1
|
Martínez VL, Fraga MF. Chromatin Preparation from Frozen Tissues for Chromatin Immunoprecipitation (ChIP) Assays. Methods Mol Biol 2025; 2930:203-217. [PMID: 40402456 DOI: 10.1007/978-1-0716-4558-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq) is a crucial method for examining transcription factor binding and histone modifications across the entire genome. This is a key step in deciphering the complex mechanisms that control cancer immunosurveillance. Here, we provide a comprehensive protocol covering all the steps needed to obtain DNA for ChIP-seq library preparation, starting from tissue dissection, followed by fixation, chromatin preparation, immunoprecipitation, and finally DNA purification. The protocol is optimized for frozen mice tissues, but can be easily adapted for use with any model organism. The resulting immunoprecipitated chromatin is suitable for library preparation and sequencing on an Illumina platform.
Collapse
Affiliation(s)
- Virginia López Martínez
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Mario Fernández Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
2
|
Sood S, Tiwari A, Sangwan J, Vohra M, Sinha NR, Tripathi R, Sangwan VS, Mohan RR. Role of epigenetics in corneal health and disease. Prog Retin Eye Res 2025; 104:101318. [PMID: 39547455 PMCID: PMC11710990 DOI: 10.1016/j.preteyeres.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Epigenetics plays a vital role in corneal health and diseases. Epigenetic changes regulate the expression of genes by altering the accessibility of chromatin via histone modifications, DNA methylation and miRNAs without altering DNA sequence. Ocular trauma and infections are common causes of corneal damage, vision impairment, and mono/bilateral blindness worldwide. Mounting literature shows that epigenetic modifications can modulate corneal clarity, function, and pathogenesis including inflammation, wound healing, fibrosis, and neovascularization. Additionally, epigenetic modifications can be targeted to reverse corneal pathologies and develop interventional therapies. However, current understanding on how epigenetic modifications lead to corneal abnormalities and diseases is limited. This review provides in-depth knowledge and mechanistic understanding of epigenetics alterations in corneal pathogenesis, and information on potential epigenetic targets for treatment of corneal diseases.
Collapse
Affiliation(s)
- Swati Sood
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA
| | - Anil Tiwari
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Jyoti Sangwan
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Mehak Vohra
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Nishant R Sinha
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Virender S Sangwan
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Rajiv R Mohan
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
5
|
Sauna A, Sciuto L, Criscione R, Messina G, Presti S, Soma R, Oliva C, Salafia S, Falsaperla R. MECP2-Related Disorders and Epilepsy Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:283-291. [DOI: 10.1055/s-0041-1728643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
MECP2 (methyl-CpG binding protein-2) gene, located on chromosome Xq28, encodes for a protein particularly abundant in the brain that is required for maturation of astrocytes and neurons and is developmentally regulated. A defective homeostasis of MECP2 expression, either by haploinsufficiency or overexpression, leads to a neurodevelopmental phenotype. As MECP2 is located on chromosome X, the clinical presentation varies in males and females ranging from mild learning disabilities to severe encephalopathies and early death. Typical Rett syndrome (RTT), the most frequent phenotype associated with MECP2 mutations, primarily affects girls and it was previously thought to be lethal in males; however, MECP2 duplication syndrome, resulting from a duplication of the Xq28 region including MECP2, leads to a severe neurodevelopmental disorder in males. RTT and MECP2 duplication syndrome share overlapping clinical phenotypes including intellectual disabilities, motor deficits, hypotonia, progressive spasticity, and epilepsy. In this manuscript we reviewed literature on epilepsy related to MECP2 disorders, focusing on clinical presentation, genotype–phenotype correlation, and treatment.
Collapse
Affiliation(s)
- Alessandra Sauna
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberta Criscione
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giulia Messina
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Santiago Presti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rachele Soma
- Unit of Rare Diseases of the Nervous Systemin Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Claudia Oliva
- Unit of Rare Diseases of the Nervous Systemin Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | | | | |
Collapse
|
6
|
Linowiecka K, Slominski AT, Reiter RJ, Böhm M, Steinbrink K, Paus R, Kleszczyński K. Melatonin: A Potential Regulator of DNA Methylation. Antioxidants (Basel) 2023; 12:1155. [PMID: 37371885 PMCID: PMC10295183 DOI: 10.3390/antiox12061155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The pineal gland-derived indoleamine hormone, melatonin, regulates multiple cellular processes, ranging from chronobiology, proliferation, apoptosis, and oxidative damage to pigmentation, immune regulation, and mitochondrial metabolism. While melatonin is best known as a master regulator of the circadian rhythm, previous studies also have revealed connections between circadian cycle disruption and genomic instability, including epigenetic changes in the pattern of DNA methylation. For example, melatonin secretion is associated with differential circadian gene methylation in night shift workers and the regulation of genomic methylation during embryonic development, and there is accumulating evidence that melatonin can modify DNA methylation. Since the latter one impacts cancer initiation, and also, non-malignant diseases development, and that targeting DNA methylation has become a novel intervention target in clinical therapy, this review discusses the potential role of melatonin as an under-investigated candidate epigenetic regulator, namely by modulating DNA methylation via changes in mRNA and the protein expression of DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins. Furthermore, since melatonin may impact changes in the DNA methylation pattern, the authors of the review suggest its possible use in combination therapy with epigenetic drugs as a new anticancer strategy.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| |
Collapse
|
7
|
Nejati-Koshki K, Roberts CT, Babaei G, Rastegar M. The Epigenetic Reader Methyl-CpG-Binding Protein 2 (MeCP2) Is an Emerging Oncogene in Cancer Biology. Cancers (Basel) 2023; 15:2683. [PMID: 37345019 PMCID: PMC10216337 DOI: 10.3390/cancers15102683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Epigenetic mechanisms are gene regulatory processes that control gene expression and cellular identity. Epigenetic factors include the "writers", "readers", and "erasers" of epigenetic modifications such as DNA methylation. Accordingly, the nuclear protein Methyl-CpG-Binding Protein 2 (MeCP2) is a reader of DNA methylation with key roles in cellular identity and function. Research studies have linked altered DNA methylation, deregulation of MeCP2 levels, or MECP2 gene mutations to different types of human disease. Due to the high expression level of MeCP2 in the brain, many studies have focused on its role in neurological and neurodevelopmental disorders. However, it is becoming increasingly apparent that MeCP2 also participates in the tumorigenesis of different types of human cancer, with potential oncogenic properties. It is well documented that aberrant epigenetic regulation such as altered DNA methylation may lead to cancer and the process of tumorigenesis. However, direct involvement of MeCP2 with that of human cancer was not fully investigated until lately. In recent years, a multitude of research studies from independent groups have explored the molecular mechanisms involving MeCP2 in a vast array of human cancers that focus on the oncogenic characteristics of MeCP2. Here, we provide an overview of the proposed role of MeCP2 as an emerging oncogene in different types of human cancer.
Collapse
Affiliation(s)
- Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil 85991-56189, Iran;
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 57157-89400, Iran;
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
8
|
Ozair A, Bhat V, Alisch RS, Khosla AA, Kotecha RR, Odia Y, McDermott MW, Ahluwalia MS. DNA Methylation and Histone Modification in Low-Grade Gliomas: Current Understanding and Potential Clinical Targets. Cancers (Basel) 2023; 15:1342. [PMID: 36831683 PMCID: PMC9954183 DOI: 10.3390/cancers15041342] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Gliomas, the most common type of malignant primary brain tumor, were conventionally classified through WHO Grades I-IV (now 1-4), with low-grade gliomas being entities belonging to Grades 1 or 2. While the focus of the WHO Classification for Central Nervous System (CNS) tumors had historically been on histopathological attributes, the recently released fifth edition of the classification (WHO CNS5) characterizes brain tumors, including gliomas, using an integration of histological and molecular features, including their epigenetic changes such as histone methylation, DNA methylation, and histone acetylation, which are increasingly being used for the classification of low-grade gliomas. This review describes the current understanding of the role of DNA methylation, demethylation, and histone modification in pathogenesis, clinical behavior, and outcomes of brain tumors, in particular of low-grade gliomas. The review also highlights potential diagnostic and/or therapeutic targets in associated cellular biomolecules, structures, and processes. Targeting of MGMT promoter methylation, TET-hTDG-BER pathway, association of G-CIMP with key gene mutations, PARP inhibition, IDH and 2-HG-associated processes, TERT mutation and ARL9-associated pathways, DNA Methyltransferase (DNMT) inhibition, Histone Deacetylase (HDAC) inhibition, BET inhibition, CpG site DNA methylation signatures, along with others, present exciting avenues for translational research. This review also summarizes the current clinical trial landscape associated with the therapeutic utility of epigenetics in low-grade gliomas. Much of the evidence currently remains restricted to preclinical studies, warranting further investigation to demonstrate true clinical utility.
Collapse
Affiliation(s)
- Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Vivek Bhat
- St. John’s Medical College, Bangalore 560034, India
| | - Reid S. Alisch
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Atulya A. Khosla
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Rupesh R. Kotecha
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Yazmin Odia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael W. McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL 33176, USA
| |
Collapse
|
9
|
Xue K, Chen S, Chai J, Yan W, Zhu X, Ji D, Wu Y, Liu H, Wang W. Nitration of cAMP-Response Element Binding Protein Participates in Myocardial Infarction-Induced Myocardial Fibrosis via Accelerating Transcription of Col1a2 and Cxcl12. Antioxid Redox Signal 2023; 38:709-730. [PMID: 36324232 DOI: 10.1089/ars.2021.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aims: Myocardial fibrosis after myocardial infarction (MI) leads to heart failure. Nitration of protein can alter its function. cAMP-response element binding protein (CREB) is a key transcription factor involved in fibrosis. However, little is known about the role of nitrated CREB in MI-induced myocardial fibrosis. Meanwhile, downstream genes of transcription factor CREB in myocardial fibrosis have not been identified. This study aims to verify the hypothesis that nitrated CREB promotes MI-induced myocardial fibrosis via regulating the transcription of Col1a2 and Cxcl12. Results: Our study showed that (1) the level of nitrative stress was elevated and nitrated CREB was higher in the myocardium after MI. Tyr182, 307, and 336 were the nitration sites of CREB; (2) with the administration of peroxynitrite (ONOO-) scavengers, CREB phosphorylation, nuclear translocation, and binding activity to TORC2 (transducers of regulated CREB-2) were attenuated; (3) the expressions of extracellular matrix (ECM) proteins were upregulated and downregulated in accordance with the expression alteration of CREB both in vitro and in vivo; (4) CREB accelerated transcription of Col1a2 and Cxcl12 after MI directly. With the administration of ONOO- scavengers, ECM protein expressions were attenuated; meanwhile, the messenger RNA (mRNA) levels of Col1a2 and Cxcl12 were alleviated as well. Innovation and Conclusion: Nitration of transcription factor CREB participates in MI-induced myocardial fibrosis through enhancing its phosphorylation, nuclear translocation, and binding activity to TORCs, among which CREB transcripts Col1a2 and Cxcl12 directly. These data indicated that nitrated CREB might be a potential therapeutic target against MI-induced myocardial fibrosis.
Collapse
Affiliation(s)
- Ke Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China.,Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuai Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Wenjing Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Xinyu Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Dengyu Ji
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| |
Collapse
|
10
|
Ge T, Gu X, Jia R, Ge S, Chai P, Zhuang A, Fan X. Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1049-1082. [PMID: 36266736 PMCID: PMC9648395 DOI: 10.1002/cac2.12374] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
Abstract
Reversible, spatial, and temporal regulation of metabolic reprogramming and epigenetic homeostasis are prominent hallmarks of carcinogenesis. Cancer cells reprogram their metabolism to meet the high bioenergetic and biosynthetic demands for vigorous proliferation. Epigenetic dysregulation is a common feature of human cancers, which contributes to tumorigenesis and maintenance of the malignant phenotypes by regulating gene expression. The epigenome is sensitive to metabolic changes. Metabolism produces various metabolites that are substrates, cofactors, or inhibitors of epigenetic enzymes. Alterations in metabolic pathways and fluctuations in intermediate metabolites convey information regarding the intracellular metabolic status into the nucleus by modulating the activity of epigenetic enzymes and thus remodeling the epigenetic landscape, inducing transcriptional responses to heterogeneous metabolic requirements. Cancer metabolism is regulated by epigenetic machinery at both transcriptional and post‐transcriptional levels. Epigenetic modifiers, chromatin remodelers and non‐coding RNAs are integral contributors to the regulatory networks involved in cancer metabolism, facilitating malignant transformation. However, the significance of the close connection between metabolism and epigenetics in the context of cancer has not been fully deciphered. Thus, it will be constructive to summarize and update the emerging new evidence supporting this bidirectional crosstalk and deeply assess how the crosstalk between metabolic reprogramming and epigenetic abnormalities could be exploited to optimize treatment paradigms and establish new therapeutic options. In this review, we summarize the central mechanisms by which epigenetics and metabolism reciprocally modulate each other in cancer and elaborate upon and update the major contributions of the interplays between epigenetic aberrations and metabolic rewiring to cancer initiation and development. Finally, we highlight the potential therapeutic opportunities for hematological malignancies and solid tumors by targeting this epigenetic‐metabolic circuit. In summary, we endeavored to depict the current understanding of the coordination between these fundamental abnormalities more comprehensively and provide new perspectives for utilizing metabolic and epigenetic targets for cancer treatment.
Collapse
Affiliation(s)
- Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| |
Collapse
|
11
|
Ho L, Hossen N, Nguyen T, Vo A, Ahsan F. Epigenetic Mechanisms as Emerging Therapeutic Targets and Microfluidic Chips Application in Pulmonary Arterial Hypertension. Biomedicines 2022; 10:170. [PMID: 35052850 PMCID: PMC8773438 DOI: 10.3390/biomedicines10010170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease that progress over time and is defined as an increase in pulmonary arterial pressure and pulmonary vascular resistance that frequently leads to right-ventricular (RV) failure and death. Epigenetic modifications comprising DNA methylation, histone remodeling, and noncoding RNAs (ncRNAs) have been established to govern chromatin structure and transcriptional responses in various cell types during disease development. However, dysregulation of these epigenetic mechanisms has not yet been explored in detail in the pathology of pulmonary arterial hypertension and its progression with vascular remodeling and right-heart failure (RHF). Targeting epigenetic regulators including histone methylation, acetylation, or miRNAs offers many possible candidates for drug discovery and will no doubt be a tempting area to explore for PAH therapies. This review focuses on studies in epigenetic mechanisms including the writers, the readers, and the erasers of epigenetic marks and targeting epigenetic regulators or modifiers for treatment of PAH and its complications described as RHF. Data analyses from experimental cell models and animal induced PAH models have demonstrated that significant changes in the expression levels of multiple epigenetics modifiers such as HDMs, HDACs, sirtuins (Sirt1 and Sirt3), and BRD4 correlate strongly with proliferation, apoptosis, inflammation, and fibrosis linked to the pathological vascular remodeling during PAH development. The reversible characteristics of protein methylation and acetylation can be applied for exploring small-molecule modulators such as valproic acid (HDAC inhibitor) or resveratrol (Sirt1 activator) in different preclinical models for treatment of diseases including PAH and RHF. This review also presents to the readers the application of microfluidic devices to study sex differences in PAH pathophysiology, as well as for epigenetic analysis.
Collapse
Affiliation(s)
- Linh Ho
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Nazir Hossen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Trieu Nguyen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
- East Bay Institute for Research & Education (EBIRE), Mather, CA 95655, USA
| | - Au Vo
- Department of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
12
|
Irvin MR, Jones AC, Claas SA, Arnett DK. DNA Methylation and Blood Pressure Phenotypes: A Review of the Literature. Am J Hypertens 2021; 34:267-273. [PMID: 33821945 DOI: 10.1093/ajh/hpab026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic studies of DNA have been unable to explain a significant portion of the variance of the estimated heritability of blood pressure (BP). Epigenetic mechanisms, particularly DNA methylation, have helped explain additional biological processes linked to BP phenotypes and diseases. Candidate gene methylation studies and genome-wide methylation studies of BP have highlighted impactful cytosine-phosphate-guanine (CpG) markers across different ethnicities. Furthermore, many of these BP-related CpG sites are also linked to metabolism-related phenotypes. Integrating epigenome-wide association study data with other layers of molecular data such as genotype data (from single nucleotide polymorphism arrays or sequencing), other epigenetic data, and/or transcriptome data can provide additional information about the significance and complexity of these relationships. Recent data suggest that epigenetic changes can be consequences rather than causes of BP variation. Finally, these data can give insight into downstream effects of long-standing high BP (due to target organ damage (TOD)). The current review provides a literature overview of epigenetic modifications in BP and TOD. Recent studies strongly support the importance of epigenetic modifications, such as DNA methylation, in BP and TOD for relevant biological insights, reliable biomarkers, and possible future therapeutics.
Collapse
Affiliation(s)
- Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alana C Jones
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Steven A Claas
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Donna K Arnett
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Castro-Piedras I, Vartak D, Sharma M, Pandey S, Casas L, Molehin D, Rasha F, Fokar M, Nichols J, Almodovar S, Rahman RL, Pruitt K. Identification of Novel MeCP2 Cancer-Associated Target Genes and Post-Translational Modifications. Front Oncol 2020; 10:576362. [PMID: 33363010 PMCID: PMC7758440 DOI: 10.3389/fonc.2020.576362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal regulation of DNA methylation and its readers has been associated with a wide range of cellular dysfunction. Disruption of the normal function of DNA methylation readers contributes to cancer progression, neurodevelopmental disorders, autoimmune disease and other pathologies. One reader of DNA methylation known to be especially important is MeCP2. It acts a bridge and connects DNA methylation with histone modifications and regulates many gene targets contributing to various diseases; however, much remains unknown about how it contributes to cancer malignancy. We and others previously described novel MeCP2 post-translational regulation. We set out to test the hypothesis that MeCP2 would regulate novel genes linked with tumorigenesis and that MeCP2 is subject to additional post-translational regulation not previously identified. Herein we report novel genes bound and regulated by MeCP2 through MeCP2 ChIP-seq and RNA-seq analyses in two breast cancer cell lines representing different breast cancer subtypes. Through genomics analyses, we localize MeCP2 to novel gene targets and further define the full range of gene targets within breast cancer cell lines. We also further examine the scope of clinical and pre-clinical lysine deacetylase inhibitors (KDACi) that regulate MeCP2 post-translationally. Through proteomics analyses, we identify many additional novel acetylation sites, nine of which are mutated in Rett Syndrome. Our study provides important new insight into downstream targets of MeCP2 and provide the first comprehensive map of novel sites of acetylation associated with both pre-clinical and FDA-approved KDACi used in the clinic. This report examines a critical reader of DNA methylation and has important implications for understanding MeCP2 regulation in cancer models and identifying novel molecular targets associated with epigenetic therapies.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - David Vartak
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Monica Sharma
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Somnath Pandey
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Laura Casas
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Mohamed Fokar
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, United States
| | - Jacob Nichols
- Department of Internal Medicine, Texas Tech University, Lubbock, TX, United States
| | - Sharilyn Almodovar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
14
|
Lim Y, Bak SY, Lee SH, Kim SK. Comparative Single-Molecule Kinetic Study for the Effect of Base Methylation on a Model DNA-Protein Interaction. J Phys Chem Lett 2020; 11:8048-8052. [PMID: 32885977 DOI: 10.1021/acs.jpclett.0c01929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We studied how the interaction between HindIII endonuclease and dsDNA is affected by the single-base modification of the latter by a single-molecule kinetic assay. For a comparative study of chemical modifications, we measured the binding and unbinding rates of the HindIII-DNA complex for normal dsDNA, methylated DNA, and hydroxymethylated DNA. We found that methylation of DNA at the recognition site results in a large increase in the unbinding rate due to the steric effect, which is consistent with the standard free energy change in the transition state. On the contrary, methylation minimally affects the binding rate, as simultaneous increases in the activation energy and the pre-exponential factor compensate for each other.
Collapse
Affiliation(s)
- Youngbin Lim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - So Young Bak
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sang Hak Lee
- Department of Chemistry, Pusan National University, Pusan 46241, Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
MeCP2 facilitates breast cancer growth via promoting ubiquitination-mediated P53 degradation by inhibiting RPL5/RPL11 transcription. Oncogenesis 2020; 9:56. [PMID: 32483207 PMCID: PMC7264296 DOI: 10.1038/s41389-020-0239-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) facilitates the carcinogenesis and progression of several types of cancer. However, its role in breast cancer and the relevant molecular mechanism remain largely unclear. In this study, analysis of the Cancer Genome Atlas (TCGA) data that MeCP2 expression was significantly upregulated in breast cancer tissues, and high MeCP2 expression was correlated with poor overall survival. Knockdown of MeCP2 inhibited breast cancer cell proliferation and G1–S cell cycle transition and migration as well as induced cell apoptosis in vitro. Moreover, MeCP2 knockdown suppressed cancer cell growth in vivo. Investigation of the molecular mechanism showed that MeCP2 repressed RPL11 and RPL5 transcription by binding to their promoter regions. TCGA data revealed significantly lower RPL11 and RPL5 expression in breast cancer tissues; additionally, overexpression of RPL11/RPL5 significantly suppressed breast cancer cell proliferation and G1–S cell cycle transition and induced apoptosis in vitro. Furthermore, RPL11 and RPL5 suppressed ubiquitination-mediated P53 degradation through direct binding to MDM2. This study demonstrates that MeCP2 promotes breast cancer cell proliferation and inhibits apoptosis through suppressing RPL11 and RPL5 transcription by binding to their promoter regions.
Collapse
|
16
|
Carvajal CA, Tapia-Castillo A, Vecchiola A, Baudrand R, Fardella CE. Classic and Nonclassic Apparent Mineralocorticoid Excess Syndrome. J Clin Endocrinol Metab 2020; 105:5691192. [PMID: 31909799 DOI: 10.1210/clinem/dgz315] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/28/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Arterial hypertension (AHT) is one of the most frequent pathologies in the general population. Subtypes of essential hypertension characterized by low renin levels allowed the identification of 2 different clinical entities: aldosterone-mediated mineralocorticoid receptor (MR) activation and cortisol-mediated MR activation. EVIDENCE ACQUISITION This review is based upon a search of Pubmed and Google Scholar databases, up to August 2019, for all publications relating to endocrine hypertension, apparent mineralocorticoid excess (AME) and cortisol (F) to cortisone (E) metabolism. EVIDENCE SYNTHESIS The spectrum of cortisol-mediated MR activation includes the classic AME syndrome to milder (nonclassic) forms of AME, the latter with a much higher prevalence (7.1%) than classic AME but different phenotype and genotype. Nonclassic AME (NC-AME) is mainly related to partial 11βHSD2 deficiency associated with genetic variations and epigenetic modifications (first hit) and potential additive actions of endogenous or exogenous inhibitors (ie, glycyrrhetinic acid-like factors [GALFS]) and other factors (ie, age, high sodium intake) (second hit). Subjects with NC-AME are characterized by a high F/E ratio, low E levels, normal to elevated blood pressure, low plasma renin and increased urinary potassium excretion. NC-AME condition should benefit from low-sodium and potassium diet recommendations and monotherapy with MR antagonists. CONCLUSION NC-AME has a higher prevalence and a milder phenotypical spectrum than AME. NC-AME etiology is associated to a first hit (gene and epigene level) and an additive second hit. NC-AME subjects are candidates to be treated with MR antagonists aimed to improve blood pressure, end-organ damage, and modulate the renin levels.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Rene Baudrand
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Bisserier M, Janostiak R, Lezoualc’h F, Hadri L. Targeting epigenetic mechanisms as an emerging therapeutic strategy in pulmonary hypertension disease. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2020; 2:R17-R34. [PMID: 32161845 PMCID: PMC7065685 DOI: 10.1530/vb-19-0030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial cardiopulmonary disease characterized by an elevation of pulmonary artery pressure (PAP) and pulmonary vascular resistance (PVR), which can lead to right ventricular (RV) failure, multi-organ dysfunction, and ultimately to premature death. Despite the advances in molecular biology, the mechanisms underlying pulmonary hypertension (PH) remain unclear. Nowadays, there is no curative treatment for treating PH. Therefore, it is crucial to identify novel, specific therapeutic targets and to offer more effective treatments against the progression of PH. Increasing amounts of evidence suggest that epigenetic modification may play a critical role in the pathogenesis of PAH. In the presented paper, we provide an overview of the epigenetic mechanisms specifically, DNA methylation, histone acetylation, histone methylation, and ncRNAs. As the recent identification of new pharmacological drugs targeting these epigenetic mechanisms has opened new therapeutic avenues, we also discuss the importance of epigenetic-based therapies in the context of PH.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Frank Lezoualc’h
- Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, University of Toulouse, Toulouse Cedex 4, France
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
18
|
Pradhan N, Parbin S, Kar S, Das L, Kirtana R, Suma Seshadri G, Sengupta D, Deb M, Kausar C, Patra SK. Epigenetic silencing of genes enhanced by collective role of reactive oxygen species and MAPK signaling downstream ERK/Snail axis: Ectopic application of hydrogen peroxide repress CDH1 gene by enhanced DNA methyltransferase activity in human breast cancer. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1651-1665. [DOI: 10.1016/j.bbadis.2019.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/22/2022]
|
19
|
Khatami F, Teimoori-Toolabi L, Heshmat R, Nasiri S, Saffar H, Mohammadamoli M, Aghdam MH, Larijani B, Tavangar SM. Circulating ctDNA methylation quantification of two DNA methyl transferases in papillary thyroid carcinoma. J Cell Biochem 2019; 120:17422-17437. [PMID: 31127647 DOI: 10.1002/jcb.29007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Papillary thyroid cancer (PTC) is the most common type of cancer among thyroid malignancies. Tumor-related methylation of circulating tumor DNA (ctDNA) in plasma could represent tumor specific alterations can be considered as good biomarkers in circulating tumor cells. In this study, we studied the methylation status of seven promoter regions of two DNA methyl Transferases (MGMT and DNMT1) genes as the methylated ctDNA in plasma and tissue samples of patients with PTC and goiter patients as noncancerous controls. METHODS Both ctDNA and tissue genomic DNA of 57 PTC and 45 Goiter samples were isolated. After bisulfite modification, the methylation status was studied by Methylation-Sensitive High Resolution Melting (MS-HRM) assay technique. Four promoter regions of O6-methylguanine-DNA methyltransferase (MGMT) and three promoter regions of DNA methyltransferase 1 (DNMT1) were assessed. RESULTS From seven candidate promoter regions of two methyltrasferase coding genes, the methylation status of ctDNA within MGMT (a), MGMT (c), MGMT (d), and DNMT1 (b) were meaningfully different between PTC cases and controls. However, the most significant differences were seen in circulating ctDNA MGMT (c) which was hypermethylated in 25 (43.9 %) of patients with PTC vs 2 (4. 4 %) of goiter samples. Between two selected DNA methyl transferase, the methylation of MGMT as the maintenance methyltransferase was significantly higher in PTC cases than goiter controls (P-value < .001). The resulting areas under the receiver operating characteristic (ROC) curve were 0.78 for MGMT (d) for PTC versus goiter samples that can represent the overall ability of MGMT (d) methylation status to discriminate between PTC and goiter patients. CONCLUSION Among seven candidate regions of ctDNA the MGMT (c) and MGMT (d) showed higher sensitivity and specificity for PTC as a suitable candidates as biomarkers of PTC.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hiva Saffar
- Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammadamoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Yun F, Cheng C, Ullah S, He J, Zahi MR, Yuan Q. Thioether-based 2-aminobenzamide derivatives: Novel HDAC inhibitors with potent in vitro and in vivo antitumor activity. Eur J Med Chem 2019; 176:195-207. [PMID: 31103900 DOI: 10.1016/j.ejmech.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 01/08/2023]
Abstract
Previously, we focused on a series of 2-aminobenzamide-based histone deacetylase (HDAC) inhibitors, compound 9 of which displayed potent HDAC inhibitory activity against HDAC1 and HDAC2, and moderate anti-proliferative activity against several cancer cell lines. In the current study, we have designed and synthesized a series of novel HDAC inhibitors based on thioether moiety with 9 as a lead compound. Representative compounds12 g and 12 h showed apparently potent anti-proliferative activities against five solid cancer cell lines: A549, HCT116, Hela, A375 and SMMC7721, and low cytotoxicity against NIH 3T3 normal cells. Especially, 12 g and 12 h also revealed potent HDAC inhibitory activity against HDAC1, 2 and 3. In addition, the two compounds could arrest cell cycle in G2/M phase and promote cell apoptosis. Moreover, they showed extended inhibition of colony formation and effectively blocked cell migration towards A549 cancer cells. Furthermore, 12 g and 12 h possessed better pharmacokinetic properties than the lead compound 9. Benefiting from these results, we also explored 12 g and 12 h in the A549 xenografts model for in vivo antitumor activity. The in vivo experiment indicated that 12 g and 12 h could evidently augment antitumor activity (TGI = 56.9% and 62.7% respectively).
Collapse
Affiliation(s)
- Fan Yun
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education. College of Life Science and Technology, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing, 100029, China
| | - Chunhui Cheng
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education. College of Life Science and Technology, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing, 100029, China
| | - Sadeeq Ullah
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education. College of Life Science and Technology, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing, 100029, China
| | - Jie He
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education. College of Life Science and Technology, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing, 100029, China
| | - Mohamed Reda Zahi
- Laboratory of Natural Products Chemistry and Biomolecules, University of Blida 1, BP 270, Blida, Algeria
| | - Qipeng Yuan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education. College of Life Science and Technology, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing, 100029, China.
| |
Collapse
|
21
|
Arif M, Sadayappan S, Becker RC, Martin LJ, Urbina EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 2019; 42:1099-1113. [PMID: 30867575 DOI: 10.1038/s41440-019-0248-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Essential hypertension (EH) is a multifactorial disease of the cardiovascular system that is influenced by the interplay of genetic, epigenetic, and environmental factors. The molecular dynamics underlying EH etiopathogenesis is unknown; however, earlier studies have revealed EH-associated genetic variants. Nevertheless, this finding alone is not sufficient to explain the variability in blood pressure, suggesting that other risk factors are involved, such as epigenetic modifications. Therefore, this review highlights the potential contribution of well-defined epigenetic mechanisms in EH, specifically, DNA methylation, post-translational histone modifications, and microRNAs. We further emphasize global and gene-specific DNA methylation as one of the most well-studied hallmarks among all epigenetic modifications in EH. In addition, post-translational histone modifications, such as methylation, acetylation, and phosphorylation, are described as important epigenetic markers associated with EH. Finally, we discuss microRNAs that affect blood pressure by regulating master genes such as those implicated in the renin-angiotensin-aldosterone system. These epigenetic modifications, which appear to contribute to various cardiovascular diseases, including EH, may be a promising research area for the development of novel future strategies for EH prevention and therapeutics.
Collapse
Affiliation(s)
- Mohammed Arif
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA.,Division of Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Richard C Becker
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Elaine M Urbina
- Division of Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
22
|
Kagohara LT, Stein-O’Brien GL, Kelley D, Flam E, Wick HC, Danilova LV, Easwaran H, Favorov AV, Qian J, Gaykalova DA, Fertig EJ. Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Brief Funct Genomics 2019; 17:49-63. [PMID: 28968850 PMCID: PMC5860551 DOI: 10.1093/bfgp/elx018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer is a complex disease, driven by aberrant activity in numerous signaling pathways in even individual malignant cells. Epigenetic changes are critical mediators of these functional changes that drive and maintain the malignant phenotype. Changes in DNA methylation, histone acetylation and methylation, noncoding RNAs, posttranslational modifications are all epigenetic drivers in cancer, independent of changes in the DNA sequence. These epigenetic alterations were once thought to be crucial only for the malignant phenotype maintenance. Now, epigenetic alterations are also recognized as critical for disrupting essential pathways that protect the cells from uncontrolled growth, longer survival and establishment in distant sites from the original tissue. In this review, we focus on DNA methylation and chromatin structure in cancer. The precise functional role of these alterations is an area of active research using emerging high-throughput approaches and bioinformatics analysis tools. Therefore, this review also describes these high-throughput measurement technologies, public domain databases for high-throughput epigenetic data in tumors and model systems and bioinformatics algorithms for their analysis. Advances in bioinformatics data that combine these epigenetic data with genomics data are essential to infer the function of specific epigenetic alterations in cancer. These integrative algorithms are also a focus of this review. Future studies using these emerging technologies will elucidate how alterations in the cancer epigenome cooperate with genetic aberrations during tumor initiation and progression. This deeper understanding is essential to future studies with epigenetics biomarkers and precision medicine using emerging epigenetic therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Daria A Gaykalova
- Corresponding authors: Daria A. Gaykalova, Otolaryngology - Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, Rm 574, CRBII Baltimore, MD 21231, USA. Tel.: +1 410 614 2745; Fax: +1 410 614 1411; E-mail: ; Elana J. Fertig, Assistant Professor of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, 550 N Broadway, 1101 E Baltimore, MD 21205, USA. Tel.: +1 410 955 4268; Fax: +1 410 955 0859; E-mail:
| | | |
Collapse
|
23
|
Yu LB, Tu YT, Huang JW, Zhang YN, Zheng GQ, Xu XW, Wang JW, Xiao JQ, Christiani DC, Xia ZL. Hypermethylation of CpG islands is associated with increasing chromosomal damage in chinese lead-exposed workers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:549-556. [PMID: 29761860 DOI: 10.1002/em.22194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/13/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Lead is a widely existing environmental pollutant with potential carcinogenicity. To investigate the association of blood lead level (B-Pb) with potential chromosomal damage and cancer, we analyzed micronucleus (MN) frequency of peripheral blood lymphocytes (PBLs) and the methylation status of six human tumor suppressor genes (TSGs) post lead exposure. In the study, 147 lead-exposed workers were divided into two groups according to their B-Pb P50 value, with other 50 lead-unexposed workers as a control group. The cytokinesis-blocked micronucleus (CBMN) assay was performed to detect chromosomal damage of PBLs of both lead-exposed and -unexposed workers. The methylation-specific polymerase chain reaction (MSP-PCR) was further used to examine the methylation status of six TSGs (GSTP1, hMLH1, MGMT, p14, p15, and p16). Results showed that MN frequencies of high B-Pb workers 8.1 ± 3.1‰ and low B-Pb workers 5.7 ± 2.3‰ were significantly higher than that of control group 2.8 ± 1.9‰ (P < 0.01), while the MN frequency of high B-Pb workers was also higher than that of the low B-Pb workers (P < 0.01). The MN frequency in PBLs of lead-exposed group with the methylated TSGs was significantly higher than that in PBLs with the unmethylated TSGs (P < 0.05). Notably, the CpG island methylator phenotype (CIMP) correlated with chromosome damage (P < 0.05). Additionally, workers with high B-Pb had higher chromosome damage than those with low B-Pb (P < 0.05). Taken altogether, the results suggest that lead-exposed workers with CIMP positive and high B-Pb have a higher risk of being vulnerable to tumorigenesis. Environ. Mol. Mutagen. 59:549-556, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li-Bo Yu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yu-Ting Tu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jing-Wen Huang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Ya-Nan Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Guo-Qiao Zheng
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xiao-Wen Xu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jin-Wei Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jean Qin Xiao
- Waterfront Medical Service/Valley Health System P.O. Box 1378, Ridgewood, NJ 07451
| | - David C Christiani
- Department of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts, 02115
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
24
|
Li Y, Zhu Q, Tang J, Guo DL, Duan R, Liu J. MeCP2 level is associated with hepatocellular carcinoma development in chronic hepatitis B patients under antiviral therapy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1356-1364. [PMID: 31938231 PMCID: PMC6958145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/17/2018] [Indexed: 06/10/2023]
Abstract
AIM Hepatocellular carcinoma (HCC) is a common and aggressive malignant tumor with especially high prevalence in Asia. This present study aimed to investigate the association of MeCP2 with HCC development in patients with undetectable HBV DNA by antiviral therapy. METHODS We retrospectively reviewed the 258 patients that were recruited into the present study. The control patients were matched with the HCC patients by age, gender, hepatitis e antigen (HBeAg) status, and duration of NA therapy in a 1:1:1 ratio. Area under ROC curve (AUC) was also used to compare diagnostic significance of MeCP2 using the Hanley and McNeil method. RESULTS For the entire cohort of 258 patients, MeCP2 was overexpressed in HCC tissues, which was significantly higher than that in cirrhosis and non-cirrhosis tissues (P<0.001). MeCP2 significantly increased in HCC cell lines compared with the control group of THLE-2 including SMMC-7721 (P<0.001), Huh-7 (P<0.001), and Hep3B (P<0.001). Overexpression of MeCP2 was closely related to liver cirrhosis (P=0.001) and TNM stage (P=0.017). The AUROC for the entire cohort, cirrhotic patients and non-cirrhotic patients, was 0.741 (95% CI: 0.629-0.804), 0.682 (95% CI: 0.526-0.782), and 0.776 (95% CI: 0.646-0.903), respectively. The predictive accuracies of MeCP2 in different groups of patients were further compared. For the whole cohort, this test had a high specificity in identifying patients without HCC development (85%). Among patients without cirrhosis, this test had a high sensitivity in identifying patients with future HCC development (83%). CONCLUSIONS We found that MeCP2 was expressed significantly higher in HCC tissues compared with cirrhosis and non-cirrhosis tissues. MeCP2 could be a novel risk marker to predict HCC development in CHB patients with profound viral suppression under NA therapy. MeCP2 measurement may serve as a useful strategy for risk stratification in terms of follow up interval and HCC surveillance.
Collapse
Affiliation(s)
- Yun Li
- Department of General Surgery, Jingmen First People's Hospital Jingmen, Hubei Province, China
| | - Qian Zhu
- Department of General Surgery, Jingmen First People's Hospital Jingmen, Hubei Province, China
| | - Jie Tang
- Department of General Surgery, Jingmen First People's Hospital Jingmen, Hubei Province, China
| | - De-Liang Guo
- Department of General Surgery, Jingmen First People's Hospital Jingmen, Hubei Province, China
| | - Rui Duan
- Department of General Surgery, Jingmen First People's Hospital Jingmen, Hubei Province, China
| | - Jian Liu
- Department of General Surgery, Jingmen First People's Hospital Jingmen, Hubei Province, China
| |
Collapse
|
25
|
Martín‐Sánchez P, Luengo A, Griera M, Orea MJ, López‐Olañeta M, Chiloeches A, Lara‐Pezzi E, Frutos S, Rodríguez–Puyol M, Calleros L, Rodríguez–Puyol D. H‐
ras
deletion protects against angiotensin II–induced arterial hypertension and cardiac remodeling through protein kinase G‐Iβ pathway activation. FASEB J 2018; 32:920-934. [DOI: 10.1096/fj.201700134rrrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Paloma Martín‐Sánchez
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Alicia Luengo
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Mercedes Griera
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | | | - Marina López‐Olañeta
- Myocardial Pathophysiology AreaCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | | | - Enrique Lara‐Pezzi
- Myocardial Pathophysiology AreaCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Sergio Frutos
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Manuel Rodríguez–Puyol
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Laura Calleros
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
| | - Diego Rodríguez–Puyol
- Department of MedicineUniversidad de AlcaláMadridSpain
- Instituto Reina Sofía de Investigación en Neurológica (IRSIN)MadridSpain
- Red de Investigación Renal (REDinREN)Instituto de Salud Carlos IIIMadridSpain
- Nephrology SectionResearch Unit FoundationHospital Universitario Príncipe de AsturiasAlcalá de HenaresMadridSpain
| |
Collapse
|
26
|
Kagohara LT, Stein-O'Brien GL, Kelley D, Flam E, Wick HC, Danilova LV, Easwaran H, Favorov AV, Qian J, Gaykalova DA, Fertig EJ. Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Brief Funct Genomics 2018. [PMID: 28968850 DOI: 10.1101/114025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Cancer is a complex disease, driven by aberrant activity in numerous signaling pathways in even individual malignant cells. Epigenetic changes are critical mediators of these functional changes that drive and maintain the malignant phenotype. Changes in DNA methylation, histone acetylation and methylation, noncoding RNAs, posttranslational modifications are all epigenetic drivers in cancer, independent of changes in the DNA sequence. These epigenetic alterations were once thought to be crucial only for the malignant phenotype maintenance. Now, epigenetic alterations are also recognized as critical for disrupting essential pathways that protect the cells from uncontrolled growth, longer survival and establishment in distant sites from the original tissue. In this review, we focus on DNA methylation and chromatin structure in cancer. The precise functional role of these alterations is an area of active research using emerging high-throughput approaches and bioinformatics analysis tools. Therefore, this review also describes these high-throughput measurement technologies, public domain databases for high-throughput epigenetic data in tumors and model systems and bioinformatics algorithms for their analysis. Advances in bioinformatics data that combine these epigenetic data with genomics data are essential to infer the function of specific epigenetic alterations in cancer. These integrative algorithms are also a focus of this review. Future studies using these emerging technologies will elucidate how alterations in the cancer epigenome cooperate with genetic aberrations during tumor initiation and progression. This deeper understanding is essential to future studies with epigenetics biomarkers and precision medicine using emerging epigenetic therapies.
Collapse
|
27
|
Targeting the Epigenome as a Novel Therapeutic Approach for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:287-313. [DOI: 10.1007/978-981-10-6020-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Good KV, Martínez de Paz A, Tyagi M, Cheema MS, Thambirajah AA, Gretzinger TL, Stefanelli G, Chow RL, Krupke O, Hendzel M, Missiaen K, Underhill A, Landsberger N, Ausió J. Trichostatin A decreases the levels of MeCP2 expression and phosphorylation and increases its chromatin binding affinity. Epigenetics 2017; 12:934-944. [PMID: 29099289 DOI: 10.1080/15592294.2017.1380760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.
Collapse
Affiliation(s)
- Katrina V Good
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Alexia Martínez de Paz
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Monica Tyagi
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Manjinder S Cheema
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Anita A Thambirajah
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada.,b Douglas Hospital Research Center , Department of Psychiatry , McGill University , Montréal , Québec H3G 1Y6 , Canada
| | - Taylor L Gretzinger
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Gilda Stefanelli
- c Department of Medical Biotechnology and Translational Medicine , University of Milan , Milan , Italy
| | - Robert L Chow
- d Department of Biology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Oliver Krupke
- d Department of Biology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Michael Hendzel
- e Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada.,f Department of Oncology and Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Kristal Missiaen
- f Department of Oncology and Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Alan Underhill
- f Department of Oncology and Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Nicoletta Landsberger
- c Department of Medical Biotechnology and Translational Medicine , University of Milan , Milan , Italy
| | - Juan Ausió
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| |
Collapse
|
29
|
Abstract
This paper provides a brief introductory review of the most recent advances in our knowledge about the structural and functional aspects of two transcriptional regulators: MeCP2, a protein whose mutated forms are involved in Rett syndrome; and CTCF, a constitutive transcriptional insulator. This is followed by a description of the PTMs affecting these two proteins and an analysis of their known interacting partners. A special emphasis is placed on the recent studies connecting these two proteins, focusing on the still poorly understood potential structural and functional interactions between the two of them on the chromatin substrate. An overview is provided for some of the currently known genes that are dually regulated by these two proteins. Finally, a model is put forward to account for their possible involvement in their regulation of gene expression.
Collapse
Affiliation(s)
- Juan Ausió
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.,b Center for Biomedical Research, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Philippe T Georgel
- c Department of Biological Sciences, Marshall University, Huntington, WV 25755, USA.,d Cell Differentiation and Development Center, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
30
|
Activation-induced cytidine deaminase targets SUV4-20-mediated histone H4K20 trimethylation to class-switch recombination sites. Sci Rep 2017; 7:7594. [PMID: 28790320 PMCID: PMC5548798 DOI: 10.1038/s41598-017-07380-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 06/28/2017] [Indexed: 11/22/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) triggers antibody diversification in B cells by catalysing deamination and subsequently mutating immunoglobulin (Ig) genes. Association of AID with RNA Pol II and occurrence of epigenetic changes during Ig gene diversification suggest participation of AID in epigenetic regulation. AID is mutated in hyper-IgM type 2 (HIGM2) syndrome. Here, we investigated the potential role of AID in the acquisition of epigenetic changes. We discovered that AID binding to the IgH locus promotes an increase in H4K20me3. In 293F cells, we demonstrate interaction between co-transfected AID and the three SUV4-20 histone H4K20 methyltransferases, and that SUV4-20H1.2, bound to the IgH switch (S) mu site, is replaced by SUV4-20H2 upon AID binding. Analysis of HIGM2 mutants shows that the AID truncated form W68X is impaired to interact with SUV4-20H1.2 and SUV4-20H2 and is unable to bind and target H4K20me3 to the Smu site. We finally show in mouse primary B cells undergoing class-switch recombination (CSR) that AID deficiency associates with decreased H4K20me3 levels at the Smu site. Our results provide a novel link between SUV4-20 enzymes and CSR and offer a new aspect of the interplay between AID and histone modifications in setting the epigenetic status of CSR sites.
Collapse
|
31
|
Acetylation- and Methylation-Related Epigenetic Proteins in the Context of Their Targets. Genes (Basel) 2017; 8:genes8080196. [PMID: 28783137 PMCID: PMC5575660 DOI: 10.3390/genes8080196] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
The nucleosome surface is covered with multiple modifications that are perpetuated by eight different classes of enzymes. These enzymes modify specific target sites both on DNA and histone proteins, and these modifications have been well identified and termed “epigenetics”. These modifications play critical roles, either by affecting non-histone protein recruitment to chromatin or by disturbing chromatin contacts. Their presence dictates the condensed packaging of DNA and can coordinate the orderly recruitment of various enzyme complexes for DNA manipulation. This genetic modification machinery involves various writers, readers, and erasers that have unique structures, functions, and modes of action. Regarding human disease, studies have mainly focused on the genetic mechanisms; however, alteration in the balance of epigenetic networks can result in major pathologies including mental retardation, chromosome instability syndromes, and various types of cancers. Owing to its critical influence, great potential lies in developing epigenetic therapies. In this regard, this review has highlighted mechanistic and structural interactions of the main epigenetic families with their targets, which will help to identify more efficient and safe drugs against several diseases.
Collapse
|
32
|
Pandey S, Pruitt K. Functional assessment of MeCP2 in Rett syndrome and cancers of breast, colon, and prostate. Biochem Cell Biol 2017; 95:368-378. [DOI: 10.1139/bcb-2016-0154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ever since the first report that mutations in methyl-CpG-binding protein 2 (MeCP2) causes Rett syndrome (RTT), a severe neurological disorder in females world-wide, there has been a keen interest to gain a comprehensive understanding of this protein. While the classical model associated with MeCP2 function suggests its role in gene suppression via recruitment of co-repressor complexes and histone deacetylases to methylated CpG-sites, recent discoveries have brought to light its role in transcription activation, modulation of RNA splicing, and chromatin compaction. Various post-translational modifications (PTMs) of MeCP2 further increase its functional versatility. Involvement of MeCP2 in pathologies other than RTT, such as tumorigenesis however, remains poorly explored and understood. This review provides a survey of the literature implicating MeCP2 in breast, colon and prostate cancer.
Collapse
Affiliation(s)
- Somnath Pandey
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| |
Collapse
|
33
|
Yang Y, Zhao L, Huang B, Hou G, Zhou B, Qian J, Yuan S, Xiao H, Li M, Zhou W. A New Approach to Evaluating Aberrant DNA Methylation Profiles in Hepatocellular Carcinoma as Potential Biomarkers. Sci Rep 2017; 7:46533. [PMID: 28418032 PMCID: PMC5394454 DOI: 10.1038/srep46533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Hypermethylation of CpG islands in the promoter region of tumor suppressor genes (TSGs) and their subsequent silencing is thought to be one of the main mechanisms of carcinogenesis. MBD2b enrichment coupled with a NimbleGen array was applied to examine the genome-wide CpG island methylation profile of hepatocellular carcinoma (HCC). Hypermethylated DNA of 58 pairs of HCC and adjacent tissue samples was enriched and hybridized in the same array. Aberrant hypermethylated peaks of HCC and adjacent tissues were screened and annotated after data processing using NimbleScan2.5 and our newly developed Weighting and Scoring (WAS) method, respectively. Validation using bisulfite sequencing of randomly selected ANKRD45, APC, CDX1, HOXD3, PTGER and TUBB6 genes demonstrated significant hypermethylation modification in HCC samples, consistent with the array data.
Collapse
Affiliation(s)
- Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Linghao Zhao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Bo Huang
- Suzhou Municipal Hospital, Jiangsu Province, China
| | - Guojun Hou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Beibei Zhou
- Shanghai Biotechnology Corporation, Shanghai, China
| | - Jin Qian
- Shanghai Biotechnology Corporation, Shanghai, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | - Minghui Li
- Shanghai Biotechnology Corporation, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
34
|
Liu Y, Song C, Ladas I, Fitarelli-Kiehl M, Makrigiorgos GM. Methylation-sensitive enrichment of minor DNA alleles using a double-strand DNA-specific nuclease. Nucleic Acids Res 2017; 45:e39. [PMID: 27903892 PMCID: PMC5389605 DOI: 10.1093/nar/gkw1166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
Aberrant methylation changes, often present in a minor allelic fraction in clinical samples such as plasma-circulating DNA (cfDNA), are potentially powerful prognostic and predictive biomarkers in human disease including cancer. We report on a novel, highly-multiplexed approach to facilitate analysis of clinically useful methylation changes in minor DNA populations. Methylation Specific Nuclease-assisted Minor-allele Enrichment (MS-NaME) employs a double-strand-specific DNA nuclease (DSN) to remove excess DNA with normal methylation patterns. The technique utilizes oligonucleotide-probes that direct DSN activity to multiple targets in bisulfite-treated DNA, simultaneously. Oligonucleotide probes targeting unmethylated sequences generate local double stranded regions resulting to digestion of unmethylated targets, and leaving methylated targets intact; and vice versa. Subsequent amplification of the targeted regions results in enrichment of the targeted methylated or unmethylated minority-epigenetic-alleles. We validate MS-NaME by demonstrating enrichment of RARb2, ATM, MGMT and GSTP1 promoters in multiplexed MS-NaME reactions (177-plex) using dilutions of methylated/unmethylated DNA and in DNA from clinical lung cancer samples and matched normal tissue. MS-NaME is a highly scalable single-step approach performed at the genomic DNA level in solution that combines with most downstream detection technologies including Sanger sequencing, methylation-sensitive-high-resolution melting (MS-HRM) and methylation-specific-Taqman-based-digital-PCR (digital Methylight) to boost detection of low-level aberrant methylation-changes.
Collapse
Affiliation(s)
- Yibin Liu
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Song
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ioannis Ladas
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mariana Fitarelli-Kiehl
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - G. Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA,To whom correspondence should be addressed. Tel: +1 617 525 7122; Fax: +1 617 582 6037;
| |
Collapse
|
35
|
Özbayer C, Üstüner D, Ak GA, Saydam F, Metintaş M, Değirmenci İ. Akciğer Kanserli Hastalarda Plazma DNA Metiltransferaz ve Metil-CpG’ye Bağlanan Protein Seviyelerinin Değerlendirilmesi. DICLE MEDICAL JOURNAL 2017. [DOI: 10.5798/dicletip.298604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Vu T, Davidson SL, Borgesi J, Maksudul M, Jeon TJ, Shim J. Piecing together the puzzle: nanopore technology in detection and quantification of cancer biomarkers. RSC Adv 2017. [DOI: 10.1039/c7ra08063h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This mini-review paper is a comprehensive outline of nanopore technology applications in the detection and study of various cancer causal factors.
Collapse
Affiliation(s)
- Trang Vu
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| | - Shanna-Leigh Davidson
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| | - Julia Borgesi
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| | - Mowla Maksudul
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| | - Tae-Joon Jeon
- Department of Biological Engineering
- Inha University
- Incheon 22212
- Republic of Korea
| | - Jiwook Shim
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| |
Collapse
|
37
|
Martín-Subero JI, Esteller M. Epigenetic Mechanisms in Cancer Development. THE MOLECULAR BASIS OF HUMAN CANCER 2017:263-275. [DOI: 10.1007/978-1-59745-458-2_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
38
|
Pruitt K. Molecular and Cellular Changes During Cancer Progression Resulting From Genetic and Epigenetic Alterations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:3-47. [PMID: 27865461 DOI: 10.1016/bs.pmbts.2016.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumorigenesis is a complex process that involves a persistent dismantling of cellular safeguards and checkpoints. These molecular and cellular changes that accumulate over months or decades lead to a change in the fundamental identity of a cell as it transitions from normal to malignant. In this chapter, we will examine some of the molecular changes in the evolving relationship between the genome and epigenome and highlight some of the key changes that occur as normal cells progress to tumor cells. For many years tumorigenesis was almost exclusively attributed to mutations in protein-coding genes. This notion that mutations in protein-coding genes were a fundamental driver of tumorigenesis enabled the development of several novel therapeutics that targeted the mutant protein or overactive pathway responsible for driving a significant portion of the tumor growth. However, because many therapeutic challenges remained in the face of these advances, it was clear that other pieces to the puzzle had yet to be discovered. Advances in molecular and genomics techniques continued and the study of epigenetics began to expand and helped reshape the view that drivers of tumorigenesis extended beyond mutations in protein-coding genes. Studies in the field of epigenetics began to identify aberrant epigenetic marks which created altered chromatin structures and enabled protein expression in tissues that defied rules governing tissue-specificity. Not only were epigenetic alterations found to enable overexpression of proto-oncogenes, they also led to the silencing of tumor suppressor genes. With these discoveries, it became clear that tumor growth could be stimulated by much more than mutations in protein-coding genes. In fact, it became increasingly clear that much of the human genome, while transcribed, did not lead to proteins. This discovery further led to studies that began to uncover the role of noncoding RNAs in regulating chromatin structure, gene transcription, and tumor biology. In this chapter, some of the key alterations in the genome and epigenome will be explored, and some of the cancer therapies that were developed as a result of these discoveries will be discussed.
Collapse
Affiliation(s)
- K Pruitt
- Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
39
|
López-Ozuna VM, Hachim IY, Hachim MY, Lebrun JJ, Ali S. Prolactin Pro-Differentiation Pathway in Triple Negative Breast Cancer: Impact on Prognosis and Potential Therapy. Sci Rep 2016; 6:30934. [PMID: 27480353 PMCID: PMC4969612 DOI: 10.1038/srep30934] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous disease associated with poor clinical outcome and lack of targeted therapy. Here we show that prolactin (PRL) and its signaling pathway serve as a sub-classifier and predictor of pro-differentiation therapy in TNBC. Using immunohistochemistry and various gene expression in silica analyses we observed that prolactin receptor (PRLR) protein and mRNA levels are down regulated in TNBC cases. In addition, examining correlation of PRLR gene expression with metagenes of TNBC subtypes (580 cases), we found that PRLR gene expression sub-classifies TNBC patients into a new subgroup (TNBC-PRLR) characterized by epithelial-luminal differentiation. Importantly, gene expression of PRL signaling pathway components individually (PRL, PRLR, Jak2 and Stat5a), or as a gene signature is able to predict TNBC patients with significantly better survival outcomes. As PRL hormone is a druggable target we determined the biological role of PRL in TNBC biology. Significantly, restoration/activation of PRL pathway in TNBC cells representative of mesenchymal or TNBC-PRLR subgroups led to induction of epithelial phenotype and suppression of tumorigenesis. Altogether, these results offer potential new modalities for TNBC stratification and development of personalized therapy based on PRL pathway activation.
Collapse
Affiliation(s)
- Vanessa M López-Ozuna
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Ibrahim Y Hachim
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Mahmood Y Hachim
- Medical Microbiology Department, RAK Medical and Health Sciences University, UAE
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Zeng C, Guo X, Long J, Kuchenbaecker KB, Droit A, Michailidou K, Ghoussaini M, Kar S, Freeman A, Hopper JL, Milne RL, Bolla MK, Wang Q, Dennis J, Agata S, Ahmed S, Aittomäki K, Andrulis IL, Anton-Culver H, Antonenkova NN, Arason A, Arndt V, Arun BK, Arver B, Bacot F, Barrowdale D, Baynes C, Beeghly-Fadiel A, Benitez J, Bermisheva M, Blomqvist C, Blot WJ, Bogdanova NV, Bojesen SE, Bonanni B, Borresen-Dale AL, Brand JS, Brauch H, Brennan P, Brenner H, Broeks A, Brüning T, Burwinkel B, Buys SS, Cai Q, Caldes T, Campbell I, Carpenter J, Chang-Claude J, Choi JY, Claes KBM, Clarke C, Cox A, Cross SS, Czene K, Daly MB, de la Hoya M, De Leeneer K, Devilee P, Diez O, Domchek SM, Doody M, Dorfling CM, Dörk T, Dos-Santos-Silva I, Dumont M, Dwek M, Dworniczak B, Egan K, Eilber U, Einbeigi Z, Ejlertsen B, Ellis S, Frost D, Lalloo F, Fasching PA, Figueroa J, Flyger H, Friedlander M, Friedman E, Gambino G, Gao YT, Garber J, García-Closas M, Gehrig A, Damiola F, Lesueur F, Mazoyer S, Stoppa-Lyonnet D, Giles GG, Godwin AK, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Haiman CA, Hallberg E, Hamann U, Hansen TVO, et alZeng C, Guo X, Long J, Kuchenbaecker KB, Droit A, Michailidou K, Ghoussaini M, Kar S, Freeman A, Hopper JL, Milne RL, Bolla MK, Wang Q, Dennis J, Agata S, Ahmed S, Aittomäki K, Andrulis IL, Anton-Culver H, Antonenkova NN, Arason A, Arndt V, Arun BK, Arver B, Bacot F, Barrowdale D, Baynes C, Beeghly-Fadiel A, Benitez J, Bermisheva M, Blomqvist C, Blot WJ, Bogdanova NV, Bojesen SE, Bonanni B, Borresen-Dale AL, Brand JS, Brauch H, Brennan P, Brenner H, Broeks A, Brüning T, Burwinkel B, Buys SS, Cai Q, Caldes T, Campbell I, Carpenter J, Chang-Claude J, Choi JY, Claes KBM, Clarke C, Cox A, Cross SS, Czene K, Daly MB, de la Hoya M, De Leeneer K, Devilee P, Diez O, Domchek SM, Doody M, Dorfling CM, Dörk T, Dos-Santos-Silva I, Dumont M, Dwek M, Dworniczak B, Egan K, Eilber U, Einbeigi Z, Ejlertsen B, Ellis S, Frost D, Lalloo F, Fasching PA, Figueroa J, Flyger H, Friedlander M, Friedman E, Gambino G, Gao YT, Garber J, García-Closas M, Gehrig A, Damiola F, Lesueur F, Mazoyer S, Stoppa-Lyonnet D, Giles GG, Godwin AK, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Haiman CA, Hallberg E, Hamann U, Hansen TVO, Hart S, Hartikainen JM, Hartman M, Hassan N, Healey S, Hogervorst FBL, Verhoef S, Hendricks CB, Hillemanns P, Hollestelle A, Hulick PJ, Hunter DJ, Imyanitov EN, Isaacs C, Ito H, Jakubowska A, Janavicius R, Jaworska-Bieniek K, Jensen UB, John EM, Joly Beauparlant C, Jones M, Kabisch M, Kang D, Karlan BY, Kauppila S, Kerin MJ, Khan S, Khusnutdinova E, Knight JA, Konstantopoulou I, Kraft P, Kwong A, Laitman Y, Lambrechts D, Lazaro C, Le Marchand L, Lee CN, Lee MH, Lester J, Li J, Liljegren A, Lindblom A, Lophatananon A, Lubinski J, Mai PL, Mannermaa A, Manoukian S, Margolin S, Marme F, Matsuo K, McGuffog L, Meindl A, Menegaux F, Montagna M, Muir K, Mulligan AM, Nathanson KL, Neuhausen SL, Nevanlinna H, Newcomb PA, Nord S, Nussbaum RL, Offit K, Olah E, Olopade OI, Olswold C, Osorio A, Papi L, Park-Simon TW, Paulsson-Karlsson Y, Peeters S, Peissel B, Peterlongo P, Peto J, Pfeiler G, Phelan CM, Presneau N, Radice P, Rahman N, Ramus SJ, Rashid MU, Rennert G, Rhiem K, Rudolph A, Salani R, Sangrajrang S, Sawyer EJ, Schmidt MK, Schmutzler RK, Schoemaker MJ, Schürmann P, Seynaeve C, Shen CY, Shrubsole MJ, Shu XO, Sigurdson A, Singer CF, Slager S, Soucy P, Southey M, Steinemann D, Swerdlow A, Szabo CI, Tchatchou S, Teixeira MR, Teo SH, Terry MB, Tessier DC, Teulé A, Thomassen M, Tihomirova L, Tischkowitz M, Toland AE, Tung N, Turnbull C, van den Ouweland AMW, van Rensburg EJ, Ven den Berg D, Vijai J, Wang-Gohrke S, Weitzel JN, Whittemore AS, Winqvist R, Wong TY, Wu AH, Yannoukakos D, Yu JC, Pharoah PDP, Hall P, Chenevix-Trench G, Dunning AM, Simard J, Couch FJ, Antoniou AC, Easton DF, Zheng W. Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Res 2016; 18:64. [PMID: 27459855 PMCID: PMC4962376 DOI: 10.1186/s13058-016-0718-0] [Show More Authors] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/18/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. METHOD We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. RESULTS Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05. CONCLUSION This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk.
Collapse
Grants
- U10 CA180868 NCI NIH HHS
- R01 CA140323 NCI NIH HHS
- R37 CA070867 NCI NIH HHS
- U10 CA027469 NCI NIH HHS
- U01 CA116167 NCI NIH HHS
- 16561 Cancer Research UK
- R03 CA173531 NCI NIH HHS
- G0700491 Medical Research Council
- N02CP11019 NCI NIH HHS
- 10124 Cancer Research UK
- UG1 CA189867 NCI NIH HHS
- N01 CN025403 NCI NIH HHS
- R01 CA176785 NCI NIH HHS
- RC4 CA153828 NCI NIH HHS
- U10 CA101165 NCI NIH HHS
- R01 CA142996 NCI NIH HHS
- P50 CA125183 NCI NIH HHS
- P01 CA087969 NCI NIH HHS
- UM1 CA164920 NCI NIH HHS
- P30 CA168524 NCI NIH HHS
- U01 CA161032 NCI NIH HHS
- R01 CA092447 NCI NIH HHS
- R01 CA058860 NCI NIH HHS
- 20861 Cancer Research UK
- K07 CA092044 NCI NIH HHS
- UL1 TR000124 NCATS NIH HHS
- 11174 Cancer Research UK
- R01 CA100374 NCI NIH HHS
- P30 CA008748 NCI NIH HHS
- R01 CA128978 NCI NIH HHS
- R01 CA064277 NCI NIH HHS
- R01 CA083855 NCI NIH HHS
- R01 CA047147 NCI NIH HHS
- P30 CA014089 NCI NIH HHS
- U19 CA148537 NCI NIH HHS
- P30 CA051008 NCI NIH HHS
- R01 CA116167 NCI NIH HHS
- R01 CA148667 NCI NIH HHS
- P50 CA116201 NCI NIH HHS
- 16565 Cancer Research UK
- 15106 Cancer Research UK
- U01 CA113916 NCI NIH HHS
- R01 CA063464 NCI NIH HHS
- U10 CA037517 NCI NIH HHS
- N02CP65504 NCI NIH HHS
- U01 CA063464 NCI NIH HHS
- R01 CA077398 NCI NIH HHS
- R01 CA054281 NCI NIH HHS
- R01 CA132839 NCI NIH HHS
- P30 CA068485 NCI NIH HHS
- R01 CA102776 NCI NIH HHS
- U01 CA058860 NCI NIH HHS
- 10118 Cancer Research UK
- U19 CA148112 NCI NIH HHS
- R01 CA149429 NCI NIH HHS
- U01 CA098758 NCI NIH HHS
- U19 CA148065 NCI NIH HHS
- R01 CA069664 NCI NIH HHS
- 001 World Health Organization
- UM1 CA182910 NCI NIH HHS
- U10 CA180822 NCI NIH HHS
- P30 CA006927 NCI NIH HHS
- R37 CA054281 NCI NIH HHS
- R01 CA047305 NCI NIH HHS
- 10119 Cancer Research UK
- National Institutes of Health
- Seventh Framework Programme
- National Cancer Institute
- U.S. Department of Defense
- Canadian Institutes of Health Research
- Susan G. Komen for the Cure
- Breast Cancer Research Foundation
- Ovarian Cancer Research Fund
- National Health and Medical Research Council
- New South Wales Cancer Council
- Victorian Health Promotion Foundation
- Victorian Breast Cancer Research Consortium
- Dutch Cancer Society
- Cancer Institute NSW
- National Breast Cancer Foundation
- Breast Cancer Research Trust
- Breakthrough Breast Cancer
- NIHR Comprehensive Biomedical Research Centre
- Guy's and St Thomas' NHS Foundation Trust
- Oxford Biomedical Research Centre
- Dietmar-Hopp Foundation
- Helmholtz Society
- Fondation de France
- Institut National Du Cancer
- Ligue Contre le Cancer
- Agence Nationale de la Recherche
- Danish Medical Research Council
- Instituto de Salud Carlos III
- Red Temática de Investigacióm Cooperativa en Cáncer
- Asociación Española Contra el Cáncer
- Fondo de Investigación Sanitario
- California Breast Cancer Research Fund
- Lon V Smith Foundation
- Baden-Württemberg Ministry of Science, Research and Arts
- Deutsche Krebshilfe
- Federal Ministry of Education and Research
- Deutsches Krebsforschungszentrum
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance
- Academy of Finland
- Finnish Cancer Society
- Ministry of Education, Culture, Sports, Science, and Technology
- Ministry of Health, Labour and Welfare
- Takeda Health Foundation
- German Federal Ministry of Research and Education
- Swedish Cancer Society
- Gustav V Jubilee Foundation
- Berth von Kantzows Stiftelse
- Cancer Fund of North Savo
- Finnish Cancer Organizations
- Queensland Cancer Fund
- Prostate Cancer Foundation of Australia (AU)
- Cancer Council of New South Wales
- Cancer Council of Victoria
- Cancer Council of Tasmania
- Cancer Council of South Australia
- U.S. Army Medical Research and Materiel Command
- National Health and Medical Research Council (AU)
- California Breast Cancer Research Program
- Stichting Tegen Kanker
- Hamburg Cancer Society
- Italian Associatin for Cancer Research
- David F and Margaret T Grohne Family Foundation
- Ting Tsung and Wei Fong Chao Foundation
- Robert and Kate Niehaus Clinical Cancer Genetics Initiative
- Quebec Breast Cancer Foundation
- Ministry of Economic Development, Innovation and Export Trade
- Malaysian Ministry of Science, Technology and Innovation
- Malaysian Ministry of Higher Education
- Cancer Resarch Initiatives Foundation
- Biomedical Research Council
- National Medical Research Council
- K G Jebsen Centre for Breast Cancer Research
- Research Council of Norway
- Researhc Council of Norway
- South Eastern Norway Health Authority
- Norwegian Cancer Socieety
- Finnish Cancer Foundation
- Sigrid Juselius Foundation
- Biobanking and Biomolecular Resources Research Infrastructure
- Marit and Hans Rausings Initiative Against Breast Cancer
- Yorkshire Cancer Research
- Sheffield Experimental Cancer Medicine Centre
- Ministry of Education, Science and Technology
- National Cancer Institute Thailand
- Stefanie Spielman Breast Cancer Fund
- Hellenic Cooperative Oncology Group
- Research Council of Lithuania
- Cancer Association of South Africa
- NEYE Foundation
- Spanish Association Against Cancer
- German Cancer Aid
- Ligue Nationale Contre le Cancer
- Jess and Mildred Fisher Center for Familial Cancer Research
- Swing Fore the Cure
- Netherlands Organization of Scientific Research
- Pink Ribbons Project
- Hungarian Research Grants
- Norwegian EEA Financial Mechanism
- Instituto de Salud Carlos III (ES)
- Canadian Breast Cancer Research Alliance
- Ministry for Health, Welfare and Family Affairs
- Andrew Sabin Research Fund
- Russian Federation for Basic Research
- Istituto Toscano Tumori
- Ministry of Higher Education
- Dr. Ralph and Marian Falk Medical Research Trust
- Entertainment Industry Fund National Women's Cancer Research Alliance
- Frieda G and Saul F Shapira BRCA-Associated Cancer Research Program
- American Cancer Society
- National Center for Advancing Translational Sciences
Collapse
Affiliation(s)
- Chenjie Zeng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Karoline B Kuchenbaecker
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Arnaud Droit
- Proteomics Center, CHU de Québec Research Center and Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Maya Ghoussaini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Siddhartha Kar
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Adam Freeman
- Department of Surgery, St Vincent's Hospital, Melbourne, VIC, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Australia
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Australia
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Simona Agata
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico), Padua, Italy
| | - Shahana Ahmed
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Adalgeir Arason
- Department of Pathology, Landspitali University Hospital and BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Banu K Arun
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brita Arver
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Francois Bacot
- McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Javier Benitez
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras, Valencia, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
- International Epidemiology Institute, Rockville, MD, USA
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Anne-Lise Borresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Judith S Brand
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, Bochum, Germany
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Trinidad Caldes
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC (El Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Ian Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jane Carpenter
- Australian Breast Cancer Tissue Bank, Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ji-Yeob Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | | | - Christine Clarke
- Westmead Millenium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology, University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC (El Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Kim De Leeneer
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Orland Diez
- Oncogenetics Group, University Hospital Vall d'Hebron, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susan M Domchek
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michele Doody
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Thilo Dörk
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Martine Dumont
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Canada
| | - Miriam Dwek
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK
| | | | - Kathleen Egan
- Division of Population Sciences, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ursula Eilber
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zakaria Einbeigi
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bent Ejlertsen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steve Ellis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Fiona Lalloo
- Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Peter A Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Michael Friedlander
- ANZ GOTG Coordinating Centre, Australia New Zealand GOG, Camperdown, NSW, Australia
| | - Eitan Friedman
- Susanne Levy Gertner Oncogenetics Unit, Sheba Medical Center, Tel-Hashomer, Israel
| | - Gaetana Gambino
- Section of Genetic Oncology, Deparment of Laboratory Medicine, University and University Hospital of Pisa, Pisa, Italy
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Judy Garber
- Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Andrea Gehrig
- Institute of Human Genetics, University Würzburg, Wurzburg, Germany
| | - Francesca Damiola
- INSERM U1052, CNRS UMR5286, Université Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer team, Inserm, U900, Institut Curie, Mines ParisTech, 75248, Paris, France
| | - Sylvie Mazoyer
- INSERM U1052, CNRS UMR5286, Université Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Dominique Stoppa-Lyonnet
- Department of Tumour Biology, Institut Curie, Paris, France
- Institut Curie, INSERM U830, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Australia
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna González-Neira
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Pascal Guénel
- Environmental Epidemiology of Cancer, Center for Research in Epidemiology and Population Health, INSERM, Villejuif, France
- University Paris-Sud, Villejuif, France
| | - Lothar Haeberle
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily Hallberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas V O Hansen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steven Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jaana M Hartikainen
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Surgery, National University Health System, Singapore, Singapore
| | - Norhashimah Hassan
- Cancer Research Initiatives Foundation, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Sue Healey
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Senno Verhoef
- Family Cancer Clinic, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Carolyn B Hendricks
- Suburban Hospital, Bethesda, MD, USA
- Care of City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA, USA
| | - Peter Hillemanns
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - David J Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Hidemi Ito
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Ramunas Janavicius
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, N, Denmark
| | - Esther M John
- Department of Epidemiology, Cancer Prevention Institute of California, Fremont, CA, USA
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles Joly Beauparlant
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, QC, Canada
| | - Michael Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Michael J Kerin
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Julia A Knight
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, IRRP, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Ava Kwong
- The Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Yael Laitman
- Susanne Levy Gertner Oncogenetics Unit, Sheba Medical Center, Tel-Hashomer, Israel
| | - Diether Lambrechts
- Vesalius Research Center, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Conxi Lazaro
- Molecular Diagnostic Unit, Hereditary Cancer Program, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain
| | | | - Chuen Neng Lee
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Min Hyuk Lee
- Department of Surgery, Soonchunhyang University and Hospital, Seoul, South Korea
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Liljegren
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Artitaya Lophatananon
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Phuong L Mai
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Arto Mannermaa
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale Tumori (INT), Milan, Italy
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Frederik Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Keitaro Matsuo
- Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Florence Menegaux
- Environmental Epidemiology of Cancer, Center for Research in Epidemiology and Population Health, INSERM, Villejuif, France
- University Paris-Sud, Villejuif, France
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico), Padua, Italy
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK
- Institute of Population Health, University of Manchester, Manchester, UK
| | - Anna Marie Mulligan
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Katherine L Nathanson
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Polly A Newcomb
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Silje Nord
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Robert L Nussbaum
- Department of Medicine and Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Edith Olah
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, University of Chicago Medical Center, Chicago, IL, USA
| | - Curtis Olswold
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ana Osorio
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Laura Papi
- Unit of Medical Genetics, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | | | | | | | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale Tumori (INT), Milan, Italy
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC (Italian Foundation of Cancer Research) di Oncologia Molecolare, Milan, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Georg Pfeiler
- Department of Obstetrics and Gynecology, and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Catherine M Phelan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Nadege Presneau
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale Tumori (INT), Milan, Italy
| | - Nazneen Rahman
- Section of Cancer Genetics, The Institute of Cancer Research, London, UK
| | - Susan J Ramus
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Muhammad Usman Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Gad Rennert
- Clalit National Israeli Cancer Control Center and Department of Community Medicine and Epidemiology, Carmel Medical Center and B. Rappaport Faculty of Medicine, Haifa, Israel
| | - Kerstin Rhiem
- Centre of Familial Breast and Ovarian Cancer, Department of Gynaecology and Obstetrics and Centre for Integrated Oncology (CIO), Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ritu Salani
- Obstetrics and Gynecology, Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Elinor J Sawyer
- Research Oncology, Guy's Hospital, King's College London, London, UK
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Rita K Schmutzler
- Division of Molecular Gyneco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany
- Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
- Center for Integrated Oncology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Peter Schürmann
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Caroline Seynaeve
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Chen-Yang Shen
- School of Public Health, China Medical University, Taichung, Taiwan
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Alice Sigurdson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Christian F Singer
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Susan Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Penny Soucy
- Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, QC, Canada
| | - Melissa Southey
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | | | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Csilla I Szabo
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sandrine Tchatchou
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal
| | - Soo H Teo
- Cancer Research Initiatives Foundation, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Daniel C Tessier
- McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Alex Teulé
- Genetic Counseling Unit, Hereditary Cancer Program, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, C, Denmark
| | | | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montreal, QC, Canada
- Currently at Medical School Cambridge University, Cambridge, UK
| | - Amanda E Toland
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Nadine Tung
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Clare Turnbull
- Section of Cancer Genetics, The Institute of Cancer Research, London, UK
| | | | | | - David Ven den Berg
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Vijai
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Shan Wang-Gohrke
- Department of Obstetrics and Gynecology, University of Ulm, Ulm, Germany
| | - Jeffrey N Weitzel
- Clinical Cancer Genetics, for the City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA, USA
| | - Alice S Whittemore
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Tien Y Wong
- Singapore Eye Research Institute, National University of Singapore, Singapore, Singapore
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Drakoulis Yannoukakos
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Jyh-Cherng Yu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Chenevix-Trench
- Department of Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Peter MacCallum Cancer Center, The University of Melbourne, Melbourne, Australia
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Canada
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA.
| |
Collapse
|
41
|
Schenkel LC, Rodenhiser DI, Ainsworth PJ, Paré G, Sadikovic B. DNA methylation analysis in constitutional disorders: Clinical implications of the epigenome. Crit Rev Clin Lab Sci 2016; 53:147-65. [PMID: 26758403 DOI: 10.3109/10408363.2015.1113496] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genomic, chromosomal, and gene-specific changes in the DNA sequence underpin both phenotypic variations in populations as well as disease associations, and the application of genomic technologies for the identification of constitutional (inherited) or somatic (acquired) alterations in DNA sequence forms a cornerstone of clinical and molecular genetics. In addition to the disruption of primary DNA sequence, the modulation of DNA function by epigenetic phenomena, in particular by DNA methylation, has long been known to play a role in the regulation of gene expression and consequent pathogenesis. However, these epigenetic factors have been identified only in a handful of pediatric conditions, including imprinting disorders. Technological advances in the past decade that have revolutionized clinical genomics are now rapidly being applied to the emerging discipline of clinical epigenomics. Here, we present an overview of epigenetic mechanisms with a focus on DNA modifications, including the molecular mechanisms of DNA methylation and subtypes of DNA modifications, and we describe the classic and emerging genomic technologies that are being applied to this study. This review focuses primarily on constitutional epigenomic conditions associated with a spectrum of developmental and intellectual disabilities. Epigenomic disorders are discussed in the context of global genomic disorders, imprinting disorders, and single gene disorders. We include a section focused on integration of genetic and epigenetic mechanisms together with their effect on clinical phenotypes. Finally, we summarize emerging epigenomic technologies and their impact on diagnostic aspects of constitutional genetic and epigenetic disorders.
Collapse
Affiliation(s)
| | - David I Rodenhiser
- b Departments of Biochemistry , Oncology and Paediatrics, Western University , London , ON , Canada .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| | - Peter J Ainsworth
- a Departments of Pathology and Laboratory Medicine .,b Departments of Biochemistry , Oncology and Paediatrics, Western University , London , ON , Canada .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,d Molecular Genetics Laboratory, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| | - Guillaume Paré
- f Department of Pathology and Molecular Medicine , and.,g Department of Clinical Epidemiology and Biostatistics , McMaster University , Hamilton , ON , Canada
| | - Bekim Sadikovic
- a Departments of Pathology and Laboratory Medicine .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,d Molecular Genetics Laboratory, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| |
Collapse
|
42
|
Pandey S, Simmons GE, Malyarchuk S, Calhoun TN, Pruitt K. A novel MeCP2 acetylation site regulates interaction with ATRX and HDAC1. Genes Cancer 2015; 6:408-21. [PMID: 26622943 PMCID: PMC4633168 DOI: 10.18632/genesandcancer.84] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Methyl-CpG-binding protein-2 (MeCP2) regulates gene expression by recruiting SWI/SNF DNA helicase/ATPase (ATRX) and Histone Deacetylase-1 (HDAC1) to methylated gene regions and modulates heterochromatin association by interacting with Heterochromatin protein-1. As MeCP2 contributes to tumor suppressor gene silencing and its mutation causes Rett Syndrome, we investigated how novel post-translational-modification contributes to its function. Herein we report that upon pharmacological inhibition of SIRT1 in RKO colon and MCF-7 breast cancer cells, endogenous MeCP2 is acetylated at sites critical for binding to DNA and transcriptional regulators. We created an acetylation mimetic mutation in MeCP2 and found it to possess decreased binding to ATRX and HDAC1. Conditions inducing MeCP2 acetylation do not alter its promoter occupancy at a subset of target genes analyzed, but do cause decreased binding to ATRX and HDAC1. We also report here that a specific inhibitor of SIRT1, IV, can be used to selectively decrease H3K27me3 repressive marks on a subset of repressed target gene promoters analyzed. Lastly, we show that RKO cells over-expressing MeCP2 mutant show reduced proliferation compared to those over-expressing MeCP2-wildtype. Our study demonstrates the importance of acetylated lysine residues and suggests their key role in regulating MeCP2 function and its ability to bind transcriptional regulators.
Collapse
Affiliation(s)
- Somnath Pandey
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Glenn E Simmons
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Svitlana Malyarchuk
- Molecular and Cellular Physiology, Shreveport, LA, USA ; LSU Health Sciences Center School of Medicine, Shreveport, LA, USA
| | - Tara N Calhoun
- Molecular and Cellular Physiology, Shreveport, LA, USA ; LSU Health Sciences Center School of Medicine, Shreveport, LA, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
43
|
SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat Commun 2015; 6:6569. [PMID: 25798578 PMCID: PMC4382998 DOI: 10.1038/ncomms7569] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022] Open
Abstract
Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription.
Collapse
|
44
|
Epigenetics and arterial hypertension: the challenge of emerging evidence. Transl Res 2015; 165:154-65. [PMID: 25035152 DOI: 10.1016/j.trsl.2014.06.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 01/11/2023]
Abstract
Epigenetic phenomena include DNA methylation, post-translational histone modifications, and noncoding RNAs, as major marks. Although similar to genetic features of DNA for their heritability, epigenetic mechanisms differ for their potential reversibility by environmental and nutritional factors, which make them potentially crucial for their role in complex and multifactorial diseases. The function of these mechanisms is indeed gaining interest in relation to arterial hypertension (AH) with emerging evidence from cell culture and animal models as well as human studies showing that epigenetic modifications have major functions within pathways related to AH. Among epigenetic marks, the role of DNA methylation is mostly highlighted given the primary role of this epigenetic feature in mammalian cells. A lower global methylation was observed in DNA of peripheral blood mononuclear cells of hypertensive patients. Moreover, DNA hydroxymethylation appears modifiable by salt intake in a Dahl salt-sensitive rat model. The specific function of DNA methylation in regulating the expression of AH-related genes at promoter site was described for hydroxysteroid (11-beta) dehydrogenase 2 (HSD11B2), somatic angiotensin converting enzyme (sACE), Na+/K+/2Cl- cotransporter 1 (NKCC1), angiotensinogen (AGT), α-adducin (ADD1), and for other crucial genes in endocrine hypertension. Post-translational histone methylation at different histone 3 lysine residues was also observed to control the expression of genes related to AH as lysine-specific demethylase-1(LSD1), HSD11B2, and epithelial sodium channel subunit α (SCNN1A). Noncoding RNAs including several microRNAs influence genes involved in steroidogenesis and the renin-angiotensin-aldosterone pathway. In the present review, the current knowledge on the relationship between the main epigenetic marks and AH will be presented, considering the challenge of epigenetic patterns being modifiable by environmental factors that may lead toward novel implications in AH preventive and therapeutic strategies.
Collapse
|
45
|
Çelik S. Understanding the complexity of antigen retrieval of DNA methylation for immunofluorescence-based measurement and an approach to challenge. J Immunol Methods 2014; 416:1-16. [PMID: 25435341 DOI: 10.1016/j.jim.2014.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/31/2014] [Accepted: 11/21/2014] [Indexed: 12/28/2022]
Abstract
Cytosine methylation (5-methylcytosine, 5meC) in the CpG-rich regions of the mammalian genome is an important epigenetic mechanism playing roles in transcription regulation and genomic stability. The abnormalities in DNA methylation can occur in various types of cancer and some genetic diseases. The measurement of DNA methylation is therefore important and there is a range of methodologies used to detect DNA methylation. Many methods based on bisulfite treatment appeared with a lack of specificity after recent discoveries of various modifications of methylated cytosine, however there are new treatments developed to overcome this limitation. Immunofluorescence is currently known to be able to specifically detect DNA methylation as it uses different antibodies against 5meC and its derivatives, but it is a semi-quantitative method. Immunofluorescence protocols commonly include fixation of cells followed by permeabilisation, antigen retrieval, and treatments with antibodies. Establishing the strategy for antigen retrieval of immunofluorescence is important to unmask epitopes (i.e. 5meC) from other proteins, and therefore to access the antigen of interest. There are many approaches used for antigen retrieval induced by acid, enzyme and/or heat. The selection of antigen retrieval method can depend on a variety of such antigen-based or cell-based conditions, since the dynamic structure of DNA and chromatin accounts for the complexity of involved proteins to mask the epitope. This review aims to specifically focus on the complexity of in situ detection of DNA methylation by immunofluorescence-based methods using antigen retrieval with the current understanding of DNA methylation mechanism, and suggests conditions for antigenic retrieval of 5meC epitope.
Collapse
Affiliation(s)
- Selcen Çelik
- Human Reproduction and Development Unit, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, Sydney 2065, Australia.
| |
Collapse
|
46
|
Kar S, Sengupta D, Deb M, Shilpi A, Parbin S, Rath SK, Pradhan N, Rakshit M, Patra SK. Expression profiling of DNA methylation-mediated epigenetic gene-silencing factors in breast cancer. Clin Epigenetics 2014; 6:20. [PMID: 25478034 PMCID: PMC4255691 DOI: 10.1186/1868-7083-6-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/29/2014] [Indexed: 12/21/2022] Open
Abstract
Background DNA methylation mediates gene silencing primarily by inducing repressive chromatin architecture via a common theme of interaction involving methyl-CpG binding (MBD) proteins, histone modifying enzymes and chromatin remodelling complexes. Hence, targeted inhibition of MBD protein function is now considered a potential therapeutic alternative for thwarting DNA hypermethylation prompted neoplastic progress. We have analyzed the gene and protein expression level of the principal factors responsible for gene silencing, that is, DNMT and MBD proteins in MCF-7 and MDA-MB-231 breast cancer cell lines after treatment with various epigenetic drugs. Results Our study reveals that the epigenetic modulators affect the expression levels at both transcript and protein levels as well as encourage growth arrest and apoptosis in MCF-7 and MDA-MB-231 cells. AZA, TSA, SFN, and SAM inhibit cell growth in MCF-7 and MDA-MB-231 cell lines in a dose-dependent manner, that is, with increasing concentrations of drugs the cell viability gradually decreases. All the epigenetic modulators promote apoptotic cell death, as is evident form increased chromatin condensation which is a distinct characteristic of apoptotic cells. From FACS analysis, it is also clear that these drugs induce G2-M arrest and apoptosis in breast cancer cells. Further, transcript and protein level expression of MBDs and DNMTs is also affected - after treatment with epigenetic drugs; the level of transcripts/mRNA of MBDs and DNMTs has consistently increased in general. The increase in level of gene expression is substantiated at the protein level also where treated cells show higher expression of DNMT1, DNMT3A, DNMT3B, and MBD proteins in comparison to untreated cells. In case of tissue samples, the expression of different DNMTs is tissue stage-specific. DNMT1 exhibits significantly higher expression in the metastatic stage, whereas, DNMT3A and DNMT3B have higher expression in the primary stage in comparison to the metastatic samples. Conclusion The epigenetic modulators AZA, TSA, SFN, and SAM may provide opportunities for cancer prevention by regulating the components of epigenetic gene-silencing machinery especially DNMTs and MBDs.
Collapse
Affiliation(s)
- Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dipta Sengupta
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Arunima Shilpi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sabnam Parbin
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sandip Kumar Rath
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Nibedita Pradhan
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Madhumita Rakshit
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
47
|
Vento-Tormo R, Rodríguez-Ubreva J, Lisio LD, Islam ABMMK, Urquiza JM, Hernando H, López-Bigas N, Shannon-Lowe C, Martínez N, Montes-Moreno S, Piris MA, Ballestar E. NF-κB directly mediates epigenetic deregulation of common microRNAs in Epstein-Barr virus-mediated transformation of B-cells and in lymphomas. Nucleic Acids Res 2014; 42:11025-39. [PMID: 25200074 PMCID: PMC4176189 DOI: 10.1093/nar/gku826] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) have negative effects on gene expression and are major players in cell function in normal and pathological conditions. Epstein-Barr virus (EBV) infection of resting B lymphocytes results in their growth transformation and associates with different B cell lymphomas. EBV-mediated B cell transformation involves large changes in gene expression, including cellular miRNAs. We performed miRNA expression analysis in growth transformation of EBV-infected B cells. We observed predominant downregulation of miRNAs and upregulation of a few miRNAs. We observed similar profiles of miRNA expression in B cells stimulated with CD40L/IL-4, and those infected with EBNA-2- and LMP-1-deficient EBV particles, suggesting the implication of the NF-kB pathway, common to all four situations. In fact, the NF-kB subunit p65 associates with the transcription start site (TSS) of both upregulated and downregulated miRNAs following EBV infection This occurs together with changes at histone H3K27me3 and histone H3K4me3. Inhibition of the NF-kB pathway impairs changes in miRNA expression, NF-kB binding and changes at the above histone modifications near the TSS of these miRNA genes. Changes in expression of these miRNAs also occurred in diffuse large B cell lymphomas (DLBCL), which are strongly NF-kB dependent. Our results highlight the relevance of the NF-kB pathway in epigenetically mediated miRNA control in B cell transformation and DLBCL.
Collapse
Affiliation(s)
- Roser Vento-Tormo
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lorena Di Lisio
- Pathology Department, Hospital Universitario Marques de Valdecilla, Cancer Genomics, IFIMAV, 39008 Santander, Spain
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jose M Urquiza
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Henar Hernando
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Nuria López-Bigas
- Department of Experimental and Health Sciences, Barcelona Biomedical Research Park, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Catalan Institution for Research and Advanced Studies (ICREA), 08003 Barcelona, Spain
| | - Claire Shannon-Lowe
- CR-UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Nerea Martínez
- Pathology Department, Hospital Universitario Marques de Valdecilla, Cancer Genomics, IFIMAV, 39008 Santander, Spain
| | - Santiago Montes-Moreno
- Pathology Department, Hospital Universitario Marques de Valdecilla, Cancer Genomics, IFIMAV, 39008 Santander, Spain
| | - Miguel A Piris
- Pathology Department, Hospital Universitario Marques de Valdecilla, Cancer Genomics, IFIMAV, 39008 Santander, Spain
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
48
|
Ausió J, Paz AMD, Esteller M. MeCP2: the long trip from a chromatin protein to neurological disorders. Trends Mol Med 2014; 20:487-98. [DOI: 10.1016/j.molmed.2014.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
|
49
|
The transcriptional responsiveness of LKB1 to STAT-mediated signaling is differentially modulated by prolactin in human breast cancer cells. BMC Cancer 2014; 14:415. [PMID: 24913037 PMCID: PMC4064823 DOI: 10.1186/1471-2407-14-415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/27/2014] [Indexed: 01/31/2023] Open
Abstract
Background Liver kinase 1 (LKB1) is an important multi-tasking protein linked with metabolic signaling, also controlling polarity and cytoskeletal rearrangements in diverse cell types including cancer cells. Prolactin (PRL) and Signal transducer and activator of transcription (STAT) proteins have been associated with breast cancer progression. The current investigation examines the effect of PRL and STAT-mediated signaling on the transcriptional regulation of LKB1 expression in human breast cancer cells. Methods MDA-MB-231, MCF-7, and T47D human breast cancer cells, and CHO-K1 cells transiently expressing the PRL receptor (long form), were treated with 100 ng/ml of PRL for 24 hours. A LKB1 promoter-luciferase construct and its truncations were used to assess transcriptional changes in response to specific siRNAs or inhibitors targeting Janus activated kinase 2 (JAK2), STAT3, and STAT5A. Real-time PCR and Western blotting were applied to quantify changes in mRNA and protein levels. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays were used to examine STAT3 and STAT5A binding to the LKB1 promoter. Results Consistent with increases in mRNA, the LKB1 promoter was up-regulated by PRL in MDA-MB-231 cells, a response that was lost upon distal promoter truncation. A putative GAS element that could provide a STAT binding site mapped to this region, and its mutation decreased PRL-responsiveness. PRL-mediated increases in promoter activity required signaling through STAT3 and STAT5A, also involving JAK2. Both STATs imparted basally repressive effects in MDA-MB-231 cells. PRL increased in vivo binding of STAT3, and more definitively, STAT5A, to the LKB1 promoter region containing the GAS site. In T47D cells, PRL down-regulated LKB1 transcriptional activity, an effect that was reversed upon culture in phenol red-free media. Interleukin 6, a cytokine activating STAT signaling in diverse cell types, also increased LKB1 mRNA levels and promoter activity in MDA-MB-231 cells. Conclusions LKB1 is differentially regulated by PRL at the level of transcription in representative human breast cancer cells. Its promoter is targeted by STAT proteins, and the cellular estrogen receptor status may affect PRL-responsiveness. The hormonal and possibly cytokine-mediated control of LKB1 expression is particularly relevant in aggressive breast cancer cells, potentially promoting survival under energetically unfavorable conditions.
Collapse
|
50
|
Dueñas-Gonzalez A, Alatorre B, Gonzalez-Fierro A. The impact of DNA methylation technologies on drug toxicology. Expert Opin Drug Metab Toxicol 2014; 10:637-646. [PMID: 24660662 DOI: 10.1517/17425255.2014.889682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Drug toxicology is central to drug development. Despite improvements in our understanding of molecular and cell biology, high attrition rates in drug development continue, speaking to the difficulties of developing unequivocal methods to predict the efficacy and safety of drugs. AREAS COVERED In this review, the authors provide a short overview of the 'omics' technologies that have been applied to drug toxicology, with an emphasis on a whole-genome DNA methylation analysis. Preliminary results from DNA methylation analysis technologies that may help in predicting response and efficacy of a drug are discussed. EXPERT OPINION Currently, we cannot fully contextualize the application of epigenetics to the field of drug toxicology, as there are still many challenges to overcome before DNA methylation-based biomarkers can be effectively used in drug development. Comprehensive whole-genome DNA methylation methods for a unbiased analysis based on either microarray or next-generation sequencing need to be evaluated in drug toxicology in an intensive and systematic manner. Additionally, robust analysis systems need to be developed to decode the large amounts of data generated by whole-genome DNA methylation analyses as well as protocol standardization for reproducibility to develop meaningful databases that can be applied to drug toxicology.
Collapse
Affiliation(s)
- Alfonso Dueñas-Gonzalez
- Universidad Nacional Autonoma de Mexico UNAM/Instituto Nacional de Cancerologia, Unidad de Investigacion Biomedica en Cancer, Insituto de Investigaciones Biomedicas , San Fernando 22, Tlalpan, Mexico City , Mexico
| | | | | |
Collapse
|