistent DSBs without TG repeats that are repaired by imprecise NHEJ, nearly all survivors of repeat-proximal DSBs repair the break by a homology-driven, non-reciprocal translocation from ChrIII-R to ChrVII-L. This suppression of imprecise NHEJ at TG-repeat-flanked DSBs requires the Uls1 translocase activity.
Collapse
|
6
|
Aksenova AY, Mirkin SM. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes (Basel) 2019; 10:genes10020118. [PMID: 30764567 PMCID: PMC6410037 DOI: 10.3390/genes10020118] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Tandem DNA repeats derived from the ancestral (TTAGGG)n run were first detected at chromosome ends of the majority of living organisms, hence the name telomeric DNA repeats. Subsequently, it has become clear that telomeric motifs are also present within chromosomes, and they were suitably called interstitial telomeric sequences (ITSs). It is well known that telomeric DNA repeats play a key role in chromosome stability, preventing end-to-end fusions and precluding the recurrent DNA loss during replication. Recent data suggest that ITSs are also important genomic elements as they confer its karyotype plasticity. In fact, ITSs appeared to be among the most unstable microsatellite sequences as they are highly length polymorphic and can trigger chromosomal fragility and gross chromosomal rearrangements. Importantly, mechanisms responsible for their instability appear to be similar to the mechanisms that maintain the length of genuine telomeres. This review compares the mechanisms of maintenance and dynamic properties of telomeric repeats and ITSs and discusses the implications of these dynamics on genome stability.
Collapse
Affiliation(s)
- Anna Y Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02421, USA.
| |
Collapse
|
7
|
Tomáška Ĺ, Nosek J, Sepšiová R, Červenák F, Juríková K, Procházková K, Neboháčová M, Willcox S, Griffith JD. Commentary: Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function. Front Genet 2019; 9:742. [PMID: 30697232 PMCID: PMC6341069 DOI: 10.3389/fgene.2018.00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ĺubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Filip Červenák
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarína Juríková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarína Procházková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martina Neboháčová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Červenák F, Juríková K, Sepšiová R, Neboháčová M, Nosek J, Tomáška L. Double-stranded telomeric DNA binding proteins: Diversity matters. Cell Cycle 2017; 16:1568-1577. [PMID: 28749196 DOI: 10.1080/15384101.2017.1356511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Telomeric sequences constitute only a small fraction of the whole genome yet they are crucial for ensuring genomic stability. This function is in large part mediated by protein complexes recruited to telomeric sequences by specific telomere-binding proteins (TBPs). Although the principal tasks of nuclear telomeres are the same in all eukaryotes, TBPs in various taxa exhibit a surprising diversity indicating their distinct evolutionary origin. This diversity is especially pronounced in ascomycetous yeasts where they must have co-evolved with rapidly diversifying sequences of telomeric repeats. In this article we (i) provide a historical overview of the discoveries leading to the current list of TBPs binding to double-stranded (ds) regions of telomeres, (ii) describe examples of dsTBPs highlighting their diversity in even closely related species, and (iii) speculate about possible evolutionary trajectories leading to a long list of various dsTBPs fulfilling the same general role(s) in their own unique ways.
Collapse
Affiliation(s)
- Filip Červenák
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Katarína Juríková
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Regina Sepšiová
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Martina Neboháčová
- b Department of Biochemistry , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Jozef Nosek
- b Department of Biochemistry , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - L'ubomír Tomáška
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| |
Collapse
|
9
|
Sepsiova R, Necasova I, Willcox S, Prochazkova K, Gorilak P, Nosek J, Hofr C, Griffith JD, Tomaska L. Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins. PLoS One 2016; 11:e0154225. [PMID: 27101289 PMCID: PMC4839565 DOI: 10.1371/journal.pone.0154225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 04/11/2016] [Indexed: 11/30/2022] Open
Abstract
Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated sequences that are recognized by specific Myb domain containing DNA-binding proteins (telomere-binding proteins, TBPs). Whereas in many eukaryotes the length and sequence of the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canonical mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a version unable to bind DNA], Tay1p/Teb1p, and Taz1p) that are employed by various yeast species to protect their telomeres. With the aim of reconstructing evolutionary paths leading to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of the DNA-binding properties of both proteins using combined qualitative and quantitative biochemical approaches. Visualization of DNA-protein complexes by electron microscopy revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fission yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electrophoretic mobility shift assays using mammalian type telomeres and native substrates (telomeric repeats, histone-box sequences) as well as their mutated versions. We observed relative DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both proteins were compared directly to each other. These properties may have driven replacement of Teb1p by Taz1p as the TBP in fission yeast.
Collapse
Affiliation(s)
- Regina Sepsiova
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 842 15, Bratislava, Slovak Republic
| | - Ivona Necasova
- Chromatin Molecular Complexes, Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Katarina Prochazkova
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 842 15, Bratislava, Slovak Republic
| | - Peter Gorilak
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 842 15, Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 842 15, Bratislava, Slovak Republic
| | - Ctirad Hofr
- Chromatin Molecular Complexes, Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Lubomir Tomaska
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 842 15, Bratislava, Slovak Republic
- * E-mail:
| |
Collapse
|
10
|
Ichikawa Y, Nishimura Y, Kurumizaka H, Shimizu M. Nucleosome organization and chromatin dynamics in telomeres. Biomol Concepts 2016; 6:67-75. [PMID: 25720088 DOI: 10.1515/bmc-2014-0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/01/2014] [Indexed: 11/15/2022] Open
Abstract
Telomeres are DNA-protein complexes located at the ends of linear eukaryotic chromosomes, and are essential for chromosome stability and maintenance. In most organisms, telomeres consist of tandemly repeated sequences of guanine-clusters. In higher eukaryotes, most of the telomeric repeat regions are tightly packaged into nucleosomes, even though telomeric repeats act as nucleosome-disfavoring sequences. Although telomeres were considered to be condensed heterochromatin structures, recent studies revealed that the chromatin structures in telomeres are actually dynamic. The dynamic properties of telomeric chromatin are considered to be important for the structural changes between the euchromatic and heterochromatic states during the cell cycle and in cellular differentiation. We propose that the nucleosome-disfavoring property of telomeric repeats is a crucial determinant for the lability of telomeric nucleosomes, and provides a platform for chromatin dynamics in telomeres. Furthermore, we discuss the influences of telomeric components on the nucleosome organization and chromatin dynamics in telomeres.
Collapse
|
11
|
Saint-Léger A, Koelblen M, Civitelli L, Bah A, Djerbi N, Giraud-Panis MJ, Londoño-Vallejo A, Ascenzioni F, Gilson E. The basic N-terminal domain of TRF2 limits recombination endonuclease action at human telomeres. Cell Cycle 2015; 13:2469-74. [PMID: 25483196 DOI: 10.4161/cc.29422] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The stability of mammalian telomeres depends upon TRF2, which prevents inappropriate repair and checkpoint activation. By using a plasmid integration assay in yeasts carrying humanized telomeres, we demonstrated that TRF2 possesses the intrinsic property to both stimulate initial homologous recombination events and to prevent their resolution via its basic N-terminal domain. In human cells, we further showed that this TRF2 domain prevents telomere shortening mediated by the resolvase-associated protein SLX4 as well as GEN1 and MUS81, 2 different types of endonucleases with resolvase activities. We propose that various types of resolvase activities are kept in check by the basic N-terminal domain of TRF2 in order to favor an accurate repair of the stalled forks that occur during telomere replication.
Collapse
Affiliation(s)
- Adélaïde Saint-Léger
- a Institute for Research on Cancer and Aging, Nice (IRCAN); CNRS UMR7284/INSERM U1081; Faculty of Medicine; Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Malyavko AN, Parfenova YY, Zvereva MI, Dontsova OA. Telomere length regulation in budding yeasts. FEBS Lett 2014; 588:2530-6. [PMID: 24914478 DOI: 10.1016/j.febslet.2014.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/19/2022]
Abstract
Telomeres are the nucleoprotein caps of chromosomes. Their length must be tightly regulated in order to maintain the stability of the genome. This is achieved by the intricate network of interactions between different proteins and protein-RNA complexes. Different organisms use various mechanisms for telomere length homeostasis. However, details of these mechanisms are not yet completely understood. In this review we have summarized our latest achievements in the understanding of telomere length regulation in budding yeasts.
Collapse
Affiliation(s)
- Alexander N Malyavko
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Yuliya Y Parfenova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Maria I Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Olga A Dontsova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia.
| |
Collapse
|
13
|
Ichikawa Y, Morohashi N, Nishimura Y, Kurumizaka H, Shimizu M. Telomeric repeats act as nucleosome-disfavouring sequences in vivo. Nucleic Acids Res 2013; 42:1541-52. [PMID: 24174540 PMCID: PMC3919577 DOI: 10.1093/nar/gkt1006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Telomeric DNAs consist of tandem repeats of G-clusters such as TTAGGG and TG1-3, which are the human and yeast repeat sequences, respectively. In the yeast Saccharomyces cerevisiae, the telomeric repeats are non-nucleosomal, whereas in humans, they are organized in tightly packaged nucleosomes. However, previous in vitro studies revealed that the binding affinities of human and yeast telomeric repeat sequences to histone octamers in vitro were similar, which is apparently inconsistent with the differences in the human and yeast telomeric chromatin structures. To further investigate the relationship between telomeric sequences and chromatin structure, we examined the effect of telomeric repeats on the formation of positioned nucleosomes in vivo by indirect end-label mapping, primer extension mapping and nucleosome repeat analyses, using a defined minichromosome in yeast cells. We found that the human and yeast telomeric repeat sequences both disfavour nucleosome assembly and alter nucleosome positioning in the yeast minichromosome. We further demonstrated that the G-clusters in the telomeric repeats are required for the nucleosome-disfavouring properties. Thus, our results suggest that this inherent structural feature of the telomeric repeat sequences is involved in the functional dynamics of the telomeric chromatin structure.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering/RISE, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8640, Japan, Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan and Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
14
|
Abstract
The absence of telomerase in many eukaryotes leads to the gradual shortening of telomeres, causing replicative senescence. In humans, this proliferation barrier constitutes a tumor suppressor mechanism and may be involved in cellular aging. Yet the heterogeneity of the senescence phenotype has hindered the understanding of its onset. Here we investigated the regulation of telomere length and its control of senescence heterogeneity. Because the length of the shortest telomeres can potentially regulate cell fate, we focus on their dynamics in Saccharomyces cerevisiae. We developed a stochastic model of telomere dynamics built on the protein-counting model, where an increasing number of protein-bound telomeric repeats shift telomeres into a nonextendable state by telomerase. Using numerical simulations, we found that the length of the shortest telomere is well separated from the length of the others, suggesting a prominent role in triggering senescence. We evaluated this possibility using classical genetic analyses of tetrads, combined with a quantitative and sensitive assay for senescence. In contrast to mitosis of telomerase-negative cells, which produces two cells with identical senescence onset, meiosis is able to segregate a determinant of senescence onset among the telomerase-negative spores. The frequency of such segregation is in accordance with this determinant being the length of the shortest telomere. Taken together, our results substantiate the length of the shortest telomere as being the key genetic marker determining senescence onset in S. cerevisiae.
Collapse
|
15
|
Di Domenico EG, Mattarocci S, Cimino-Reale G, Parisi P, Cifani N, D'Ambrosio E, Zakian VA, Ascenzioni F. Tel1 and Rad51 are involved in the maintenance of telomeres with capping deficiency. Nucleic Acids Res 2013; 41:6490-500. [PMID: 23677619 PMCID: PMC3711455 DOI: 10.1093/nar/gkt365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vertebrate-like T2AG3 telomeres in tlc1-h yeast consist of short double-stranded regions and long single-stranded overhang (G-tails) and, although based on Tbf1-capping activity, they are capping deficient. Consistent with this idea, we observe Y' amplification because of homologous recombination, even in the presence of an active telomerase. In these cells, Y' amplification occurs by different pathways: in Tel1(+) tlc1h cells, it is Rad51-dependent, whereas in the absence of Tel1, it depends on Rad50. Generation of telomeric G-tail, which is cell cycle regulated, depends on the MRX (Mre11-Rad50-Xrs2) complex in tlc1h cells or is MRX-independent in tlc1h tel1Δ mutants. Unexpectedly, we observe telomere elongation in tlc1h lacking Rad51 that seems to act as a telomerase competitor for binding to telomeric G-tails. Overall, our results show that Tel1 and Rad51 have multiple roles in the maintenance of vertebrate-like telomeres in yeast, supporting the idea that they may participate to evolutionary conserved telomere protection mechanism/s acting at uncapped telomeres.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Giraud-Panis MJ, Pisano S, Benarroch-Popivker D, Pei B, Le Du MH, Gilson E. One identity or more for telomeres? Front Oncol 2013; 3:48. [PMID: 23509004 PMCID: PMC3598436 DOI: 10.3389/fonc.2013.00048] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/23/2013] [Indexed: 12/19/2022] Open
Abstract
A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. The fact that different types of nucleoprotein complexes have been described at the telomeres of different organisms raises the question of whether they have in common a structural identity that explains their role in chromosome protection. We will review here how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA, and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guarantee the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We will also discuss the recent notion that telomeres have evolved specific systems to overcome the DNA topological stress generated during their replication and transcription. This will lead to revisit the way we envisage the functioning of telomeric complexes since the regulation of topology is central to DNA stability, replication, recombination, and transcription as well as to chromosome higher-order organization.
Collapse
Affiliation(s)
- Marie-Josèphe Giraud-Panis
- Faculté de Médecine de Nice, Université de Nice-Sophia Antipolis, Institute for Research on Cancer and Aging Nice, UMR 7284 CNRS, U1081 INSERM Nice, France
| | | | | | | | | | | |
Collapse
|
17
|
Kuprys PV, Davis SM, Hauer TM, Meltser M, Tzfati Y, Kirk KE. Identification of telomerase RNAs from filamentous fungi reveals conservation with vertebrates and yeasts. PLoS One 2013; 8:e58661. [PMID: 23555591 PMCID: PMC3603654 DOI: 10.1371/journal.pone.0058661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/05/2013] [Indexed: 01/03/2023] Open
Abstract
Telomeres are the nucleoprotein complexes at eukaryotic chromosomal ends. Telomeric DNA is synthesized by the ribonucleoprotein telomerase, which comprises a telomerase reverse transcriptase (TERT) and a telomerase RNA (TER). TER contains a template for telomeric DNA synthesis. Filamentous fungi possess extremely short and tightly regulated telomeres. Although TERT is well conserved between most organisms, TER is highly divergent and thus difficult to identify. In order to identify the TER sequence, we used the unusually long telomeric repeat sequence of Aspergillus oryzae together with reverse-transcription-PCR and identified a transcribed sequence that contains the potential template within a region predicted to be single stranded. We report the discovery of TERs from twelve other related filamentous fungi using comparative genomic analysis. These TERs exhibited strong conservation with the vertebrate template sequence, and two of these potentially use the identical template as humans. We demonstrate the existence of important processing elements required for the maturation of yeast TERs such as an Sm site, a 5' splice site and a branch point, within the newly identified TER sequences. RNA folding programs applied to the TER sequences show the presence of secondary structures necessary for telomerase activity, such as a yeast-like template boundary, pseudoknot, and a vertebrate-like three-way junction. These telomerase RNAs identified from filamentous fungi display conserved structural elements from both yeast and vertebrate TERs. These findings not only provide insights into the structure and evolution of a complex RNA but also provide molecular tools to further study telomere dynamics in filamentous fungi.
Collapse
Affiliation(s)
- Paulius V. Kuprys
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Shaun M. Davis
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Tyler M. Hauer
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Max Meltser
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Yehuda Tzfati
- Department of Genetics, The Silberman
Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram,
Jerusalem, Israel
| | - Karen E. Kirk
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| |
Collapse
|
18
|
Bonetti D, Anbalagan S, Lucchini G, Clerici M, Longhese MP. Tbf1 and Vid22 promote resection and non-homologous end joining of DNA double-strand break ends. EMBO J 2012; 32:275-89. [PMID: 23222485 DOI: 10.1038/emboj.2012.327] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/12/2012] [Indexed: 11/09/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is crucial for maintaining genome stability. The Saccharomyces cerevisiae protein Tbf1, which is characterized by a Myb domain and is related to mammalian TRF1 and TRF2, has been proposed to act as a transcriptional activator. Here, we show that Tbf1 and its interacting protein Vid22 are new players in the response to DSBs. Inactivation of either TBF1 or VID22 causes hypersensitivity to DSB-inducing agents and shows strong negative interactions with mutations affecting homologous recombination. Furthermore, Tbf1 and Vid22 are recruited to an HO-induced DSB, where they promote both resection of DNA ends and repair by non-homologous end joining. Finally, inactivation of either Tbf1 or Vid22 impairs nucleosome eviction around the DSB, suggesting that these proteins promote efficient repair of the break by influencing chromatin identity in its surroundings.
Collapse
Affiliation(s)
- Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | | | | | | | | |
Collapse
|
19
|
Lamm N, Bsoul S, Kabaha MM, Tzfati Y. "Poisoning" yeast telomeres distinguishes between redundant telomere capping pathways. Chromosoma 2012; 121:613-27. [PMID: 23052336 DOI: 10.1007/s00412-012-0385-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 01/24/2023]
Abstract
In most eukaryotes, telomeres are composed of tandem arrays of species-specific DNA repeats ending with a G-rich 3' overhang. In budding yeast, Cdc13 binds this overhang and recruits Ten1-Stn1 and the telomerase protein Est1 to protect (cap) and elongate the telomeres, respectively. To dissect and study the various pathways employed to cap and maintain the telomere end, we engineered telomerase to incorporate Tetrahymena telomeric repeats (G₄T₂) onto the telomeres of the budding yeast Kluyveromyces lactis. These heterologous repeats caused telomere-telomere fusions, cell cycle arrest at G2/M, and severely reduced viability--the hallmarks of telomere uncapping. Fusing Cdc13 or Est1 to universal minicircle sequence binding protein (UMSBP), a small protein that binds the single-stranded G₄T₂ repeats, rescued the cell viability and restored telomere capping, but not telomerase-mediated telomere maintenance. Surprisingly, Cdc13-UMSBP-mediated telomere capping was dependent on the homologous recombination factor Rad52, while Est1-UMSBP was not. Thus, our results distinguish between two, redundant, telomere capping pathways.
Collapse
Affiliation(s)
- Noa Lamm
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
20
|
Fukunaga K, Hirano Y, Sugimoto K. Subtelomere-binding protein Tbf1 and telomere-binding protein Rap1 collaborate to inhibit localization of the Mre11 complex to DNA ends in budding yeast. Mol Biol Cell 2011; 23:347-59. [PMID: 22130795 PMCID: PMC3258178 DOI: 10.1091/mbc.e11-06-0568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rap1 acts together with the subtelomere-binding protein Tbf1 and inhibits localization of Mre11 complex to DNA ends. Depletion of Tbf1 protein stimulates checkpoint activation in cells containing short telomeres. The results suggest that Tbf1 and Rap1 collaborate to maintain genomic stability of short telomeres. Chromosome ends, known as telomeres, have to be distinguished from DNA double-strand breaks that activate DNA damage checkpoints. In budding yeast, the Mre11-Rad50-Xrs2 (MRX) complex associates with DNA ends and promotes checkpoint activation. Rap1 binds to double-stranded telomeric regions and recruits Rif1 and Rif2 to telomeres. Rap1 collaborates with Rif1 and Rif2 and inhibits MRX localization to DNA ends. This Rap1-Rif1-Rif2 function becomes attenuated at shortened telomeres. Here we show that Rap1 acts together with the subtelomere-binding protein Tbf1 and inhibits MRX localization to DNA ends. The placement of a subtelomeric sequence or TTAGGG repeats together with a short telomeric TG repeat sequence inhibits MRX accumulation at nearby DNA ends in a Tbf1-dependent manner. Moreover, tethering of both Tbf1 and Rap1 proteins decreases MRX and Tel1 accumulation at nearby DNA ends. This Tbf1- and Rap1-dependent pathway operates independently of Rif1 or Rif2 function. Depletion of Tbf1 protein stimulates checkpoint activation in cells containing short telomeres but not in cells containing normal-length telomeres. These data support a model in which Tbf1 and Rap1 collaborate to maintain genomic stability of short telomeres.
Collapse
Affiliation(s)
- Kenzo Fukunaga
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | |
Collapse
|
21
|
Ribaud V, Ribeyre C, Damay P, Shore D. DNA-end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1. EMBO J 2011; 31:138-49. [PMID: 21952045 DOI: 10.1038/emboj.2011.349] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 09/01/2011] [Indexed: 11/09/2022] Open
Abstract
Telomere repeats in budding yeast are maintained at a constant average length and protected ('capped'), in part, by mechanisms involving the TG(1-3) repeat-binding protein Rap1. However, metazoan telomere repeats (T(2)AG(3)) can be maintained in yeast through a Rap1-independent mechanism. Here, we examine the dynamics of capping and telomere formation at an induced DNA double-strand break flanked by varying lengths of T(2)AG(3) repeats. We show that a 60-bp T(2)AG(3) repeat array induces a transient G2/M checkpoint arrest, but is rapidly elongated by telomerase to generate a stable T(2)AG(3)/TG(1-3) hybrid telomere. In contrast, a 230-bp T(2)AG(3) array induces neither G2/M arrest nor telomerase elongation. This capped state requires the T(2)AG(3)-binding protein Tbf1, but is independent of two Tbf1-interacting factors, Vid22 and Ygr071c. Arrays of binding sites for three other subtelomeric or Myb/SANT domain-containing proteins fail to display a similar end-protection effect, indicating that Tbf1 capping is an evolved function. Unexpectedly, we observed strong telomerase association with non-telomeric ends, whose elongation is blocked by a Mec1-dependent mechanism, apparently acting at the level of Cdc13 binding.
Collapse
Affiliation(s)
- Virginie Ribaud
- Department of Molecular Biology, NCCR Program Frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
22
|
Bah A, Gilson E, Wellinger RJ. Telomerase is required to protect chromosomes with vertebrate-type T2AG3 3' ends in Saccharomyces cerevisiae. J Biol Chem 2011; 286:27132-8. [PMID: 21676873 DOI: 10.1074/jbc.m111.220186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomeres containing vertebrate-type DNA repeats can be stably maintained in Saccharomyces cerevisiae cells. We show here that telomerase is required for growth of yeast cells containing these vertebrate-type telomeres. When present at the chromosome termini, these heterologous repeats elicit a DNA damage response and a certain deprotection of telomeres. The data also show that these phenotypes are due only to the terminal localization of the vertebrate repeats because if they are sandwiched between native yeast repeats, no phenotype is observed. Indeed and quite surprisingly, in this latter situation, telomeres are of virtually normal lengths, despite the presence of up to 50% of heterologous repeats. Furthermore, the presence of the distal vertebrate-type repeats can cause increased problems of the replication fork. These results show that in budding yeast the integrity of the 3' overhang is required for proper termination of telomere replication as well as protection.
Collapse
Affiliation(s)
- Amadou Bah
- Département de Microbiologie et d'Infectiologie, Groupe ARN/RNA Group, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Ave. Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | |
Collapse
|
23
|
Rhodin Edsö J, Gustafsson C, Cohn M. Single- and double-stranded DNA binding proteins act in concert to conserve a telomeric DNA core sequence. Genome Integr 2011; 2:2. [PMID: 21235754 PMCID: PMC3033795 DOI: 10.1186/2041-9414-2-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Telomeres are protective cap structures at the ends of the linear eukaryotic chromosomes, which provide stability to the genome by shielding from degradation and chromosome fusions. The cap consists of telomere-specific proteins binding to the respective single- and double-stranded parts of the telomeric sequence. In addition to the nucleation of the chromatin structure the telomere-binding proteins are involved in the regulation of the telomere length. However, the telomeric sequences are highly diverged among yeast species. During the evolution this high rate of divergency presents a challenge for the sequence recognition of the telomere-binding proteins. RESULTS We found that the Saccharomyces castellii protein Rap1, a negative regulator of telomere length, binds a 12-mer minimal binding site (MBS) within the double-stranded telomeric DNA. The sequence specificity is dependent on the interaction with two 5 nucleotide motifs, having a 6 nucleotide centre-to-centre spacing. The isolated DNA-binding domain binds the same MBS and retains the same motif binding characteristics as the full-length Rap1 protein. However, it shows some deviations in the degree of sequence-specific dependence in some nucleotide positions. Intriguingly, the positions of most importance for the sequence-specific binding of the full-length Rap1 protein coincide with 3 of the 4 nucleotides utilized by the 3' overhang binding protein Cdc13. These nucleotides are very well conserved within the otherwise highly divergent telomeric sequences of yeasts. CONCLUSIONS Rap1 and Cdc13 are two very distinct types of DNA-binding proteins with highly separate functions. They interact with the double-stranded vs. the single-stranded telomeric DNA via significantly different types of DNA-binding domain structures. However, we show that they are dependent on coinciding nucleotide positions for their sequence-specific binding to telomeric sequences. Thus, we conclude that during the molecular evolution they act together to preserve a core sequence of the telomeric DNA.
Collapse
Affiliation(s)
- Jenny Rhodin Edsö
- Department of Biology, Lund University, Biology building, Sölvegatan 35, SE-223 62 Lund, Sweden.
| | | | | |
Collapse
|
24
|
Kabir S, Sfeir A, de Lange T. Taking apart Rap1: an adaptor protein with telomeric and non-telomeric functions. Cell Cycle 2010; 9:4061-7. [PMID: 20948311 DOI: 10.4161/cc.9.20.13579] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian Rap1, a TRF2-interacting protein in the telomeric shelterin complex, was recently shown to repress homology-directed repair at chromosome ends. In addition, Rap1 plays a role in transcriptional regulation and NFκB signaling. Rap1 is unique among the components of shelterin in that it is conserved in budding yeast and has non-telomeric functions. Comparison of mammalian Rap1 to the Rap1 proteins of several budding yeasts and fission yeast reveal both striking similarities and notable differences. The protean nature of Rap1 is best understood by viewing it as an adaptor that can mediate a variety of protein-protein and protein-DNA interactions depending on the organism and the complex in which it is functioning.
Collapse
Affiliation(s)
- Shaheen Kabir
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
25
|
Telomere-independent Rap1 is an IKK adaptor and regulates NF-kappaB-dependent gene expression. Nat Cell Biol 2010; 12:758-67. [PMID: 20622870 DOI: 10.1038/ncb2080] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 05/20/2010] [Indexed: 12/12/2022]
Abstract
We describe a genome-wide gain-of-function screen for regulators of NF-kappaB, and identify Rap1 (Trf2IP), as an essential modulator of NF-kappaB-mediated pathways. NF-kappaB is induced by ectopic expression of Rap1, whereas its activity is inhibited by Rap1 depletion. In addition to localizing on telomeres, mammalian Rap1 forms a complex with IKKs (IkappaB kinases), and is crucial for the ability of IKKs to be recruited to, and phosphorylate, the p65 subunit of NF-kappaB to make it transcriptionally competent. Rap1-mutant mice display defective NF-kappaB activation and are resistant to endotoxic shock. Furthermore, levels of Rap1 are positively regulated by NF-kappaB, and human breast cancers with NF-kappaB hyperactivity show elevated levels of cytoplasmic Rap1. Similar to inhibiting NF-kappaB, knockdown of Rap1 sensitizes breast cancer cells to apoptosis. These results identify the first cytoplasmic role of Rap1 and provide a mechanism through which it regulates an important signalling cascade in mammals, independent of its ability to regulate telomere function.
Collapse
|
26
|
Wang Z, Rhee DB, Lu J, Bohr CT, Zhou F, Vallabhaneni H, de Souza-Pinto NC, Liu Y. Characterization of oxidative guanine damage and repair in mammalian telomeres. PLoS Genet 2010; 6:e1000951. [PMID: 20485567 PMCID: PMC2869316 DOI: 10.1371/journal.pgen.1000951] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/13/2010] [Indexed: 12/15/2022] Open
Abstract
8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1)-initiated DNA base excision repair (BER). Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH), by chromosome orientation-FISH (CO-FISH), and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/-)) mouse tissues and primary embryonic fibroblasts (MEFs) cultivated in hypoxia condition (3% oxygen), whereas telomere shortening was detected in Ogg1(-/-) mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen) or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/-) mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/-) mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/-) MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity in mammals.
Collapse
Affiliation(s)
- Zhilong Wang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - David B. Rhee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- University of Tennessee–Oak Ridge National Laboratory Graduate School of Genome Science and Technology, Knoxville, Tennessee, United States of America
| | - Jian Lu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Christina T. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Fang Zhou
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Haritha Vallabhaneni
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Nadja C. de Souza-Pinto
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
di Domenico EG, Auriche C, Viscardi V, Longhese MP, Gilson E, Ascenzioni F. The Mec1p and Tel1p checkpoint kinases allow humanized yeast to tolerate chronic telomere dysfunctions by suppressing telomere fusions. DNA Repair (Amst) 2008; 8:209-18. [PMID: 19007917 DOI: 10.1016/j.dnarep.2008.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 09/01/2008] [Accepted: 10/10/2008] [Indexed: 01/23/2023]
Abstract
In this work we report that budding yeasts carrying human-type telomeric repeats at their chromosome termini show a chronic activation of the Rad53-dependent DNA damage checkpoint pathway and a G2/M cell cycle delay. Furthermore, in the absence of either TEL1/ATM or MEC1/ATR genes, which encodes phosphatidylinositol 3-kinase-related kinases (PIKKs), we detected telomere fusions, whose appearance correlates with a reduced cell viability and a high rate of genome instability. Based on sequence analysis, telomere fusions occurred primarily between ultrashort telomeres. Microcolony formation assays argue against the possibility that fusion-containing cells are eliminated by PIKK-dependent signalling. These findings reveal that humanized telomeres in yeast cells are sensed as a chronically damaged DNA but do not greatly impair cell viability as long as the cells have a functional DNA damage checkpoint.
Collapse
Affiliation(s)
- Enea Gino di Domenico
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma "La Sapienza", Roma, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Yeast Est2p affects telomere length by influencing association of Rap1p with telomeric chromatin. Mol Cell Biol 2008; 28:2380-90. [PMID: 18212041 DOI: 10.1128/mcb.01648-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the sequence-specific binding of the negative regulator Rap1p provides a mechanism to measure telomere length: as the telomere length increases, the binding of additional Rap1p inhibits telomerase activity in cis. We provide evidence that the association of Rap1p with telomeric DNA in vivo occurs in part by sequence-independent mechanisms. Specific mutations in EST2 (est2-LT) reduce the association of Rap1p with telomeric DNA in vivo. As a result, telomeres are abnormally long yet bind an amount of Rap1p equivalent to that observed at wild-type telomeres. This behavior contrasts with that of a second mutation in EST2 (est2-up34) that increases bound Rap1p as expected for a strain with long telomeres. Telomere sequences are subtly altered in est2-LT strains, but similar changes in est2-up34 telomeres suggest that sequence abnormalities are a consequence, not a cause, of overelongation. Indeed, est2-LT telomeres bind Rap1p indistinguishably from the wild type in vitro. Taken together, these results suggest that Est2p can directly or indirectly influence the binding of Rap1p to telomeric DNA, implicating telomerase in roles both upstream and downstream of Rap1p in telomere length homeostasis.
Collapse
|
29
|
Arnerić M, Lingner J. Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast. EMBO Rep 2007; 8:1080-5. [PMID: 17917674 DOI: 10.1038/sj.embor.7401082] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/02/2007] [Accepted: 08/20/2007] [Indexed: 11/09/2022] Open
Abstract
Telomerase enables telomere length homeostasis, exhibiting increasing preference for telomeres as their lengths decline. This regulation involves telomere repeat-bound Rap1, which provides a length-dependent negative feedback mechanism, and the Tel1 and Mec1 kinases, which are positive regulators of telomere length. By analysing telomere elongation of wild-type chromosome ends at single-molecule resolution, we show that in tel1Delta cells the overall frequency of elongation decreases considerably, explaining their short telomere phenotype. At an artificial telomere lacking a subtelomeric region, telomere elongation no longer increases with telomere shortening in tel1Delta cells. By contrast, a natural telomere, containing subtelomeric sequence, retains a preference for the elongation of short telomeres. Tethering of the subtelomere binding protein Tbf1 to the artificial telomere in tel1Delta cells restored preferential telomerase action at short telomeres; thus, Tbf1 might function in parallel to Tel1, which has a crucial role in a TG-repeat-controlled pathway for the activation of telomerase at short telomeres.
Collapse
Affiliation(s)
- Milica Arnerić
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne and NCCR Program Frontiers in Genetics, Epalinges s/Lausanne CH-1066, Switzerland
| | | |
Collapse
|
30
|
Auriche C, Di Domenico EG, Ascenzioni F. Budding yeast with human telomeres: a puzzling structure. Biochimie 2007; 90:108-15. [PMID: 17954006 DOI: 10.1016/j.biochi.2007.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 09/13/2007] [Indexed: 12/11/2022]
Abstract
Telomeres share some common features among eukaryotes, with few exceptions such as the fruit fly Drosophila that uses transposons as telomeres, they consist of G-rich repetitive DNA that is elongated by telomerase and/or alternative pathways depending on recombination. Telomere structure comprises both cis-acting satellite DNA (telomeric DNA) and proteins that interact directly and/or indirectly with the underlying DNA. Telomeric DNAs are surprisingly conserved among the vertebrates and very similar in most eukaryotes, but present some differences in yeast such as Saccharomyces cerevisiae. The telomeric proteins are more variable although the basic mechanisms which control telomere lengthening and capping are very similar, in fact orthologues of the yeast telomeric proteins, which have been studied first, have been identified in other organisms. Here we describe the structure of human telomeres in budding yeast as compared to canonical yeast and mammalian telomeres taking into consideration the more recent findings highlighting the mechanisms that are responsible for chromosome end protection and lengthening, and the role of chromatin organization in telomere function. This yeast represents a model for the study of mammalian telomeres that could be reconstituted step-by-step in all their components, moreover it could be useful for the assembly of mammalian artificial chromosome.
Collapse
Affiliation(s)
- Cristina Auriche
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma La Sapienza, Roma, Italy
| | | | | |
Collapse
|
31
|
Ottaviani A, Gilson E, Magdinier F. Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie 2007; 90:93-107. [PMID: 17868970 DOI: 10.1016/j.biochi.2007.07.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 07/25/2007] [Indexed: 01/28/2023]
Abstract
Alteration of the epigenome is associated with a wide range of human diseases. Therefore, deciphering the pathways that regulate the epigenetic modulation of gene expression is a major milestone for the understanding of diverse biological mechanisms and subsequently human pathologies. Although often evoked, little is known on the implication of telomeric position effect, a silencing mechanism combining telomere architecture and classical heterochromatin features, in human cells. Nevertheless, this particular silencing mechanism has been investigated in different organisms and several ingredients are likely conserved during evolution. Subtelomeres are highly dynamic regions near the end of the chromosomes that are prone to recombination and may buffer or facilitate the spreading of silencing that emanates from the telomere. Therefore, the composition and integrity of these regions also concur to the propensity of telomeres to regulate the expression, replication and recombination of adjacent regions. Here we describe the similarities and disparities that exist among the different species at chromosome ends with regard to telomeric silencing regulation with a special accent on its implication in numerous human pathologies.
Collapse
Affiliation(s)
- Alexandre Ottaviani
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, UCBL1, IFR128, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
32
|
Sabourin M, Tuzon CT, Zakian VA. Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae. Mol Cell 2007; 27:550-61. [PMID: 17656141 PMCID: PMC2650483 DOI: 10.1016/j.molcel.2007.07.016] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 06/21/2007] [Accepted: 07/17/2007] [Indexed: 11/27/2022]
Abstract
In diverse organisms, telomerase preferentially elongates short telomeres. We generated a single short telomere in otherwise wild-type (WT) S. cerevisiae cells. The binding of the positive regulators Ku and Cdc13p was similar at short and WT-length telomeres. The negative regulators Rif1p and Rif2p were present at the short telomere, although Rif2p levels were reduced. Two telomerase holoenzyme components, Est1p and Est2p, were preferentially enriched at short telomeres in late S/G2 phase, the time of telomerase action. Tel1p, the yeast ATM-like checkpoint kinase, was highly enriched at short telomeres from early S through G2 phase and even into the next cell cycle. Nonetheless, induction of a single short telomere did not elicit a cell-cycle arrest. Tel1p binding was dependent on Xrs2p and required for preferential binding of telomerase to short telomeres. These data suggest that Tel1p targets telomerase to the DNA ends most in need of extension.
Collapse
Affiliation(s)
- Michelle Sabourin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
33
|
Rehman MA, Fourel G, Mathews A, Ramdin D, Espinosa M, Gilson E, Yankulov K. Differential requirement of DNA replication factors for subtelomeric ARS consensus sequence protosilencers in Saccharomyces cerevisiae. Genetics 2006; 174:1801-10. [PMID: 16980387 PMCID: PMC1698613 DOI: 10.1534/genetics.106.063446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The establishment of silent chromatin requires passage through S-phase, but not DNA replication per se. Nevertheless, many proteins that affect silencing are bona fide DNA replication factors. It is not clear if mutations in these replication factors affect silencing directly or indirectly via deregulation of S-phase or DNA replication. Consequently, the relationship between DNA replication and silencing remains an issue of debate. Here we analyze the effect of mutations in DNA replication factors (mcm5-461, mcm5-1, orc2-1, orc5-1, cdc45-1, cdc6-1, and cdc7-1) on the silencing of a group of reporter constructs, which contain different combinations of "natural" subtelomeric elements. We show that the mcm5-461, mcm5-1, and orc2-1 mutations affect silencing through subtelomeric ARS consensus sequences (ACS), while cdc6-1 affects silencing independently of ACS. orc5-1, cdc45-1, and cdc7-1 affect silencing through ACS, but also show ACS-independent effects. We also demonstrate that isolated nontelomeric ACS do not recapitulate the same effects when inserted in the telomere. We propose a model that defines the modes of action of MCM5 and CDC6 in silencing.
Collapse
|
34
|
Sýkorová E, Leitch AR, Fajkus J. Asparagales telomerases which synthesize the human type of telomeres. PLANT MOLECULAR BIOLOGY 2006; 60:633-46. [PMID: 16649103 DOI: 10.1007/s11103-005-5091-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 11/14/2005] [Indexed: 05/08/2023]
Abstract
The order of monocotyledonous plants Asparagales is attractive for studies of telomere evolution as it includes three phylogenetically distinct groups with telomeres composed of TTTAGGG (Arabidopsis-type), TTAGGG (human-type) and unknown alternative sequences, respectively. To analyze the molecular causes of these switches in telomere sequence (synthesis), genes coding for the catalytic telomerase subunit (TERT) of representative species in the first two groups have been cloned. Multiple alignments of the sequences, together with other TERT sequences in databases, suggested candidate amino acid substitutions grouped in the Asparagales TERT synthesizing the human-type repeat that could have contributed to the changed telomere sequence. Among these, mutations in the C motif are of special interest due to its functional importance in TERT. Furthermore, two different modes of initial elongation of the substrate primer were observed in Asparagales telomerases producing human-like repeats, which could be attributed to interactions between the telomerase RNA subunit (TR) and the substrate.
Collapse
Affiliation(s)
- Eva Sýkorová
- Laboratory of DNA-Molecular Complexes, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, Brno, CZ-61265, Czech Republic
| | | | | |
Collapse
|
35
|
Hediger F, Berthiau AS, van Houwe G, Gilson E, Gasser SM. Subtelomeric factors antagonize telomere anchoring and Tel1-independent telomere length regulation. EMBO J 2006; 25:857-67. [PMID: 16467853 PMCID: PMC1383557 DOI: 10.1038/sj.emboj.7600976] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 01/09/2006] [Indexed: 11/09/2022] Open
Abstract
Yeast telomeres are anchored at the nuclear envelope (NE) through redundant pathways that require the telomere-binding factors yKu and Sir4. Significant variation is observed in the efficiency with which different telomeres are anchored, however, suggesting that other forces influence this interaction. Here, we show that subtelomeric elements and the insulator factors that bind them antagonize the association of telomeres with the NE. This is detectable when the redundancy in anchoring pathways is compromised. Remarkably, these same conditions lead to a reduction in steady-state telomere length in the absence of the ATM-kinase homologue Tel1. Both the delocalization of telomeres and reduction in telomere length can be induced by targeting of Tbf1 or Reb1, or the viral transactivator VP16, to a site 23 kb away from the TG repeat. This correlation suggests that telomere anchoring and a Tel1-independent pathway of telomere length regulation are linked, lending a functional significance to the association of yeast telomeres with the NE.
Collapse
Affiliation(s)
- Florence Hediger
- Department of Molecular Biology and NCCR Frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | - Anne-Sophie Berthiau
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, Lyon, France
| | - Griet van Houwe
- Department of Molecular Biology and NCCR Frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | - Eric Gilson
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, Lyon, France
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel CH-4058, Switzerland. Tel.: +41 61 697 7255; Fax: +41 61 697 3976; E-mail:
| |
Collapse
|
36
|
Berthiau AS, Yankulov K, Bah A, Revardel E, Luciano P, Wellinger RJ, Géli V, Gilson E. Subtelomeric proteins negatively regulate telomere elongation in budding yeast. EMBO J 2006; 25:846-56. [PMID: 16467854 PMCID: PMC1383556 DOI: 10.1038/sj.emboj.7600975] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 01/09/2006] [Indexed: 11/09/2022] Open
Abstract
The Tbf1 and Reb1 proteins are present in yeast subtelomeric regions. We establish in this work that they inhibit telomerase-dependent lengthening of telomere. For example, tethering the N-terminal domain of Tbf1 and Reb1 in a subtelomeric region shortens that telomere proportionally to the number of domains bound. We further identified a 90 amino-acid long sequence within the N-terminal domain of Tbf1 that is necessary but not sufficient for its length regulation properties. The role of the subtelomeric factors in telomere length regulation is antagonized by TEL1 and does not correlate with a global telomere derepression. We show that the absence of TEL1 induces an alteration in the structure of telomeric chromatin, as defined biochemically by an increased susceptibility to nucleases and a greater heterogeneity of products. We propose that the absence of TEL1 modifies the organization of the telomeres, which allows Tbf1 and Reb1 to cis-inhibit telomerase. The involvement of subtelomeric factors in telomere length regulation provides a possible mechanism for the chromosome-specific length setting observed at yeast and human telomeres.
Collapse
Affiliation(s)
- Anne-Sophie Berthiau
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, IFR 128, Lyon, France
| | - Krassimir Yankulov
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, IFR 128, Lyon, France
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Amadou Bah
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, IFR 128, Lyon, France
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Universite de Sherbrooke 3001, Sherbrooke, Quebec, Canada
| | - Emmanuelle Revardel
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, IFR 128, Lyon, France
| | - Pierre Luciano
- Laboratoire d'Instabilité Génétique et Cancérogenèse (IGC), CNRS, Marseille, France
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Universite de Sherbrooke 3001, Sherbrooke, Quebec, Canada
| | - Vincent Géli
- Laboratoire d'Instabilité Génétique et Cancérogenèse (IGC), CNRS, Marseille, France
| | - Eric Gilson
- Laboratoire de Biologie Moléculaire de la Cellule de l'Ecole Normale Supérieure de Lyon, CNRS UMR5161, IFR 128, Lyon, France
- Laboratoire de Biologie Moléculaire et Cellulaire, Ecole Normale Supérieure, UMR5161 CNRS/ENSL, 46 Allee d'italie, 69364 Lyon Cedex 07, France. Tel.: +33 472 728 453; Fax: +33 472 728 686; E-mail:
| |
Collapse
|
37
|
Abstract
Telomeres are multifunctional genetic elements that cap chromosome ends, playing essential roles in genome stability, chromosome higher-order organization and proliferation control. The telomere field has largely benefited from the study of unicellular eukaryotic organisms such as yeasts. Easy cultivation in laboratory conditions and powerful genetics have placed mainly Saccharomyces cerevisiae, Kluveromyces lactis and Schizosaccharomyces pombe as crucial model organisms for telomere biology research. Studies in these species have made it possible to elucidate the basic mechanisms of telomere maintenance, function and evolution. Moreover, comparative genomic analyses show that telomeres have evolved rapidly among yeast species and functional plasticity emerges as one of the driving forces of this evolution. This provides a precious opportunity to further our understanding of telomere biology.
Collapse
Affiliation(s)
- M T Teixeira
- Laboratoire de Biologie Moléculaire de la Cellule of Ecole Normale Supérieure de Lyon, UMR CNRS/INRA/ENS, IFR 128 BioSciences Lyon Gerland, 46 Allée d'Italie, 69364 Lyon cedex 07, France.
| | | |
Collapse
|
38
|
Abstract
In most eukaryotes, telomeres are composed of simple repetitive sequences renewable by telomerase. By contrast, Drosophila telomeres comprise arrays of non-LTR retrotransposons HeT-A, TART, and TAHRE belonging to three different families. However, closer inspection reveals that the two quite different telomere systems share quite a few components and regulatory circuits. Here we present the current knowledge on Drosophila telomeres and discuss the possible mechanisms of telomere length control.
Collapse
Affiliation(s)
- Larisa Melnikova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | | |
Collapse
|
39
|
Pardo B, Marcand S. Rap1 prevents telomere fusions by nonhomologous end joining. EMBO J 2005; 24:3117-27. [PMID: 16096640 PMCID: PMC1201357 DOI: 10.1038/sj.emboj.7600778] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 07/19/2005] [Indexed: 01/09/2023] Open
Abstract
Telomeres protect chromosomes from end-to-end fusions. In yeast Saccharomyces cerevisiae, the protein Rap1 directly binds telomeric DNA. Here, we use a new conditional allele of RAP1 and show that Rap1 loss results in frequent fusions between telomeres. Analysis of the fusion point with restriction enzymes indicates that fusions occur between telomeres of near wild-type length. Telomere fusions are not observed in cells lacking factors required for nonhomologous end joining (NHEJ), including Lig4 (ligase IV), KU and the Mre11 complex. SAE2 and TEL1 do not affect the frequency of fusions. Together, these results show that Rap1 is essential to block NHEJ between telomeres. Since the presence of Rap1 at telomeres has been conserved through evolution, the establishment of NHEJ suppression by Rap1 could be universal.
Collapse
Affiliation(s)
- Benjamin Pardo
- Laboratoire de Radiobiologie de l'ADN, Service de Radiobiologie Moléculaire et Cellulaire, CEA/Fontenay, Fontenay aux Roses, France
- Laboratoire du Contrôle du Cycle Cellulaire, Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, Gif sur Yvette, France
| | - Stéphane Marcand
- Laboratoire de Radiobiologie de l'ADN, Service de Radiobiologie Moléculaire et Cellulaire, CEA/Fontenay, Fontenay aux Roses, France
- Laboratoire du Contrôle du Cycle Cellulaire, Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, Gif sur Yvette, France
- CEA/Far, UMR217-DSV/DRR/SRMC Laboratoire de Radiobiologie de l'ADN, 92265 Fontenay aux Roses Cedex, France. Tel.: +33 1 46 54 82 33; Fax: +33 1 46 54 91 80; E-mail:
| |
Collapse
|
40
|
Brunori M, Luciano P, Gilson E, Géli V. The telomerase cycle: normal and pathological aspects. J Mol Med (Berl) 2005; 83:244-57. [PMID: 15630594 DOI: 10.1007/s00109-004-0616-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 10/26/2004] [Indexed: 01/22/2023]
Abstract
Telomeres are nucleoprotein complexes that cap the end of eukaryotic chromosomes and are essential for their function and stability. Telomerase, a reverse transcriptase that extends the single-stranded G-rich 3' protruding ends of chromosomes, stabilizes telomere length in germ line cells and regenerative tissues as well as in tumor cells. In the absence of telomerase telomeres shorten with cell division, a process able to trigger cell growth arrest. When telomerase is present in the cell, its activity is tightly regulated at its site of action by factors specifically bound to the telomeric DNA. Recent data indicate that telomeres reorganize during the cell cycle. This review summarizes our current knowledge on how telomeres are dynamically organized and remodeled during cell cycle and stress response, pointing out the conservation and the difference between yeast and human. We then focus on the cellular consequences of telomere modifications in normal and cancer cells. This leads to a discussion of the different roles, seemingly contradictory, of telomeres and telomerase during the initiation and the progression of a cancer.
Collapse
Affiliation(s)
- Michele Brunori
- Laboratoire de Biologie Moleculaire de la Cellule, l'Ecole Normale de Lyon, CNRS UMR5161, INRA U1237, IFR12846 Allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | | |
Collapse
|
41
|
Levy DL, Blackburn EH. Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol Cell Biol 2004; 24:10857-67. [PMID: 15572688 PMCID: PMC533994 DOI: 10.1128/mcb.24.24.10857-10867.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 08/30/2004] [Accepted: 09/16/2004] [Indexed: 11/20/2022] Open
Abstract
Telomere length is negatively regulated by proteins of the telomeric DNA-protein complex. Rap1p in Saccharomyces cerevisiae binds the telomeric TG(1-3) repeat DNA, and the Rap1p C terminus interacts with Rif1p and Rif2p. We investigated how these three proteins negatively regulate telomere length. We show that direct tethering of each Rif protein to a telomere shortens that telomere proportionally to the number of tethered molecules, similar to previously reported counting of Rap1p. Surprisingly, Rif proteins could also regulate telomere length even when the Rap1p C terminus was absent, and tethered Rap1p counting was completely dependent on the Rif proteins. Thus, Rap1p counting is in fact Rif protein counting. In genetic settings that cause telomeres to be abnormally long, tethering even a single Rif2p molecule was sufficient for maximal effectiveness in preventing the telomere overelongation. We show that a heterologous protein oligomerization domain, the mammalian PDZ domain, when fused to Rap1p can confer telomere length control. We propose that a nucleation and spreading mechanism is involved in forming the higher-order telomere structure that regulates telomere length.
Collapse
Affiliation(s)
- Daniel L Levy
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA 94143-2200, USA
| | | |
Collapse
|
42
|
Abstract
Telomeres are essential for genome stability in all eukaryotes. Changes in telomere functions and the associated chromosomal abnormalities have been implicated in human aging and cancer. Telomeres are composed of repetitive sequences that can be maintained by telomerase, a complex containing a reverse transcriptase (hTERT in humans and Est2 in budding yeast), a template RNA (hTERC in humans and Tlc1 in yeast), and accessory factors (the Est1 proteins and dyskerin in humans and Est1, Est3, and Sm proteins in budding yeast). Telomerase is regulated in cis by proteins that bind to telomeric DNA. This regulation can take place at the telomere terminus, involving single-stranded DNA-binding proteins (POT1 in humans and Cdc13 in budding yeast), which have been proposed to contribute to the recruitment of telomerase and may also regulate the extent or frequency of elongation. In addition, proteins that bind along the length of the telomere (TRF1/TIN2/tankyrase in humans and Rap1/Rif1/Rif2 in budding yeast) are part of a negative feedback loop that regulates telomere length. Here we discuss the details of telomerase and its regulation by the telomere.
Collapse
|
43
|
Grossi S, Puglisi A, Dmitriev PV, Lopes M, Shore D. Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation. Genes Dev 2004; 18:992-1006. [PMID: 15132993 PMCID: PMC406290 DOI: 10.1101/gad.300004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The regulation of telomerase action, and its coordination with conventional DNA replication and chromosome end "capping," are still poorly understood. Here we describe a genetic screen in yeast for mutants with relaxed telomere length regulation, and the identification of Pol12, the B subunit of the DNA polymerase alpha (Pol1)-primase complex, as a new factor involved in this process. Unlike many POL1 and POL12 mutations, which also cause telomere elongation, the pol12-216 mutation described here does not lead to either reduced Pol1 function, increased telomeric single-stranded DNA, or a reduction in telomeric gene silencing. Instead, and again unlike mutations affecting POL1, pol12-216 is lethal in combination with a mutation in the telomere end-binding and capping protein Stn1. Significantly, Pol12 and Stn1 interact in both two-hybrid and biochemical assays, and their synthetic-lethal interaction appears to be caused, at least in part, by a loss of telomere capping. These data reveal a novel function for Pol12 and a new connection between DNA polymerase alpha and Stn1. We propose that Pol12, together with Stn1, plays a key role in linking telomerase action with the completion of lagging strand synthesis, and in a regulatory step required for telomere capping.
Collapse
Affiliation(s)
- Simona Grossi
- Department of Molecular Biology and NCCR program "Frontiers in Genetics," University of Geneva, Geneva 4, CH-1211 Switzerland
| | | | | | | | | |
Collapse
|
44
|
Bah A, Bachand F, Clair E, Autexier C, Wellinger RJ. Humanized telomeres and an attempt to express a functional human telomerase in yeast. Nucleic Acids Res 2004; 32:1917-27. [PMID: 15047858 PMCID: PMC390362 DOI: 10.1093/nar/gkh511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The maintenance of telomeric repeat DNA depends on an evolutionarily conserved reverse trans criptase called telomerase. In vitro, only the catalytic subunit and a telomerase-associated RNA are required for the synthesis of species-specific repeat DNA. In an attempt to establish a heterologous system for the study of the human telomerase enzyme, we expressed the two core components and predicted regulatory subunits in the yeast Saccharomyces cerevisiae. We show that adequate substrates for human telomerase can be generated; the expressed enzyme was localized in the nucleus and it had the capacity to synthesize human-specific repeats in vitro. However, there was no evidence for human telomerase activity at yeast telomeres in vivo. Therefore functional replacement of the yeast telomerase by the human enzyme may require additional human-specific components. We also replaced the template region of the yeast telomerase RNA with one that dictates the synthesis of vertebrate repeats and performed a detailed molecular analysis of the composition of the telomeres upon outgrowth of such strains. The results suggest that vertebrate repeats on yeast telomeres are subject to a very high degree of repeat turnover and show that an innermost tract of 50 bp of yeast repeats are resistant to replacement.
Collapse
Affiliation(s)
- Amadou Bah
- Department of Microbiology and Infectiology, ARN/RNA Group, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Canada
| | | | | | | | | |
Collapse
|
45
|
Vega LR, Mateyak MK, Zakian VA. Getting to the end: telomerase access in yeast and humans. Nat Rev Mol Cell Biol 2004; 4:948-59. [PMID: 14685173 DOI: 10.1038/nrm1256] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Leticia R Vega
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
46
|
Smolikov S, Krauskopf A. The Rap1p-telomere complex does not determine the replicative capacity of telomerase-deficient yeast. Mol Cell Biol 2003; 23:8729-39. [PMID: 14612413 PMCID: PMC262678 DOI: 10.1128/mcb.23.23.8729-8739.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomeres are nucleoprotein structures that cap the ends of chromosomes and thereby protect their stability and integrity. In the presence of telomerase, the enzyme that synthesizes telomeric repeats, telomere length is controlled primarily by Rap1p, the budding yeast telomeric DNA binding protein which, through its C-terminal domain, nucleates a protein complex that limits telomere lengthening. In the absence of telomerase, telomeres shorten with every cell division, and eventually, cells enter replicative senescence. We have set out to identify the telomeric property that determines the replicative capacity of telomerase-deficient budding yeast. We show that in cells deficient for both telomerase and homologous recombination, replicative capacity is dependent on telomere length but not on the binding of Rap1p to the telomeric repeats. Strikingly, inhibition of Rap1p binding or truncation of the C-terminal tail of Rap1p in Kluyveromyces lactis and deletion of the Rap1p-recruited complex in Saccharomyces cerevisiae lead to a dramatic increase in replicative capacity. The study of the role of telomere binding proteins and telomere length on replicative capacity in yeast may have significant implications for our understanding of cellular senescence in higher organisms.
Collapse
Affiliation(s)
- Sarit Smolikov
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
47
|
Abstract
The repressor activator protein 1 (RAP1) has many important functions in Saccharomyces cerevisiae. At the chromosome ends, it is a negative regulator of telomere length. Here, we show that Saccharomyces castellii/Saccharomyces dairensis telomeric sequences inserted into a S.cerevisiae telomere are counted as part of the telomere, consistent with the presence of high-affinity Rap1p binding sites within these sequences. We show that S.castellii Rap1p (scasRap1p) can regulate telomere length in a S.cerevisiae strain, albeit less stringently. Cloning of the S.dairensis RAP1 homologue (sdaiRAP1) revealed that it encodes the largest RAP1 protein identified to date. Despite its large size, binding analyses of the recombinant sdaiRap1p revealed that the protein binds with the same spacing and with similar affinity to yeast telomeric sequences, as the scer- and scasRAP1 proteins. According to the Rap1p counting model for telomere length regulation, a low density of Rap1p binding sites in a telomere would result in a longer telomere in S.cerevisiae. We have compared the lengths of two individual S.dairensis telomeres and find that their lengths are not regulated to give the same number of high-affinity binding sites. This may be due to other factors than Rap1p having influence on the telomere length regulation.
Collapse
Affiliation(s)
- Johan Wahlin
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, S-22362 Lund, Sweden
| | | | | |
Collapse
|
48
|
Current awareness on yeast. Yeast 2003; 20:1007-14. [PMID: 14587515 DOI: 10.1002/yea.948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
49
|
Alexander MK, Zakian VA. Rap1p telomere association is not required for mitotic stability of a C(3)TA(2) telomere in yeast. EMBO J 2003; 22:1688-96. [PMID: 12660174 PMCID: PMC152898 DOI: 10.1093/emboj/cdg154] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Telomeric DNA usually consists of a repetitive sequence: C(1-3)A/TG(1-3) in yeast, and C(3)TA(2)/T(2)AG(3) in vertebrates. In yeast, the sequence-specific DNA- binding protein Rap1p is thought to be essential for telomere function. In a tlc1h mutant, the templating region of the telomerase RNA gene is altered so that telomerase adds the vertebrate telomere sequence instead of the yeast sequence to the chromosome end. A tlc1h strain has short but stable telomeres and no growth defect. We show here that Rap1p and the Rap1p-associated Rif2p did not bind to a telomere that contains purely vertebrate repeats, while the TG(1-3) single-stranded DNA binding protein Cdc13p and the normally non-telomeric protein Tbf1p did bind this telomere. A chromosome with one entirely vertebrate-sequence telomere had a wild-type loss rate, and the telomere was maintained at a short but stable length. However, this telomere was unable to silence a telomere-adjacent URA3 gene, and the strain carrying this telomere had a severe defect in meiosis. We conclude that Rap1p localization to a C(3)TA(2) telomere is not required for its essential mitotic functions.
Collapse
Affiliation(s)
- Mary Kate Alexander
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|