1
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Umuhire Juru A, Ghirlando R, Zhang J. Structural basis of tRNA recognition by the widespread OB fold. Nat Commun 2024; 15:6385. [PMID: 39075051 PMCID: PMC11286949 DOI: 10.1038/s41467-024-50730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
The widespread oligonucleotide/oligosaccharide-binding (OB)-fold recognizes diverse substrates from sugars to nucleic acids and proteins, and plays key roles in genome maintenance, transcription, translation, and tRNA metabolism. OB-containing bacterial Trbp and yeast Arc1p proteins are thought to recognize the tRNA elbow or anticodon regions. Here we report a 2.6 Å co-crystal structure of Aquifex aeolicus Trbp111 bound to tRNAIle, which reveals that Trbp recognizes tRNAs solely by capturing their 3' ends. Structural, mutational, and biophysical analyses show that the Trbp/EMAPII-like OB fold precisely recognizes the single-stranded structure, 3' terminal location, and specific sequence of the 3' CA dinucleotide - a universal feature of mature tRNAs. Arc1p supplements its OB - tRNA 3' end interaction with additional contacts that involve an adjacent basic region and the tRNA body. This study uncovers a previously unrecognized mode of tRNA recognition by an ancient protein fold, and provides insights into protein-mediated tRNA aminoacylation, folding, localization, trafficking, and piracy.
Collapse
Affiliation(s)
- Aline Umuhire Juru
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
3
|
Kao TL, Huang YC, Chen YH, Baumann P, Tseng CK. LARP3, LARP7, and MePCE are involved in the early stage of human telomerase RNA biogenesis. Nat Commun 2024; 15:5955. [PMID: 39009594 PMCID: PMC11250828 DOI: 10.1038/s41467-024-50422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Human telomerase assembly is a highly dynamic process. Using biochemical approaches, we find that LARP3 and LARP7/MePCE are involved in the early stage of human telomerase RNA (hTR) and that their binding to RNA is destabilized when the mature form is produced. LARP3 plays a negative role in preventing the processing of the 3'-extended long (exL) form and the binding of LARP7 and MePCE. Interestingly, the tertiary structure of the exL form prevents LARP3 binding and facilitates hTR biogenesis. Furthermore, low levels of LARP3 promote hTR maturation, increase telomerase activity, and elongate telomeres. LARP7 and MePCE depletion inhibits the conversion of the 3'-extended short (exS) form into mature hTR and the cytoplasmic accumulation of hTR, resulting in telomere shortening. Taken together our data suggest that LARP3 and LARP7/MePCE mediate the processing of hTR precursors and regulate the production of functional telomerase.
Collapse
Affiliation(s)
- Tsai-Ling Kao
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Huang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Peter Baumann
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Chi-Kang Tseng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Yared MJ, Marcelot A, Barraud P. Beyond the Anticodon: tRNA Core Modifications and Their Impact on Structure, Translation and Stress Adaptation. Genes (Basel) 2024; 15:374. [PMID: 38540433 PMCID: PMC10969862 DOI: 10.3390/genes15030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/14/2024] Open
Abstract
Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional chemical modifications. Approximately 100 different modifications have been identified in tRNAs, and each tRNA typically contains 5-15 modifications that are incorporated at specific sites along the tRNA sequence. These modifications may be classified into two groups according to their position in the three-dimensional tRNA structure, i.e., modifications in the tRNA core and modifications in the anticodon-loop (ACL) region. Since many modified nucleotides in the tRNA core are involved in the formation of tertiary interactions implicated in tRNA folding, these modifications are key to tRNA stability and resistance to RNA decay pathways. In comparison to the extensively studied ACL modifications, tRNA core modifications have generally received less attention, although they have been shown to play important roles beyond tRNA stability. Here, we review and place in perspective selected data on tRNA core modifications. We present their impact on tRNA structure and stability and report how these changes manifest themselves at the functional level in translation, fitness and stress adaptation.
Collapse
Affiliation(s)
| | | | - Pierre Barraud
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France; (M.-J.Y.); (A.M.)
| |
Collapse
|
5
|
Kozlov G, Jiang J, Rutherford T, Noronha AM, Wilds CJ, Gehring K. Enhanced binding of guanylated poly(A) RNA by the LaM domain of LARP1. RNA Biol 2024; 21:7-16. [PMID: 39016322 PMCID: PMC11259064 DOI: 10.1080/15476286.2024.2379121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
La-related proteins (LARPs) are a family of RNA-binding proteins that share a conserved La motif (LaM) domain. LARP1 plays a role in regulating ribosomal protein synthesis and stabilizing mRNAs and has a unique structure without an RNA binding RRM domain adjoining the LaM domain. In this study, we investigated the physical basis for LARP1 specificity for poly(A) sequences and observed an unexpected bias for sequences with single guanines. Multiple guanine substitutions did not increase the affinity, demonstrating preferential recognition of singly guanylated sequences. We also observed that the cyclic di-nucleotides in the cCAS/STING pathway, cyclic-di-GMP and 3',3'-cGAMP, bound with sub-micromolar affinity. Isothermal titration measurements were complemented by high-resolution crystal structures of the LARP1 LaM with six different RNA ligands, including two stereoisomers of a phosphorothioate linkage. The selectivity for singly substituted poly(A) sequences suggests LARP1 may play a role in the stabilizing effect of poly(A) tail guanylation. [Figure: see text].
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Jianning Jiang
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Tyler Rutherford
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | - Anne M. Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | - Christopher J. Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
6
|
Altered tRNA processing is linked to a distinct and unusual La protein in Tetrahymena thermophila. Nat Commun 2022; 13:7332. [PMID: 36443289 PMCID: PMC9705548 DOI: 10.1038/s41467-022-34796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Nascent pre-tRNAs are transcribed by RNA polymerase III and immediately bound by La proteins on the UUU-3'OH sequence, using a tandem arrangement of the La motif and an adjacent RNA recognition motif-1 (RRM1), resulting in protection from 3'-exonucleases and promotion of pre-tRNA folding. The Tetrahymena thermophila protein Mlp1 has been previously classified as a genuine La protein, despite the predicted absence of the RRM1. We find that Mlp1 functions as a La protein through binding of pre-tRNAs, and affects pre-tRNA processing in Tetrahymena thermophila and when expressed in fission yeast. However, unlike in other examined eukaryotes, depletion of Mlp1 results in 3'-trailer stabilization. The 3'-trailers in Tetrahymena thermophila are uniquely short relative to other examined eukaryotes, and 5'-leaders have evolved to disfavour pre-tRNA leader/trailer pairing. Our data indicate that this variant Mlp1 architecture is linked to an altered, novel mechanism of tRNA processing in Tetrahymena thermophila.
Collapse
|
7
|
Identification and molecular evolution of the La and LARP genes in 16 plant species: A focus on the Gossypium hirsutum. Int J Biol Macromol 2022; 224:1101-1117. [DOI: 10.1016/j.ijbiomac.2022.10.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
8
|
Kozlov G, Mattijssen S, Jiang J, Nyandwi S, Sprules T, Iben J, Coon S, Gaidamakov S, Noronha AM, Wilds C, Maraia R, Gehring K. Structural basis of 3'-end poly(A) RNA recognition by LARP1. Nucleic Acids Res 2022; 50:9534-9547. [PMID: 35979957 PMCID: PMC9458460 DOI: 10.1093/nar/gkac696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
La-related proteins (LARPs) comprise a family of RNA-binding proteins involved in a wide range of posttranscriptional regulatory activities. LARPs share a unique tandem of two RNA-binding domains, La motif (LaM) and RNA recognition motif (RRM), together referred to as a La-module, but vary in member-specific regions. Prior structural studies of La-modules reveal they are pliable platforms for RNA recognition in diverse contexts. Here, we characterize the La-module of LARP1, which plays an important role in regulating synthesis of ribosomal proteins in response to mTOR signaling and mRNA stabilization. LARP1 has been well characterized functionally but no structural information exists for its La-module. We show that unlike other LARPs, the La-module in LARP1 does not contain an RRM domain. The LaM alone is sufficient for binding poly(A) RNA with submicromolar affinity and specificity. Multiple high-resolution crystal structures of the LARP1 LaM domain in complex with poly(A) show that it is highly specific for the RNA 3'-end, and identify LaM residues Q333, Y336 and F348 as the most critical for binding. Use of a quantitative mRNA stabilization assay and poly(A) tail-sequencing demonstrate functional relevance of LARP1 RNA binding in cells and provide novel insight into its poly(A) 3' protection activity.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jianning Jiang
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Samuel Nyandwi
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Tara Sprules
- Centre de recherche en biologie structurale, McGill University, Montréal, Canada,Quebec/Eastern Canada NMR Centre, McGill University, Montréal, Canada
| | - James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Steven L Coon
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sergei Gaidamakov
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Anne M Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Canada
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
9
|
Wolin SL. Support for a career in science. Mol Biol Cell 2021; 32:ae6. [PMID: 34793239 PMCID: PMC8694082 DOI: 10.1091/mbc.e21-08-0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
I am so very honored to receive the Women in Cell Biology Sandra K. Masur Senior Leadership Award from the American Society for Cell Biology (ASCB), particularly because many of the previous awardees have served as mentors and sources of inspiration throughout my own career. I also thank the ASCB for always striving to be maximally inclusive, in terms of both the scientists it supports and its broad vision of what constitutes cell biology. As a graduate student I gave one of my first talks at an ASCB meeting, and I am proud to have been an ASCB member for almost 30 years. In this essay, I describe my own career to illustrate the support that I believe is needed to achieve a career in science.
Collapse
Affiliation(s)
- Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| |
Collapse
|
10
|
RNA Remodeling by RNA Chaperones Monitored by RNA Structure Probing. Methods Mol Biol 2021; 2106:179-192. [PMID: 31889258 DOI: 10.1007/978-1-0716-0231-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
RNA structure probing enables the characterization of RNA secondary structures by established procedures such as the enzyme- or chemical-based detection of single- or double-stranded regions. A specific type of application involves the detection of changes of RNA structures and conformations that are induced by proteins with RNA chaperone activity. This chapter outlines a protocol to analyze RNA structures in vitro in the presence of an RNA-binding protein with RNA chaperone activity. For this purpose, we make use of the methylating agents dimethyl sulfate (DMS) and 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate (CMCT). DMS and CMCT specifically modify nucleotides that are not involved in base-pairing or tertiary structure hydrogen bonding and that are not protected by a ligand such as a protein. Modified bases are identified by primer extension. As an example, we describe how the RNA chaperone activity of an isoform of the RNA-binding protein AUF1 induces the flaviviral RNA switch required for viral genome cyclization and viral replication.This chapter includes comprehensive protocols for in vitro synthesis of RNA, 32P-5'-end labeling of DNA primers, primer extension, as well as the preparation and running of analytical gels. The described methodology should be applicable to any other RNA and protein of interest to identify protein-directed RNA remodeling.
Collapse
|
11
|
Deparis Q, Duitama J, Foulquié-Moreno MR, Thevelein JM. Whole-Genome Transformation Promotes tRNA Anticodon Suppressor Mutations under Stress. mBio 2021; 12:e03649-20. [PMID: 33758086 PMCID: PMC8092322 DOI: 10.1128/mbio.03649-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
tRNAs are encoded by a large gene family, usually with several isogenic tRNAs interacting with the same codon. Mutations in the anticodon region of other tRNAs can overcome specific tRNA deficiencies. Phylogenetic analysis suggests that such mutations have occurred in evolution, but the driving force is unclear. We show that in yeast suppressor mutations in other tRNAs are able to overcome deficiency of the essential TRT2-encoded tRNAThrCGU at high temperature (40°C). Surprisingly, these tRNA suppressor mutations were obtained after whole-genome transformation with DNA from thermotolerant Kluyveromyces marxianus or Ogataea polymorpha strains but from which the mutations did apparently not originate. We suggest that transient presence of donor DNA in the host facilitates proliferation at high temperature and thus increases the chances for occurrence of spontaneous mutations suppressing defective growth at high temperature. Whole-genome sequence analysis of three transformants revealed only four to five nonsynonymous mutations of which one causing TRT2 anticodon stem stabilization and two anticodon mutations in non-threonyl-tRNAs, tRNALysCUU and tRNAeMetCAU, were causative. Both anticodon mutations suppressed lethality of TRT2 deletion and apparently caused the respective tRNAs to become novel substrates for threonyl-tRNA synthetase. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) data could not detect any significant mistranslation, and reverse transcription-quantitative PCR results contradicted induction of the unfolded protein response. We suggest that stress conditions have been a driving force in evolution for the selection of anticodon-switching mutations in tRNAs as revealed by phylogenetic analysis.IMPORTANCE In this work, we have identified for the first time the causative elements in a eukaryotic organism introduced by applying whole-genome transformation and responsible for the selectable trait of interest, i.e., high temperature tolerance. Surprisingly, the whole-genome transformants contained just a few single nucleotide polymorphisms (SNPs), which were unrelated to the sequence of the donor DNA. In each of three independent transformants, we have identified a SNP in a tRNA, either stabilizing the essential tRNAThrCGU at high temperature or switching the anticodon of tRNALysCUU or tRNAeMetCAU into CGU, which is apparently enough for in vivo recognition by threonyl-tRNA synthetase. LC-MS/MS analysis indeed indicated absence of significant mistranslation. Phylogenetic analysis showed that similar mutations have occurred throughout evolution and we suggest that stress conditions may have been a driving force for their selection. The low number of SNPs introduced by whole-genome transformation may favor its application for improvement of industrial yeast strains.
Collapse
Affiliation(s)
- Quinten Deparis
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
- NovelYeast bv, Open Bio-Incubator, Erasmus High School, Brussels (Jette), Belgium
| |
Collapse
|
12
|
Porat J, Kothe U, Bayfield MA. Revisiting tRNA chaperones: New players in an ancient game. RNA (NEW YORK, N.Y.) 2021; 27:rna.078428.120. [PMID: 33593999 PMCID: PMC8051267 DOI: 10.1261/rna.078428.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/10/2021] [Indexed: 05/03/2023]
Abstract
tRNAs undergo an extensive maturation process including post-transcriptional modifications that influence secondary and tertiary interactions. Precursor and mature tRNAs lacking key modifications are often recognized as aberrant and subsequently targeted for decay, illustrating the importance of modifications in promoting structural integrity. tRNAs also rely on tRNA chaperones to promote the folding of misfolded substrates into functional conformations. The best characterized tRNA chaperone is the La protein, which interacts with nascent RNA polymerase III transcripts to promote folding and offers protection from exonucleases. More recently, certain tRNA modification enzymes have also been demonstrated to possess tRNA folding activity distinct from their catalytic activity, suggesting that they may act as tRNA chaperones. In this review, we will discuss pioneering studies relating post-transcriptional modification to tRNA stability and decay pathways, present recent advances into the mechanism by which the RNA chaperone La assists pre-tRNA maturation, and summarize emerging research directions aimed at characterizing modification enzymes as tRNA chaperones. Together, these findings shed light on the importance of tRNA folding and how tRNA chaperones, in particular, increase the fraction of nascent pre-tRNAs that adopt a folded, functional conformation.
Collapse
|
13
|
Bayfield MA, Vinayak J, Kerkhofs K, Mansouri-Noori F. La proteins couple use of sequence-specific and non-specific binding modes to engage RNA substrates. RNA Biol 2021; 18:168-177. [PMID: 30777481 PMCID: PMC7928037 DOI: 10.1080/15476286.2019.1582955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
La shuttles between the nucleus and cytoplasm where it binds nascent RNA polymerase III (pol III) transcripts and mRNAs, respectively. La protects the 3' end of pol III transcribed RNA precursors, such as pre-tRNAs, through the use of a well-characterized UUU-3'OH binding mode. La proteins are also RNA chaperones, and La-dependent RNA chaperone activity is hypothesized to promote pre-tRNA maturation and translation at cellular and viral internal ribosome entry sites via binding sites distinct from those used for UUU-3'OH recognition. Since the publication of La-UUU-3'OH co-crystal structures, biochemical and genetic experiments have expanded our understanding of how La proteins use UUU-3'OH-independent binding modes to make sequence-independent contacts that can increase affinity for ligands and promote RNA remodeling. Other recent work has also expanded our understanding of how La binds mRNAs through contacts to the poly(A) tail. In this review, we focus on advances in the study of La protein-RNA complex surfaces beyond the description of the La-UUU-3'OH binding mode. We highlight recent advances in the functions of expected canonical nucleic acid interaction surfaces, a heightened appreciation of disordered C-terminal regions, and the nature of sequence-independent RNA determinants in La-RNA target binding. We further discuss how these RNA binding modes may have relevance to the function of the La-related proteins.
Collapse
Affiliation(s)
- Mark A. Bayfield
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Jyotsna Vinayak
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Kyra Kerkhofs
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Mattijssen S, Kozlov G, Fonseca BD, Gehring K, Maraia RJ. LARP1 and LARP4: up close with PABP for mRNA 3' poly(A) protection and stabilization. RNA Biol 2021; 18:259-274. [PMID: 33522422 PMCID: PMC7928012 DOI: 10.1080/15476286.2020.1868753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
La-related proteins (LARPs) share a La motif (LaM) followed by an RNA recognition motif (RRM). Together these are termed the La-module that, in the prototypical nuclear La protein and LARP7, mediates binding to the UUU-3'OH termination motif of nascent RNA polymerase III transcripts. We briefly review La and LARP7 activities for RNA 3' end binding and protection from exonucleases before moving to the more recently uncovered poly(A)-related activities of LARP1 and LARP4. Two features shared by LARP1 and LARP4 are direct binding to poly(A) and to the cytoplasmic poly(A)-binding protein (PABP, also known as PABPC1). LARP1, LARP4 and other proteins involved in mRNA translation, deadenylation, and decay, contain PAM2 motifs with variable affinities for the MLLE domain of PABP. We discuss a model in which these PABP-interacting activities contribute to poly(A) pruning of active mRNPs. Evidence that the SARS-CoV-2 RNA virus targets PABP, LARP1, LARP 4 and LARP 4B to control mRNP activity is also briefly reviewed. Recent data suggests that LARP4 opposes deadenylation by stabilizing PABP on mRNA poly(A) tails. Other data suggest that LARP1 can protect mRNA from deadenylation. This is dependent on a PAM2 motif with unique characteristics present in its La-module. Thus, while nuclear La and LARP7 stabilize small RNAs with 3' oligo(U) from decay, LARP1 and LARP4 bind and protect mRNA 3' poly(A) tails from deadenylases through close contact with PABP.Abbreviations: 5'TOP: 5' terminal oligopyrimidine, LaM: La motif, LARP: La-related protein, LARP1: La-related protein 1, MLLE: mademoiselle, NTR: N-terminal region, PABP: cytoplasmic poly(A)-binding protein (PABPC1), Pol III: RNA polymerase III, PAM2: PABP-interacting motif 2, PB: processing body, RRM: RNA recognition motif, SG: stress granule.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Guennadi Kozlov
- Department of Biochemistry & Centre for Structural Biology, McGill University, Montreal, Canada
| | | | - Kalle Gehring
- Department of Biochemistry & Centre for Structural Biology, McGill University, Montreal, Canada
| | - Richard J. Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Al-Ashtal HA, Rubottom CM, Leeper TC, Berman AJ. The LARP1 La-Module recognizes both ends of TOP mRNAs. RNA Biol 2021; 18:248-258. [PMID: 31601159 PMCID: PMC7927982 DOI: 10.1080/15476286.2019.1669404] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
La-Related Protein 1 (LARP1) is an RNA-binding protein that regulates the stability and translation of mRNAs encoding the translation machinery, including ribosomal proteins and translation factors. These mRNAs are characterized by a 5'-terminal oligopyrimidine (TOP) motif that coordinates their temporal and stoichiometric expression. While LARP1 represses TOP mRNA translation via the C-terminal DM15 region, the role of the N-terminal La-Module in the recognition and translational regulation of TOP mRNAs remains elusive. Herein we show that the LARP1 La-Module also binds TOP motifs, although in a cap-independent manner. We also demonstrate that it recognizes poly(A) RNA. Further, our data reveal that the LARP1 La-Module can simultaneously engage TOP motifs and poly(A) RNA. These results evoke an intriguing molecular mechanism whereby LARP1 could regulate translation and stabilization of TOP transcripts.
Collapse
Affiliation(s)
- Hiba A. Al-Ashtal
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Courtney M. Rubottom
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas C. Leeper
- Department of Chemistry & Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Andrea J. Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Deragon JM. Distribution, organization an evolutionary history of La and LARPs in eukaryotes. RNA Biol 2021; 18:159-167. [PMID: 32192383 PMCID: PMC7928011 DOI: 10.1080/15476286.2020.1739930] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 01/14/2023] Open
Abstract
The fate of any cellular RNA is largely influenced by the nature and diversity of its interactions with various RNA-binding proteins (RBPs) leading to the formation of a biologically significant ribonucleoprotein (RNP) complex. La motif-containing proteins (composed of genuine La and La-related proteins (LARPs)) represent an evolutionary conserved family of RBPs that encompass a large range of crucial functions, involving coding and non-coding RNAs. In this work, we provide data that extend our previous knowledge on the distribution, organization and evolutionary history of this important protein family. Using a repertoire of 345 La motif-containing proteins from 135 species representing all major eukaryotic lineages, we were able to pinpoint many lineage-specific variations in the structural organization of La and LARPs and propose new evolutive scenarios to explain their modern genomic distribution.
Collapse
Affiliation(s)
- Jean-Marc Deragon
- LGDP-UMR5096, Université de Perpignan Via Domitia, Perpignan, France
- CNRS LGDP-UMR5096, Perpignan, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
17
|
Abstract
RNA-binding proteins are important regulators of RNA metabolism and are of critical importance in all steps of the gene expression cascade. The role of aberrantly expressed RBPs in human disease is an exciting research field and the potential application of RBPs as a therapeutic target or a diagnostic marker represents a fast-growing area of research.Aberrant overexpression of the human RNA-binding protein La has been found in various cancer entities including lung, cervical, head and neck, and chronic myelogenous leukaemia. Cancer-associated La protein supports tumour-promoting processes such as proliferation, mobility, invasiveness and tumour growth. Moreover, the La protein maintains the survival of cancer cells by supporting an anti-apoptotic state that may cause resistance to chemotherapeutic therapy.The human La protein represents a multifunctional post-translationally modified RNA-binding protein with RNA chaperone activity that promotes processing of non-coding precursor RNAs but also stimulates the translation of selective messenger RNAs encoding tumour-promoting and anti-apoptotic factors. In our model, La facilitates the expression of those factors and helps cancer cells to cope with cellular stress. In contrast to oncogenes, able to initiate tumorigenesis, we postulate that the aberrantly elevated expression of the human La protein contributes to the non-oncogenic addiction of cancer cells. In this review, we summarize the current understanding about the implications of the RNA-binding protein La in cancer progression and therapeutic resistance. The concept of exploiting the RBP La as a cancer drug target will be discussed.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
Pollak AJ, Hickman JH, Liang XH, Crooke ST. Gapmer Antisense Oligonucleotides Targeting 5S Ribosomal RNA Can Reduce Mature 5S Ribosomal RNA by Two Mechanisms. Nucleic Acid Ther 2020; 30:312-324. [PMID: 32589504 DOI: 10.1089/nat.2020.0864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this study, we demonstrate that 5S ribosomal RNA (rRNA), a highly structured and protein-bound RNA, is quite difficult to reduce with antisense oligonucleotides (ASOs). However, we found a single accessible site that was targetable with a high-affinity complementary ASO. The ASO appeared to bind to the site, recruit RNaseH1, and cause degradation of the 5S RNA. Intriguingly, we also observed that the same ASO induced an accumulation of pre-5S RNA, which may contribute to reduced levels of mature 5S rRNA. As expected, ASO mediated reduction of 5S RNA, and modest inhibition of processing of pre-5S RNA resulted in nucleolar toxicity. However, the toxicity induced was minimal compared with actinomycin D, consistent with its modest effects on pre-5S rRNA. Mechanistically, we show that the accumulation of pre-5S rRNA required ASO hybridization to the cognate rRNA sequence but was independent of RNaseH1 activity. We found that Ro60 and La, proteins known to bind misprocessed RNAs, likely sequester the ASO-pre-5S rRNA species and block RNaseH1 activity, thus identifying another example of competitive mechanisms mediated by proteins that compete with RNaseH1 for binding to ASO-RNA heteroduplexes.
Collapse
Affiliation(s)
- Adam J Pollak
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Justin H Hickman
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| |
Collapse
|
19
|
Hasler D, Meister G, Fischer U. Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biol 2020; 18:290-303. [PMID: 32401147 DOI: 10.1080/15476286.2020.1767952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
La and La-related proteins (LARPs) are characterized by a common RNA interaction platform termed the La module. This structural hallmark allows LARPs to pervade various aspects of RNA biology. The metazoan LARP7 protein binds to the 7SK RNA as part of a 7SK small nuclear ribonucleoprotein (7SK snRNP), which inhibits the transcriptional activity of RNA polymerase II (Pol II). Additionally, recent findings revealed unanticipated roles of LARP7 in the assembly of other RNPs, as well as in the modification, processing and cellular transport of RNA molecules. Reduced levels of functional LARP7 have been linked to cancer and Alazami syndrome, two seemingly unrelated human diseases characterized either by hyperproliferation or growth retardation. Here, we review the intricate regulatory networks centered on LARP7 and assess how malfunction of these networks may relate to the etiology of LARP7-linked diseases.
Collapse
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Sommer G, Sendlmeier C, Heise T. Salt-Dependent Modulation of the RNA Chaperone Activity of RNA-Binding Protein La. Methods Mol Biol 2020; 2106:121-136. [PMID: 31889254 DOI: 10.1007/978-1-0716-0231-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It is well established that the RNA-binding protein La has RNA chaperone activity. Recent work suggests that the La protein has two distinct RNA chaperone domains (RCD-A and RCD-B) assisting structural changes in diverse groups of RNA molecules such as RNA polymerase III transcripts (e.g., pre-tRNA, U6 snRNA), cellular messenger, and viral RNAs. In this protocol we focus on the RNA chaperone domain RCD-B, which is located in the carboxy-terminal domain of La. It has been shown that this RNA chaperone domain assists structural changes in predicted RNA hairpins folded in the 5'-untranslated regions of cyclin D1 and Bcl2 mRNAs. Besides RNA helicases, which are implicated in melting RNA hairpin structures in an ATP-dependent manner, RNA chaperones fulfil a similar function in an ATP-independent manner. Aiming to study the RNA chaperon activity of La, we established a La-dependent molecular beacon-based RNA chaperone assay and systematically tested the various salt conditions. Herein we describe the assay format and design to study the salt dependency of RNA chaperones. This protocol can be easily adapted to test the RNA chaperone activity of other RNA-binding proteins and to optimize assay conditions.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany
| | - Christina Sendlmeier
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany.
| |
Collapse
|
21
|
Vinayak J, Marrella SA, Hussain RH, Rozenfeld L, Solomon K, Bayfield MA. Human La binds mRNAs through contacts to the poly(A) tail. Nucleic Acids Res 2019; 46:4228-4240. [PMID: 29447394 PMCID: PMC5934636 DOI: 10.1093/nar/gky090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3’OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3’OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail.
Collapse
Affiliation(s)
- Jyotsna Vinayak
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Stefano A Marrella
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Rawaa H Hussain
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Leonid Rozenfeld
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Karine Solomon
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Mark A Bayfield
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
22
|
Shan F, Mei S, Zhang J, Zhang X, Xu C, Liao S, Tu X. A telomerase subunit homolog La protein from
Trypanosoma brucei
plays an essential role in ribosomal biogenesis. FEBS J 2019; 286:3129-3147. [DOI: 10.1111/febs.14853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 04/13/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Fangzhen Shan
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Song Mei
- Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | | | - Chao Xu
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| |
Collapse
|
23
|
Meyer A, Golbik RP, Sänger L, Schmidt T, Behrens SE, Friedrich S. The RGG/RG motif of AUF1 isoform p45 is a key modulator of the protein's RNA chaperone and RNA annealing activities. RNA Biol 2019; 16:960-971. [PMID: 30951406 DOI: 10.1080/15476286.2019.1602438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The RNA-binding protein AUF1 regulates post-transcriptional gene expression by affecting the steady state and translation levels of numerous target RNAs. Remodeling of RNA structures by the largest isoform AUF1 p45 was recently demonstrated in the context of replicating RNA viruses, and involves two RNA remodeling activities, i.e. an RNA chaperone and an RNA annealing activity. AUF1 contains two non-identical RNA recognition motifs (RRM) and one RGG/RG motif located in the C-terminus. In order to determine the functional significance of each motif to AUF1's RNA-binding and remodeling activities we performed a comprehensive mutagenesis study and characterized the wildtype AUF1, and several variants thereof. We demonstrate that each motif contributes to efficient RNA binding and remodeling by AUF1 indicating a tight cooperation of the RRMs and the RGG/RG motif. Interestingly, the data identify two distinct roles for the arginine residues of the RGG/RG motif for each RNA remodeling activity. First, arginine-mediated stacking interactions promote AUF1's helix-destabilizing RNA chaperone activity. Second, the electropositive character of the arginine residues is the major driving force for the RNA annealing activity. Thus, we provide the first evidence that arginine residues of an RGG/RG motif contribute to the mechanism of RNA annealing and RNA chaperoning.
Collapse
Affiliation(s)
- Alexandra Meyer
- a Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Ralph P Golbik
- a Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Lennart Sänger
- a Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Tobias Schmidt
- a Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Sven-Erik Behrens
- a Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Susann Friedrich
- a Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Halle , Germany
| |
Collapse
|
24
|
Abstract
A wide variety of factors are required for the conversion of pre-tRNA molecules into the mature tRNAs that function in translation. To identify factors influencing tRNA biogenesis, we previously performed a screen for strains carrying mutations that induce lethality when combined with a sup61-T47:2C allele, encoding a mutant form of [Formula: see text]. Analyzes of two complementation groups led to the identification of Tan1 as a protein involved in formation of the modified nucleoside N4-acetylcytidine (ac4C) in tRNA and Bud13 as a factor controlling the levels of ac4C by promoting TAN1 pre-mRNA splicing. Here, we describe the remaining complementation groups and show that they include strains with mutations in genes for known tRNA biogenesis factors that modify (DUS2, MOD5 and TRM1), transport (LOS1), or aminoacylate (SES1) [Formula: see text]. Other strains carried mutations in genes for factors involved in rRNA/mRNA synthesis (RPA49, RRN3 and MOT1) or magnesium uptake (ALR1). We show that mutations in not only DUS2, LOS1 and SES1 but also in RPA49, RRN3 and MOT1 cause a reduction in the levels of the altered [Formula: see text]. These results indicate that Rpa49, Rrn3 and Mot1 directly or indirectly influence [Formula: see text] biogenesis.
Collapse
Affiliation(s)
- Fu Xu
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Yang Zhou
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Anders S Byström
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | | |
Collapse
|
25
|
Blewett NH, Maraia RJ. La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:361-372. [PMID: 29397330 DOI: 10.1016/j.bbagrm.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 10/25/2022]
Abstract
The conserved nuclear RNA-binding factor known as La protein arose in an ancient eukaryote, phylogenetically associated with another eukaryotic hallmark, synthesis of tRNA by RNA polymerase III (RNAP III). Because 3'-oligo(U) is the sequence-specific signal for transcription termination by RNAP III as well as the high affinity binding site for La, the latter is linked to the intranuclear posttranscriptional processing of eukaryotic precursor-tRNAs. The pre-tRNA processing pathway must accommodate a variety of substrates that are destined for both common steps as well as tRNA-specific events. The order of intranuclear pre-tRNA processing steps is mediated in part by three activities derived from interaction with La protein: 3'-end protection from untimely decay by 3' exonucleases, nuclear retention and chaperone activity that helps prevent pre-tRNA misfolding and mischanneling into offline pathways. A focus of this perspective will be on differences between yeast and mammals in the subcellular partitioning of pre-tRNA intermediates and differential interactions with La. We review how this is most relevant to pre-tRNA splicing which occurs in the cytoplasm of yeasts but in nuclei of higher eukaryotes. Also divergent is La architecture, comprised of three RNA-binding domains in organisms in all examined branches of the eukaryal tree except yeast, which have lost the C-terminal RNA recognition motif-2α (RRM2α) domain. We also review emerging data that suggest mammalian La interacts with nuclear pre-tRNA splicing intermediates and may impact this branch of the tRNA maturation pathway. Finally, because La is involved in intranuclear tRNA biogenesis we review relevant aspects of tRNA-associated neurodegenerative diseases. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Commissioned Corps, U.S. Public Health Service, Rockville, MD, USA.
| |
Collapse
|
26
|
Reinhard L, Sridhara S, Hällberg BM. The MRPP1/MRPP2 complex is a tRNA-maturation platform in human mitochondria. Nucleic Acids Res 2017; 45:12469-12480. [PMID: 29040705 PMCID: PMC5716156 DOI: 10.1093/nar/gkx902] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/25/2017] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial polycistronic transcripts are extensively processed to give rise to functional mRNAs, rRNAs and tRNAs; starting with the release of tRNA elements through 5′-processing by RNase P (MRPP1/2/3-complex) and 3′-processing by RNase Z (ELAC2). Here, we show using in vitro experiments that MRPP1/2 is not only a component of the mitochondrial RNase P but that it retains the tRNA product from the 5′-processing step and significantly enhances the efficiency of ELAC2-catalyzed 3′-processing for 17 of the 22 tRNAs encoded in the human mitochondrial genome. Furthermore, MRPP1/2 retains the tRNA product after ELAC2 processing and presents the nascent tRNA to the mitochondrial CCA-adding enzyme. Thus, in addition to being an essential component of the RNase P reaction, MRPP1/2 serves as a processing platform for several down-stream tRNA maturation steps in human mitochondria. These findings are of fundamental importance for our molecular understanding of disease-related mutations in MRPP1/2, ELAC2 and mitochondrial tRNA genes.
Collapse
Affiliation(s)
- Linda Reinhard
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany
| | - Sagar Sridhara
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, 22603 Hamburg, Germany
| |
Collapse
|
27
|
Vakiloroayaei A, Shah NS, Oeffinger M, Bayfield MA. The RNA chaperone La promotes pre-tRNA maturation via indiscriminate binding of both native and misfolded targets. Nucleic Acids Res 2017; 45:11341-11355. [PMID: 28977649 PMCID: PMC5737608 DOI: 10.1093/nar/gkx764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNAs have critical roles in biological processes, and RNA chaperones can promote their folding into the native shape required for their function. La proteins are a class of highly abundant RNA chaperones that contact pre-tRNAs and other RNA polymerase III transcripts via their common UUU-3′OH ends, as well as through less specific contacts associated with RNA chaperone activity. However, whether La proteins preferentially bind misfolded pre-tRNAs or instead engage all pre-tRNA substrates irrespective of their folding status is not known. La deletion in yeast is synthetically lethal when combined with the loss of tRNA modifications predicted to contribute to the native pre-tRNA fold, such as the N2, N2-dimethylation of G26 by the methyltransferase Trm1p. In this work, we identify G26 containing pre-tRNAs that misfold in the absence of Trm1p and/or La (Sla1p) in Schizosaccharomyces pombe cells, then test whether La preferentially associates with such tRNAs in vitro and in vivo. Our data suggest that La does not discriminate a native from misfolded RNA target, and highlights the potential challenges faced by RNA chaperones in preferentially binding defective substrates.
Collapse
Affiliation(s)
- Ana Vakiloroayaei
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Neha S Shah
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.,Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Mark A Bayfield
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
28
|
Negative Epistasis in Experimental RNA Fitness Landscapes. J Mol Evol 2017; 85:159-168. [PMID: 29127445 DOI: 10.1007/s00239-017-9817-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/28/2017] [Indexed: 10/18/2022]
Abstract
Mutations and their effects on fitness are a fundamental component of evolution. The effects of some mutations change in the presence of other mutations, and this is referred to as epistasis. Epistasis can occur between mutations in different genes or within the same gene. A systematic study of epistasis requires the analysis of numerous mutations and their combinations, which has recently become feasible with advancements in DNA synthesis and sequencing. Here we review the mutational effects and epistatic interactions within RNA molecules revealed by several recent high-throughput mutational studies involving two ribozymes studied in vitro, as well as a tRNA and a snoRNA studied in yeast. The data allow an analysis of the distribution of fitness effects of individual mutations as well as combinations of two or more mutations. Two different approaches to measuring epistasis in the data both reveal a predominance of negative epistasis, such that higher combinations of two or more mutations are typically lower in fitness than expected from the effect of each individual mutation. These data are in contrast to past studies of epistasis that used computationally predicted secondary structures of RNA that revealed a predominance of positive epistasis. The RNA data reviewed here are more similar to that found from mutational experiments on individual protein enzymes, suggesting that a common thermodynamic framework may explain negative epistasis between mutations within macromolecules.
Collapse
|
29
|
Zheng Q, Yang HJ, Yuan YA. Autoantigen La Regulates MicroRNA Processing from Stem–Loop Precursors by Association with DGCR8. Biochemistry 2017; 56:6098-6110. [DOI: 10.1021/acs.biochem.7b00693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Quan Zheng
- Department
of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Hai-Jie Yang
- Department
of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Y. Adam Yuan
- Department
of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
30
|
Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1430. [PMID: 28782243 PMCID: PMC5647580 DOI: 10.1002/wrna.1430] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD USA
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Isabel Cruz-Gallardo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| |
Collapse
|
31
|
Abstract
Numerous surveillance pathways sculpt eukaryotic transcriptomes by degrading unneeded, defective, and potentially harmful noncoding RNAs (ncRNAs). Because aberrant and excess ncRNAs are largely degraded by exoribonucleases, a key characteristic of these RNAs is an accessible, protein-free 5' or 3' end. Most exoribonucleases function with cofactors that recognize ncRNAs with accessible 5' or 3' ends and/or increase the availability of these ends. Noncoding RNA surveillance pathways were first described in budding yeast, and there are now high-resolution structures of many components of the yeast pathways and significant mechanistic understanding as to how they function. Studies in human cells are revealing the ways in which these pathways both resemble and differ from their yeast counterparts, and are also uncovering numerous pathways that lack equivalents in budding yeast. In this review, we describe both the well-studied pathways uncovered in yeast and the new concepts that are emerging from studies in mammalian cells. We also discuss the ways in which surveillance pathways compete with chaperone proteins that transiently protect nascent ncRNA ends from exoribonucleases, with partner proteins that sequester these ends within RNPs, and with end modification pathways that protect the ends of some ncRNAs from nucleases.
Collapse
Affiliation(s)
- Cedric Belair
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| |
Collapse
|
32
|
Blewett NH, Iben JR, Gaidamakov S, Maraia RJ. La Deletion from Mouse Brain Alters Pre-tRNA Metabolism and Accumulation of Pre-5.8S rRNA, with Neuron Death and Reactive Astrocytosis. Mol Cell Biol 2017; 37:e00588-16. [PMID: 28223366 PMCID: PMC5477551 DOI: 10.1128/mcb.00588-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/01/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
Human La antigen (Sjögren's syndrome antigen B [SSB]) is an abundant multifunctional RNA-binding protein. In the nucleoplasm, La binds to and protects from 3' exonucleases, the ends of precursor tRNAs, and other transcripts synthesized by RNA polymerase III and facilitates their maturation, while a nucleolar isoform has been implicated in rRNA biogenesis by multiple independent lines of evidence. We showed previously that conditional La knockout (La cKO) from mouse cortex neurons results in defective tRNA processing, although the pathway(s) involved in neuronal loss thereafter was unknown. Here, we demonstrate that La is stably associated with a spliced pre-tRNA intermediate. Microscopic evidence of aberrant nuclear accumulation of 5.8S rRNA in La cKO is supported by a 10-fold increase in a pre-5.8S rRNA intermediate. To identify pathways involved in subsequent neurodegeneration and loss of brain mass in the cKO cortex, we employed mRNA sequencing (mRNA-Seq), immunohistochemistry, and other approaches. This revealed robust enrichment of immune and astrocyte reactivity in La cKO cortex. Immunohistochemistry, including temporal analyses, demonstrated neurodegeneration, followed by astrocyte invasion associated with immune response and decreasing cKO cortex size over time. Thus, deletion of La from postmitotic neurons results in defective pre-tRNA and pre-rRNA processing and progressive neurodegeneration with loss of cortical brain mass.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, USA
| | - James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, USA
| | - Sergei Gaidamakov
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, USA
| | - Richard J Maraia
- Commissioned Corps, U.S. Public Health Service, Rockville, Maryland, USA
| |
Collapse
|
33
|
Maraia RJ, Arimbasseri AG. Factors That Shape Eukaryotic tRNAomes: Processing, Modification and Anticodon-Codon Use. Biomolecules 2017; 7:biom7010026. [PMID: 28282871 PMCID: PMC5372738 DOI: 10.3390/biom7010026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Transfer RNAs (tRNAs) contain sequence diversity beyond their anticodons and the large variety of nucleotide modifications found in all kingdoms of life. Some modifications stabilize structure and fit in the ribosome whereas those to the anticodon loop modulate messenger RNA (mRNA) decoding activity more directly. The identities of tRNAs with some universal anticodon loop modifications vary among distant and parallel species, likely to accommodate fine tuning for their translation systems. This plasticity in positions 34 (wobble) and 37 is reflected in codon use bias. Here, we review convergent evidence that suggest that expansion of the eukaryotic tRNAome was supported by its dedicated RNA polymerase III transcription system and coupling to the precursor-tRNA chaperone, La protein. We also review aspects of eukaryotic tRNAome evolution involving G34/A34 anticodon-sparing, relation to A34 modification to inosine, biased codon use and regulatory information in the redundancy (synonymous) component of the genetic code. We then review interdependent anticodon loop modifications involving position 37 in eukaryotes. This includes the eukaryote-specific tRNA modification, 3-methylcytidine-32 (m3C32) and the responsible gene, TRM140 and homologs which were duplicated and subspecialized for isoacceptor-specific substrates and dependence on i6A37 or t6A37. The genetics of tRNA function is relevant to health directly and as disease modifiers.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Commissioned Corps, U.S. Public Health Service, Rockville, MD, 20016, USA.
| | - Aneeshkumar G Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
34
|
Brown KA, Sharifi S, Hussain R, Donaldson L, Bayfield MA, Wilson DJ. Distinct Dynamic Modes Enable the Engagement of Dissimilar Ligands in a Promiscuous Atypical RNA Recognition Motif. Biochemistry 2016; 55:7141-7150. [PMID: 27959512 DOI: 10.1021/acs.biochem.6b00995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational dynamics play a critical role in ligand binding, often conferring divergent activities and specificities even in species with highly similar ground-state structures. Here, we employ time-resolved electrospray ionization hydrogen-deuterium exchange (TRESI-HDX) to characterize the changes in dynamics that accompany oligonucleotide binding in the atypical RNA recognition motif (RRM2) in the C-terminal domain (CTD) of human La protein. Using this approach, which is uniquely capable of probing changes in the structure and dynamics of weakly ordered regions of proteins, we reveal that binding of RRM2 to a model 23-mer single-stranded RNA and binding of RRM2 to structured IRES domain IV of the hepatitis C viral (HCV) RNA are driven by fundamentally different dynamic processes. In particular, binding of the single-stranded RNA induces helical "unwinding" in a region of the CTD previously hypothesized to play an important role in La and La-related protein-associated RNA remodeling, while the same region becomes less dynamic upon engagement with the double-stranded HCV RNA. Binding of double-stranded RNA also involves less penetration into the RRM2 binding pocket and more engagement with the unstructured C-terminus of the La CTD. The complementarity between TRESI-HDX and Δδ nuclear magnetic resonance measurements for ligand binding analysis is also explored.
Collapse
Affiliation(s)
- Kerene A Brown
- Department of Chemistry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University , Toronto, ON M3J 1P3, Canada
| | - Samel Sharifi
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Rawaa Hussain
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Logan Donaldson
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Mark A Bayfield
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions, York University , Toronto, ON M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions, York University , Toronto, ON M3J 1P3, Canada
| |
Collapse
|
35
|
Two for the price of one: RNA modification enzymes as chaperones. Proc Natl Acad Sci U S A 2016; 113:14176-14178. [PMID: 27911836 DOI: 10.1073/pnas.1617402113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
36
|
Abstract
Cellular RNAs are chemically modified by many RNA modification enzymes; however, often the functions of modifications remain unclear, such as for pseudouridine formation in the tRNA TΨC arm by the bacterial tRNA pseudouridine synthase TruB. Here we test the hypothesis that RNA modification enzymes also act as RNA chaperones. Using TruB as a model, we demonstrate that TruB folds tRNA independent of its catalytic activity, thus increasing the fraction of tRNA that can be aminoacylated. By rapid kinetic stopped-flow analysis, we identified the molecular mechanism of TruB's RNA chaperone activity: TruB binds and unfolds both misfolded and folded tRNAs thereby providing misfolded tRNAs a second chance at folding. Previously, it has been shown that a catalytically inactive TruB variant has no phenotype when expressed in an Escherichia coli truB KO strain [Gutgsell N, et al. (2000) RNA 6(12):1870-1881]. However, here we uncover that E. coli strains expressing a TruB variant impaired in tRNA binding and in in vitro tRNA folding cannot compete with WT E. coli. Consequently, the tRNA chaperone activity of TruB is critical for bacterial fitness. In conclusion, we prove the tRNA chaperone activity of the pseudouridine synthase TruB, reveal its molecular mechanism, and demonstrate its importance for cellular fitness. We discuss the likelihood that other RNA modification enzymes are also RNA chaperones.
Collapse
|
37
|
Eichhorn CD, Chug R, Feigon J. hLARP7 C-terminal domain contains an xRRM that binds the 3' hairpin of 7SK RNA. Nucleic Acids Res 2016; 44:9977-9989. [PMID: 27679474 PMCID: PMC5175362 DOI: 10.1093/nar/gkw833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/02/2016] [Accepted: 09/10/2016] [Indexed: 12/21/2022] Open
Abstract
The 7SK small nuclear ribonucleoprotein (snRNP) sequesters and inactivates the positive transcription elongation factor b (P-TEFb), an essential eukaryotic mRNA transcription factor. The human La-related protein group 7 (hLARP7) is a constitutive component of the 7SK snRNP and localizes to the 3' terminus of the 7SK long noncoding RNA. hLARP7, and in particular its C-terminal domain (CTD), is essential for 7SK RNA stability and assembly with P-TEFb. The hLARP7 N-terminal La module binds and protects the 3' end from degradation, but the structural and functional role of its CTD is unclear. We report the solution NMR structure of the hLARP7 CTD and show that this domain contains an xRRM, a class of atypical RRM first identified in the Tetrahymena thermophila telomerase LARP7 protein p65. The xRRM binds the 3' end of 7SK RNA at the top of stem-loop 4 (SL4) and interacts with both unpaired and base-paired nucleotides. This study confirms that the xRRM is general to the LARP7 family of proteins and defines the binding site for hLARP7 on the 7SK RNA, providing insight into function.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Rahul Chug
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
38
|
Huang HY, Hopper AK. Multiple Layers of Stress-Induced Regulation in tRNA Biology. Life (Basel) 2016; 6:life6020016. [PMID: 27023616 PMCID: PMC4931453 DOI: 10.3390/life6020016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
tRNAs are the fundamental components of the translation machinery as they deliver amino acids to the ribosomes during protein synthesis. Beyond their essential function in translation, tRNAs also function in regulating gene expression, modulating apoptosis and several other biological processes. There are multiple layers of regulatory mechanisms in each step of tRNA biogenesis. For example, tRNA 3′ trailer processing is altered upon nutrient stress; tRNA modification is reprogrammed under various stresses; nuclear accumulation of tRNAs occurs upon nutrient deprivation; tRNA halves accumulate upon oxidative stress. Here we address how environmental stresses can affect nearly every step of tRNA biology and we describe the possible regulatory mechanisms that influence the function or expression of tRNAs under stress conditions.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Biology, Indiana University, 915 E third St., Myers 300, Bloomington, IN 47405, USA.
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
39
|
Foretek D, Wu J, Hopper AK, Boguta M. Control of Saccharomyces cerevisiae pre-tRNA processing by environmental conditions. RNA (NEW YORK, N.Y.) 2016; 22:339-49. [PMID: 26729922 PMCID: PMC4748812 DOI: 10.1261/rna.054973.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 05/21/2023]
Abstract
tRNA is essential for translation and decoding of the proteome. The yeast proteome responds to stress and tRNA biosynthesis contributes in this response by repression of tRNA transcription and alterations of tRNA modification. Here we report that the stress response also involves processing of pre-tRNA 3' termini. By a combination of Northern analyses and RNA sequencing, we show that upon shift to elevated temperatures and/or to glycerol-containing medium, aberrant pre-tRNAs accumulate in yeast cells. For pre-tRNAUAU(Ile) and pre-tRNAUUU Lys) these aberrant forms are unprocessed at the 5' ends, but they possess extended 3' termini. Sequencing analyses showed that partial 3' processing precedes 5' processing for pre-tRNAUAU(Ile). An aberrant pre-tRNA(Tyr) that accumulates also possesses extended 3' termini, but it is processed at the 5' terminus. Similar forms of these aberrant pre-tRNAs are detected in the rex1Δ strain that is defective in 3' exonucleolytic trimming of pre-tRNAs but are absent in the lhp1Δ mutant lacking 3' end protection. We further show direct correlation between the inhibition of 3' end processing rate and the stringency of growth conditions. Moreover, under stress conditions Rex1 nuclease seems to be limiting for 3' end processing, by decreased availability linked to increased protection by Lhp1. Thus, our data document complex 3' processing that is inhibited by stress in a tRNA-type and condition-specific manner. This stress-responsive tRNA 3' end maturation process presumably contributes to fine-tune the levels of functional tRNA in budding yeast in response to environmental conditions.
Collapse
Affiliation(s)
- Dominika Foretek
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jingyan Wu
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
40
|
Cui Y, Rao S, Chang B, Wang X, Zhang K, Hou X, Zhu X, Wu H, Tian Z, Zhao Z, Yang C, Huang T. AtLa1 protein initiates IRES-dependent translation of WUSCHEL mRNA and regulates the stem cell homeostasis of Arabidopsis in response to environmental hazards. PLANT, CELL & ENVIRONMENT 2015; 38:2098-2114. [PMID: 25764476 DOI: 10.1111/pce.12535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Plant stem cells are hypersensitive to environmental hazards throughout their life cycle, but the mechanism by which plants safeguard stem cell homeostasis in response to environmental hazards is largely unknown. The homeodomain transcription factor WUSCHEL (WUS) protein maintains the stem cell pool in the shoot apical meristem of Arabidopsis. Here, we demonstrate that the translation of WUS mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region. The AtLa1 protein, an RNA-binding factor, binds to the 5'-untranslated region and initiates the IRES-dependent translation of WUS mRNA. Knockdown of AtLa1 expression represses the WUS IRES-dependent translation and leads to the arrest of growth and development. The AtLa1 protein is mainly located in the nucleoplasm. However, environmental hazards promote the nuclear-to-cytoplasmic translocation of the AtLa1 protein, which further enhances the IRES-dependent translation of WUS mRNA. Genetic evidence indicates that the WUS protein increases the tolerance of the shoot apical meristem to environmental hazards. Based on these results, we conclude that the stem cell niche in Arabidopsis copes with environmental hazards by enhancing the IRES-dependent translation of WUS mRNA under the control of the AtLa1 protein.
Collapse
Affiliation(s)
- Yuchao Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Shaofei Rao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Beibei Chang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Xiaoshuang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Kaidian Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Xueliang Hou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Xueyi Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Haijun Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhaoxia Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Chengwei Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Tao Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| |
Collapse
|
41
|
Küspert M, Murakawa Y, Schäffler K, Vanselow JT, Wolf E, Juranek S, Schlosser A, Landthaler M, Fischer U. LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation. RNA (NEW YORK, N.Y.) 2015; 21:1294-305. [PMID: 26001795 PMCID: PMC4478348 DOI: 10.1261/rna.051441.115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/02/2015] [Indexed: 05/23/2023]
Abstract
mRNAs are key molecules in gene expression and subject to diverse regulatory events. Regulation is accomplished by distinct sets of trans-acting factors that interact with mRNAs and form defined mRNA-protein complexes (mRNPs). The resulting "mRNP code" determines the fate of any given mRNA and thus controlling gene expression at the post-transcriptional level. The La-related protein 4B (LARP4B) belongs to an evolutionarily conserved family of RNA-binding proteins characterized by the presence of a La-module implicated in direct RNA binding. Biochemical experiments have shown previously direct interactions of LARP4B with factors of the translation machinery. This finding along with the observation of an association with actively translating ribosomes suggested that LARP4B is a factor contributing to the mRNP code. To gain insight into the function of LARP4B in vivo we tested its mRNA association at the transcriptome level and its impact on the proteome. PAR-CLIP analyses allowed us to identify the in vivo RNA targets of LARP4B. We show that LARP4B binds to a distinct set of cellular mRNAs by contacting their 3' UTRs. Biocomputational analysis combined with in vitro binding assays identified the LARP4B-binding motif on mRNA targets. The reduction of cellular LARP4B levels leads to a marked destabilization of its mRNA targets and consequently their reduced translation. Our data identify LARP4B as a component of the mRNP code that influences the expression of its mRNA targets by affecting their stability.
Collapse
Affiliation(s)
- Maritta Küspert
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | - Katrin Schäffler
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Jens T Vanselow
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, D-97080 Würzburg, Germany
| | - Elmar Wolf
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Stefan Juranek
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, D-97080 Würzburg, Germany
| | | | - Utz Fischer
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, D-97080 Würzburg, Germany Department of Radiation Medicine and Applied Sciences, University of California at San Diego, San Diego, California 92037, USA
| |
Collapse
|
42
|
Rijal K, Maraia RJ, Arimbasseri AG. A methods review on use of nonsense suppression to study 3' end formation and other aspects of tRNA biogenesis. Gene 2014; 556:35-50. [PMID: 25447915 DOI: 10.1016/j.gene.2014.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
Abstract
Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to Schizosaccharomyces pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5' and 3' processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3' oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3' oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a 'technical approaches' section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Aneeshkumar G Arimbasseri
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
43
|
Leung E, Schneider C, Yan F, Mohi-El-Din H, Kudla G, Tuck A, Wlotzka W, Doronina VA, Bartley R, Watkins NJ, Tollervey D, Brown JD. Integrity of SRP RNA is ensured by La and the nuclear RNA quality control machinery. Nucleic Acids Res 2014; 42:10698-710. [PMID: 25159613 PMCID: PMC4176351 DOI: 10.1093/nar/gku761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The RNA component of signal recognition particle (SRP) is transcribed by RNA polymerase III, and most steps in SRP biogenesis occur in the nucleolus. Here, we examine processing and quality control of the yeast SRP RNA (scR1). In common with other pol III transcripts, scR1 terminates in a U-tract, and mature scR1 retains a U4–5 sequence at its 3′ end. In cells lacking the exonuclease Rex1, scR1 terminates in a longer U5–6 tail that presumably represents the primary transcript. The 3′ U-tract of scR1 is protected from aberrant processing by the La homologue, Lhp1 and overexpressed Lhp1 apparently competes with both the RNA surveillance system and SRP assembly factors. Unexpectedly, the TRAMP and exosome nuclear RNA surveillance complexes are also implicated in protecting the 3′ end of scR1, which accumulates in the nucleolus of cells lacking the activities of these complexes. Misassembled scR1 has a primary degradation pathway in which Rrp6 acts early, followed by TRAMP-stimulated exonuclease degradation by the exosome. We conclude that the RNA surveillance machinery has key roles in both SRP biogenesis and quality control of the RNA, potentially facilitating the decision between these alternative fates.
Collapse
Affiliation(s)
- Eileen Leung
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Claudia Schneider
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Fu Yan
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hatem Mohi-El-Din
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Grzegorz Kudla
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Alex Tuck
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Wiebke Wlotzka
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Victoria A Doronina
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ralph Bartley
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas J Watkins
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Jeremy D Brown
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
44
|
A comprehensive tRNA deletion library unravels the genetic architecture of the tRNA pool. PLoS Genet 2014; 10:e1004084. [PMID: 24453985 PMCID: PMC3894157 DOI: 10.1371/journal.pgen.1004084] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/19/2013] [Indexed: 12/19/2022] Open
Abstract
Deciphering the architecture of the tRNA pool is a prime challenge in translation research, as tRNAs govern the efficiency and accuracy of the process. Towards this challenge, we created a systematic tRNA deletion library in Saccharomyces cerevisiae, aimed at dissecting the specific contribution of each tRNA gene to the tRNA pool and to the cell's fitness. By harnessing this resource, we observed that the majority of tRNA deletions show no appreciable phenotype in rich medium, yet under more challenging conditions, additional phenotypes were observed. Robustness to tRNA gene deletion was often facilitated through extensive backup compensation within and between tRNA families. Interestingly, we found that within tRNA families, genes carrying identical anti-codons can contribute differently to the cellular fitness, suggesting the importance of the genomic surrounding to tRNA expression. Characterization of the transcriptome response to deletions of tRNA genes exposed two disparate patterns: in single-copy families, deletions elicited a stress response; in deletions of genes from multi-copy families, expression of the translation machinery increased. Our results uncover the complex architecture of the tRNA pool and pave the way towards complete understanding of their role in cell physiology.
Collapse
|
45
|
Skowronek E, Grzechnik P, Späth B, Marchfelder A, Kufel J. tRNA 3' processing in yeast involves tRNase Z, Rex1, and Rrp6. RNA (NEW YORK, N.Y.) 2014; 20:115-30. [PMID: 24249226 PMCID: PMC3866640 DOI: 10.1261/rna.041467.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/24/2013] [Indexed: 05/20/2023]
Abstract
Mature tRNA 3' ends in the yeast Saccharomyces cerevisiae are generated by two pathways: endonucleolytic and exonucleolytic. Although two exonucleases, Rex1 and Rrp6, have been shown to be responsible for the exonucleolytic trimming, the identity of the endonuclease has been inferred from other systems but not confirmed in vivo. Here, we show that the yeast tRNA 3' endonuclease tRNase Z, Trz1, is catalyzing endonucleolytic tRNA 3' processing. The majority of analyzed tRNAs utilize both pathways, with a preference for the endonucleolytic one. However, 3'-end processing of precursors with long 3' trailers depends to a greater extent on Trz1. In addition to its function in the nucleus, Trz1 processes the 3' ends of mitochondrial tRNAs, contributing to the general RNA metabolism in this organelle.
Collapse
Affiliation(s)
- Ewa Skowronek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Pawel Grzechnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Bettina Späth
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Corresponding authorE-mail
| |
Collapse
|
46
|
Gaidamakov S, Maximova OA, Chon H, Blewett NH, Wang H, Crawford AK, Day A, Tulchin N, Crouch RJ, Morse HC, Blitzer RD, Maraia RJ. Targeted deletion of the gene encoding the La autoantigen (Sjögren's syndrome antigen B) in B cells or the frontal brain causes extensive tissue loss. Mol Cell Biol 2014; 34:123-31. [PMID: 24190965 PMCID: PMC3911279 DOI: 10.1128/mcb.01010-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/09/2013] [Accepted: 10/23/2013] [Indexed: 11/20/2022] Open
Abstract
La antigen (Sjögren's syndrome antigen B) is a phosphoprotein associated with nascent precursor tRNAs and other RNAs, and it is targeted by autoantibodies in patients with Sjögren's syndrome, systemic lupus erythematosus, and neonatal lupus. Increased levels of La are associated with leukemias and other cancers, and various viruses usurp La to promote their replication. Yeast cells (Saccharomyces cerevisiae and Schizosaccharomyces pombe) genetically depleted of La grow and proliferate, whereas deletion from mice causes early embryonic lethality, raising the question of whether La is required by mammalian cells generally or only to surpass a developmental stage. We developed a conditional La allele and used it in mice that express Cre recombinase in either B cell progenitors or the forebrain. B cell Mb1(Cre) La-deleted mice produce no B cells. Consistent with αCamKII Cre, which induces deletion in hippocampal CA1 cells in the third postnatal week and later throughout the neocortex, brains develop normally in La-deleted mice until ∼5 weeks and then lose a large amount of forebrain cells and mass, with evidence of altered pre-tRNA processing. The data indicate that La is required not only in proliferating cells but also in nondividing postmitotic cells. Thus, La is essential in different cell types and required for normal development of various tissue types.
Collapse
Affiliation(s)
- Sergei Gaidamakov
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Olga A. Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyongi Chon
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nathan H. Blewett
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongsheng Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amanda K. Crawford
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Amanda Day
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Natalie Tulchin
- Department of Pathology, Mount Sinai School of Medicine, New York, New York, USA
| | - Robert J. Crouch
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Herbert C. Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert D. Blitzer
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, USA
| | - Richard J. Maraia
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Commissioned Corps, U.S. Public Health Service, Washington, DC, USA
| |
Collapse
|
47
|
Hussain RH, Zawawi M, Bayfield MA. Conservation of RNA chaperone activity of the human La-related proteins 4, 6 and 7. Nucleic Acids Res 2013; 41:8715-25. [PMID: 23887937 PMCID: PMC3794603 DOI: 10.1093/nar/gkt649] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 12/22/2022] Open
Abstract
The La module is a conserved tandem arrangement of a La motif and RNA recognition motif whose function has been best characterized in genuine La proteins. The best-characterized substrates of La proteins are pre-tRNAs, and previous work using tRNA mediated suppression in Schizosaccharomyces pombe has demonstrated that yeast and human La enhance the maturation of these using two distinguishable activities: UUU-3'OH-dependent trailer binding/protection and a UUU-3'OH independent activity related to RNA chaperone function. The La module has also been identified in several conserved families of La-related proteins (LARPs) that engage other RNAs, but their mode of RNA binding and function(s) are not well understood. We demonstrate that the La modules of the human LARPs 4, 6 and 7 are also active in tRNA-mediated suppression, even in the absence of stable UUU-3'OH trailer protection. Rather, the capacity of these to enhance pre-tRNA maturation is associated with RNA chaperone function, which we demonstrate to be a conserved activity for each hLARP in vitro. Our work reveals insight into the mechanisms by which La module containing proteins discriminate RNA targets and demonstrates that RNA chaperone activity is a conserved function across representative members of the La motif-containing superfamily.
Collapse
Affiliation(s)
| | | | - Mark A. Bayfield
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
48
|
Wichtowska D, Turowski TW, Boguta M. An interplay between transcription, processing, and degradation determines tRNA levels in yeast. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:709-22. [PMID: 24039171 DOI: 10.1002/wrna.1190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 11/06/2022]
Abstract
tRNA biogenesis in yeast involves the synthesis of the initial transcript by RNA polymerase III followed by processing and controlled degradation in both the nucleus and the cytoplasm. A vast landscape of regulatory elements controlling tRNA stability in yeast has emerged from recent studies. Diverse pathways of tRNA maturation generate multiple stable and unstable intermediates. A significant impact on tRNA stability is exerted by a variety of nucleotide modifications. Pre-tRNAs are targets of exosome-dependent surveillance in the nucleus. Some tRNAs that are hypomodified or bear specific destabilizing mutations are directed to the rapid tRNA decay pathway leading to 5'→3' exonucleolytic degradation by Rat1 and Xrn1. tRNA molecules are selectively marked for degradation by a double CCA at their 3' ends. In addition, under different stress conditions, tRNA half-molecules can be generated by independent endonucleolytic cleavage events. Recent studies reveal unexpected relationships between the subsequent steps of tRNA biosynthesis and the mechanisms controlling its quality and turnover.
Collapse
Affiliation(s)
- Dominika Wichtowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
49
|
Liang C, Xiong K, Szulwach KE, Zhang Y, Wang Z, Peng J, Fu M, Jin P, Suzuki HI, Liu Q. Sjogren syndrome antigen B (SSB)/La promotes global microRNA expression by binding microRNA precursors through stem-loop recognition. J Biol Chem 2013; 288:723-36. [PMID: 23129761 PMCID: PMC3537071 DOI: 10.1074/jbc.m112.401323] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/23/2012] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ~70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ~21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3' UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules.
Collapse
Affiliation(s)
- Chunyang Liang
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ke Xiong
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- the College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Keith E. Szulwach
- the Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yi Zhang
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Zhaohui Wang
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Junmin Peng
- the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Mingui Fu
- the Department of Basic Medical Science, University of Missouri School of Medicine, Kansas, Missouri 64108, and
| | - Peng Jin
- the Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hiroshi I. Suzuki
- the Department of Molecular Pathology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Qinghua Liu
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
50
|
Dahabieh MS, Samanta D, Brodovitch JC, Frech C, O'Neill MA, Pinto BM. Sequence-dependent structural dynamics of primate adenosine-to-inosine editing substrates. Chembiochem 2012. [PMID: 23193088 DOI: 10.1002/cbic.201200526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Humans have the highest level of adenosine-to-inosine (A-to-I) editing amongst primates, yet the reasons for this difference remain unclear. Sequence analysis of the Alu Sg elements (A-to-I RNA substrates) corresponding to the Nup50 gene in human, chimp, and rhesus reveals subtle sequence variations surrounding the edit sites. We have developed three constructs that represent human (HuAp5), chimp (ChAp5), and rhesus (RhAp5) Nup50 Alu Sg A-to-I editing substrates. Here, 2-aminopurine (2-Ap) was substituted for edited adenosine (A5) so as to monitor the fluorescence intensity with respect to temperature. UV and steady-state fluorescence (SSF) T(M) plots indicate that local and global unfolding are coincident, with the human construct displaying a T(M) of approximately 70°C, compared to 60°C for chimp and 54°C for rhesus. However, time-resolved fluorescence (TRF) resolves three different fluorescence lifetimes that we assign to folded, intermediate(s), and unfolded states. The TRF data fit well to a two-intermediate model, whereby both intermediates (M, J) are in equilibrium with each other, and the folded/unfolded states. Our model suggests that, at 37°C, human state J and the folded state will be the most heavily populated in comparison to the other primate constructs. In order for adenosine deaminase acting on RNA (ADAR) to efficiently dock, a stable duplex must be present that corresponds to the human construct, globally. Next, the enzyme must "flip out" the base of interest to facilitate the A-to-I conversion; a nucleotide in an intermediate-like position would enhance this conformational change. Our experiments demonstrate that subtle variations in RNA sequence might contribute to the high A-to-I editing levels found in humans.
Collapse
|