5
|
Tavakoli S, Downs K, Short JD, Nguyen HN, Lai Y, Jerabek PA, Goins B, Toczek J, Sadeghi MM, Asmis R. Characterization of Macrophage Polarization States Using Combined Measurement of 2-Deoxyglucose and Glutamine Accumulation: Implications for Imaging of Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:1840-1848. [PMID: 28798141 DOI: 10.1161/atvbaha.117.308848] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 07/20/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Despite the early promising results of 18F-fluorodeoxyglucose positron emission tomography for assessment of vessel wall inflammation, its accuracy in prospective identification of vulnerable plaques has remained limited. Additionally, previous studies have indicated that 18F-fluorodeoxyglucose uptake alone may not allow for accurate identification of specific macrophage activation states. We aimed to determine whether combined measurement of glucose and glutamine accumulation-the 2 most important bioenergetic substrates for macrophages-improves the distinction of macrophage inflammatory states and can be utilized to image atherosclerosis. APPROACH AND RESULTS Murine peritoneal macrophages (MΦ) were activated ex vivo into proinflammatory states with either lipopolysaccharide (MΦLPS) or interferon-γ+tumor necrosis factor-α (MΦIFN-γ+TNF-α). An alternative polarization phenotype was induced with interleukin-4 (MΦIL-4). The pronounced increase in 2-deoxyglucose uptake distinguishes MΦLPS from MΦIFN-γ+TNF-α, MΦIL-4, and unstimulated macrophages (MΦ0). Despite having comparable levels of 2-deoxyglucose accumulation, MΦIL-4 can be distinguished from both MΦIFN-γ+TNF-α and MΦ0 based on the enhanced glutamine accumulation, which was associated with increased expression of a glutamine transporter, Slc1a5. Ex vivo autoradiography experiments demonstrated distinct and heterogenous patterns of 18F-fluorodeoxyglucose and 14C-glutamine accumulation in atherosclerotic lesions of low-density lipoprotein receptor-null mice fed a high-fat diet. CONCLUSIONS Combined assessment of glutamine and 2-deoxyglucose accumulation improves the ex vivo identification of macrophage activation states. Combined ex vivo metabolic imaging demonstrates heterogenous and distinct patterns of substrate accumulation in atherosclerotic lesions. Further studies are required to define the in vivo significance of glutamine uptake in atherosclerosis and its potential application in identification of vulnerable plaques.
Collapse
Affiliation(s)
- Sina Tavakoli
- From the Department of Radiology (S.T.) and Department of Medicine (S.T.), University of Pittsburgh, PA; Department of Cellular and Structural Biology (K.D), Department of Pharmacology (J.D.S.), Department of Biochemistry (H.N.N., R.A.), Department of Clinical Laboratory Sciences (Y.L., R.A.), Department of Radiology (P.A.J., B.G., R.A.), and Research Imaging Institute (P.A.J.), University of Texas Health Science Center at San Antonio; and Section of Cardiovascular Medicine (J.T., M.M.S.) and Cardiovascular Research Center (J.T., M.M.S.), Yale School of Medicine, New Haven, CT
| | - Kevin Downs
- From the Department of Radiology (S.T.) and Department of Medicine (S.T.), University of Pittsburgh, PA; Department of Cellular and Structural Biology (K.D), Department of Pharmacology (J.D.S.), Department of Biochemistry (H.N.N., R.A.), Department of Clinical Laboratory Sciences (Y.L., R.A.), Department of Radiology (P.A.J., B.G., R.A.), and Research Imaging Institute (P.A.J.), University of Texas Health Science Center at San Antonio; and Section of Cardiovascular Medicine (J.T., M.M.S.) and Cardiovascular Research Center (J.T., M.M.S.), Yale School of Medicine, New Haven, CT
| | - John D Short
- From the Department of Radiology (S.T.) and Department of Medicine (S.T.), University of Pittsburgh, PA; Department of Cellular and Structural Biology (K.D), Department of Pharmacology (J.D.S.), Department of Biochemistry (H.N.N., R.A.), Department of Clinical Laboratory Sciences (Y.L., R.A.), Department of Radiology (P.A.J., B.G., R.A.), and Research Imaging Institute (P.A.J.), University of Texas Health Science Center at San Antonio; and Section of Cardiovascular Medicine (J.T., M.M.S.) and Cardiovascular Research Center (J.T., M.M.S.), Yale School of Medicine, New Haven, CT
| | - Huynh Nga Nguyen
- From the Department of Radiology (S.T.) and Department of Medicine (S.T.), University of Pittsburgh, PA; Department of Cellular and Structural Biology (K.D), Department of Pharmacology (J.D.S.), Department of Biochemistry (H.N.N., R.A.), Department of Clinical Laboratory Sciences (Y.L., R.A.), Department of Radiology (P.A.J., B.G., R.A.), and Research Imaging Institute (P.A.J.), University of Texas Health Science Center at San Antonio; and Section of Cardiovascular Medicine (J.T., M.M.S.) and Cardiovascular Research Center (J.T., M.M.S.), Yale School of Medicine, New Haven, CT
| | - Yanlai Lai
- From the Department of Radiology (S.T.) and Department of Medicine (S.T.), University of Pittsburgh, PA; Department of Cellular and Structural Biology (K.D), Department of Pharmacology (J.D.S.), Department of Biochemistry (H.N.N., R.A.), Department of Clinical Laboratory Sciences (Y.L., R.A.), Department of Radiology (P.A.J., B.G., R.A.), and Research Imaging Institute (P.A.J.), University of Texas Health Science Center at San Antonio; and Section of Cardiovascular Medicine (J.T., M.M.S.) and Cardiovascular Research Center (J.T., M.M.S.), Yale School of Medicine, New Haven, CT
| | - Paul A Jerabek
- From the Department of Radiology (S.T.) and Department of Medicine (S.T.), University of Pittsburgh, PA; Department of Cellular and Structural Biology (K.D), Department of Pharmacology (J.D.S.), Department of Biochemistry (H.N.N., R.A.), Department of Clinical Laboratory Sciences (Y.L., R.A.), Department of Radiology (P.A.J., B.G., R.A.), and Research Imaging Institute (P.A.J.), University of Texas Health Science Center at San Antonio; and Section of Cardiovascular Medicine (J.T., M.M.S.) and Cardiovascular Research Center (J.T., M.M.S.), Yale School of Medicine, New Haven, CT
| | - Beth Goins
- From the Department of Radiology (S.T.) and Department of Medicine (S.T.), University of Pittsburgh, PA; Department of Cellular and Structural Biology (K.D), Department of Pharmacology (J.D.S.), Department of Biochemistry (H.N.N., R.A.), Department of Clinical Laboratory Sciences (Y.L., R.A.), Department of Radiology (P.A.J., B.G., R.A.), and Research Imaging Institute (P.A.J.), University of Texas Health Science Center at San Antonio; and Section of Cardiovascular Medicine (J.T., M.M.S.) and Cardiovascular Research Center (J.T., M.M.S.), Yale School of Medicine, New Haven, CT
| | - Jakub Toczek
- From the Department of Radiology (S.T.) and Department of Medicine (S.T.), University of Pittsburgh, PA; Department of Cellular and Structural Biology (K.D), Department of Pharmacology (J.D.S.), Department of Biochemistry (H.N.N., R.A.), Department of Clinical Laboratory Sciences (Y.L., R.A.), Department of Radiology (P.A.J., B.G., R.A.), and Research Imaging Institute (P.A.J.), University of Texas Health Science Center at San Antonio; and Section of Cardiovascular Medicine (J.T., M.M.S.) and Cardiovascular Research Center (J.T., M.M.S.), Yale School of Medicine, New Haven, CT
| | - Mehran M Sadeghi
- From the Department of Radiology (S.T.) and Department of Medicine (S.T.), University of Pittsburgh, PA; Department of Cellular and Structural Biology (K.D), Department of Pharmacology (J.D.S.), Department of Biochemistry (H.N.N., R.A.), Department of Clinical Laboratory Sciences (Y.L., R.A.), Department of Radiology (P.A.J., B.G., R.A.), and Research Imaging Institute (P.A.J.), University of Texas Health Science Center at San Antonio; and Section of Cardiovascular Medicine (J.T., M.M.S.) and Cardiovascular Research Center (J.T., M.M.S.), Yale School of Medicine, New Haven, CT
| | - Reto Asmis
- From the Department of Radiology (S.T.) and Department of Medicine (S.T.), University of Pittsburgh, PA; Department of Cellular and Structural Biology (K.D), Department of Pharmacology (J.D.S.), Department of Biochemistry (H.N.N., R.A.), Department of Clinical Laboratory Sciences (Y.L., R.A.), Department of Radiology (P.A.J., B.G., R.A.), and Research Imaging Institute (P.A.J.), University of Texas Health Science Center at San Antonio; and Section of Cardiovascular Medicine (J.T., M.M.S.) and Cardiovascular Research Center (J.T., M.M.S.), Yale School of Medicine, New Haven, CT.
| |
Collapse
|
9
|
Pedrigi RM, Poulsen CB, Mehta VV, Ramsing Holm N, Pareek N, Post AL, Kilic ID, Banya WAS, Dall'Ara G, Mattesini A, Bjørklund MM, Andersen NP, Grøndal AK, Petretto E, Foin N, Davies JE, Di Mario C, Fog Bentzon J, Erik Bøtker H, Falk E, Krams R, de Silva R. Inducing Persistent Flow Disturbances Accelerates Atherogenesis and Promotes Thin Cap Fibroatheroma Development in D374Y-PCSK9 Hypercholesterolemic Minipigs. Circulation 2015; 132:1003-12. [PMID: 26179404 DOI: 10.1161/circulationaha.115.016270] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although disturbed flow is thought to play a central role in the development of advanced coronary atherosclerotic plaques, no causal relationship has been established. We evaluated whether inducing disturbed flow would cause the development of advanced coronary plaques, including thin cap fibroatheroma. METHODS AND RESULTS D374Y-PCSK9 hypercholesterolemic minipigs (n=5) were instrumented with an intracoronary shear-modifying stent (SMS). Frequency-domain optical coherence tomography was obtained at baseline, immediately poststent, 19 weeks, and 34 weeks, and used to compute shear stress metrics of disturbed flow. At 34 weeks, plaque type was assessed within serially collected histological sections and coregistered to the distribution of each shear metric. The SMS caused a flow-limiting stenosis, and blood flow exiting the SMS caused regions of increased shear stress on the outer curvature and large regions of low and multidirectional shear stress on the inner curvature of the vessel. As a result, plaque burden was ≈3-fold higher downstream of the SMS than both upstream of the SMS and in the control artery (P<0.001). Advanced plaques were also primarily observed downstream of the SMS, in locations initially exposed to both low (P<0.002) and multidirectional (P<0.002) shear stress. Thin cap fibroatheroma regions demonstrated significantly lower shear stress that persisted over the duration of the study in comparison with other plaque types (P<0.005). CONCLUSIONS These data support a causal role for lowered and multidirectional shear stress in the initiation of advanced coronary atherosclerotic plaques. Persistently lowered shear stress appears to be the principal flow disturbance needed for the formation of thin cap fibroatheroma.
Collapse
Affiliation(s)
- Ryan M Pedrigi
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Christian Bo Poulsen
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Vikram V Mehta
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Niels Ramsing Holm
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Nilesh Pareek
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Anouk L Post
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Ismail Dogu Kilic
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Winston A S Banya
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Gianni Dall'Ara
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Alessio Mattesini
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Martin M Bjørklund
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Niels P Andersen
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Anna K Grøndal
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Enrico Petretto
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Nicolas Foin
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Justin E Davies
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Carlo Di Mario
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Jacob Fog Bentzon
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Hans Erik Bøtker
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Erling Falk
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Rob Krams
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Ranil de Silva
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.).
| |
Collapse
|