1
|
Yang R, Wu J, Yu H, Wang S, Chen H, Wang M, Qin X, Wu T, Wu Y, Hu Y. Is statin therapy after ischaemic stroke associated with increased intracerebral hemorrhage? The association may be dependent on intensity of statin therapy. Int J Stroke 2023; 18:948-956. [PMID: 37070670 DOI: 10.1177/17474930231172623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
BACKGROUND There has been concern that statin therapy may be associated with an increased risk of intracerebral hemorrhage (ICH). We investigated whether the intensity and type of statin therapy instituted after ischemic stroke (IS) were associated with risk of future ICH in a region of northern China with a high incidence of stroke. METHODS Newly diagnosed IS patients who were not treated with lipid-lowering drugs in the Beijing Employee Medical Claims Data database from 2010 to 2017 were included. The primary exposure variable was any statin prescription within 1 month of the first documented stroke diagnosis. High-intensity statin therapy was defined as atorvastatin ⩾ 80 mg, simvastatin ⩾ 80 mg, pravastatin ⩾ 40 mg, and rosuvastatin ⩾ 20 mg per day or equivalent combination. An adjusted Cox proportional hazards model was used to estimate the hazard ratio (HR) for ICH during follow-up in groups exposed and not exposed to statins. RESULTS Of 62,252 participants with IS and 628 ICH readmissions were recorded during a median follow-up of 3.17 years. The risk of ICH among statin users (N = 43,434) was similar to that among nonusers (N = 18,818) with an adjusted HR and 95% confidence interval (CI) of 0.86 (0.73, 1.02). Compared with non-statin therapy, patients with low/moderate-intensity therapy had a lower risk of ICH (0.62: 0.52, 0.75), while patients with high-intensity therapy had a substantially higher risk (2.12: 1.72, 2.62). For patients with different types of statin therapy, adherence to rosuvastatin had the lowest risk of ICH compared to adherence to atorvastatin (0.46: 0.34, 0.63), followed by simvastatin (0.60: 0.45, 0.81). CONCLUSION In patients with IS, any statin therapy was not associated with an increased risk of ICH. However there appeared to be differential risk according to the dose of statin with high-intensity statin therapy being associated with an increased risk of ICH, while low/moderate-intensity therapy was associated with a lower risk.
Collapse
Affiliation(s)
- Ruotong Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Junhui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
- School of Nursing, Peking University, Beijing, China
| | - Huan Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Siyue Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Hongbo Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
- School of Nursing, Peking University, Beijing, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Medical Informatics Center, Peking University, Beijing, China
| |
Collapse
|
2
|
Shen S, Huang Z, Lin L, Fang Z, Li W, Luo W, Wu G, Huang Z, Liang G. Tussilagone attenuates atherosclerosis through inhibiting MAPKs-mediated inflammation in macrophages. Int Immunopharmacol 2023; 119:110066. [PMID: 37058752 DOI: 10.1016/j.intimp.2023.110066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
Atherosclerosis is a common chronic inflammatory disease. Recent studies have highlighted the key role of macrophages and inflammation in process of atherosclerotic lesion formation. A natural product, tussilagone (TUS), has previously exhibited anti-inflammatory activities in other diseases. In this study, we explored the potential effects and mechanisms of TUS on the inflammatory atherosclerosis. Atherosclerosis was induced in ApoE-/- mice by feeding them with a high-fat diet (HFD) for 8 weeks, followed by administration of TUS (10, 20 mg ·kg-1·d-1, i.g.) for 8 weeks. We demonstrated that TUS alleviated inflammatory response and reduced atherosclerotic plaque areas in HFD-fed ApoE-/- mice. Pro-inflammatory factor and adhesion factors were inhibited by TUS treatment. In vitro, TUS suppressed foam cell formation and oxLDL-induced inflammatory response in MPMs. RNA-sequencing analysis indicated that MAPK pathway was related to the anti-inflammation and anti-atherosclerosis effects of TUS. We further confirmed that TUS inhibited MAPKs phosphorylation in plaque lesion of aortas and cultured macrophages. MAPK inhibition blocked oxLDL-induced inflammatory response and prevented the innately pharmacological effects of TUS. Our findings present a mechanistic explanation for the pharmacological effect of TUS against atherosclerosis and indicate TUS as a potentially therapeutic candidate for atherosclerosis.
Collapse
Affiliation(s)
- Sirui Shen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhuqi Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Liming Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zimin Fang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhouqing Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
3
|
Hernandez-Cravero B, Gallino S, Florman J, Vranych C, Diaz P, Elgoyhen AB, Alkema MJ, de Mendoza D. Cannabinoids activate the insulin pathway to modulate mobilization of cholesterol in C. elegans. PLoS Genet 2022; 18:e1010346. [PMID: 36346800 PMCID: PMC9674138 DOI: 10.1371/journal.pgen.1010346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/18/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is critical. Previously, we demonstrated that the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) plays a key role in C. elegans since it modulates sterol mobilization. However, the mechanism remains unknown. Here we show that mutations in the ocr-2 and osm-9 genes, coding for transient receptors potential V (TRPV) ion channels, dramatically reduce the effect of 2-AG in cholesterol mobilization. Through genetic analysis in combination with the rescue of larval arrest induced by sterol starvation, we found that the insulin/IGF-1signaling (IIS) pathway and UNC-31/CAPS, a calcium-activated regulator of neural dense-core vesicles release, are essential for 2-AG-mediated stimulation of cholesterol mobilization. These findings indicate that 2-AG-dependent cholesterol trafficking requires the release of insulin peptides and signaling through the DAF-2 insulin receptor. These results suggest that 2-AG acts as an endogenous modulator of TRPV signal transduction to control intracellular sterol trafficking through modulation of the IGF-1 signaling pathway
Collapse
Affiliation(s)
- Bruno Hernandez-Cravero
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sofia Gallino
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Cecilia Vranych
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Mark J. Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
4
|
Su Z, Guo J, Gu Y. Pharmacotherapy in Clinical Trials for Abdominal Aortic Aneurysms: A Systematic Review and Meta-Analysis. Clin Appl Thromb Hemost 2022; 28:10760296221120423. [PMID: 36083182 PMCID: PMC9465599 DOI: 10.1177/10760296221120423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE There is no medical treatment proven to limit abdominal aortic aneurysm (AAA) progression. This systematic review aimed to summarise available trial evidence on the efficacy of pharmacotherapy in limiting AAA growth and AAA-related events. METHODS A systematic literature search was performed to examine the efficacy of pharmacotherapy in reducing AAA growth and AAA-related events. Pubmed, Embase (Excerpta Medica Database), and the Cochrane library were searched from March, 1999 to March 29, 2022. AAA growth (mm/year) in the intervention and control groups was expressed as mean and standard deviation (SD). The results of AAA growth were expressed as mean difference (MD) and its 95% confidence interval (95% CI). Odds ratios (ORs) were calculated for the AAA-related events.Heterogeneity was quantified using the I2 statistic. Forest plots were created to show the pooled results of each outcome. OUTCOMES A total of 1373 articles were found in different databases according to the search strategy, and 10 articles were identified by hand searching. A total of 26 articles were included in our systematic review after the screening. For the studies of metformin, the meta-analysis demonstrated that metformin use was associated with a lower AAA growth rate (MD: -0.81 mm/y, 95% CI: -1.19 to -0.42, P < 0.0001, I2 = 87%), Metformin use also was related to the lower rates of AAA-related events (OR: 0.53, 95% CI: 0.36 to 0.76, P = 0.0007, I2 = 60%). The hypotensive drugs of the studies mainly included angiotensin-converting enzyme inhibitors (ACEI), angiotensin II type 1 receptor blockers (ARB), and propranolol. The overall meta-analysis of blood pressure-lowering drugs reported no significant effect in limiting the AAA growth (MD: 0.31mm/year, 95%CI: -0.03 to 0.65, P = 0.07, I2 = 66%) and AAA-related events (OR: 1.33, 95%CI: 0.76 to 2.32, P = 0.32, I2 = 98%), In the subgroup analysis of the hypotensive drugs, the ACEI/ARB and propranolol also showed no significant in reducing the AAA growth and AAA-related events. The meta-analysis of the antibiotics demonstrated that the antibiotics were not associated with a lower AAA growth rate (MD: -0.27 mm/y, 95% CI: -0.88 to 0.34, P = 0.39, I2 = 77%) and AAA-related events (OR: 0.94, 95%CI: 0.65 to 1.35, P = 0.72, I2 = 0%). The results of statins also showed no significant effect in limiting AAA growth (MD: -1.11mm/year, 95%CI: -2.38 to 0.16, P = 0.09, I2 = 96%) and AAA-related events (OR: 0.53, 95%CI: 0.26 to 1.06, P = 0.07, I2 = 92%). CONCLUSION In conclusion, effective pharmacotherapy for AAA was still lacking. Although the meta-analysis showed that metformin use was associated with lower AAA growth and AAA-related events, all of the included studies about metformin were cohort studies or case-control studies. More randomized controlled trials (RCTs) are needed for further verification.
Collapse
Affiliation(s)
- Zhixiang Su
- Vascular Surgery Department, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianming Guo
- Vascular Surgery Department, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Vascular Surgery Department, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Lee JS, Park SC, Kim SD. Effects of hypercholesterolism on expansion of abdominal aortic aneurysm in rat model. J Cardiothorac Surg 2021; 16:352. [PMID: 34961565 PMCID: PMC8711175 DOI: 10.1186/s13019-021-01734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Background Inflammation is recognized as a critical process in expansion of abdominal aortic aneurysm (AAA). A relationship between effects of cholesterol and statin in this process have been suggested, but remain untested. Therefore, current study aimed to examine the effects of hypercholesterolism on expansion of AAA in a rat model. Methods A total of 16 male rats were divided into 4 groups as follows: group I, normocholesterol diet and saline infusion, group II, normocholesterol diet and porcine pancreatic elastase (PPE) infusion, group III, hypercholesterol diet and PPE infusion, and group IV, hypercholesterol diet, PPE infusion and statin administration. At the 3rd week, saline was infused intraluminally in group I and PPE in groups II-IV to induce AAA. At the 5th week, blood and aortic tissue were obtained from each rat for evaluation of lipid profiles, aortic diameters (ADs), and characteristics of stains. Results Post-procedural aortic diameter (AD3) and AD3/pre-procedural aortic diameter (AD1) were significantly different among four groups (P = 0.042, P = 0.028, respectively). AD3 was significantly larger in group II than group I, and group III than group IV (P = 0.012, P = 0.043, respectively). AD3/AD1 was significantly higher in group II than group I, and group III than group II (P = 0.008, P = 0.030, respectively). Group III showed the highest cellularity for inflammatory cells. Conclusions Though larger experimental and clinical studies are necessary, authors suggest that hypercholesterolism can aggravate expansion of AAA, and that statin therapy can reduce it. Therefore, monitoring for hypercholesterolism and instituting statin therapy may be helpful to suppress expansion of AAA.
Collapse
Affiliation(s)
- Jong Seok Lee
- Division of Vascular and Transplant Surgery, Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Sun Cheol Park
- Division of Vascular and Transplant Surgery, Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Sang Dong Kim
- Division of Vascular and Transplant Surgery, Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea. .,Division of Vascular and Transplant Surgery, Department of Surgery, Incheon St. Mary's Hospital, The Catholic University of Korea, 56 Dongsu-ro, Bupyong-Gu, Incheon, 21431, Korea.
| |
Collapse
|
6
|
Buschmann K, Gramlich Y, Chaban R, Oelze M, Hink U, Münzel T, Treede H, Daiber A, Duerr GD. Disturbed Lipid Metabolism in Diabetic Patients with Manifest Coronary Artery Disease Is Associated with Enhanced Inflammation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010892. [PMID: 34682638 PMCID: PMC8535387 DOI: 10.3390/ijerph182010892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Background: Diabetic vasculopathy plays an important role in the pathophysiology of coronary artery disease (CAD) with oxidative stress as a strong mediator. This study aims to elucidate the underlying pathomechanisms of diabetic cardiac vasculopathy leading to coronary disease with an emphasis on the role of oxidative stress. Therefore, novel insights into antioxidant pathways might contribute to new strategies in the treatment and prevention of diabetic CAD. Methods: In 20 patients with insulin-dependent or non-insulin dependent diabetes mellitus (IDDM/NIDDM) and 39 non-diabetic (CTR) patients, myocardial markers of oxidative stress, vasoactive proteins, endothelial nitric oxide synthase (eNOS), activated phosphorylated eNOS (p-eNOS), and antioxidant enzymes, e.g., tetrahydrobiopterin generating dihydrofolate reductase (DHFR), heme oxygenase (HO-1), as well as serum markers of inflammation, e.g., E-selectin, interleukin-6 (IL-6), and lipid metabolism, e.g., high- and low-density lipoptrotein (HDL- and LDL-cholesterol) were determined in specimens of right atrial tissue and in blood samples from type 2 diabetic and non-diabetic patients undergoing coronary artery bypass graft (CABG) surgery. Results: IDDM/NIDDM increased markers of inflammation (e.g., E-selectin, p = 0.005 and IL-6, p = 0.051), decreased the phosphorylated myocardial p-eNOS (p = 0.032), upregulated the myocardial stress response protein HO-1 (p = 0.018), and enhanced the serum LDL-/HDL-cholesterol ratio (p = 0.019). However, the oxidative stress markers in the myocardium and the expression of vasoactive proteins (eNOS, DHFR) showed only marginal adverse changes in patients with IDDM/NIDDM. Conclusion: Dyslipidemia and myocardial inflammation seem to be the major determinants of diabetic CAD complications. Dysregulation in pro-oxidative enzymes might be attributable to the severity of CAD and oxidative stress levels in all included patients undergoing CABG.
Collapse
Affiliation(s)
- Katja Buschmann
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (K.B.); (R.C.); (H.T.)
| | - Yves Gramlich
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Ryan Chaban
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (K.B.); (R.C.); (H.T.)
| | - Matthias Oelze
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Ulrich Hink
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Thomas Münzel
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Hendrik Treede
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (K.B.); (R.C.); (H.T.)
| | - Andreas Daiber
- Department for Cardiology I, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (Y.G.); (M.O.); (U.H.); (T.M.); (A.D.)
| | - Georg Daniel Duerr
- Department of Cardiovascular Surgery, University Medical Center of the Johannes Gutenberg, University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (K.B.); (R.C.); (H.T.)
- Correspondence: ; Tel.: +49-6131-17-0; Fax: +49-6131-17-3626
| |
Collapse
|
7
|
Yang Y, Wang D, Zhang C, Yang W, Li C, Gao Z, Pei K, Li Y. Piezo1 mediates endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation. Hum Cell 2021; 35:51-62. [PMID: 34606042 DOI: 10.1007/s13577-021-00600-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
The vascular endothelium plays a key role in the pathobiology of atherosclerotic cardiovascular disease. Endothelial cell Piezo1 mediates blood vessel formation, angiogenesis and regulation of blood pressure. However, changes of Piezo1 expression in atherosclerosis (AS) and the role of Piezo1 in the progression of atherosclerotic diseases remains obscure. Thus, the current study is to elucidate the role and mechanism of which Piezo1 mediates vascular inflammation in atherosclerotic mice and vascular endothelial inflammation induced by oxidized low density lipoprotein (ox-LDL) in vitro. Here, we have shown that the expression of Piezo1 was significantly increased in the stenotic carotid artery of ApoE-/- mice fed by high-fat diet (HFD). Pharmacological inhibition of Piezo1 (GsMTx-4) attenuated plaque formation, decreased the level of inflammation related factors (JNK, TNF-α, NF-κB, VCAM-1) of carotid plaque in atherosclerotic mice. Meanwhile, ox-LDL also upregulates Piezo1 and inflammation proteins (NF-κB, JNK and TNF-α) in endothelium cells (ECs). YAP/TAZ is activated accompanied by the enhanced Piezo1 activity in ECs induced by ox-LDL. Interference by siRNA of Piezo1 abolished the expression of YAP/TAZ and inflammation proteins (JNK, NF-κB and TNF-α). In addition, Ca2+ influx in ECs induced by ox-LDL was increased than control group, Piezo1 siRNA can reduce the calcium content. Piezo1 agonist Yoda1 increased Ca2+ influx and promote YAP nucleus translocation in ECs, genetic deletion of Piezo1 reversed it. Our results indicate that Piezo1 could mediate endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation and nuclear localization. Piezo1 may be a potential therapeutic target for atherosclerotic diseases in the future.
Collapse
Affiliation(s)
- Ying Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Danyang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Chunxiao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China
| | - Wenqing Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China
| | - Chao Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China
| | - Zichen Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China
| | - Ke Pei
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China
| | - Yunlun Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250003, People's Republic of China.
| |
Collapse
|
8
|
Daiber A, Steven S, Euler G, Schulz R. Vascular and Cardiac Oxidative Stress and Inflammation as Targets for Cardioprotection. Curr Pharm Des 2021; 27:2112-2130. [PMID: 33550963 DOI: 10.2174/1381612827666210125155821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Cardiac and vascular diseases are often associated with increased oxidative stress and inflammation, and both may contribute to the disease progression. However, successful applications of antioxidants in the clinical setting are very rare and specific anti-inflammatory therapeutics only emerged recently. Reasons for this rely on the great diversity of oxidative stress and inflammatory cells that can either act as cardioprotective or cause tissue damage in the heart. Recent large-scale clinical trials found that highly specific anti-inflammatory therapies using monoclonal antibodies against cytokines resulted in lower cardiovascular mortality in patients with pre-existing atherosclerotic disease. In addition, unspecific antiinflammatory medication and established cardiovascular drugs with pleiotropic immunomodulatory properties such as angiotensin converting enzyme (ACE) inhibitors or statins have proven beneficial cardiovascular effects. Normalization of oxidative stress seems to be a common feature of these therapies, which can be explained by a close interaction/crosstalk of the cellular redox state and inflammatory processes. In this review, we give an overview of cardiac reactive oxygen species (ROS) sources and processes of cardiac inflammation as well as the connection of ROS and inflammation in ischemic cardiomyopathy in order to shed light on possible cardioprotective interventions.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Gerhild Euler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
9
|
Tenesaca S, Vasquez M, Alvarez M, Otano I, Fernandez-Sendin M, Di Trani CA, Ardaiz N, Gomar C, Bella A, Aranda F, Medina-Echeverz J, Melero I, Berraondo P. Statins act as transient type I interferon inhibitors to enable the antitumor activity of modified vaccinia Ankara viral vectors. J Immunother Cancer 2021; 9:jitc-2020-001587. [PMID: 34321273 PMCID: PMC8320251 DOI: 10.1136/jitc-2020-001587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Modified vaccinia virus Ankara (MVA) are genetically engineered non-replicating viral vectors. Intratumoral administration of MVA induces a cyclic GMP-AMP synthase-mediated type I interferon (IFN) response and the production of high levels of the transgenes engineered into the viral genome such as tumor antigens to construct cancer vaccines. Although type I IFNs are essential for establishing CD8-mediated antitumor responses, this cytokine family may also give rise to immunosuppressive mechanisms. METHODS In vitro assays were performed to evaluate the activity of simvastatin and atorvastatin on type I IFN signaling and on antigen presentation. Surface levels of IFN α/β receptor 1, endocytosis of bovine serum albumin-fluorescein 5 (6)-isothiocyanate, signal transducer and activator of transcription (STAT) phosphorylation, and real-time PCR of IFN-stimulated genes were assessed in the murine fibroblast cell line L929. In vivo experiments were performed to characterize the effect of simvastatin on the MVA-induced innate immune response and on the antitumor effect of MVA-based antitumor vaccines in B16 melanoma expressing ovalbumin (OVA) and Lewis lung carcinoma (LLC)-OVA tumor models. RNAseq analysis, depleting monoclonal antibodies, and flow cytometry were used to evaluate the MVA-mediated immune response. RESULTS In this work, we identified commonly prescribed statins as potent IFNα pharmacological inhibitors due to their ability to reduce surface expression levels of IFN-α/β receptor 1 and to reduce clathrin-mediated endocytosis. Simvastatin and atorvastatin efficiently abrogated for 8 hours the transcriptomic response to IFNα and enhanced the number of dendritic cells presenting an OVA-derived peptide bound to major histocompatibility complex (MHC) class I. In vivo, intraperitoneal or intramuscular administration of simvastatin reduced the inflammatory response mediated by peritumoral administration of MVA and enhanced the antitumor activity of MVA encoding tumor-associated antigens. The synergistic antitumor effects critically depend on CD8+ cells, whereas they were markedly improved by depletion of CD4+ lymphocytes, T regulatory cells, or NK cells. Either MVA-OVA alone or combined with simvastatin augmented B cells, CD4+ lymphocytes, CD8+ lymphocytes, and tumor-specific CD8+ in the tumor-draining lymph nodes. However, only the treatment combination increased the numbers of these lymphocyte populations in the tumor microenvironment and in the spleen. CONCLUSION In conclusion, blockade of IFNα functions by simvastatin markedly enhances lymphocyte infiltration and the antitumor activity of MVA, prompting a feasible drug repurposing.
Collapse
Affiliation(s)
- Shirley Tenesaca
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Itziar Otano
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Nuria Ardaiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Angela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | | | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain .,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
10
|
Lawler PR, Bhatt DL, Godoy LC, Lüscher TF, Bonow RO, Verma S, Ridker PM. Targeting cardiovascular inflammation: next steps in clinical translation. Eur Heart J 2021; 42:113-131. [PMID: 32176778 DOI: 10.1093/eurheartj/ehaa099] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/30/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
Systemic vascular inflammation plays multiple maladaptive roles which contribute to the progression and destabilization of atherosclerotic cardiovascular disease (ASCVD). These roles include: (i) driving atheroprogression in the clinically stable phase of disease; (ii) inciting atheroma destabilization and precipitating acute coronary syndromes (ACS); and (iii) responding to cardiomyocyte necrosis in myocardial infarction (MI). Despite an evolving understanding of these biologic processes, successful clinical translation into effective therapies has proven challenging. Realizing the promise of targeting inflammation in the prevention and treatment of ASCVD will likely require more individualized approaches, as the degree of inflammation differs among cardiovascular patients. A large body of evidence has accumulated supporting the use of high-sensitivity C-reactive protein (hsCRP) as a clinical measure of inflammation. Appreciating the mechanistic diversity of ACS triggers and the kinetics of hsCRP in MI may resolve purported inconsistencies from prior observational studies. Future clinical trial designs incorporating hsCRP may hold promise to enable individualized approaches. The aim of this Clinical Review is to summarize the current understanding of how inflammation contributes to ASCVD progression, destabilization, and adverse clinical outcomes. We offer forward-looking perspective on what next steps may enable successful clinical translation into effective therapeutic approaches-enabling targeting the right patients with the right therapy at the right time-on the road to more individualized ASCVD care.
Collapse
Affiliation(s)
- Patrick R Lawler
- Peter Munk Cardiac Centre, University Health Network, 190 Elizabeth Street, Toronto, ON M5G 2C4, Canada.,Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, ON M5G 1X8, Canada.,University of Toronto, 27 King's College Cir, Toronto, ON M5S 1K1, Canada
| | - Deepak L Bhatt
- Brigham and Women's Hospital, Division of Cardiovascular Medicine, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Lucas C Godoy
- Peter Munk Cardiac Centre, University Health Network, 190 Elizabeth Street, Toronto, ON M5G 2C4, Canada.,Instituto do Coracao (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, 44, Doutor Enéas Carvalho de Aguiar Avenue, São Paulo, SP 05403-900, Brazil
| | - Thomas F Lüscher
- Royal Brompton & Harefield Hospital, Imperial College, 77 Wimpole Street, London W1G 9RU, UK
| | - Robert O Bonow
- Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 251 E Huron, Chicago, IL 60611, USA
| | - Subodh Verma
- University of Toronto, 27 King's College Cir, Toronto, ON M5S 1K1, Canada.,Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, 30 Bond St, Toronto, ON M5B 1W8, Canada
| | - Paul M Ridker
- Brigham and Women's Hospital, Division of Cardiovascular Medicine, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.,Brigham and Women's Hospital, Center for Cardiovascular Disease Prevention, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02215, USA
| |
Collapse
|
11
|
Daiber A, Andreadou I, Oelze M, Davidson SM, Hausenloy DJ. Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free Radic Biol Med 2021; 163:325-343. [PMID: 33359685 DOI: 10.1016/j.freeradbiomed.2020.12.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Global epidemiological studies reported a shift from maternal/infectious communicable diseases to chronic non-communicable diseases and a major part is attributable to atherosclerosis and metabolic disorders. Accordingly, ischemic heart disease was identified as a leading risk factor for global mortality and morbidity with a prevalence of 128 million people. Almost 9 million premature deaths can be attributed to ischemic heart disease and subsequent acute myocardial infarction and heart failure, also representing a substantial socioeconomic burden. As evidenced by typical oxidative stress markers such as lipid peroxidation products or oxidized DNA/RNA bases, the formation of reactive oxygen species by various sources (NADPH oxidases, xanthine oxidase and mitochondrial resperatory chain) plays a central role for the severity of ischemia/reperfusion damage. The underlying mechanisms comprise direct oxidative damage but also adverse redox-regulation of kinase and calcium signaling, inflammation and cardiac remodeling among others. These processes and the role of reactive oxygen species are discussed in the present review. We also present and discuss potential targets for redox-based therapies that are either already established in the clinics (e.g. guanylyl cyclase activators and stimulators) or at least successfully tested in preclinical models of myocardial infarction and heart failure (mitochondria-targeted antioxidants). However, reactive oxygen species have not only detrimental effects but are also involved in essential cellular signaling and may even act protective as seen by ischemic pre- and post-conditioning or eustress - which makes redox therapy quite challenging.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Matthias Oelze
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan.
| |
Collapse
|
12
|
Daub S, Lutgens E, Münzel T, Daiber A. CD40/CD40L and Related Signaling Pathways in Cardiovascular Health and Disease-The Pros and Cons for Cardioprotection. Int J Mol Sci 2020; 21:E8533. [PMID: 33198327 PMCID: PMC7697597 DOI: 10.3390/ijms21228533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
The CD40-CD40 ligand (CD40L) dyad represents a scientific and clinical field that has raised many controversies in the past and cannot be clearly defined as being an either beneficial or harmful pathway. Being crucially involved in physiological immunological processes as well as pathological inflammatory reactions, the signaling pathway has been recognized as a key player in the development of both autoimmune and cardiovascular disease. Even though the possibilities of a therapeutic approach to the dyad were recognized decades ago, due to unfortunate events, detailed in this review, pharmacological treatment targeting the dyad, especially in patients suffering from atherosclerosis, is not available. Despite the recent advances in the treatment of classical cardiovascular risk factors, such as arterial hypertension and diabetes mellitus, the treatment of the associated low-grade inflammation that accounts for the progression of atherosclerosis is still challenging. Low-grade inflammation can be detected in a significant portion of patients that suffer from cardiovascular disease and it is therefore imperative to develop new therapeutic strategies in order to combat this driver of atherosclerosis. Of note, established cardiovascular drugs such as angiotensin-converting enzyme inhibitors or statins have proven beneficial cardiovascular effects that are also related to their pleiotropic immunomodulatory properties. In this review, we will discuss the setbacks encountered as well as new avenues discovered on the path to a different, inflammation-centered approach for the treatment of cardiovascular disease with the CD40-CD40L axis as a central therapeutic target.
Collapse
Affiliation(s)
- Steffen Daub
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (S.D.); (T.M.)
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands;
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, 80336 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany and Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (S.D.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (S.D.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
13
|
Daiber A, Chlopicki S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radic Biol Med 2020; 157:15-37. [PMID: 32131026 DOI: 10.1016/j.freeradbiomed.2020.02.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
According to the latest Global Burden of Disease Study data, non-communicable diseases in general and cardiovascular disease (CVD) in particular are the leading cause of premature death and reduced quality of life. Demographic shifts, unhealthy lifestyles and a higher burden of adverse environmental factors provide an explanation for these findings. The expected growing prevalence of CVD requires enhanced research efforts for identification and characterisation of novel therapeutic targets and strategies. Cardiovascular risk factors including classical (e.g. hypertension, diabetes, hypercholesterolaemia) and non-classical (e.g. environmental stress) factors induce the development of endothelial dysfunction, which is closely associated with oxidant stress and vascular inflammation and results in CVD, particularly in older adults. Most classically successful therapies for CVD display vasoprotective, antioxidant and anti-inflammatory effects, but were originally designed with other therapeutic aims. So far, only a few 'redox drugs' are in clinical use and many antioxidant strategies have not met expectations. With the present review, we summarise the actual knowledge on CVD pathomechanisms, with special emphasis on endothelial dysfunction, adverse redox signalling and oxidative stress, highlighting the preclinical and clinical evidence. In addition, we provide a brief overview of established CVD therapies and their relation to endothelial dysfunction and oxidative stress. Finally, we discuss novel strategies for redox-based CVD therapies trying to explain why, despite a clear link between endothelial dysfunction and adverse redox signalling and oxidative stress, redox- and oxidative stress-based therapies have not yet provided a breakthrough in the treatment of endothelial dysfunction and CVD.
Collapse
Affiliation(s)
- Andreas Daiber
- The Center for Cardiology, Department of Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; The Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Stefan Chlopicki
- The Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
14
|
Effect of Statin Therapy on Abdominal Aortic Aneurysm Growth Rate and Mortality: A Systematic Review and Meta-analysis. Ann Vasc Surg 2020; 67:503-510. [DOI: 10.1016/j.avsg.2020.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/08/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022]
|
15
|
Chen KN, He L, Zhong LM, Ran YQ, Liu Y. Meta-Analysis of Dyslipidemia Management for the Prevention of Ischemic Stroke Recurrence in China. Front Neurol 2020; 11:483570. [PMID: 33329292 PMCID: PMC7717969 DOI: 10.3389/fneur.2020.483570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The benefit of blood cholesterol reduction for secondary prevention of ischemic stroke remains undetermined in Chinese patients. The purpose of this meta-analysis was to determine whether lipid-lowering agents including statins, fibrates, nicotinic acid, and ezetimibe reduced the risk of recurrent stroke in ischemic stroke patients in China and whether such findings could inform treatment decisions for blood lipid-lowering treatment in China. Methods: The English electronic databases PubMed, EMBASE, Cochrane Library and Chinese databases CNKI, Sino-Med, Wan Fang, and VIP were searched for studies published between January 1990 and April 2020. This meta-analysis included published data from trials that randomly assigned patients to groups treated with either blood lipid-lowering regimens or placebo. Effect comparisons were made using fixed effects model in meta-analysis and linear and spline regression were performed to identify the relative risk of stroke recurrence. The primary outcome was the reduction of total ischemic stroke events, and relative risk values were obtained using a risk prediction equation developed from the control groups of the included trials. Results: Five studies including 4,999 individuals with available data met the inclusion criteria. Relative to the control groups, the pooled estimated odds ratio (OR) for recurrent stroke among those who received lipid-lowering therapy was 0.79 (95% confidence interval [CI]: 0.63-1.00). A 50% or greater reduction in low-density lipoprotein cholesterol (LDL-C) significantly reduced the risk of ischemic stroke recurrence (OR: 0.15 [95% CI: 0.11-0.20]). The overall beneficial effect of statin therapy was confirmed to prevent ischemic stroke with an OR of 0.51 (95% CI: 0.36-0.72). Conclusions: Effective lipid-lowering therapy could decrease the blood LDL-C level, which had a protective effect against stroke recurrence. These results support the use of predicted baseline cerebrovascular disease risk equations to inform decisions regarding blood lipid-lowering treatment in ischemic stroke patients in China.
Collapse
Affiliation(s)
- Kang-Ning Chen
- Department of Neurology, The First Hospital Affiliated to Army Medical University (Southwest Hospital), Chongqing, China
- *Correspondence: Kang-Ning Chen
| | - Li He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lian-Mei Zhong
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu-Qin Ran
- Medical Affairs, MSD (China) Holding Co., Ltd., Shanghai, China
| | - Yan Liu
- Medical Affairs, MSD (China) Holding Co., Ltd., Shanghai, China
| |
Collapse
|
16
|
Tang T, Duan Z, Xu J, Liang J, Zhang S, Zhang H, Zhang X, Wang Y. Pterostilbene reduces endothelial cell injury in vascular arterial walls by regulating the Nrf2-mediated AMPK/STAT3 pathway in an atherosclerosis rat model. Exp Ther Med 2019; 19:45-52. [PMID: 31853271 PMCID: PMC6909712 DOI: 10.3892/etm.2019.8211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Endothelial cell injury in vascular arterial walls is a hallmark of atherosclerosis. Pterostilbene (Pts) has been shown to have an anti-oxidative and anti-apoptotic effect in numerous diseases via regulation of intracellular metabolism. The purpose of this study was to investigate the protective effect and possible mechanism of Pts against endothelial cell apoptosis in an atherosclerotic rat model. An atherosclerotic rat model was established using a high-fat, high glucose and high cholesterol diet. The effects of Pts on apoptosis and oxidative stress injury were measured using atherosclerotic lesion analysis, western blot analysis, hematoxylin and eosin straining, TUNEL assay and immunohistochemistry. In vivo results in an atherosclerosis rat model showed that Pts administration decreased the inflammatory response. Pts administration attenuated atherogenesis, reduced aortic plaque size, reduced macrophage infiltration, and suppressed oxidative stress and apoptosis of vascular arterial walls. In vitro assays using cultured human endothelial cells showed that Pts administration decreased hydrogen peroxide-induced cytotoxicity, oxidative stress injury and apoptosis via nuclear factor erythroid 2-related factor 2 (Nrf2) activation in endothelial cells. Additionally, Pts administration increased the expression level of Nrf2 and 5′ adenosine monophosphate-activated protein kinase (AMPK), and the phosphorylation level of AMPK and decreased signal transducer and activator of transcription 3 (STAT3) expression in these cells. Furthermore, knockdown of Nrf2 prevented Pts-decrease oxidative stress injury and apoptosis. In conclusion, these data suggest that Pts can protect endothelial cells in the vascular arterial walls against atherosclerosis-induced injury through regulation of the Nrf2-mediated AMPK/STAT3 pathway.
Collapse
Affiliation(s)
- Tieyu Tang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Zuowei Duan
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jiang Xu
- Department of Neurology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China.,Department of Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou, Jiangsu 225001, P.R. China
| | - Shuai Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Haifeng Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xinjiang Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yingge Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
17
|
Salata K, Syed M, Hussain MA, de Mestral C, Greco E, Mamdani M, Tu JV, Forbes TL, Bhatt DL, Verma S, Al-Omran M. Statins Reduce Abdominal Aortic Aneurysm Growth, Rupture, and Perioperative Mortality: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2019; 7:e008657. [PMID: 30371297 PMCID: PMC6404894 DOI: 10.1161/jaha.118.008657] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background There are no recognized pharmacological treatments for abdominal aortic aneurysms (AAA), although statins are suggested to be beneficial. We sought to summarize the literature regarding the effects of statins on human AAA growth, rupture, and 30‐day mortality. Methods and Results We conducted a systematic review and meta‐analysis of randomized and observational studies using the Cochrane CENTRAL database, MEDLINE, and EMBASE up to June 15, 2018. Review, abstraction, and quality assessment were conducted by 2 independent reviewers, and a third author resolved discrepancies. Pooled mean differences and odds ratios with 95% confidence intervals were calculated using random effects models. Heterogeneity was quantified using the I2 statistic, and publication bias was assessed using funnel plots. Our search yielded 911 articles. One case‐control and 21 cohort studies involving 80 428 patients were included. The risk of bias was low to moderate. Statin use was associated with a mean AAA growth rate reduction of 0.82 mm/y (95% confidence interval 0.33, 1.32, P=0.001, I2=86%). Statins were also associated with a lower rupture risk (odds ratio 0.63, 95% confidence interval 0.51, 0.78, P<0.0001, I2=27%), and preoperative statin use was associated with a lower 30‐day mortality following elective AAA repair (odds ratio 0.55, 95% confidence interval 0.36, 0.83, P=0.005, I2=57%). Conclusions Statin therapy may be associated with reduction in AAA progression, rupture, and lower rates of perioperative mortality following elective AAA repair. These data argue for widespread statin use in AAA patients. Clinical Trial Registration URL: http://www.crd.york.ac.uk. Unique identifier: CRD42017056480.
Collapse
Affiliation(s)
- Konrad Salata
- 1 Division of Vascular Surgery Department of Surgery University of Toronto Ontario Canada.,2 Division of Vascular Surgery Li Ka Shing Knowledge Institute of St. Michael's Hospital Toronto Ontario Canada
| | - Muzammil Syed
- 3 Faculty of Science McMaster University Hamilton Ontario Canada
| | - Mohamad A Hussain
- 1 Division of Vascular Surgery Department of Surgery University of Toronto Ontario Canada.,2 Division of Vascular Surgery Li Ka Shing Knowledge Institute of St. Michael's Hospital Toronto Ontario Canada
| | - Charles de Mestral
- 1 Division of Vascular Surgery Department of Surgery University of Toronto Ontario Canada.,2 Division of Vascular Surgery Li Ka Shing Knowledge Institute of St. Michael's Hospital Toronto Ontario Canada
| | - Elisa Greco
- 1 Division of Vascular Surgery Department of Surgery University of Toronto Ontario Canada.,2 Division of Vascular Surgery Li Ka Shing Knowledge Institute of St. Michael's Hospital Toronto Ontario Canada
| | - Muhammad Mamdani
- 4 Li Ka Shing Centre for Healthcare Analytics Research and Training (CHART) Li Ka Shing Knowledge Institute St. Michael's Hospital Toronto Ontario Canada.,5 Leslie Dan Faculty of Pharmacy University of Toronto Ontario Canada.,6 Department of Medicine Faculty of Medicine University of Toronto Ontario Canada.,7 Institute of Health Policy, Management and Evaluation Dalla Lana Faculty of Public Health University of Toronto Ontario Canada.,8 Institute for Clinical Evaluative Sciences at Sunnybrook Hospital Toronto Ontario Canada
| | - Jack V Tu
- 7 Institute of Health Policy, Management and Evaluation Dalla Lana Faculty of Public Health University of Toronto Ontario Canada.,8 Institute for Clinical Evaluative Sciences at Sunnybrook Hospital Toronto Ontario Canada.,9 Division of Cardiology Department of Medicine Schulich Heart Program Sunnybrook Hospital Toronto Ontario Canada.,10 Schulich Heart Research Program Sunnybrook Research Institute at Sunnybrook Hospital Toronto Ontario Canada
| | - Thomas L Forbes
- 1 Division of Vascular Surgery Department of Surgery University of Toronto Ontario Canada.,11 Division of Vascular Surgery Toronto General Hospital Toronto Ontario Canada
| | - Deepak L Bhatt
- 12 Brigham and Women's Hospital Heart and Vascular Center Boston MA.,13 Harvard Medical School Boston MA
| | - Subodh Verma
- 14 Division of Cardiac Surgery Department of Surgery University of Toronto Ontario Canada.,15 Division of Cardiac Surgery Li Ka Shing Knowledge Institute of St. Michael's Hospital Toronto Ontario Canada
| | - Mohammed Al-Omran
- 1 Division of Vascular Surgery Department of Surgery University of Toronto Ontario Canada.,2 Division of Vascular Surgery Li Ka Shing Knowledge Institute of St. Michael's Hospital Toronto Ontario Canada.,16 Department of Surgery King Saud University Riyadh Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Simvastatin mediates inhibition of exosome synthesis, localization and secretion via multicomponent interventions. Sci Rep 2019; 9:16373. [PMID: 31704996 PMCID: PMC6841733 DOI: 10.1038/s41598-019-52765-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/21/2019] [Indexed: 01/21/2023] Open
Abstract
Discovery of exosomes as modulator of cellular communication has added a new dimension to our understanding of biological processes. Exosomes influence the biological systems by mediating trans-communication across tissues and cells, which has important implication for health and disease. In absence of well-characterized modulators of exosome biogenesis, an alternative option is to target pathways generating important exosomal components. Cholesterol represents one such essential component required for exosomal biogenesis. We initiated this study to test the hypothesis that owing to its cholesterol lowering effect, simvastatin, a HMG CoA inhibitor, might be able to alter exosome formation and secretion. Simvastatin was tested for its effect on exosome secretion under various in-vitro and in-vivo settings and was found to reduce the secretion of exosome from various cell-types. It was also found to alter the levels of various proteins important for exosome production. Murine model of Acute Airway Inflammation was used for further validation of our findings. We believe that the knowledge acquired in this study holds potential for extension to other exosome dominated pathologies and model systems.
Collapse
|
19
|
Abstract
Abstract
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
This study aimed to examine the association between preadmission statin use and 90-day mortality in critically ill patients and to investigate whether this association differed according to statin type and dose. We hypothesized that preadmission statin use was associated with lower 90-day mortality.
Methods
This retrospective cohort study analyzed the medical records of all adult patients admitted to the intensive care unit in a single tertiary academic hospital between January 2012 and December 2017. Data including preadmission statin use, statin subtype, and daily dosage were collected, and the associations between these variables and 90-day mortality after intensive care unit admission were examined. The primary endpoint was 90-day mortality.
Results
A total of 24,928 patients (7,396 statin users and 17,532 non–statin users) were included. After propensity score matching, 5,354 statin users and 7,758 non–statin users were finally included. The 90-day mortality rate was significantly higher in non–statin users (918 of 7,758; 11.8%) than in statin users (455 of 5,354; 8.5%; P < 0.001). In Cox regression analysis, the 90-day mortality rate was lower among statin users than among non–statin users (hazard ratio: 0.70, 95% CI: 0.63 to 0.79; P < 0.001). Rosuvastatin use was associated with 42% lower 90-day mortality (hazard ratio: 0.58, 95% CI: 0.47 to 0.72; P < 0.001). There were no specific significant differences in the association between daily statin dose and 90-day mortality. In competing risk analysis, the risk of noncardiovascular 90-day mortality in statin users was 32% lower than that in non–statin users (hazard ratio: 0.68, 95% CI: 0.60 to 0.78; P < 0.001). Meanwhile, cardiovascular 90-day mortality was not significantly associated with statin use.
Conclusions
Preadmission statin use was associated with a lower 90-day mortality. This association was more evident in the rosuvastatin group and with noncardiovascular 90-day mortality; no differences were seen according to daily dosage intensity.
Collapse
|
20
|
Yu C, Jiang F, Zhang M, Luo D, Shao S, Zhao J, Gao L, Zuo C, Guan Q. HC diet inhibited testosterone synthesis by activating endoplasmic reticulum stress in testicular Leydig cells. J Cell Mol Med 2019; 23:3140-3150. [PMID: 30884106 PMCID: PMC6484377 DOI: 10.1111/jcmm.14143] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/28/2022] Open
Abstract
Emerging epidemiological studies indicate that hypercholesterolaemia is a risk factor for testosterone deficiency. However, the underlying mechanism is unclear. Testicular Leydig cells are the primary source of testosterone in males. To identify the effect and mechanism of cholesterol overload on Leydig cell function, rats were fed with a HC (HC) diet to induce hypercholesterolaemia. During the 16‐week feeding period, serum testosterone levels were reduced in a time‐dependent manner in rats fed the HC diet. Accordingly, these steroidogenic enzymes within the Leydig cells, including steroidogenic acute regulatory protein (StAR), cholesterol side‐chain cleavage cytochrome P450 (P450scc) and 3β‐hydroxysteroid dehydrogenase (3β‐HSD), were down‐regulated. Notably, the HC‐fed rats showed evident endoplasmic reticulum (ER) stress in the testis, including a dilated ER as an evident pathological change in the Leydig cell ultrastructure, up‐regulated ER stress biomarker (binding immunoglobulin protein) levels and activation of the activating transcription factor 6 (ATF6)‐related unfolded protein response pathway. Further analysis showed that when 4‐phenyl butyric acid (4‐PBA) was used to block ER stress in HC‐fed rats for 8 weeks, the testosterone deficiency was significantly alleviated. Our findings suggested that high dietary cholesterol intake affected serum testosterone levels by down‐regulating steroidogenic enzymes and that activated ER stress might serve as the underlying mechanism.
Collapse
Affiliation(s)
- Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, P. R. China
| | - Fangjie Jiang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, P. R. China.,Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Meijie Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, P. R. China
| | - Dandan Luo
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, P. R. China
| | - Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, P. R. China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, P. R. China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, P. R. China.,Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Changting Zuo
- Department of Gynaecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, P. R. China
| |
Collapse
|
21
|
Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kröller-Schön S, Münzel T, Li H. New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease. Int J Mol Sci 2019; 20:ijms20010187. [PMID: 30621010 PMCID: PMC6337296 DOI: 10.3390/ijms20010187] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of atherosclerosis. Oxidative stress is a trigger of endothelial dysfunction and it is a hall-mark of cardiovascular diseases and of the risk factors/stressors that are responsible for their initiation. Endothelial function is largely based on endothelial nitric oxide synthase (eNOS) function and activity. Likewise, oxidative stress can lead to the loss of eNOS activity or even “uncoupling” of the enzyme by adverse regulation of well-defined “redox switches” in eNOS itself or up-/down-stream signaling molecules. Of note, not only eNOS function and activity in the endothelium are essential for vascular integrity and homeostasis, but also eNOS in perivascular adipose tissue plays an important role for these processes. Accordingly, eNOS protein represents an attractive therapeutic target that, so far, was not pharmacologically exploited. With our present work, we want to provide an overview on recent advances and future therapeutic strategies that could be used to target eNOS activity and function in cardiovascular (and other) diseases, including life style changes and epigenetic modulations. We highlight the redox-regulatory mechanisms in eNOS function and up- and down-stream signaling pathways (e.g., tetrahydrobiopterin metabolism and soluble guanylyl cyclase/cGMP pathway) and their potential pharmacological exploitation.
Collapse
Affiliation(s)
- Andreas Daiber
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany.
| | - Ning Xia
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Sebastian Steven
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Matthias Oelze
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Alina Hanf
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Swenja Kröller-Schön
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Thomas Münzel
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany.
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
22
|
Enhancement of the efficacy of mesenchymal stem cells in the treatment of ischemic diseases. Biomed Pharmacother 2018; 109:2022-2034. [PMID: 30551458 DOI: 10.1016/j.biopha.2018.11.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023] Open
Abstract
Ischemic diseases refer to a wide range of diseases caused by reduced blood flow and a subsequently deficient oxygen and nutrient supply. The pathogenesis of ischemia is multifaceted and primarily involves inflammation, oxidative stress and an apoptotic response. Over the last decade, mesenchymal stem cells (MSCs) have been widely studied as potential cell therapy agents for ischemic diseases due to their multiple favourable functions. However, the low homing and survival rates of transplanted cells have been concerns limiting for their clinical application. Recently, increasing studies have attempted to enhance the efficacy of MSCs by various strategies including genetic modification, pretreatment, combined application and biomaterial application. The purpose of this review is to summarize these creative strategies and the progress in basic and preclinical studies.
Collapse
|
23
|
Hussain MA, Saposnik G, Raju S, Salata K, Mamdani M, Tu JV, Bhatt DL, Verma S, Al‐Omran M. Association Between Statin Use and Cardiovascular Events After Carotid Artery Revascularization. J Am Heart Assoc 2018; 7:e009745. [PMID: 30369318 PMCID: PMC6201401 DOI: 10.1161/jaha.118.009745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/09/2018] [Indexed: 01/27/2023]
Abstract
Background Statins are commonly used for the prevention of cardiovascular events; however, statins are underutilized in patients with noncoronary atherosclerosis. We sought to establish the rates of statin use in patients with carotid artery disease and to examine the association between statin therapy and outcomes after carotid revascularization. Methods and Results In this population-level retrospective cohort study, we identified all individuals aged ≥66 years who underwent carotid endarterectomy or stenting in Ontario, Canada (2002-2014). The primary outcome was a composite of 1-year stroke, myocardial infarction, or death (major adverse cardiac and cerebrovascular events). Five-year risks were also examined. Adjusted hazard ratios were computed using inverse probability of treatment weighting based on propensity scores. A total of 7893 of 10 723 patients (73.6%) who underwent carotid revascularization were on preprocedural statin therapy; moderate- or high-dose therapy was utilized by 7384 patients (68.9%). The composite rate of 1-year major adverse cardiac and cerebrovascular events was lower among statin users (adjusted hazard ratio: 0.76; 95% confidence interval, 0.70-0.83). Patients who were on persistent long-term statin therapy after the carotid procedure continued to experience significantly lower risk of major adverse cardiac and cerebrovascular events at 5 years (adjusted hazard ratio: 0.75, 95% confidence interval, 0.71-0.80). The beneficial associations with statin use were observed regardless of type of carotid revascularization procedure, carotid artery symptom status, or statin dose. Conclusions Continuous statin therapy was associated with a 25% lower risk of long-term adverse cardiovascular events in patients with significant carotid disease. Along with other supportive evidence, statins should be considered in patients undergoing carotid revascularization, and efforts are required to increase statin use in this undertreated population.
Collapse
Affiliation(s)
- Mohamad A. Hussain
- Division of Vascular SurgerySt. Michael's HospitalTorontoOntarioCanada
- Department of SurgeryUniversity of TorontoOntarioCanada
| | - Gustavo Saposnik
- Division of NeurologySt. Michael's HospitalTorontoOntarioCanada
- Li Ka Shing Knowledge Institute of St. Michael's HospitalTorontoOntarioCanada
- Department of MedicineUniversity of TorontoOntarioCanada
- Institute of Health Policy, Management, and EvaluationUniversity of TorontoOntarioCanada
- Institute for Clinical Evaluative SciencesTorontoOntarioCanada
| | - Sneha Raju
- Department of SurgeryUniversity of TorontoOntarioCanada
| | - Konrad Salata
- Division of Vascular SurgerySt. Michael's HospitalTorontoOntarioCanada
- Department of SurgeryUniversity of TorontoOntarioCanada
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute of St. Michael's HospitalTorontoOntarioCanada
- Institute of Health Policy, Management, and EvaluationUniversity of TorontoOntarioCanada
- Leslie Dan Faculty of PharmacyUniversity of TorontoOntarioCanada
- Institute for Clinical Evaluative SciencesTorontoOntarioCanada
- King Saud University‐Li Ka Shing Collaborative Research ProgramKing Saud UniversityRiyadhKingdom of Saudi Arabia
| | - Jack V. Tu
- Department of MedicineUniversity of TorontoOntarioCanada
- Institute of Health Policy, Management, and EvaluationUniversity of TorontoOntarioCanada
- Institute for Clinical Evaluative SciencesTorontoOntarioCanada
- Division of CardiologySchulich Heart CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Deepak L. Bhatt
- Brigham and Women's Hospital Heart & Vascular CenterHarvard Medical SchoolBostonMA
| | - Subodh Verma
- Division of Cardiac SurgerySt. Michael's HospitalTorontoOntarioCanada
- Li Ka Shing Knowledge Institute of St. Michael's HospitalTorontoOntarioCanada
- Department of SurgeryUniversity of TorontoOntarioCanada
- King Saud University‐Li Ka Shing Collaborative Research ProgramKing Saud UniversityRiyadhKingdom of Saudi Arabia
| | - Mohammed Al‐Omran
- Division of Vascular SurgerySt. Michael's HospitalTorontoOntarioCanada
- Li Ka Shing Knowledge Institute of St. Michael's HospitalTorontoOntarioCanada
- Department of SurgeryUniversity of TorontoOntarioCanada
- King Saud University‐Li Ka Shing Collaborative Research ProgramKing Saud UniversityRiyadhKingdom of Saudi Arabia
- Department of SurgeryKing Saud UniversityRiyadhKingdom of Saudi Arabia
| |
Collapse
|
24
|
Jeon S, Choi M. Anti-inflammatory and anti-aging effects of hydroxytyrosol on human dermal fibroblasts (HDFs). BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-018-0031-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Lee EJ, Song KJ, Hwang HJ, Kim KS. Effectiveness of atorvastatin in suppressingMUC5ACgene expression in human airway epithelial cells. Int Forum Allergy Rhinol 2016; 6:1159-1166. [DOI: 10.1002/alr.21811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/12/2016] [Accepted: 05/22/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Eun Jung Lee
- Department of Otorhinolaryngology; Yonsei University College of Medicine; Seoul Korea
| | - Kee Jae Song
- Department of Otorhinolaryngology; Catholic Kwandong University; International St. Mary's Hospital Incheon Korea
| | - Hye Jin Hwang
- Department of Otorhinolaryngology; Yonsei University College of Medicine; Seoul Korea
| | - Kyung-Su Kim
- Department of Otorhinolaryngology; Yonsei University College of Medicine; Seoul Korea
| |
Collapse
|
26
|
Abstract
Problem This review focuses on the association between the metabolic syndrome (MS) and nephrolithiasis. Findings Associations between nephrolithiasis and systemic diseases are recognized, including atherosclerosis, cardiovascular (CV) disease, hypertension (HNT), diabetes mellitus (DM)—composite risk factors grouped as the MS. Kidney stones incidence is increasing in this particularly high risk group. Those with stones are prone to the disease and those with the systemic disease are at risk for stone formation, with the highest incidence in persons with multiple traits of the MS. Pathophysiologic explanations for the increased stone risk related to MS are likely complex and dynamic. Conclusions Kidney stones disproportionately affect persons with some or all traits of MS. One unifying theory may be of a common systemic malfunction of inflammation and tissue damage as an underlying mechanism, but it is unlikely to be the only mechanistic explanation. Further research is needed to investigate this and other hypotheses that go beyond population based and urine physiochemical studies in order to elucidate the mechanisms behind the individual disease states themselves.
Collapse
Affiliation(s)
| | - Ojas Shah
- New York University, New York, NY 10016, USA
| |
Collapse
|
27
|
Assessing Endothelial Dysfunction in Patients with Ankylosing Spondylitis. CURRENT HEALTH SCIENCES JOURNAL 2016; 42:61-68. [PMID: 30568814 PMCID: PMC6256147 DOI: 10.12865/chsj.42.01.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/15/2016] [Indexed: 11/18/2022]
Abstract
The objectives proposed were the evaluation of the endothelial dysfunction by ultrasonographic with examination in patients with (AS), the evaluation of the lipid profile of these patients and the identification of some correlations with certain clinical and biological parameters. MATERIAL AND METHOD The study has a prospective nature, type case-control, and took place in the Rheumatology Clinic of Emergency County Hospital Craiova and was performed on 140 patients, who were divided in two groups, patients from the population of patients suffering from ankylosing spondylitis and non-inflammatory rheumatic affections assisted in the same period of the research. Study design involved: patients' with AS registration, duration of the disease, type of joint damage (axial or peripheral), progression of the disease, activity indices (BASDAI), mobility (BASFI) and severity, therapeutic protocol, complete physical examination, ESR, hs-CRP, level of the glucose in the blood, creatinine, uric acid, complete lipid profile, bonejoint radiological examination, ultrasound examination (2D+Doppler) of the carotid arteries. RESULTS AND DISCUSSIONS endothelial dysfunction was more important in patients with AS and was significantly associated with the inflammatory status-especially with hs-CRP, age, duration and severity of the disease. Results of the study show that patients suffering from AS are included in a high risk class due to the chronic inflammatory status and to the pro-atherogenic lipid profile, mutually reinforcing variables. CONCLUSIONS Patients with AS have a pro-atherogenic status and early atherosclerotic lesions.
Collapse
|
28
|
Rauthan M, Pilon M. A chemical screen to identify inducers of the mitochondrial unfolded protein response in C. elegans. WORM 2015; 4:e1096490. [PMID: 27123370 PMCID: PMC4826155 DOI: 10.1080/21624054.2015.1096490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023]
Abstract
We previously showed that inhibition of the mevalonate pathway in C. elegans causes inhibition of protein prenylation, developmental arrest and lethality. We also showed that constitutive activation of the mitochondrial unfolded protein response, UPRmt, is an effective way for C. elegans to become resistant to the negative effects of mevalonate pathway inhibition. This was an important finding since statins, a drug class prescribed to lower cholesterol levels in patients, act by inhibiting the mevalonate pathway, and it is therefore possible that some of their undesirable side effects could be alleviated by activating the UPRmt. Here, we screened a chemical library and identified 4 compounds that specifically activated the UPRmt. One of these compounds, methacycline hydrochloride (a tetracycline antibiotic) also protected C. elegans and mammalian cells from statin toxicity. Methacycline hydrochloride and ethidium bromide, a known UPRmt activator, were also tested in mice: only ethidium bromide significantly activate the UPRmt in skeletal muscles.
Collapse
Affiliation(s)
- Manish Rauthan
- Department of Chemistry and Molecular Biology; University of Gothenburg ; Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology; University of Gothenburg ; Gothenburg, Sweden
| |
Collapse
|
29
|
Steven S, Münzel T, Daiber A. Exploiting the Pleiotropic Antioxidant Effects of Established Drugs in Cardiovascular Disease. Int J Mol Sci 2015; 16:18185-223. [PMID: 26251902 PMCID: PMC4581241 DOI: 10.3390/ijms160818185] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is a leading cause of death and reduced quality of life worldwide. Arterial vessels are a primary target for endothelial dysfunction and atherosclerosis, which is accompanied or even driven by increased oxidative stress. Recent research in this field identified different sources of reactive oxygen and nitrogen species contributing to the pathogenesis of endothelial dysfunction. According to lessons from the past, improvement of endothelial function and prevention of cardiovascular disease by systemic, unspecific, oral antioxidant therapy are obviously too simplistic an approach. Source- and cell organelle-specific antioxidants as well as activators of intrinsic antioxidant defense systems might be more promising. Since basic research demonstrated the contribution of different inflammatory cells to vascular oxidative stress and clinical trials identified chronic inflammatory disorders as risk factors for cardiovascular events, atherosclerosis and cardiovascular disease are closely associated with inflammation. Therefore, modulation of the inflammatory response is a new and promising approach in the therapy of cardiovascular disease. Classical anti-inflammatory therapeutic compounds, but also established drugs with pleiotropic immunomodulatory abilities, demonstrated protective effects in various models of cardiovascular disease. However, results from ongoing clinical trials are needed to further evaluate the value of immunomodulation for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Sebastian Steven
- Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| | - Thomas Münzel
- Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| | - Andreas Daiber
- Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| |
Collapse
|
30
|
Budha NR, Leabman M, Jin JY, Wada DR, Baruch A, Peng K, Tingley WG, Davis JD. Modeling and Simulation to Support Phase 2 Dose Selection for RG7652, a Fully Human Monoclonal Antibody Against Proprotein Convertase Subtilisin/Kexin Type 9. AAPS J 2015; 17:881-90. [PMID: 25823668 PMCID: PMC4476990 DOI: 10.1208/s12248-015-9750-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/17/2015] [Indexed: 12/12/2022] Open
Abstract
RG7652 is a fully humanized monoclonal antibody targeting human PCSK9, a regulator of serum low density lipoprotein cholesterol (LDLc) levels. RG7652 prevents degradation of the hepatic LDLc receptors by blocking PCSK9 binding and thereby resulting in efficient LDLc uptake by hepatocytes. The pharmacokinetics of RG7652 have been evaluated in healthy subjects after single and multiple subcutaneous doses. Pharmacokinetic (PK) and pharmacodynamic (PD) models were developed to explain the antibody PK and LDLc time course data. The PK and PD models based on data from healthy subjects were used to simulate the effects of RG7652 on LDLc levels for a range of potential dose regimens in patients with coronary heart disease. A one-compartment PK model combined with an indirect PD response model was able to adequately describe the PK and LDLc data. Simulations of 400 mg every 4 weeks or 800 mg every 8 weeks regimens show significant LDLc reduction and suggest that dosing RG7652 once every month or once every 2 months is predicted to be optimal for the treatment of hypercholesterolemia. The PK and PD model successfully described the PK and LDLc data from healthy subjects in a Phase 1 study, and the model-based simulations provided useful insights and quantitative understanding for the selection of Phase 2 study doses in patients with coronary heart disease. The approach used in the case study demonstrates the utility of modeling and simulation in designing dose-ranging studies.
Collapse
Affiliation(s)
- Nageshwar R. Budha
- />Clinical Pharmacology, Genentech Inc., 1 DNA Way, MS # 463a, S., San Francisco, California 94080 USA
| | - Maya Leabman
- />Development Sciences, Genentech Inc., South San Francisco, California USA
| | - Jin Y. Jin
- />Clinical Pharmacology, Genentech Inc., 1 DNA Way, MS # 463a, S., San Francisco, California 94080 USA
| | | | - Amos Baruch
- />Development Sciences, Genentech Inc., South San Francisco, California USA
| | - Kun Peng
- />Development Sciences, Genentech Inc., South San Francisco, California USA
| | | | - John D. Davis
- />BioAnalytical Sciences, Genentech Inc., South San Francisco, California USA
- />Clinical Pharmacology, Regeneron Pharmaceuticals, Tarrytown, NY USA
| |
Collapse
|
31
|
Chen HH, Lin MC, Muo CH, Yeh SY, Sung FC, Kao CH. Combination Therapy of Metformin and Statin May Decrease Hepatocellular Carcinoma Among Diabetic Patients in Asia. Medicine (Baltimore) 2015; 94:e1013. [PMID: 26091447 PMCID: PMC4616544 DOI: 10.1097/md.0000000000001013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies have shown that metformin or statins may decrease hepatocellular carcinoma (HCC) in diabetic patients. Accordingly, this article evaluates whether combination therapy may further reduce HCC. Newly diagnosed type 2 diabetes mellitus (DM) patients, excluding those with history of malignancy prior to the date of DM diagnosis, were recruited to a DM cohort. DM patients developed HCC as the cancer cohort and the date for HCC diagnosis as index date. Non-cancer cohort was frequency matched with 4:1 according to age, sex, DM-year, and index date as case group from DM cohort. Patients who were treated with statins showed a 63% decreased risk of HCC (odds ratio [OR] = 0.37; 95% confidence interval [CI] = 0.27-0.49). Patients who consumed simvastatin, atorvastatin, or rosuvastatin significantly decreased risk for HCC (OR = 0.32, 0.31, and 0.22; 95% CI = 0.18-0.58, 0.19-0.52, and 0.08-0.61, respectively). Metformin combinations with simvastatin, atorvastatin, or rosuvastatin may decrease HCC (OR = 0.30, 0.30, and 0.24; 95% CI = 0.15-0.59, 0.16-0.54, and 0.08-0.70, respectively). The comorbidities for HCC were decreased by consuming simvastatin and atorvastatin (OR = 0.31 and 0.29; 95% CI = 0.14-0.67 and 0.15-0.57, respectively). Only combination therapy of metformin and simvastatin may significantly decreased HCC comorbidities (OR = 0.26; 95% CI = 0.11-0.60) in our study. In Asia, not all metformin combinations with statins may reduce the incidence of HCC and not all of this kind of combination therapy may decrease the HCC comorbidities.
Collapse
Affiliation(s)
- Hsin-Hung Chen
- From the School of Medicine and Public Health, Chung Shan Medical University, Taichung, Taiwan (H-HC); Division of Metabolism and Endocrinology, Changhua Christian Hospital, Changhua, Taiwan (H-HC); Division of Metabolism and Endocrinology, Nantou Christian Hospital, Nantou, Taiwan (H-HC); Department of Nuclear Medicine, E-DA Hospital, Kaohsiung, Taiwan (M-CL); Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan (C-HM, F-CS); Asia University, Taichung, Taiwan (S-YY); Graduate Institute of Clinical Medical Science, School of Medicine, College of Medicine, Taichung, Taiwan (F-CS, C-HK); and Department of Nuclear Medicine and PET Center China Medical University Hospital, Taichung, Taiwan (C-HK)
| | | | | | | | | | | |
Collapse
|
32
|
Atorvastatin ameliorates cardiac fibrosis and improves left ventricular diastolic function in hypertensive diastolic heart failure model rats. J Hypertens 2015; 32:1534-41; discussion 1541. [PMID: 24759122 DOI: 10.1097/hjh.0000000000000184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Clinical studies have suggested the beneficial effects of statin therapy on diastolic heart failure. However, the mechanism of the beneficial effects of statin on diastolic heart failure remains unknown. We examined the effect of atorvastatin on the cardiac function of Dahl salt-sensitive rat, a model of hypertensive diastolic heart failure. METHODS Dahl salt-sensitive rats were divided into three groups: the low-salt group (given standard diet), the high-salt group (given 8% NaCl diet from 7 weeks of age), and the high-salt + atorvastatin (HS + Ato) group (given 8% NaCl diet from 7 weeks of age and atorvastatin from 17 weeks of age). We evaluated left ventricular hypertrophy (LVH), fibrosis, and function by using echocardiography and histology. We also examined the expression of molecules related to fibrosis in the hearts of Dahl salt-sensitive rats and cultured rat cardiac fibroblasts. RESULTS Left ventricular hypertrophy, diastolic dysfunction, and cardiac fibrosis were observed in the high-salt group. Atorvastatin ameliorated cardiac fibrosis and normalized left ventricular diastolic function without altering blood pressure. Atorvastatin also decreased the expression of heat shock protein 47 (HSP47), an essential chaperone for type 1 collagen processing, without changing in expression of transforming growth factor beta. In rat cardiac fibroblast cells, atorvastatin also reduced HSP47 level induced by transforming growth factor beta. The effect of atorvastatin was reversed by mevalonate and geranylgeranyl-pyrophosphate and mimicked by Rho kinase inhibitor. CONCLUSION Atorvastatin administration ameliorates cardiac fibrosis and improves left ventricular diastolic function in Dahl salt-sensitive rats. Lowering HSP47 by atorvastatin via inhibition of Rho-Rho kinase pathway is suggested as a mechanism.
Collapse
|
33
|
Wang ZX, Wang CQ, Li XY, Ding Y, Feng GK, Jiang XJ. Changes of Naturally Occurring CD4 +CD25 + FOXP3 + Regulatory T Cells in Patients With Acute Coronary Syndrome and the Beneficial Effects of Atorvastatin Treatment. Int Heart J 2015; 56:163-9. [DOI: 10.1536/ihj.14-245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhi Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University
| | - Chong Quan Wang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine
| | - Xiao Yan Li
- Department of Cardiology, Renmin Hospital of Wuhan University
| | - Yan Ding
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine
| | - Gao Ke Feng
- Department of Cardiology, Renmin Hospital of Wuhan University
| | - Xue Jun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University
| |
Collapse
|
34
|
Essawy SS, Abo-elmatty DM, Ghazy NM, Badr JM, Sterner O. Antioxidant and anti-inflammatory effects of Marrubium alysson extracts in high cholesterol-fed rabbits. Saudi Pharm J 2014; 22:472-82. [PMID: 25473336 PMCID: PMC4246394 DOI: 10.1016/j.jsps.2013.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/14/2013] [Indexed: 12/22/2022] Open
Abstract
The antioxidant and anti-inflammatory effects of hexane (HEXA), chloroform (CHLORO), ethyl acetate (EA) and total alcoholic (T. ALCOH) extracts of Marrubium alysson in hypercholesterolemic-fed rabbits were evaluated. Hypercholesterolemia was induced in male rabbits by high cholesterol diet (HCD) (350 mg/kg) for 8 weeks. Hypercholesterolemic rabbits were allocated into groups, treated with simvastatin (SIM 5 mg/kg), different extracts of M. alysson at two doses of 250, 500 mg/kg. A normal control group and an HCD control one were used for comparison. Lipid profile, as well as oxidized low density lipoprotein-cholesterol (ox-LDL-C), myeloperoxidase activity (MPO) and superoxide anion production (O2•(-)), C-reactive protein (CRP) and monocyte chemoattractant protein-1 (MCP-1) were also evaluated. In addition, histological examination of ascending aorta was performed. We found dyslipidemia associated with significant increases in ox-LDL-C 123.5 ± 9.8 nmol MDA/mg non-HDL, MPO activity 0.08 ± 0.05 U/100 mg tissue and O2•(-) production 3.5 ± 0.3 nmol cytochrome C reduced/min/g tissue × 10(-4) in hypercholerterolemic rabbits. In addition, there was a significant increase in CRP 6.6 ± 0.49 μmol/L and MCP-1 190.9 ± 6.4 pg/ml and its mRNA expression in HCD. Intima appeared thick with thick plaques surrounding the intima and luminal narrowing. SIM, EA and HEXA extracts of M. alysson had lipid lowering effect, decrease in ox-LDL-C, MPO, O2•(-), CRP and MCP-1 mRNA expression with improvement of the pathological picture. M. alysson enhanced the stability of plaque, had lipid lowering, anti-inflammatory and antioxidant activities.
Collapse
Affiliation(s)
- Soha S. Essawy
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Dina M. Abo-elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Nabila M. Ghazy
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Jihan M. Badr
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Olov Sterner
- Department of Organic Chemistry 2, Lund University, P.O. Box 124, S-21100 Lund, Sweden
| |
Collapse
|
35
|
Ranji P, Rauthan M, Pitot C, Pilon M. Loss of HMG-CoA reductase in C. elegans causes defects in protein prenylation and muscle mitochondria. PLoS One 2014; 9:e100033. [PMID: 24918786 PMCID: PMC4053411 DOI: 10.1371/journal.pone.0100033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/21/2014] [Indexed: 01/14/2023] Open
Abstract
HMG-CoA reductase is the rate-limiting enzyme in the mevalonate pathway and the target of cholesterol-lowering statins. We characterized the C. elegans hmgr-1(tm4368) mutant, which lacks HMG-CoA reductase, and show that its phenotypes recapitulate that of statin treatment, though in a more severe form. Specifically, the hmgr-1(tm4368) mutant has defects in growth, reproduction and protein prenylation, is rescued by exogenous mevalonate, exhibits constitutive activation of the UPRer and requires less mevalonate to be healthy when the UPRmt is activated by a constitutively active form of ATFS-1. We also show that different amounts of mevalonate are required for different physiological processes, with reproduction requiring the highest levels. Finally, we provide evidence that the mevalonate pathway is required for the activation of the UPRmt.
Collapse
Affiliation(s)
- Parmida Ranji
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Manish Rauthan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Christophe Pitot
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
36
|
Han MH, Lee MH, Hong SH, Choi YH, Moon JS, Song MK, Kim MJ, Shin SJ, Hwang HJ. Comparison of Anti-inflammatory Activities among Ethanol Extracts of Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus, and their Mixtures in RAW 246.7 Murine Macrophages. ACTA ACUST UNITED AC 2014. [DOI: 10.5352/jls.2014.24.3.329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Auclair M, Afonso P, Capel E, Caron-Debarle M, Capeau J. Impact of darunavir, atazanavir and lopinavir boosted with ritonavir on cultured human endothelial cells: beneficial effect of pravastatin. Antivir Ther 2014; 19:773-82. [PMID: 24535489 DOI: 10.3851/imp2752] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND HIV-infected patients administered long-term ritonavir-boosted protease inhibitors (PIs) are at a greater risk for developing cardiovascular diseases. Endothelial dysfunction is an initiating event in HIV-associated atherosclerosis. Cultured endothelial cells can be used as a model to compare the endothelial toxicity of different PIs. METHODS We compared the effect of darunavir (DRV), darunavir/ritonavir (DRV/r), lopinavir/ritonavir (LPV/r) and atazanavir/ritonavir (ATV/r), used at clinically relevant concentrations, on human coronary artery endothelial cell vascular function, oxidative stress, inflammation and senescence, and studied the effect of pravastatin on PI-induced alterations. RESULTS Vascular endothelial cell function, evaluated by the expression of endothelial nitric oxide synthase and the production of nitric oxide and endothelin-1, was unaffected by DRV or DRV/r, but altered by LPV/r or ATV/r. DRV or DRV/r did not alter, or mildly induced oxidative stress and inflammation (phosphorylation of p65/RelA-NFκB, secretion of IL-6 and IL-8), while ATV/r and LPV/r induced a marked increase. Secretion of sICAM or sVCAM, indicative of altered cell integrity, was not or weakly altered by DRV or DRV/r, but increased by 2-3-fold by LPV/r or ATV/r. Similar results were observed regarding senescence markers: SA-β-galactosidase activation and overexpression of phospho-p53, p16(ink4), p21(WAF-1) and prelamin A. Pravastatin could, in part, reverse PI-induced adverse effects. CONCLUSIONS Ritonavir-boosted PIs differentially induced vascular endothelial cell dysfunction, reactive oxygen species production, inflammation and senescence with no effect or a mild effect of DRV/r, an intermediate effect of ATV/r, and a stronger effect of LPV/r. Statins could, in part, protect the cells from PI-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Martine Auclair
- INSERM, UMR_S 938, CDR Saint Antoine, F-75012, Paris, France
| | | | | | | | | |
Collapse
|
38
|
Sena CM, Matafome P, Louro T, Nunes E, Seiça RM. Effects of atorvastatin and insulin in vascular dysfunction associated with type 2 diabetes. Physiol Res 2014; 63:189-97. [PMID: 24397805 DOI: 10.33549/physiolres.932554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Atorvastatin and insulin have distinct mechanisms of action to improve endothelial function. Therefore, we hypothesized that atorvastatin and insulin therapies alone or in combination could have beneficial effects on endothelium-dependent vascular reactivity, oxidative stress, inflammation and metabolic parameters in Goto-Kakizaki (GK) rats, a model of type 2 diabetes fed with atherogenic diet (GKAD). In parallel with the development of diabetes and lipid profile, the generation of oxidative stress was determined by measurement of lipid peroxides and oxidized proteins and the presence of inflammation was evaluated by assessing C-reactive protein (CRP). Additionally, endothelial dependent and independent vascular sensitivity to acetylcholine and sodium nitroprusside were evaluated. GKAD showed increased carbonyl stress, inflammation, fasting glycemia, dyslipidemia and endothelial dysfunction when compared to control GK rats. Noteworthy, supplementation with insulin deteriorated endothelial dysfunction while atorvastatin induced an improvement. Atorvastatin and insulin therapies in combination improved metabolic parameters, CRP levels and insulin resistance indexes and ameliorated endothelial dysfunction in GKAD rats while they were unable to reduce urinary 8-isoprostranes and plasma carbonyl compounds. The therapeutic association of atorvastatin and insulin provided a better metabolic control with a reduction in endothelial dysfunction in GKAD rats by a mechanism that involves an improvement in systemic inflammation.
Collapse
Affiliation(s)
- C M Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
39
|
Simsek Ozek N, Bal IB, Sara Y, Onur R, Severcan F. Structural and functional characterization of simvastatin-induced myotoxicity in different skeletal muscles. Biochim Biophys Acta Gen Subj 2014; 1840:406-15. [DOI: 10.1016/j.bbagen.2013.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/20/2013] [Accepted: 09/06/2013] [Indexed: 01/05/2023]
|
40
|
Magner DB, Wollam J, Shen Y, Hoppe C, Li D, Latza C, Rottiers V, Hutter H, Antebi A. The NHR-8 nuclear receptor regulates cholesterol and bile acid homeostasis in C. elegans. Cell Metab 2013; 18:212-24. [PMID: 23931753 PMCID: PMC3909615 DOI: 10.1016/j.cmet.2013.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/17/2013] [Accepted: 07/15/2013] [Indexed: 12/17/2022]
Abstract
Hormone-gated nuclear receptors (NRs) are conserved transcriptional regulators of metabolism, reproduction, and homeostasis. Here we show that C. elegans NHR-8 NR, a homolog of vertebrate liver X and vitamin D receptors, regulates nematode cholesterol balance, fatty acid desaturation, apolipoprotein production, and bile acid metabolism. Loss of nhr-8 results in a deficiency in bile acid-like steroids, called the dafachronic acids, which regulate the related DAF-12/NR, thus controlling entry into the long-lived dauer stage through cholesterol availability. Cholesterol supplementation rescues various nhr-8 phenotypes, including developmental arrest, unsaturated fatty acid deficiency, reduced fertility, and shortened life span. Notably, nhr-8 also interacts with daf-16/FOXO to regulate steady-state cholesterol levels and is synthetically lethal in combination with insulin signaling mutants that promote unregulated growth. Our studies provide important insights into nuclear receptor control of cholesterol balance and metabolism and their impact on development, reproduction, and aging in the context of larger endocrine networks.
Collapse
Affiliation(s)
- Daniel B Magner
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse, Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway. Proc Natl Acad Sci U S A 2013; 110:5981-6. [PMID: 23530189 DOI: 10.1073/pnas.1218778110] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Statins are cholesterol-lowering drugs that inhibit 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the synthesis of cholesterol via the mevalonate pathway. This pathway also produces coenzyme Q (a component of the respiratory chain), dolichols (important for protein glycosylation), and isoprenoids (lipid moieties responsible for the membrane association of small GTPases). We previously showed that the nematode Caenorhabditis elegans is useful to study the noncholesterol effects of statins because its mevalonate pathway lacks the sterol synthesis branch but retains all other branches. Here, from a screen of 150,000 mutagenized genomes, we isolated four C. elegans mutants resistant to statins by virtue of gain-of-function mutations within the first six amino acids of the protein ATFS-1, the key regulator of the mitochondrial unfolded protein response that includes activation of the chaperones HSP-6 and HSP-60. The atfs-1 gain-of-function mutants are also resistant to ibandronate, an inhibitor of an enzyme downstream of HMG-CoA reductase, and to gliotoxin, an inhibitor acting on a subbranch of the pathway important for protein prenylation, and showed improved mitochondrial function and protein prenylation in the presence of statins. Additionally, preinduction of the mitochondrial unfolded protein response in wild-type worms using ethidium bromide or paraquat triggered statin resistance, and similar observations were made in Schizosaccharomyces pombe and in a mammalian cell line. We conclude that statin resistance through maintenance of mitochondrial homeostasis is conserved across species, and that the cell-lethal effects of statins are caused primarily through impaired protein prenylation that results in mitochondria dysfunction.
Collapse
|
42
|
Lovastatin-induced decrease of intracellular cholesterol level attenuates fibroblast-to-myofibroblast transition in bronchial fibroblasts derived from asthmatic patients. Eur J Pharmacol 2013; 704:23-32. [PMID: 23485731 DOI: 10.1016/j.ejphar.2013.02.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 01/17/2023]
Abstract
Chronic inflammation of the airways and structural changes in the bronchial wall are basic hallmarks of asthma. Human bronchial fibroblasts derived from patients with diagnosed asthma display in vitro predestination towards TGF-β-induced fibroblast-to-myofibroblast transition (FMT), a key event in the bronchial wall remodelling. Statins inhibit 3-hydroxymethyl-3-glutaryl coenzyme A reductase, a key enzyme in the cholesterol synthesis pathway and are widely used as antilipidemic drugs. The pleiotropic anti-inflammatory effects of statins, independent of their cholesterol-lowering capacity, are also well established. Since commonly used anti-asthmatic drugs do not reverse the structural remodelling of the airways and statins have tentative anti-asthmatic activity, we have studied the effect of lovastatin on FMT in populations of human bronchial fibroblasts derived from asthmatic patients. We demonstrate that the intensity of FMT induced by TGF-β1 was strongly and dose-dependently attenuated by lovastatin. Furthermore, we show that neither the suppression of prenylation of signalling proteins nor the effect on reactive oxygen species formation are important for lovastatin-induced inhibition of myofibroblast differentiation. On the other hand, we show that a squalene synthase inhibitor, zaragozic acid A, reduced the TGF-β1-induced FMT to an extent comparable to lovastatin effect. Additionally we demonstrate that in bronchial fibroblast populations, both inhibitors (lovastatin and zaragozic acid A) attenuate the TGF-β1-induced Smad2 nuclear translocation in a manner dependent on intracellular cholesterol level. Our data suggest that statins can directly, by decrease of intracellular cholesterol level, affect basic cell signalling events crucial for asthmatic processes and potentially prevent perilous bronchial wall remodelling associated with intensive myofibroblast formation.
Collapse
|
43
|
Sadat U, Howarth SPS, Usman A, Taviani V, Tang TY, Graves MJ, Gillard JH. Effect of Low-and High-Dose Atorvastatin on Carotid Artery Distensibility Using Carotid Magnetic Resonance Imaging ^|^mdash;A Post-Hoc Sub Group Analysis of ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. J Atheroscler Thromb 2013; 20:46-56. [DOI: 10.5551/jat.12633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
44
|
Inverse production of IL-6 and IL-10 by abdominal aortic aneurysm explant tissues in culture. Cardiovasc Pathol 2012; 21:482-9. [DOI: 10.1016/j.carpath.2012.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/10/2012] [Accepted: 02/10/2012] [Indexed: 11/22/2022] Open
|
45
|
Brea D, Roquer J, Serena J, Segura T, Castillo J. Oxidative stress markers are associated to vascular recurrence in non-cardioembolic stroke patients non-treated with statins. BMC Neurol 2012; 12:65. [PMID: 22862793 PMCID: PMC3482606 DOI: 10.1186/1471-2377-12-65] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 07/19/2012] [Indexed: 01/18/2023] Open
Abstract
Background Since atherogenesis is related to oxidative stress, our objective was to study the association of oxidative stress markers with the vascular recurrence in non-cardioembolic stroke. Methods Atherosclerotic and oxidative stress markers were evaluated on admission, in 477 patients suffering from a first non-cardioembolic stroke. Patients were followed at 6 and 12 months after inclusion, recording cardiovascular events. As markers of endothelial oxidative stress we used oxidized LDL, Cu/Zn superoxide dismutase and 8-OH deoxiguanosine. 136 patients were being treated with statins at the moment of serum samples acquisition. Results Patients who suffered vascular recurrence or vascular-origin death had higher levels of 8-OHDG (40.06±24.70vs33.11±15.18;p=0.003). We also found associations between vascular recurrence or vascular origin death and Cu/ZnSOD (OR,1.02; 95%CI,1.00-1.03;p=0.0001) and 8-OHDG (OR,1.12;95%CI,1.08-1.16;p<0.0001) in a subgroup of 333 patients that were not in treatment with statins on admission. We also found associations between 8-OHDG and intima media thickness (IMT) (OR,1.13;95%CI,1.09-1.16;p<0.0001), presence of ipsilatieral stenosis≥50% (OR,1.03;95%CI1.00-1.05;p=0.007) and other atherosclerotic plaque characteristics. Conclusions Specific oxidative stress markers were found to be markers of atherosclerosis plaque types and vascular recurrence in non-statins treated patients at admission.
Collapse
Affiliation(s)
- David Brea
- Clinical Neuroscience Research Laboratory, Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Förstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol 2012; 164:213-23. [PMID: 21198553 DOI: 10.1111/j.1476-5381.2010.01196.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nitric oxide (NO) produced by the endothelium is an important protective molecule in the vasculature. It is generated by the enzyme endothelial NO synthase (eNOS). Similar to all NOS isoforms, functional eNOS transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH), via the flavins flavin adenine dinucleotide and flavin mononucleotide in the carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO. Cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolaemia or cigarette smoking reduce bioactive NO. These risk factors lead to an enhanced production of reactive oxygen species (ROS) in the vessel wall. NADPH oxidases represent major sources of this ROS and have been found upregulated in the presence of cardiovascular risk factors. NADPH-oxidase-derived superoxide avidly reacts with eNOS-derived NO to form peroxynitrite (ONOO(-)). The essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH(4) ) is highly sensitive to oxidation by this ONOO(-). In BH(4) deficiency, oxygen reduction uncouples from NO synthesis, thereby converting NOS to a superoxide-producing enzyme. Among conventional drugs, compounds interfering with the renin-angiotensin-aldosterone system and statins can reduce vascular oxidative stress and increase bioactive NO. In recent years, we have identified a number of small molecules that have the potential to prevent eNOS uncoupling and, at the same time, enhance eNOS expression. These include the protein kinase C inhibitor midostaurin, the pentacyclic triterpenoids ursolic acid and betulinic acid, the eNOS enhancing compounds AVE9488 and AVE3085, and the polyphenolic phytoalexin trans-resveratrol. Such compounds enhance NO production from eNOS also under pathophysiological conditions and may thus have therapeutic potential.
Collapse
Affiliation(s)
- Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.
| | | |
Collapse
|
47
|
Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 2012; 33:829-37, 837a-837d. [PMID: 21890489 PMCID: PMC3345541 DOI: 10.1093/eurheartj/ehr304] [Citation(s) in RCA: 2818] [Impact Index Per Article: 216.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 07/14/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS; EC 1.14.13.39). They all utilize l-arginine and molecular oxygen as substrates and require the cofactors reduced nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin (BH(4)). All NOS bind calmodulin and contain haem. Neuronal NOS (nNOS, NOS I) is constitutively expressed in central and peripheral neurons and some other cell types. Its functions include synaptic plasticity in the central nervous system (CNS), central regulation of blood pressure, smooth muscle relaxation, and vasodilatation via peripheral nitrergic nerves. Nitrergic nerves are of particular importance in the relaxation of corpus cavernosum and penile erection. Phosphodiesterase 5 inhibitors (sildenafil, vardenafil, and tadalafil) require at least a residual nNOS activity for their action. Inducible NOS (NOS II) can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents. Inducible NOS generates large amounts of NO that have cytostatic effects on parasitic target cells. Inducible NOS contributes to the pathophysiology of inflammatory diseases and septic shock. Endothelial NOS (eNOS, NOS III) is mostly expressed in endothelial cells. It keeps blood vessels dilated, controls blood pressure, and has numerous other vasoprotective and anti-atherosclerotic effects. Many cardiovascular risk factors lead to oxidative stress, eNOS uncoupling, and endothelial dysfunction in the vasculature. Pharmacologically, vascular oxidative stress can be reduced and eNOS functionality restored with renin- and angiotensin-converting enzyme-inhibitors, with angiotensin receptor blockers, and with statins.
Collapse
Affiliation(s)
- Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55101 Mainz, Germany.
| | | |
Collapse
|
48
|
High-Dose Statin Pretreatment for the Prevention of Contrast-Induced Nephropathy: A Meta-analysis. Can J Cardiol 2011; 27:851-8. [DOI: 10.1016/j.cjca.2011.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 11/24/2022] Open
|
49
|
Park SH, Kim JI, Jeong YK, Choi YH. Extracts of Allium fistulosum Attenuates Pro-Inflammatory Action in the Lipopolysaccharide-Stimulated BV2 Microglia Cells. ACTA ACUST UNITED AC 2011. [DOI: 10.5352/jls.2011.21.6.796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Han SH, Kang EW, Yoon SJ, Yoon HS, Lee HC, Yoo TH, Choi KH, Han DS, Kang SW. Combined vascular effects of HMG-CoA reductase inhibitor and angiotensin receptor blocker in non-diabetic patients undergoing peritoneal dialysis. Nephrol Dial Transplant 2011; 26:3722-8. [DOI: 10.1093/ndt/gfr108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|