1
|
Wutikeli H, Xie T, Xiong W, Shen Y. ELAV/Hu RNA-binding protein family: key regulators in neurological disorders, cancer, and other diseases. RNA Biol 2025; 22:1-11. [PMID: 40000387 PMCID: PMC11926907 DOI: 10.1080/15476286.2025.2471133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The ELAV/Hu family represents a crucial group of RNA-binding proteins predominantly expressed in neurons, playing significant roles in mRNA transcription and translation. These proteins bind to AU-rich elements in transcripts to regulate the expression of cytokines, growth factors, and the development and maintenance of neurons. Elav-like RNA-binding proteins exhibit remarkable molecular weight conservation across different species, highlighting their evolutionary conservation. Although these proteins are widely expressed in the nervous system and other cell types, variations in the DNA sequences of the four Elav proteins contribute to their distinct roles in neurological disorders, cancer, and other Diseases . Elavl1, a ubiquitously expressed family member, is integral to processes such as cell growth, ageing, tumorigenesis, and inflammatory diseases. Elavl2, primarily expressed in the nervous and reproductive systems, is critical for central nervous system and retinal development; its dysregulation has been implicated in neurodevelopmental disorders such as autism. Both Elavl3 and Elavl4 are restricted to the nervous system and are involved in neuronal differentiation and excitability. Elavl3 is essential for cerebellar function and has been associated with epilepsy, while Elavl4 is linked to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. This paper provides a comprehensive review of the ELAV/Hu family's role in nervous system development, neurological disorders, cancer, and other diseases.
Collapse
Affiliation(s)
- Huxitaer Wutikeli
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Special Administrative Region (SAR), Kowloon, Hong Kong, China
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Shi DL, Grifone R, Zhang X, Li H. Rbm24-mediated post-transcriptional regulation of skeletal and cardiac muscle development, function and regeneration. J Muscle Res Cell Motil 2025; 46:53-65. [PMID: 39614020 DOI: 10.1007/s10974-024-09685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
RNA-binding proteins are critically involved in the post-transcriptional control of gene expression during embryonic development and in adult life, contributing to regulating cell differentiation and maintaining tissue homeostasis. Compared to the relatively well documented functions of transcription factors, the regulatory roles of RNA-binding proteins in muscle development and function remain largely elusive. However, deficiency of many RNA-binding proteins has been associated with muscular defects, neuromuscular disorders and heart diseases, such as myotonic dystrophy, amyotrophic lateral sclerosis, and cardiomyopathy. Rbm24 is highly conserved among vertebrates and is one of the best characterized RNA-binding proteins with crucial implication in the myogenic and cardiomyogenic programs. It presents the distinctive particularity of displaying highly restricted expression in both skeletal and cardiac muscles, with changes in subcellular localization during the process of differentiation. Functional analyses using different vertebrate models have clearly demonstrated its requirement for skeletal muscle differentiation and regeneration as well as for myocardium organization and cardiac function, by regulating the expression of both common and distinct target genes in these tissues. The challenge remains to decipher the dynamic feature of post-transcriptional circuits regulated by Rbm24 during skeletal myogenesis, cardiomyogenesis, and muscle repair. This review discusses current understanding of its function in striated muscles and its possible implication in human disease, with the aim of identifying research gaps for future investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS UMR7622, INSERM U1156, LBD, Paris, F-75005, France.
| | - Raphaëlle Grifone
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS UMR7622, INSERM U1156, LBD, Paris, F-75005, France
| | - Xiangmin Zhang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Hongyan Li
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
3
|
Aborode AT, Abass OA, Nasiru S, Eigbobo MU, Nefishatu S, Idowu A, Tiamiyu Z, Awaji AA, Idowu N, Busayo BR, Mehmood Q, Onifade IA, Fakorede S, Akintola AA. RNA binding proteins (RBPs) on genetic stability and diseases. Glob Med Genet 2025; 12:100032. [PMID: 39925443 PMCID: PMC11803229 DOI: 10.1016/j.gmg.2024.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 02/11/2025] Open
Abstract
RNA-binding proteins (RBPs) are integral components of cellular machinery, playing crucial roles in the regulation of gene expression and maintaining genetic stability. Their interactions with RNA molecules govern critical processes such as mRNA splicing, stability, localization, and translation, which are essential for proper cellular function. These proteins interact with RNA molecules and other proteins to form ribonucleoprotein complexes (RNPs), hence controlling the fate of target RNAs. The interaction occurs via RNA recognition motif, the zinc finger domain, the KH domain and the double stranded RNA binding motif (all known as RNA-binding domains (RBDs). These domains are found within the coding sequences (intron and exon domains), 5' untranslated regions (5'UTR) and 3' untranslated regions (3'UTR). Dysregulation of RBPs can lead to genomic instability, contributing to various pathologies, including cancer neurodegenerative diseases, and metabolic disorders. This study comprehensively explores the multifaceted roles of RBPs in genetic stability, highlighting their involvement in maintaining genomic integrity through modulation of RNA processing and their implications in cellular signalling pathways. Furthermore, it discusses how aberrant RBP function can precipitate genetic instability and disease progression, emphasizing the therapeutic potential of targeting RBPs in restoring cellular homeostasis. Through an analysis of current literature, this study aims to delineate the critical role of RBPs in ensuring genetic stability and their promise as targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Shaibu Nasiru
- Department of Research and Development, Healthy Africans Platform, Ibadan, Nigeria
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | | | - Sumana Nefishatu
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | - Abdullahi Idowu
- Department of Biological Sciences, Purdue University Fort Wayne, USA
| | - Zainab Tiamiyu
- Department of Biochemistry and Cancer Biology, Medical College of Georgia, Augusta University, USA
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nike Idowu
- Department of Chemistry, University of Nebraska-Lincoln, USA
| | | | - Qasim Mehmood
- Shifa Clinical Research Center, Shifa International Hospital, Islamabad, Pakistan
| | - Isreal Ayobami Onifade
- Department of Division of Family Health, Health Research Incorporated, New York State Department of Health, USA
| | - Sodiq Fakorede
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ashraf Akintayo Akintola
- Department of Biology Education, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
4
|
Rasooly D, Giambartolomei C, Peloso GM, Dashti H, Ferolito BR, Golden D, Horimoto ARVR, Pietzner M, Farber-Eger EH, Wells QS, Bini G, Proietti G, Tartaglia GG, Kosik NM, Wilson PWF, Phillips LS, Munroe PB, Petersen SE, Cho K, Gaziano JM, Leach AR, Whittaker J, Langenberg C, Aung N, Sun YV, Pereira AC, Casas JP, Joseph J. Large-scale multi-omics identifies drug targets for heart failure with reduced and preserved ejection fraction. NATURE CARDIOVASCULAR RESEARCH 2025; 4:293-311. [PMID: 39915329 DOI: 10.1038/s44161-025-00609-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/07/2025] [Indexed: 03/19/2025]
Abstract
Heart failure (HF) has limited therapeutic options. In this study, we differentiated the pathophysiological underpinnings of the HF subtypes-HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF)-and uncovered subtype-specific therapeutic strategies. We investigated the causal roles of the human proteome and transcriptome using Mendelian randomization on more than 420,000 participants from the Million Veteran Program (27,799 HFrEF and 27,579 HFpEF cases). We created therapeutic target profiles covering efficacy, safety, novelty, druggability and mechanism of action. We replicated findings on more than 175,000 participants of diverse ancestries. We identified 70 HFrEF and 10 HFpEF targets, of which 58 were not previously reported; notably, the HFrEF and HFpEF targets are non-overlapping, suggesting the need for subtype-specific therapies. We classified 14 previously unclassified HF loci as HFrEF. We substantiated the role of ubiquitin-proteasome system, small ubiquitin-related modifier pathway, inflammation and mitochondrial metabolism in HFrEF. Among druggable genes, IL6R, ADM and EDNRA emerged as potential HFrEF targets, and LPA emerged as a potential target for both subtypes.
Collapse
Affiliation(s)
- Danielle Rasooly
- Million Veteran Program (MVP) Coordinating Center, Veterans Affairs Healthcare System, Boston, MA, USA.
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Claudia Giambartolomei
- Integrative Data Analysis Unit, Health Data Science Centre, Human Technopole, Milan, Italy
| | - Gina M Peloso
- Million Veteran Program (MVP) Coordinating Center, Veterans Affairs Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Hesam Dashti
- Million Veteran Program (MVP) Coordinating Center, Veterans Affairs Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brian R Ferolito
- Million Veteran Program (MVP) Coordinating Center, Veterans Affairs Healthcare System, Boston, MA, USA
| | - Daniel Golden
- Million Veteran Program (MVP) Coordinating Center, Veterans Affairs Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea R V R Horimoto
- Million Veteran Program (MVP) Coordinating Center, Veterans Affairs Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maik Pietzner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Addenbrookes Hospital, IMS, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Eric H Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quinn Stanton Wells
- Departments of Medicine (Cardiology), Biomedical Informatics and Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giorgio Bini
- Istituto Italiano di Tecnologia, CHT@Erzelli, Genova, Italy
- Dipartimento di Fisica Via Dodecaneso, Genova, Italy
| | | | - Gian Gaetano Tartaglia
- Istituto Italiano di Tecnologia, CHT@Erzelli, Genova, Italy
- ICREA - Institució Catalana de Recerca I Estudis Avançats, Barcelona, Spain
| | - Nicole M Kosik
- Million Veteran Program (MVP) Coordinating Center, Veterans Affairs Healthcare System, Boston, MA, USA
| | - Peter W F Wilson
- Atlanta VA Health Care System, Decatur, GA, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lawrence S Phillips
- Atlanta VA Health Care System, Decatur, GA, USA
- Division of Endocrinology and Metabolism, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Steffen E Petersen
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK
| | - Kelly Cho
- Million Veteran Program (MVP) Coordinating Center, Veterans Affairs Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Michael Gaziano
- Million Veteran Program (MVP) Coordinating Center, Veterans Affairs Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew R Leach
- Department of Chemical Biology, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - John Whittaker
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Addenbrookes Hospital, IMS, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Nay Aung
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK
| | - Yan V Sun
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandre C Pereira
- Million Veteran Program (MVP) Coordinating Center, Veterans Affairs Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Juan P Casas
- Million Veteran Program (MVP) Coordinating Center, Veterans Affairs Healthcare System, Boston, MA, USA
| | - Jacob Joseph
- Cardiology Section, VA Providence Healthcare System, Providence, RI, USA.
- Warren Alpert School of Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Jia K, Cheng H, Ma W, Zhuang L, Li H, Li Z, Wang Z, Sun H, Cui Y, Zhang H, Xie H, Yi L, Chen Z, Sano M, Fukuda K, Lu L, Pu J, Zhang Y, Gao L, Zhang R, Yan X. RNA Helicase DDX5 Maintains Cardiac Function by Regulating CamkIIδ Alternative Splicing. Circulation 2024; 150:1121-1139. [PMID: 39056171 DOI: 10.1161/circulationaha.123.064774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Heart failure (HF) is a leading cause of morbidity and mortality worldwide. RNA-binding proteins are identified as regulators of cardiac disease; DDX5 (dead-box helicase 5) is a master regulator of many RNA processes, although its function in heart physiology remains unclear. METHODS We assessed DDX5 expression in human failing hearts and a mouse HF model. To study the function of DDX5 in heart, we engineered cardiomyocyte-specific Ddx5 knockout mice. We overexpressed DDX5 in cardiomyocytes using adeno-associated virus serotype 9 and performed transverse aortic constriction to establish the murine HF model. The mechanisms underlined were subsequently investigated using immunoprecipitation-mass spectrometry, RNA-sequencing, alternative splicing analysis, and RNA immunoprecipitation sequencing. RESULTS We screened transcriptome databases of murine HF and human dilated cardiomyopathy samples and found that DDX5 was significantly downregulated in both. Cardiomyocyte-specific deletion of Ddx5 resulted in HF with reduced cardiac function, an enlarged heart chamber, and increased fibrosis in mice. DDX5 overexpression improved cardiac function and protected against adverse cardiac remodeling in mice with transverse aortic constriction-induced HF. Furthermore, proteomics revealed that DDX5 is involved in RNA splicing in cardiomyocytes. We found that DDX5 regulated the aberrant splicing of Ca2+/calmodulin-dependent protein kinase IIδ (CamkIIδ), thus preventing the production of CaMKIIδA, which phosphorylates L-type calcium channel by serine residues of Cacna1c, leading to impaired Ca2+ homeostasis. In line with this, we found increased intracellular Ca2+ transients and increased sarcoplasmic reticulum Ca2+ content in DDX5-depleted cardiomyocytes. Using adeno-associated virus serotype 9 knockdown of CaMKIIδA partially rescued the cardiac dysfunction and HF in Ddx5 knockout mice. CONCLUSIONS These findings reveal a role for DDX5 in maintaining calcium homeostasis and cardiac function by regulating alternative splicing in cardiomyocytes, identifying the DDX5 as a potential target for therapeutic intervention in HF.
Collapse
Affiliation(s)
- Kangni Jia
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Haomai Cheng
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Wenqi Ma
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Hao Li
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (H.L., L.G.)
| | - Zhigang Li
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Ziyang Wang
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Hang Sun
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Yuke Cui
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Hang Zhang
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Hongyang Xie
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (M.S., K.F.)
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (M.S., K.F.)
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Pu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital (J.P.), School of Medicine, Shanghai Jiao Tong University, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing, China (Y.Z.)
| | - Ling Gao
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (H.L., L.G.)
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
6
|
Querl L, Krebber H. Defenders of the Transcriptome: Guard Protein-Mediated mRNA Quality Control in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:10241. [PMID: 39408571 PMCID: PMC11476243 DOI: 10.3390/ijms251910241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cell survival depends on precise gene expression, which is controlled sequentially. The guard proteins surveil mRNAs from their synthesis in the nucleus to their translation in the cytoplasm. Although the proteins within this group share many similarities, they play distinct roles in controlling nuclear mRNA maturation and cytoplasmic translation by supporting the degradation of faulty transcripts. Notably, this group is continuously expanding, currently including the RNA-binding proteins Npl3, Gbp2, Hrb1, Hrp1, and Nab2 in Saccharomyces cerevisiae. Some of the human serine-arginine (SR) splicing factors (SRSFs) show remarkable similarities to the yeast guard proteins and may be considered as functional homologues. Here, we provide a comprehensive summary of their crucial mRNA surveillance functions and their implications for cellular health.
Collapse
Affiliation(s)
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
7
|
Acharya P, Parkins S, Tranter M. RNA binding proteins as mediators of pathological cardiac remodeling. Front Cell Dev Biol 2024; 12:1368097. [PMID: 38818408 PMCID: PMC11137256 DOI: 10.3389/fcell.2024.1368097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
RNA binding proteins (RBPs) play a central in the post-transcriptional regulation of gene expression, which can account for up to 50% of all variations in protein expression within a cell. Following their binding to target RNAs, RBPs most typically confer changes in gene expression through modulation of alternative spicing, RNA stabilization/degradation, or ribosome loading/translation rate. All of these post-transcriptional regulatory processes have been shown to play a functional role in pathological cardiac remodeling, and a growing body of evidence is beginning to identify the mechanistic contribution of individual RBPs and their cardiac RNA targets. This review highlights the mechanisms of RBP-dependent post-transcriptional gene regulation in cardiomyocytes and fibroblasts and our current understanding of how RNA binding proteins functionally contribute to pathological cardiac remodeling.
Collapse
Affiliation(s)
- Pooja Acharya
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sharon Parkins
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael Tranter
- Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
8
|
Tian X, Zhou G, Li H, Zhang X, Zhao L, Zhang K, Wang L, Liu M, Liu C, Yang P. RBM25 binds to and regulates alternative splicing levels of Slc38a9, Csf1, and Coro6 to affect immune and inflammatory processes in H9c2 cells. PeerJ 2023; 11:e16312. [PMID: 37953772 PMCID: PMC10637245 DOI: 10.7717/peerj.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
Background Alternative splicing (AS) is a biological process that allows genes to be translated into diverse proteins. However, aberrant AS can predispose cells to aberrations in biological mechanisms. RNA binding proteins (RBPs), closely affiliated with AS, have gained increased attention in recent years. Among these RBPs, RBM25 has been reported to participate in the cardiac pathological mechanism through regulating AS; however, the involvement of RBM25 as a splicing factor in heart failure remains unclarified. Methods RBM25 was overexpressed in H9c2 cells to explore the target genes bound and regulated by RBM25 during heart failure. RNA sequencing (RNA-seq) was used to scrutinize the comprehensive transcriptional level before identifying AS events influenced by RBM25. Further, improved RNA immunoprecipitation sequencing (iRIP-seq) was employed to pinpoint RBM25-binding sites, and RT-qPCR was used to validate specific genes modulated by RBM25. Results RBM25 was found to upregulate the expression of genes pertinent to the inflammatory response and viral processes, as well as to mediate the AS of genes associated with cellular apoptosis and inflammation. Overlap analysis between RNA-seq and iRIP-seq suggested that RBM25 bound to and manipulated the AS of genes associated with inflammation in H9c2 cells. Moreover, qRT-PCR confirmed Slc38a9, Csf1, and Coro6 as the binding and AS regulatory targets of RBM25. Conclusion Our research implies that RBM25 plays a contributory role in cardiac inflammatory responses via its ability to bind to and regulate the AS of related genes. This study offers preliminary evidence of the influence of RBM25 on inflammation in H9c2 cells.
Collapse
Affiliation(s)
- Xin Tian
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guangli Zhou
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xueting Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingmin Zhao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Keyi Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mingwei Liu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen Liu
- Department of Radiology, Affiliated Hospital of Yunnan University, Kunming, China
| | - Ping Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
9
|
Xie Y, Wang Q, Yang Y, Near D, Wang H, Colon M, Nguyen C, Slattery C, Keepers B, Farber G, Wang TW, Lee SH, Shih YYI, Liu J, Qian L. Translational landscape of direct cardiac reprogramming reveals a role of Ybx1 in repressing cardiac fate acquisition. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1060-1077. [PMID: 38524149 PMCID: PMC10959502 DOI: 10.1038/s44161-023-00344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/06/2023] [Indexed: 03/26/2024]
Abstract
Direct reprogramming of fibroblasts into induced cardiomyocytes holds great promise for heart regeneration. Although considerable progress has been made in understanding the transcriptional and epigenetic mechanisms of iCM reprogramming, its translational regulation remains largely unexplored. Here, we characterized the translational landscape of iCM reprogramming through integrative ribosome and transcriptomic profiling, and found extensive translatome repatterning during this process. Loss of function screening for translational regulators uncovered Ybx1 as a critical barrier to iCM induction. In a mouse model of myocardial infarction, removing Ybx1 enhanced in vivo reprogramming, resulting in improved heart function and reduced scar size. Mechanistically, Ybx1 depletion de-repressed the translation of its direct targets SRF and Baf60c, both of which mediated the effect of Ybx1 depletion on iCM generation. Furthermore, removal of Ybx1 allowed single factor Tbx5-mediated iCM conversion. In summary, this study revealed a new layer of regulatory mechanism that controls cardiac reprogramming at the translational level.
Collapse
Affiliation(s)
- Yifang Xie
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Qiaozi Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Yuchen Yang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - David Near
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Haofei Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Marazzano Colon
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Christopher Nguyen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Conor Slattery
- EIRNA Bio Ltd, BioInnovation Centre, Food Science and Technology Building, College Road, Cork, Ireland, T12 DP07
| | - Benjamin Keepers
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Gregory Farber
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Tzu-Wen Wang
- Departments of Neurology, University of North Carolina, Chapel Hill, NC 27599
| | - Sung-Ho Lee
- Departments of Neurology, University of North Carolina, Chapel Hill, NC 27599
| | - Yen-Yu Ian Shih
- Departments of Neurology, University of North Carolina, Chapel Hill, NC 27599
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
10
|
Potel KN, Cornelius VA, Yacoub A, Chokr A, Donaghy CL, Kelaini S, Eleftheriadou M, Margariti A. Effects of non-coding RNAs and RNA-binding proteins on mitochondrial dysfunction in diabetic cardiomyopathy. Front Cardiovasc Med 2023; 10:1165302. [PMID: 37719978 PMCID: PMC10502732 DOI: 10.3389/fcvm.2023.1165302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Vascular complications are the main cause of diabetes mellitus-associated morbidity and mortality. Oxidative stress and metabolic dysfunction underly injury to the vascular endothelium and myocardium, resulting in diabetic angiopathy and cardiomyopathy. Mitochondrial dysfunction has been shown to play an important role in cardiomyopathic disruptions of key cellular functions, including energy metabolism and oxidative balance. Both non-coding RNAs and RNA-binding proteins are implicated in diabetic cardiomyopathy, however, their impact on mitochondrial dysfunction in the context of this disease is largely unknown. Elucidating the effects of non-coding RNAs and RNA-binding proteins on mitochondrial pathways in diabetic cardiomyopathy would allow further insights into the pathophysiological mechanisms underlying diabetic vascular complications and could facilitate the development of new therapeutic strategies. Stem cell-based models can facilitate the study of non-coding RNAs and RNA-binding proteins and their unique characteristics make them a promising tool to improve our understanding of mitochondrial dysfunction and vascular complications in diabetes.
Collapse
Affiliation(s)
- Koray N. Potel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Victoria A. Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Andrew Yacoub
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ali Chokr
- Faculty of Medicine, University of Picardie Jules Verne, Amiens, France
| | - Clare L. Donaghy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Magdalini Eleftheriadou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Varma E, Burghaus J, Schwarzl T, Sekaran T, Gupta P, Górska AA, Hofmann C, Stroh C, Jürgensen L, Kamuf-Schenk V, Li X, Medert R, Leuschner F, Kmietczyk V, Freichel M, Katus HA, Hentze MW, Frey N, Völkers M. Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo. Basic Res Cardiol 2023; 118:25. [PMID: 37378715 PMCID: PMC10307726 DOI: 10.1007/s00395-023-00996-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
RNA-protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that controls mRNA translation in cardiomyocytes; however, a direct link between mTOR signaling and RNA-binding proteins in the heart has not been established. Integrative transcriptome and translatome analysis revealed mTOR dependent translational upregulation of the RNA binding protein Ybx1 during early pathological remodeling independent of mRNA levels. Ybx1 is necessary for pathological cardiomyocyte growth by regulating protein synthesis. To identify the molecular mechanisms how Ybx1 regulates cellular growth and protein synthesis, we identified mRNAs bound to Ybx1. We discovered that eucaryotic elongation factor 2 (Eef2) mRNA is bound to Ybx1, and its translation is upregulated during cardiac hypertrophy dependent on Ybx1 expression. Eef2 itself is sufficient to drive pathological growth by increasing global protein translation. Finally, Ybx1 depletion in vivo preserved heart function during pathological cardiac hypertrophy. Thus, activation of mTORC1 links pathological signaling cascades to altered gene expression regulation by activation of Ybx1 which in turn promotes translation through increased expression of Eef2.
Collapse
Affiliation(s)
- Eshita Varma
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Jana Burghaus
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Thomas Schwarzl
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Thileepan Sekaran
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Parul Gupta
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Agnieszka A Górska
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Christoph Hofmann
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Claudia Stroh
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Lonny Jürgensen
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Verena Kamuf-Schenk
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Xue Li
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Rebekka Medert
- Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Florian Leuschner
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Vivien Kmietczyk
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Marc Freichel
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
- Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Hugo A Katus
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Norbert Frey
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Mirko Völkers
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Lu YW, Liang Z, Guo H, Fernandes T, Espinoza-Lewis RA, Wang T, Li K, Li X, Singh GB, Wang Y, Cowan D, Mably JD, Philpott CC, Chen H, Wang DZ. PCBP1 regulates alternative splicing of AARS2 in congenital cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.540420. [PMID: 37293078 PMCID: PMC10245752 DOI: 10.1101/2023.05.18.540420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alanyl-transfer RNA synthetase 2 (AARS2) is a nuclear encoded mitochondrial tRNA synthetase that is responsible for charging of tRNA-Ala with alanine during mitochondrial translation. Homozygous or compound heterozygous mutations in the Aars2 gene, including those affecting its splicing, are linked to infantile cardiomyopathy in humans. However, how Aars2 regulates heart development, and the underlying molecular mechanism of heart disease remains unknown. Here, we found that poly(rC) binding protein 1 (PCBP1) interacts with the Aars2 transcript to mediate its alternative splicing and is critical for the expression and function of Aars2. Cardiomyocyte-specific deletion of Pcbp1 in mice resulted in defects in heart development that are reminiscent of human congenital cardiac defects, including noncompaction cardiomyopathy and a disruption of the cardiomyocyte maturation trajectory. Loss of Pcbp1 led to an aberrant alternative splicing and a premature termination of Aars2 in cardiomyocytes. Additionally, Aars2 mutant mice with exon-16 skipping recapitulated heart developmental defects observed in Pcbp1 mutant mice. Mechanistically, we found dysregulated gene and protein expression of the oxidative phosphorylation pathway in both Pcbp1 and Aars2 mutant hearts; these date provide further evidence that the infantile hypertrophic cardiomyopathy associated with the disorder oxidative phosphorylation defect type 8 (COXPD8) is mediated by Aars2. Our study therefore identifies Pcbp1 and Aars2 as critical regulators of heart development and provides important molecular insights into the role of disruptions in metabolism on congenital heart defects.
Collapse
|
13
|
Yin W, Lei Y, Yang X, Zou J. A two-gene random forest model to diagnose osteoarthritis based on RNA-binding protein-related genes in knee cartilage tissue. Aging (Albany NY) 2023; 15:193-212. [PMID: 36641761 PMCID: PMC9876643 DOI: 10.18632/aging.204469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 01/16/2023]
Abstract
Osteoarthritis (OA) is one of the most common diseases in the orthopedic clinic, characterized by progressive cartilage degradation. RNA-binding proteins (RBPs) are capable of binding to RNAs at transcription and translation levels, playing an important role in the pathogenesis of OA. This study aims to investigate the diagnosis values of RBP-related genes in OA. The RBPs were collected from previous studies, and the GSE114007 dataset (control = 18, OA = 20) was downloaded from the Gene Expression Omnibus (GEO) as the training cohort. Through various bioinformatical and machine learning methods, including genomic difference detection, protein-protein interaction network analyses, Lasso regression, univariate logistic regression, Boruta algorithm, and SVM-RFE, RNMT and RBM24 were identified and then included into the random forest (RF) diagnosis model. GSE117999 dataset (control = 10, OA = 10) and clinical samples collected from local hospital (control = 10, OA = 11) were used for external validation. The RF model was a promising tool to diagnose OA in the training dataset (area under curve [AUC] = 1.000, 95% confidence interval [CI] = 1.000-1.000), the GSE117999 cohort (AUC = 0.900, 95% CI = 0.769-1.000), and local samples (AUC = 0.759, 95% CI = 0.568-0.951). Besides, qPCR and Western Blotting experiments showed that RNMT (P < 0.05) and RBM24 (P < 0.01) were both down-regulated in CHON-001 cells with IL-1β treatment. In all, an RF model to diagnose OA based on RNMT and RBM24 in cartilage tissue was constructed, providing a promising clinical tool and possible cut-in points in molecular mechanism clarification.
Collapse
Affiliation(s)
- Wenhua Yin
- Department of Orthopaedics, Yuebei People’s Hospital Affiliated to Medical College of Shantou University, Shaoguan, Guangdong 512026, China
| | - Ying Lei
- Department of Audit, Yuebei People’s Hospital Affiliated to Medical College of Shantou University, Shaoguan, Guangdong 512026, China
| | - Xuan Yang
- Department of Orthopaedics, Yuebei People’s Hospital Affiliated to Medical College of Shantou University, Shaoguan, Guangdong 512026, China
| | - Jiawei Zou
- Department of Orthopaedics, Yuebei People’s Hospital Affiliated to Medical College of Shantou University, Shaoguan, Guangdong 512026, China
| |
Collapse
|
14
|
Nishanth MJ, Jha S. Genome-wide landscape of RNA-binding protein (RBP) networks as potential molecular regulators of psychiatric co-morbidities: a computational analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-022-00382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Background
Psychiatric disorders are a major burden on global health. These illnesses manifest as co-morbid conditions, further complicating the treatment. There is a limited understanding of the molecular and regulatory basis of psychiatric co-morbidities. The existing research in this regard has largely focused on epigenetic modulators, non-coding RNAs, and transcription factors. RNA-binding proteins (RBPs) functioning as multi-protein complexes are now known to be predominant controllers of multiple gene regulatory processes. However, their involvement in gene expression dysregulation in psychiatric co-morbidities is yet to be understood.
Results
Ten RBPs (QKI, ELAVL2, EIF2S1, SRSF3, IGF2BP2, EIF4B, SNRNP70, FMR1, DAZAP1, and MBNL1) were identified to be associated with psychiatric disorders such as schizophrenia, major depression, and bipolar disorders. Analysis of transcriptomic changes in response to individual depletion of these RBPs showed the potential influence of a large number of RBPs driving differential gene expression, suggesting functional cross-talk giving rise to multi-protein networks. Subsequent transcriptome analysis of post-mortem human brain samples from diseased and control individuals also suggested the involvement of ~ 100 RBPs influencing gene expression changes. These RBPs were found to regulate various processes including transcript splicing, mRNA transport, localization, stability, and translation. They were also found to form an extensive interactive network. Further, hnRNP, SRSF, and PCBP family RBPs, Matrin3, U2AF2, KHDRBS1, PTBP1, and also PABPN1 were found to be the hub proteins of the RBP network.
Conclusions
Extensive RBP networks involving a few hub proteins could result in transcriptome-wide dysregulation of post-transcriptional modifications, potentially driving multiple psychiatric disorders. Understanding the functional involvement of RBP networks in psychiatric disorders would provide insights into the molecular basis of psychiatric co-morbidities.
Collapse
|
15
|
Miao Y, Yuan Q, Wang C, Feng X, Ren J, Wang C. Comprehensive Characterization of RNA-Binding Proteins in Colon Adenocarcinoma Identifies a Novel Prognostic Signature for Predicting Clinical Outcomes and Immunotherapy Responses Based on Machine Learning. Comb Chem High Throughput Screen 2023; 26:163-182. [PMID: 35379120 DOI: 10.2174/1386207325666220404125228] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND RNA-binding proteins (RBPs) are crucial factors that function in the posttranscriptional modification process and are significant in cancer. OBJECTIVE This research aimed for a multigene signature to predict the prognosis and immunotherapy response of patients with colon adenocarcinoma (COAD) based on the expression profile of RNA-binding proteins (RBPs). METHODS COAD samples retrieved from the TCGA and GEO datasets were utilized for a training dataset and a validation dataset. Totally, 14 shared RBP genes with prognostic significance were identified. Non-negative matrix factorization clusters defined by these RBPs could stratify COAD patients into two molecular subtypes. Cox regression analysis and identification of 8-gene signature categorized COAD patients into high- and low-risk populations with significantly different prognosis and immunotherapy responses. RESULTS Our prediction signature was superior to another five well-established prediction models. A nomogram was generated to quantificationally predict the overall survival (OS) rate, validated by calibration curves. Our findings also indicated that high-risk populations possessed an enhanced immune evasion capacity and low-risk populations might benefit immunotherapy, especially for the joint combination of PD-1 and CTLA4 immunosuppressants. DHX15 and LARS2 were detected with significantly different expressions in both datasets, which were further confirmed by qRTPCR and immunohistochemical staining. CONCLUSION Our observations supported an eight-RBP-related signature that could be applied for survival prediction and immunotherapy response of patients with COAD.
Collapse
Affiliation(s)
- Ye Miao
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurosurgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chao Wang
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoshi Feng
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jie Ren
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Changmiao Wang
- Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
16
|
Zhao M, Zhou J, Tang Y, Liu M, Dai Y, Xie H, Wang Z, Chen L, Wu Y. Genome-wide analysis of RNA-binding proteins co-expression with alternative splicing events in mitral valve prolapse. Front Immunol 2023; 14:1078266. [PMID: 37180137 PMCID: PMC10171460 DOI: 10.3389/fimmu.2023.1078266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Objectives We investigated the role and molecular mechanisms of RNA-binding proteins (RBPs) and their regulated alternative splicing events (RASEs) in the pathogenesis of mitral valve prolapse (MVP). Methods For RNA extraction, we obtained peripheral blood mononuclear cells (PBMCs) from five patients with MVP, with or without chordae tendineae rupture, and five healthy individuals. High-throughput sequencing was used for RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) analysis, alternative splicing (AS) analysis, functional enrichment analysis, co-expression of RBPs, and alternative splicing events (ASEs) analysis were conducted. Results The MVP patients exhibited 306 up-regulated genes and 198 down-regulated genes. All down- and up-regulated genes were enriched in both Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, MVP was closely associated with the top 10 enriched terms and pathways. In MVP patients, 2,288 RASEs were found to be significantly different, and four suitable RASEs (CARD11 A3ss, RBM5 ES, NCF1 A5SS, and DAXX A3ss) were tested. We identified 13 RNA-binding proteins (RBPs) from the DEGs and screened out four RBPs (ZFP36, HSPA1A, TRIM21, and P2RX7). We selected four RASEs based on the co-expression analyses of RBPs and RASEs, including exon skipping (ES) of DEDD2, alternative 3' splice site (A3SS) of ETV6, mutually exclusive 3'UTRs (3pMXE) of TNFAIP8L2, and A3SS of HLA-B. Furthermore, the selected four RBPs and four RASEs were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and showed high consistency with RNA sequencing (RNA-seq). Conclusion Dysregulated RBPs and their associated RASEs may play regulatory roles in MVP development and may therefore be used as therapeutic targets in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang Chen
- *Correspondence: Liang Chen, ; Yanhu Wu,
| | - Yanhu Wu
- *Correspondence: Liang Chen, ; Yanhu Wu,
| |
Collapse
|
17
|
Pan Y, Wang X, Liu X, Shen L, Chen Q, Shu Q. Targeting Ferroptosis as a Promising Therapeutic Strategy for Ischemia-Reperfusion Injury. Antioxidants (Basel) 2022; 11:2196. [PMID: 36358568 PMCID: PMC9686892 DOI: 10.3390/antiox11112196] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 07/29/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is a major challenge in perioperative medicine that contributes to pathological damage in various conditions, including ischemic stroke, myocardial infarction, acute lung injury, liver transplantation, acute kidney injury and hemorrhagic shock. I/R damage is often irreversible, and current treatments for I/R injury are limited. Ferroptosis, a type of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides, has been implicated in multiple diseases, including I/R injury. Emerging evidence suggests that ferroptosis can serve as a therapeutic target to alleviate I/R injury, and pharmacological strategies targeting ferroptosis have been developed in I/R models. Here, we systematically summarize recent advances in research on ferroptosis in I/R injury and provide a comprehensive analysis of ferroptosis-regulated genes investigated in the context of I/R, as well as the therapeutic applications of ferroptosis regulators, to provide insights into developing therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Yihang Pan
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xueke Wang
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xiwang Liu
- Department of Thoracic & Cardiovascular Surgery, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lihua Shen
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Qixing Chen
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
| | - Qiang Shu
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Department of Thoracic & Cardiovascular Surgery, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
| |
Collapse
|
18
|
Yao Y, Liu K, Wu Y, Zhou J, Jin H, Zhang Y, Zhu Y. Comprehensive landscape of the functions and prognostic value of RNA binding proteins in uterine corpus endometrial carcinoma. Front Mol Biosci 2022; 9:962412. [PMID: 36262474 PMCID: PMC9574853 DOI: 10.3389/fmolb.2022.962412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The dysregulation of RNA binding proteins (RBPs) is involved in tumorigenesis and progression. However, information on the overall function of RNA binding proteins in Uterine Corpus Endometrial Carcinoma (UCEC) remains to be studied. This study aimed to explore Uterine Corpus Endometrial Carcinoma-associated molecular mechanisms and develop an RNA-binding protein-associated prognostic model. Methods: Differently expressed RNA binding proteins were identified between Uterine Corpus Endometrial Carcinoma tumor tissues and normal tissues by R packages (DESeq2, edgeR) from The Cancer Genome Atlas (TCGA) database. Hub RBPs were subsequently identified by univariate and multivariate Cox regression analyses. The cBioPortal platform, R packages (ggplot2), Human Protein Atlas (HPA), and TIMER online database were used to explore the molecular mechanisms of Uterine Corpus Endometrial Carcinoma. Kaplan-Meier (K-M), Area Under Curve (AUC), and the consistency index (c-index) were used to test the performance of our model. Results: We identified 128 differently expressed RNA binding proteins between Uterine Corpus Endometrial Carcinoma tumor tissues and normal tissues. Seven RNA binding proteins genes (NOP10, RBPMS, ATXN1, SBDS, POP5, CD3EAP, ZC3H12C) were screened as prognostic hub genes and used to construct a prognostic model. Such a model may be able to predict patient prognosis and acquire the best possible treatment. Further analysis indicated that, based on our model, the patients in the high-risk subgroup had poor overall survival (OS) compared to those in the low-risk subgroup. We also established a nomogram based on seven RNA binding proteins. This nomogram could inform individualized diagnostic and therapeutic strategies for Uterine Corpus Endometrial Carcinoma. Conclusion: Our work focused on systematically analyzing a large cohort of Uterine Corpus Endometrial Carcinoma patients in the The Cancer Genome Atlas database. We subsequently constructed a robust prognostic model based on seven RNA binding proteins that may soon inform individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Yong Yao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Kangping Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yuxuan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Jieyu Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Heyue Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yimin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yumin Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Yumin Zhu,
| |
Collapse
|
19
|
Cornelius VA, Naderi-Meshkin H, Kelaini S, Margariti A. RNA-Binding Proteins: Emerging Therapeutics for Vascular Dysfunction. Cells 2022; 11:2494. [PMID: 36010571 PMCID: PMC9407011 DOI: 10.3390/cells11162494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Vascular diseases account for a significant number of deaths worldwide, with cardiovascular diseases remaining the leading cause of mortality. This ongoing, ever-increasing burden has made the need for an effective treatment strategy a global priority. Recent advances in regenerative medicine, largely the derivation and use of induced pluripotent stem cell (iPSC) technologies as disease models, have provided powerful tools to study the different cell types that comprise the vascular system, allowing for a greater understanding of the molecular mechanisms behind vascular health. iPSC disease models consequently offer an exciting strategy to deepen our understanding of disease as well as develop new therapeutic avenues with clinical translation. Both transcriptional and post-transcriptional mechanisms are widely accepted to have fundamental roles in orchestrating responses to vascular damage. Recently, iPSC technologies have increased our understanding of RNA-binding proteins (RBPs) in controlling gene expression and cellular functions, providing an insight into the onset and progression of vascular dysfunction. Revelations of such roles within vascular disease states have therefore allowed for a greater clarification of disease mechanisms, aiding the development of novel therapeutic interventions. Here, we discuss newly discovered roles of RBPs within the cardio-vasculature aided by iPSC technologies, as well as examine their therapeutic potential, with a particular focus on the Quaking family of isoforms.
Collapse
Affiliation(s)
| | | | | | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
20
|
Tang Y, Li Z, Yang H, Yang Y, Geng C, Liu B, Zhang T, Liu S, Xue Y, Zhang H, Wang J, Zhao H. YB1 dephosphorylation attenuates atherosclerosis by promoting CCL2 mRNA decay. Front Cardiovasc Med 2022; 9:945557. [PMID: 35990936 PMCID: PMC9386362 DOI: 10.3389/fcvm.2022.945557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic inflammation is a key pathological process in atherosclerosis. RNA binding proteins (RBPs) have been reported to play an important role in atherosclerotic plaque formation, and they could regulate the expression of inflammatory factors by phosphorylation modification. Y-box binding protein 1 (YB1) is an RBP that has participated in many inflammatory diseases. Here, we found an increased expression of phosphorylated YB1 (pYB1) in atherosclerotic plaques and demonstrated that YB1 dephosphorylation reduced lipid accumulation and lesion area in the aorta in vivo. Additionally, we found that inflammatory cytokines were downregulated in the presence of YB1 dephosphorylation, particularly CCL2, which participates in the pathogenesis of atherosclerosis. Furthermore, we demonstrated that CCL2 mRNA rapid degradation was mediated by the glucocorticoid receptor-mediated mRNA decay (GMD) process during YB1 dephosphorylation, which resulted in the downregulation of CCL2 expression. In conclusion, YB1 phosphorylation affects the development of atherosclerosis through modulating inflammation, and targeting YB1 phosphorylation could be a potential strategy for the treatment of atherosclerosis by anti-inflammation.
Collapse
Affiliation(s)
- Yaqin Tang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiwei Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongqin Yang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Yang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Chi Geng
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Liu
- Jilin Zhongtai Biotechnology Co., Ltd, Jilin, China
| | - Tiantian Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Siyang Liu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunfei Xue
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongkai Zhang
- The Pathology Department, Beijing Hospital of Traditional Chinese Medicine, The Capital Medical University, Beijing, China
- Hongkai Zhang
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
- Jing Wang
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Hongmei Zhao
| |
Collapse
|
21
|
Li Y, Zhao Q, Song X, Song J. [Construction of an adenovirus vector expressing engineered splicing factor for regulating alternative splicing of YAP1 in neonatal rat cardiomyocytes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1013-1018. [PMID: 35869763 DOI: 10.12122/j.issn.1673-4254.2022.07.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct an adenovirus vector expressing artificial splicing factor capable of regulating alternative splicing of Yap1 in cardiomyocytes. METHODS The splicing factors with different sequences were constructed against Exon6 of YAP1 based on the sequence specificity of Pumilio1. The PCR fragment of the artificially synthesized PUF-SR or wild-type PUFSR was cloned into pAd-Track plasmid, and the recombinant plasmids were transformed into E. coli DH5α for plasmid amplification. The amplified plasmids were digested with Pac I and transfected into 293A cells for packaging to obtain the adenovirus vectors. Cultured neonatal rat cardiomyocytes were transfected with the adenoviral vectors, and alternative splicing of YAP1 was detected using quantitative and semi-quantitative PCR; Western blotting was performed to detect the signal of the fusion protein Flag. RESULTS The transfection efficiency of the adenovirus vectors was close to 100% in rat cardiomyocytes, and no fluorescent protein was detected in the cells with plasmid transfection. The results of Western blotting showed that both the negative control and Flag-SR-NLS-PUF targeting the YAPExon6XULIE sequence were capable of detecting the expression of the protein fused to Flag. The results of reverse transcription-PCR and PCR demonstrated that the artificial splicing factor constructed based on the 4th target sequence of YAP1 effectively regulated the splicing of YAP1 Exon6 in the cardiomyocytes (P < 0.05). CONCLUSION We successfully constructed adenovirus vectors capable of regulating YAP1 alternative splicing rat cardiomyocytes.
Collapse
Affiliation(s)
- Y Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200082, China.,Department of Anesthesiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200082, China
| | - Q Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200082, China
| | - X Song
- Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200082, China
| | - J Song
- Department of Anesthesiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200082, China
| |
Collapse
|
22
|
Sun Z, Wu J, Bi Q, Wang W. Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis. Stem Cell Res Ther 2022; 13:297. [PMID: 35841017 PMCID: PMC9284726 DOI: 10.1186/s13287-022-02986-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
Background Human urine-derived stem cells (USCs)-derived exosomes (USC-Exo) could improve kidney ischemia/reperfusion injury (IRI), while the underlying mechanisms of this protective effect remain unclear. Methods Human USCs and USC-Exo were isolated and verified by morphology and specific biomarkers. The effects of USC-Exo on ferroptosis and kidney injury were detected in the IRI-induced acute kidney injury (AKI) model in C57BL/6 mice. The effects of USC-Exo on ferroptosis and lncRNA taurine-upregulated gene 1 (TUG1) were detected in hypoxia/reoxygenation (H/R)-treated human proximal tubular epithelial cells (HK-2). The interaction of SRSF1 and TUG1, ACSL4 was checked via RNA pull-down/RIP and RNA stability assays. The effects of LncRNA TUG1 on SRSF1/ACSL4-mediated ferroptosis were verified in H/R-treated HK-2 cells and the IRI-induced AKI mouse models. Results USC-Exo treatment improved kidney injury and ameliorated ferroptosis in IRI-induced AKI mouse models. USC-Exo were rich in lncRNA TUG1, which suppressed ferroptosis in HK-2 cells exposed to H/R. Mechanistically, lncRNA TUG1 regulates the stability of ACSL4 mRNA by interacting with RNA-binding protein SRSF1. In addition, SRSF1 upregulation or ACSL4 downregulation partially reversed the protective effect of lncRNA TUG1 on ferroptosis in H/R-treated HK-2 cells. Further, ACSL4 upregulation partially reversed TUG1’s repression on kidney injury and ferroptosis in IRI-induced AKI mice. Conclusion Collectively, lncRNA TUG1 carried by USC-Exo regulated ASCL4-mediated ferroptosis by interacting with SRSF1 and then protected IRI-induced AKI. Potentially, USC-Exo rich in lncRNA TUG1 can serve as a promising therapeutic method for IRI-AKI.
Collapse
Affiliation(s)
- Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Qing Bi
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
23
|
Han W, Fan B, Huang Y, Wang X, Zhang Z, Gu G, Liu Z. Construction and validation of a prognostic model of RNA binding proteins in clear cell renal carcinoma. BMC Nephrol 2022; 23:172. [PMID: 35513791 PMCID: PMC9069774 DOI: 10.1186/s12882-022-02801-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/25/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The dysfunction of RNA binding proteins (RBPs) is associated with various inflammation and cancer. The occurrence and progression of tumors are closely related to the abnormal expression of RBPs. There are few studies on RBPs in clear cell renal carcinoma (ccRCC), which allows us to explore the role of RBPs in ccRCC. METHODS We obtained the gene expression data and clinical data of ccRCC from the Cancer Genome Atlas (TCGA) database and extracted all the information of RBPs. We performed differential expression analysis of RBPs. Risk model were constructed based on the differentially expressed RBPs (DERBPs). The expression levels of model markers were examined by reverse transcription-quantitative PCR (RT-qPCR) and analyzed for model-clinical relevance. Finally, we mapped the model's nomograms to predict the 1, 3 and 5-year survival rates for ccRCC patients. RESULTS The results showed that the five-year survival rate for the high-risk group was 40.2% (95% CI = 0.313 ~ 0.518), while the five-year survival rate for the low-risk group was 84.3% (95% CI = 0.767 ~ 0.926). The ROC curves (AUC = 0.748) also showed that our model had stable predictive power. Further RT-qPCR results were in accordance with our analysis (p < 0.05). The results of the independent prognostic analysis showed that the model could be an independent prognostic factor for ccRCC. The results of the correlation analysis also demonstrated the good predictive ability of the model. CONCLUSION In summary, the 4-RBPs (EZH2, RPL22L1, RNASE2, U2AF1L4) risk model could be used as a prognostic indicator of ccRCC. Our study provides a possibility for predicting the survival of ccRCC.
Collapse
Affiliation(s)
- Wenkai Han
- Department of Clinical Medicine, Qingdao University, Qingdao, Shandong, 266000, China
| | - Bohao Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yongshen Huang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiongbao Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zhao Zhang
- Department of Clinical Medicine, Qingdao University, Qingdao, Shandong, 266000, China.,Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Gangli Gu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| | - Zhao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
24
|
Zhu H, Zhang Y, Zhang C, Xie Z. RNA-Binding Profiles of CKAP4 as an RNA-Binding Protein in Myocardial Tissues. Front Cardiovasc Med 2022; 8:773573. [PMID: 35004889 PMCID: PMC8733325 DOI: 10.3389/fcvm.2021.773573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Pathological tissue remodeling such as fibrosis is developed in various cardiac diseases. As one of cardiac activated-myofibroblast protein markers, CKAP4 may be involved in this process and the mechanisms have not been explored. Methods: We assumed that CKAP4 held a role in the regulation of cardiac fibrotic remodeling as an RNA-binding protein. Using improved RNA immunoprecipitation and sequencing (iRIP-seq), we sought to analyze the RNAs bound by CKAP4 in normal atrial muscle (IP1 group) and remodeling fibrotic atrial muscle (IP2 group) from patients with cardiac valvular disease. Quantitative PCR and Western blotting were applied to identify CKAP4 mRNA and protein expression levels in human right atrium samples. Results: iRIP-seq was successfully performed, CKAP4-bound RNAs were characterized. By statistically analyzing the distribution of binding peaks in various regions on the reference human genome, we found that the reads of IP samples were mainly distributed in the intergenic and intron regions implying that CKAP4 is more inclined to combine non-coding RNAs. There were 913 overlapping binding peaks between the IP1 and IP2 groups. The top five binding motifs were obtained by HOMER, in which GGGAU was the binding sequence that appeared simultaneously in both IP groups. Binding peak-related gene cluster enrichment analysis demonstrated these genes were mainly involved in biological processes such as signal transduction, protein phosphorylation, axonal guidance, and cell connection. The signal pathways ranking most varied in the IP2 group compared to the IP1 group were relating to mitotic cell cycle, protein ubiquitination and nerve growth factor receptors. More impressively, peak analysis revealed the lncRNA-binding features of CKAP4 in both IP groups. Furthermore, qPCR verified CKAP4 differentially bound lncRNAs including LINC00504, FLJ22447, RP11-326N17.2, and HELLPAR in remodeling myocardial tissues when compared with normal myocardial tissues. Finally, the expression of CKAP4 is down-regulated in human remodeling fibrotic atrium. Conclusions: We reveal certain RNA-binding features of CKAP4 suggesting a relevant role as an unconventional RNA-binding protein in cardiac remodeling process. Deeper structural and functional analysis will be helpful to enrich the regulatory network of cardiac remodeling and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanfeng Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongshang Xie
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Zou W, Wang Z, Zhang X, Xu S, Wang F, Li L, Deng Z, Wang J, Pan K, Ge X, Li C, Liu R, Hu M. PIWIL4 and SUPT5H combine to predict prognosis and immune landscape in intrahepatic cholangiocarcinoma. Cancer Cell Int 2021; 21:657. [PMID: 34876138 PMCID: PMC8649993 DOI: 10.1186/s12935-021-02310-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is a fatal primary liver cancer, and its long-term survival rate remains poor. RNA-binding proteins (RBPs) play an important role in critical cellular processes, failure of any one or more processes can lead to the development of multiple cancers. This study aimed to explore pivotal biomarkers and corresponding mechanisms to predict the prognosis of patients with ICC. Methods The transcriptomic and clinical information of patients were collected from The Cancer Genome Atlas and Gene Expression Omnibus databases. Bioinformatic methods were used to identify survival-related and differentially-expressed biomarkers. Quantitative real-time PCR (qRT-PCR) and immunohistochemistry were used to detect the expression levels of key biomarkers in independent real-world cohorts. Subsequently, a prognostic signature was constructed that effectively distinguished patients in the high- and low-risk groups. Independent prognosis analysis was used to verify the signature’s independent predictive capabilities, and two nomograms were developed to predict survival. Results PIWIL4 and SUPT5H were identified and considered as pivotal biomarkers, and the same expression trends of upregulation in ICC were also validated via qRT-PCR and immunohistochemistry in the separate real-world sample cohorts. The prognostic signature showed good predictive capabilities according to the area under the curve. The correlation of the biomarkers with the tumour microenvironment suggested that the high riskScore was positively related to the enrichment of resting natural killer cells and activated memory CD4 + T cells. Conclusion In the present study, we demonstrated that PIWIL4 and SUPT5H could be used as novel prognostic biomarkers to develop a prognostic signature. This study provides potential biomarkers of prognostic value for patients with intrahepatic cholangiocarcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02310-2.
Collapse
Affiliation(s)
- Wenbo Zou
- Medical School of Chinese PLA, Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zizheng Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiuping Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shuai Xu
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.,School of Medicine, Nankai University, Tianjin, China
| | - Fei Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Lincheng Li
- Medical School of Chinese PLA, Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhaoda Deng
- Medical School of Chinese PLA, Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jing Wang
- Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepetobiliary Surgery, PLA, Beijing, China
| | - Ke Pan
- Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepetobiliary Surgery, PLA, Beijing, China
| | - Xinlan Ge
- Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepetobiliary Surgery, PLA, Beijing, China
| | - Chonghui Li
- Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepetobiliary Surgery, PLA, Beijing, China
| | - Rong Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Minggen Hu
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
26
|
Zhu D, Chen J, Hou T. Development and Validation of a Prognostic Model of RNA-Binding Proteins in Colon Adenocarcinoma: A Study Based on TCGA and GEO Databases. Cancer Manag Res 2021; 13:7709-7722. [PMID: 34675667 PMCID: PMC8517423 DOI: 10.2147/cmar.s330434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies reported that dysregulation of RNA-binding proteins (RBPs) is significantly associated with the development of cancer. However, there are few studies to date on the role of RBPs in colon adenocarcinoma (COAD). Methods RNA sequencing and clinical data for COAD patients were downloaded from The Cancer Genome Atlas (TCGA) database to identify differentially expressed (DE) RBPs between COAD tissue and normal colon tissue, and then the expression and prognostic significance of these RBPs were investigated in detail by systematic bioinformatics analysis. qRT-PCR was used to validate the expressions of prognosis-related RBP-encoding genes. Results Seven RBPs (RPL10L, ERI1, POP1, CAPRIN2, TDRD7, SNIP1 and PPARGC1A) were identified as hub genes associated with prognosis by a series of regression analyses, and were then used to construct a prognostic model. Further analysis based on this model indicated that the overall survival (OS) of the high-risk groups was lower than that of the low-risk groups. In this prognostic model, the area under the ROC curve (AUC) was 0.694, 0.709 and 0.665 for the TCGA cohort at 1, 3 and 5 years, respectively, while the AUC was 0.671, 0.633 and 0.601 for the GEO combined cohort at 1, 3 and 5 years, respectively, indicating the good predictive ability of the model. We also built a nomogram based on the 7 RBPs in the TCGA cohort, and the model showed good discriminatory ability for COAD. Conclusion We screened seven prognosis-related genes in COAD patients based on RBP-related genes, validated the expressions of the seven prognosis-related RBP-encoding genes by qRT-PCR and constructed a prognosis-related nomogram for patients with COAD.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.,Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jierong Chen
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Tieying Hou
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.,Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| |
Collapse
|
27
|
Borgonetti V, Coppi E, Galeotti N. Targeting the RNA-Binding Protein HuR as Potential Thera-Peutic Approach for Neurological Disorders: Focus on Amyo-Trophic Lateral Sclerosis (ALS), Spinal Muscle Atrophy (SMA) and Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms221910394. [PMID: 34638733 PMCID: PMC8508990 DOI: 10.3390/ijms221910394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
The importance of precise co- and post-transcriptional processing of RNA in the regulation of gene expression has become increasingly clear. RNA-binding proteins (RBPs) are a class of proteins that bind single- or double-chain RNA, with different affinities and selectivity, thus regulating the various functions of RNA and the fate of the cells themselves. ELAV (embryonic lethal/abnormal visual system)/Hu proteins represent an important family of RBPs and play a key role in the fate of newly transcribed mRNA. ELAV proteins bind AU-rich element (ARE)-containing transcripts, which are usually present on the mRNA of proteins such as cytokines, growth factors, and other proteins involved in neuronal differentiation and maintenance. In this review, we focused on a member of ELAV/Hu proteins, HuR, and its role in the development of neurodegenerative disorders, with a particular focus on demyelinating diseases.
Collapse
|
28
|
Larrasa-Alonso J, Villalba-Orero M, Martí-Gómez C, Ortiz-Sánchez P, López-Olañeta MM, Rey-Martín MA, Sánchez-Cabo F, McNicoll F, Müller-McNicoll M, García-Pavía P, Lara-Pezzi E. The SRSF4-GAS5-Glucocorticoid Receptor Axis Regulates Ventricular Hypertrophy. Circ Res 2021; 129:669-683. [PMID: 34333993 PMCID: PMC8409900 DOI: 10.1161/circresaha.120.318577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is available in the text. RBPs (RNA-binding proteins) play critical roles in human biology and disease. Aberrant RBP expression affects various steps in RNA processing, altering the function of the target RNAs. The RBP SRSF4 (serine/arginine-rich splicing factor 4) has been linked to neuropathies and cancer. However, its role in the heart is completely unknown.
Collapse
Affiliation(s)
- Javier Larrasa-Alonso
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - María Villalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.).,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., P.G.-P., E.L.-P.)
| | - Carlos Martí-Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - Paula Ortiz-Sánchez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - Marina M López-Olañeta
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - M Ascensión Rey-Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - François McNicoll
- Goethe University Frankfurt, Institute of Molecular Biosciences, Frankfurt/Main, Germany (F.M., M.M.-M.)
| | - Michaela Müller-McNicoll
- Goethe University Frankfurt, Institute of Molecular Biosciences, Frankfurt/Main, Germany (F.M., M.M.-M.)
| | - Pablo García-Pavía
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., P.G.-P., E.L.-P.).,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain (P.G.-P.).,Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, Spain (P.G.-P.)
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.).,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., P.G.-P., E.L.-P.)
| |
Collapse
|
29
|
Integrated Analysis of the Roles of RNA Binding Proteins and Their Prognostic Value in Clear Cell Renal Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5568411. [PMID: 34306592 PMCID: PMC8263288 DOI: 10.1155/2021/5568411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Methods We downloaded the RNA sequencing data of ccRCC from the Cancer Genome Atlas (TCGA) database and identified differently expressed RBPs in different tissues. In this study, we used bioinformatics to analyze the expression and prognostic value of RBPs; then, we performed functional analysis and constructed a protein interaction network for them. We also screened out some RBPs related to the prognosis of ccRCC. Finally, based on the identified RBPs, we constructed a prognostic model that can predict patients' risk of illness and survival time. Also, the data in the HPA database were used for verification. Results In our experiment, we obtained 539 ccRCC samples and 72 normal controls. In the subsequent analysis, 87 upregulated RBPs and 38 downregulated RBPs were obtained. In addition, 9 genes related to the prognosis of patients were selected, namely, RPL36A, THOC6, RNASE2, NOVA2, TLR3, PPARGC1A, DARS, LARS2, and U2AF1L4. We further constructed a prognostic model based on these genes and plotted the ROC curve. This ROC curve performed well in judgement and evaluation. A nomogram that can judge the patient's life span is also made. Conclusion In conclusion, we have identified differentially expressed RBPs in ccRCC and carried out a series of in-depth research studies, the results of which may provide ideas for the diagnosis of ccRCC and the research of new targeted drugs.
Collapse
|
30
|
The Function and Prognostic Value of RNA-Binding Proteins in Colorectal Adenocarcinoma Were Analyzed Based on Bioinformatics of Smart Medical Big Data. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5536330. [PMID: 34188789 PMCID: PMC8192207 DOI: 10.1155/2021/5536330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022]
Abstract
Colon cancer is the third most frequent cancer in the world and is mainly adenocarcinoma in terms of pathological type. It has been confirmed that the dysregulation of RNA-binding proteins (RBPs) significantly participates in the occurrence and development of numerous malignant tumors. Therefore, we analyzed the RBPs associated with colon adenocarcinoma (COAD) to assess their possible biological effects and prognostic value. A total of 398 COAD tissue datasets and 39 normal tissue datasets were retrieved from the TCGA data resource and screened out the RBPs, which are differentially expressed between tumor tissues and nontumor tissues. Then, bioinformatics analyses based on smart medical big data were conducted on these RBPs. Overall, 181 differentially expressed RBPs were uncovered, consisting of 121 upregulated RBPs and 60 downregulated RBPs. Finally, we selected 7 prognostic-related RBPs with research prospects and constructed a prognostic model according to the median risk score. There were remarkable differences in OS between the high-risk and low-risk groups. In addition, the performance of the prognostic model was evaluated and verified with other COAD patient data in the TCGA database. The results showed that the area under the ROC curve (AUC) for the train group was 0.744 and the one for the test group was 0.661, confirming that the model assesses patients' prognosis to some extent. And based on 7 hub RBPs, we constructed a nomogram as a reference for evaluating the survival rate of COAD patients.
Collapse
|
31
|
Mazin PV, Khaitovich P, Cardoso-Moreira M, Kaessmann H. Alternative splicing during mammalian organ development. Nat Genet 2021; 53:925-934. [PMID: 33941934 PMCID: PMC8187152 DOI: 10.1038/s41588-021-00851-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022]
Abstract
Alternative splicing (AS) is pervasive in mammalian genomes, yet cross-species comparisons have been largely restricted to adult tissues and the functionality of most AS events remains unclear. We assessed AS patterns across pre- and postnatal development of seven organs in six mammals and a bird. Our analyses revealed that developmentally dynamic AS events, which are especially prevalent in the brain, are substantially more conserved than nondynamic ones. Cassette exons with increasing inclusion frequencies during development show the strongest signals of conserved and regulated AS. Newly emerged cassette exons are typically incorporated late in testis development, but those retained during evolution are predominantly brain specific. Our work suggests that an intricate interplay of programs controlling gene expression levels and AS is fundamental to organ development, especially for the brain and heart. In these regulatory networks, AS affords substantial functional diversification of genes through the generation of tissue- and time-specific isoforms from broadly expressed genes.
Collapse
Affiliation(s)
- Pavel V Mazin
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Philipp Khaitovich
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Margarida Cardoso-Moreira
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Evolutionary Developmental Biology Laboratory, The Francis Crick Institute, London, UK.
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
32
|
Woodcock CSC, Hafeez N, Handen A, Tang Y, Harvey LD, Estephan LE, Speyer G, Kim S, Bertero T, Chan SY. Matrix stiffening induces a pathogenic QKI-miR-7-SRSF1 signaling axis in pulmonary arterial endothelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 320:L726-L738. [PMID: 33565360 PMCID: PMC8174827 DOI: 10.1152/ajplung.00407.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) refers to a set of heterogeneous vascular diseases defined by elevation of pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR), leading to right ventricular (RV) remodeling and often death. Early increases in pulmonary artery stiffness in PAH drive pathogenic alterations of pulmonary arterial endothelial cells (PAECs), leading to vascular remodeling. Dysregulation of microRNAs can drive PAEC dysfunction. However, the role of vascular stiffness in regulating pathogenic microRNAs in PAH is incompletely understood. Here, we demonstrated that extracellular matrix (ECM) stiffening downregulated miR-7 levels in PAECs. The RNA-binding protein quaking (QKI) has been implicated in the biogenesis of miR-7. Correspondingly, we found that ECM stiffness upregulated QKI, and QKI knockdown led to increased miR-7. Downstream of the QKI-miR-7 axis, the serine and arginine-rich splicing factor 1 (SRSF1) was identified as a direct target of miR-7. Correspondingly, SRSF1 was reciprocally upregulated in PAECs exposed to stiff ECM and was negatively correlated with miR-7. Decreased miR-7 and increased QKI and SRSF1 were observed in lungs from patients with PAH and PAH rats exposed to SU5416/hypoxia. Lastly, miR-7 upregulation inhibited human PAEC migration, whereas forced SRSF1 expression reversed this phenotype, proving that miR-7 depended upon SRSF1 to control migration. In aggregate, these results define the QKI-miR-7-SRSF1 axis as a mechanosensitive mechanism linking pulmonary arterial vascular stiffness to pathogenic endothelial function. These findings emphasize implications relevant to PAH and suggest the potential benefit of developing therapies that target this miRNA-dependent axis in PAH.
Collapse
Affiliation(s)
- Chen-Shan Chen Woodcock
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Neha Hafeez
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Adam Handen
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ying Tang
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Lloyd D Harvey
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Leonard E Estephan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Gil Speyer
- Research Computing, Arizona State University, Tempe, Arizona
| | - Seungchan Kim
- Department of Electrical and Computer Engineering, Center for Computational Systems Biology, Prairie View A&M University, Prairie View, Texas
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Wang M, Jiang F, Wei K, Wang J, Zhou G, Wu C, Yin G. Development and Validation of a RNA Binding Protein-Associated Prognostic Model for Hepatocellular Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211004936. [PMID: 33910445 PMCID: PMC8111555 DOI: 10.1177/15330338211004936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dysregulation of RNA binding proteins (RBPs) has been identified in multiple malignant tumors correlated with tumor progression and occurrence. However, the function of RBPs is not well understood in hepatocellular carcinoma (HCC). METHODS The RNA sequence data of HCC was extracted out of the Cancer Genome Atlas (TCGA) database and different RBPs were calculated between regular and cancerous tissue. The study explored the expression and predictive value of the RBPs systemically with a series of bioinformatic analyzes. RESULTS A total of 330 RBPs, including 208 up-regulated and 122 down-regulated RBPs, were classified differently. Four RBPs (MRPL54, EZH2, PPARGC1A, EIF2AK4) were defined as the forecast related hub gene and used to construct a model for prediction. Further study showed that the high-risk subgroup is poor survived (OS) compared to the model-based low-risk subgroup. The area of the prognostic model under the time-dependent receiver operator characteristic (ROC) curve is 0.814 in TCGA training group and 0.729 in validation group, indicating a strong prognostic model. We also created a predictive nomogram and a web-based calculator (https://dxyjiang.shinyapps.io/RBPpredict/) based on the 4 RBPs and internal validation in the TCGA cohort, which displayed a beneficial predictive ability for HCC. CONCLUSIONS Our results provide new insights into HCC pathogenesis. The 4-RBP gene signature showed a reliable HCC prediction ability with possible applications in therapeutic decision making and personalized therapy.
Collapse
Affiliation(s)
- Ming Wang
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Neonatology, 92276Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ke Wei
- Medical Service Section, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jimei Wang
- Department of Neonatology, 92276Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Guoping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Chen HY, Xiao ZZ, Ling X, Xu RN, Zhu P, Zheng SY. ELAVL1 is transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy. Mol Med 2021; 27:14. [PMID: 33568052 PMCID: PMC7874472 DOI: 10.1186/s10020-021-00271-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Aims Myocardial ischemia is the most common form of cardiovascular disease and the leading cause of morbidity and mortality. Understanding the mechanisms is very crucial for the development of effective therapy. Therefore, this study aimed to investigate the functional roles and mechanisms by which ELAVL1 regulates myocardial ischemia and reperfusion (I/R) injury. Methods Mouse myocardial I/R model and cultured myocardial cells exposed to hypoxia/reperfusion (H/R) were used in this study. Features of ferroptosis were evidenced by LDH activity, GPx4 activity, cellular iron, ROS, LPO, and GSH levels. The expression levels of autophagy markers (Beclin-1, p62, LC3), ELAVL1 and FOXC1 were measured by qRT-PCR, immunostaining and western blot. RIP assay, biotin-pull down, ChIP and dual luciferase activity assay were employed to examine the interactions of ELAVL1/Beclin-1 mRNA and FOXC1/ELAVL1 promoter. CCK-8 assay was used to examine viability of cells. TTC staining was performed to assess the myocardial I/R injury. Results Myocardial I/R surgery induced ferroptosis and up-regulated ELAVL1 level. Knockdown of ELAVL1 decreased ferroptosis and ameliorated I/R injury. Si-ELAVL1 repressed autophagy and inhibition of autophagy by inhibitor suppressed ferroptosis and I/R injury in myocardial cells. Increase of autophagy could reverse the effects of ELAVL1 knockdown on ferroptosis and I/R injury. ELAVL1 directly bound with and stabilized Beclin-1 mRNA. Furthermore, FOXC1 bound to ELAVL1 promoter region and activated its transcription upon H/R exposure. Conclusion FOXC1 transcriptionally activated ELAVL1 may promote ferroptosis during myocardial I/R by modulating autophagy, leading to myocardial injury. Inhibition of ELAVL1-mediated autophagic ferroptosis would be a new viewpoint in the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Hui-Yong Chen
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Thoracic Surgery, Yuebei People's Hospital, Shantou University, Shaoguan, 512026, Guangdong, People's Republic of China
| | - Ze-Zhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiao Ling
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Rong-Ning Xu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Shao-Yi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
35
|
Rosenblum SL, Lorenz DA, Garner AL. A live-cell assay for the detection of pre-microRNA-protein interactions. RSC Chem Biol 2021; 2:241-247. [PMID: 33817642 PMCID: PMC8006716 DOI: 10.1039/d0cb00055h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Recent efforts in genome-wide sequencing and proteomics have revealed the fundamental roles that RNA-binding proteins (RBPs) play in the life cycle and function of coding and non-coding RNAs. While these methodologies provide a systems-level view of the networking of RNA and proteins, approaches to enable the cellular validation of discovered interactions are lacking. Leveraging the power of bioorthogonal chemistry- and split-luciferase-based assay technologies, we have devised a conceptually new assay for the live-cell detection of RNA-protein interactions (RPIs), RNA interaction with Protein-mediated Complementation Assay, or RiPCA. As proof-of-concept, we utilized the interaction of the pre-microRNA, pre-let-7, with its binding partner, Lin28. Using this system, we have demonstrated the selective detection of the pre-let-7-Lin28 RPI in both the cytoplasm and nucleus. Furthermore, we determined that this technology can be used to discern relative affinities for specific sequences as well as of individual RNA binding domains. Thus, RiPCA has the potential to serve as a useful tool in supporting the investigation of cellular RPIs.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , USA .
| | - Daniel A Lorenz
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , USA .
| | - Amanda L Garner
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , USA .
- Department of Medicinal Chemistry , College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , USA
| |
Collapse
|
36
|
Li T, Hui W, Halike H, Gao F. RNA Binding Protein-Based Model for Prognostic Prediction of Colorectal Cancer. Technol Cancer Res Treat 2021; 20:15330338211019504. [PMID: 34080453 PMCID: PMC8182183 DOI: 10.1177/15330338211019504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a kind of gastrointestinal tumor with serious high morbidity and mortality. Several reports have implicated the disorder of RNA-binding proteins (RBPs) in plenty of tumors, associating it to tumorigenesis and disease progression. The study is intended to construct novel prognostic biomarkers associated with CRC patients. METHODS Data of gene expression was acquired from the TCGA database, prognosis-related genes were selected. Besides, we analyzed GO and KEGG pathways. Univariate and multivariate Cox analyses were performed to generate a prognostic-related gene signature, which was evaluated by the Kaplan-Meier (K-M) and the Receiver Operating Characteristic (ROC) curve. The independent prognostic factor was established by survival analysis. GSE38832 dataset was used to validate the signature. Finally, expression of 8 genes was further confirmed by qRT-PCR in SW480 and SW620 cell lines. RESULTS We obtained 224 differentially expressed RBPS in total, of which 78 were downregulated and 146 were upregulated. Univariate COX analysis was conducted in the TCGA cohort to select 13 RBPs with P < 0.005, stepwise multivariate COX regression analysis was used to construct an 8-RBP signature (TERT, PPARGC1A, BRCA1, CELF4, TDRD7, LUZP4, PNLDC1, ZC3H12C). Based on the model, systematic analysis illustrated that a high risk score was obviously connected to a poor prognosis. The prognostic value of the risk score was validated in GSE38832 dataset, indicating that the risk model was accurate and effective. The prognostic signature-based risk score was identified as an independent prognostic indicator for CRC. The expression results of qRT-PCR were consistent with the results of differential expression analysis. CONCLUSIONS The eight-RBP signature can predict the survival of CRC patients and potentially act as CRC prognostic biomarker.
Collapse
Affiliation(s)
- Ting Li
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur
Autonomous Region, Urumqi, Xinjiang Province, China
| | - Wenjia Hui
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur
Autonomous Region, Urumqi, Xinjiang Province, China
| | - Halina Halike
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur
Autonomous Region, Urumqi, Xinjiang Province, China
| | - Feng Gao
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur
Autonomous Region, Urumqi, Xinjiang Province, China
| |
Collapse
|
37
|
Wang L, Zhou N, Qu J, Jiang M, Zhang X. Identification of an RNA binding protein-related gene signature in hepatocellular carcinoma patients. Mol Med 2020; 26:125. [PMID: 33297932 PMCID: PMC7727152 DOI: 10.1186/s10020-020-00252-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant primary cancer with high mortality. Previous studies have demonstrated that RNA binding proteins (RBPs) are involved in the biological processes of cancers, including hepatocellular cancer. Methods In this study, we aimed to identify the clinical value of RNA-binding proteins for hepatocellular carcinoma. We obtained gene expression and clinical data of hepatocellular carcinoma patients from the TCGA and ICGC databases. The prognostic value of RBP-related genes in patients with hepatocellular carcinoma and their function were studied by comprehensive bioinformatics analyses. The gene signature of SMG5, EZH2, FBLL1, ZNF239, and IGF2BP3 was generated by univariate and multivariate Cox regression and LASSO regression analyses. We built and verified a prognostic nomogram based on RBP-related genes. The gene signature was validated by the ICGC database. The expression of RBP-related genes was validated by the Oncomine database, the Human Protein Atlas and Kaplan–Meier plotter. Result Most RBP-related genes were significantly different in cancer and normal tissues. The survival of patients in the different groups was significantly different. The gene signature showed good performance for predicting the survival of HCC patients by having a better area under the receiver operating characteristic curve than other clinicopathological parameters. Conclusion Gene signatures based on RNA-binding proteins can be independent risk factors for hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Li Wang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Jialin Qu
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Man Jiang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
38
|
Li CX, Chen J, Xu ZG, Yiu WK, Lin YT. The expression and prognostic value of RNA binding proteins in clear cell renal cell carcinoma. Transl Cancer Res 2020; 9:7415-7431. [PMID: 35117342 PMCID: PMC8797574 DOI: 10.21037/tcr-20-2393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/21/2020] [Indexed: 11/06/2022]
Abstract
Background RNA binding proteins (RBPs) have previously been demonstrated to be involved in the initiation and development of human cancers. However, its role in clear cell renal cell carcinoma (ccRCC) is not yet clear. The study was intended to explore the diagnostic and prognostic value of RBPs in ccRCC via bioinformatics methods of public datasets. Methods Data download from the Cancer Genome Atlas (TCGA) database was used to identify differentially expressed RBPs between normal renal samples and cancerous samples. Then, we performed the gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of differentially expressed genes (DEGs) using the ClusterProfiler package. Next, the protein-protein interaction (PPI) network was built by the online tool STRING database and Cytoscape software. The significant module and hub genes were screened by MCODE and Cytohubba plugin, respectively. Lastly, we performed a systematical analysis to investigate the diagnostic and prognostic value of candidate RBPs. Results A total of 133 DEGs, including 39 upregulated RBPs and 94 downregulated RBPs, were screened between ccRCC samples and noncancerous samples. From these data, eight candidate RBPs (RPS2, GAPDH, RPS20, EIF4A1, RPL18, RPL13, RPL18A, and RPS19) were identified. Conclusions In summary, we screened differentially expressed RBPs of ccRCC, which were enriched mainly in various biological processes and signaling pathways. Furthermore, we identified eight candidate RBPs, which could serve as potential biomarkers of ccRCC.
Collapse
Affiliation(s)
- Can-Xuan Li
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jie Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zheng-Guang Xu
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wing-Keung Yiu
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yen-Ting Lin
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
39
|
Huang Y, Chen S, Qin W, Wang Y, Li L, Li Q, Yuan X. A Novel RNA Binding Protein-Related Prognostic Signature for Hepatocellular Carcinoma. Front Oncol 2020; 10:580513. [PMID: 33251144 PMCID: PMC7673432 DOI: 10.3389/fonc.2020.580513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant and aggressive cancer with high recurrence rates and mortality. Some studies have illustrated that RNA binding proteins (RBPs) were involved in the carcinogenesis and development of multiple cancers, but the roles in HCC were still unclear. We downloaded the RNA-seq and corresponding clinical information of HCC from The Cancer Genome Atlas (TCGA) database, and 330 differentially expressed RBPs were identified between normal and HCC tissues. Through series of the univariate, the least absolute shrinkage selection operator (LASSO), and the stepwise multivariate Cox regression analyses, six prognosis-related key RBPs (CNOT6, UPF3B, MRPL54, ZC3H13, IFIT5, and PPARGC1A) were screened out from DE RBPs, and a six-RBP gene risk score signature was constructed in training set. Survival analysis indicated that HCC patients with high-risk scores had significantly worse overall survival than low-risk patients, and furthermore, the signature can be used as an independent prognostic indicator. The good accuracy of this prognostic signature was confirmed by the ROC curve analysis and was further validated in the International Cancer Genome Consortium (ICGC) HCC cohort. Besides, a nomogram based on six RBP genes was established and internally validated in the TCGA cohort. Gene set enrichment analysis demonstrated some cancer-related phenotypes were significantly gathered in the high-risk group. Overall, our study first identified an RBP-related six-gene prognostic signature, which could serve as a promising prognostic biomarker and provide some potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Zhong W, Huang C, Lin J, Zhu M, Zhong H, Chiang MH, Chiang HS, Hui MS, Lin Y, Huang J. Development and Validation of Nine-RNA Binding Protein Signature Predicting Overall Survival for Kidney Renal Clear Cell Carcinoma. Front Genet 2020; 11:568192. [PMID: 33133154 PMCID: PMC7566920 DOI: 10.3389/fgene.2020.568192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Cumulative studies have shown that RNA binding proteins (RBPs) play an important role in numerous malignant tumors and are related to the occurrence and progression of tumors. However, the role of RBPs in kidney renal clear cell carcinoma (KIRC) is not fully understood. In this study, we first downloaded gene expression data and corresponding clinical information of KIRC from the Cancer Genome Atlas (TCGA) database, International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) database, respectively. A total of 137 differentially expressed RBPs (DERBPs) were then identified between normal and tumor tissue, including 38 downregulated and 99 upregulated RBPs. Nine RBPs (EIF4A1, RPL36A, EXOSC5, RPL28, RPL13, RPS19, RPS2, EEF1A2, and OASL) were served as prognostic genes and exploited to construct a prognostic model through survival analysis. Kaplan-Meier curves analysis showed that the low-risk group had a better survival outcome when compared with the high-risk group. The area under the curve (AUC) value of the prognostic model was 0.713 in the TCGA data set (training data set), 0.706 in the ICGC data set, and 0.687 in the GSE29609 data set, respectively, confirming a good prognostic model. The prognostic model was also identified as an independent prognostic factor for KIRC survival by performing cox regression analysis. In addition, we also built a nomogram relying on age and the prognostic model and internal validation in the TCGA data set. The clinical benefit of the prognostic model was revealed by decision curve analysis (DCA). Gene set enrichment analysis revealed several crucial pathways (ERBB signaling pathway, pathways in cancer, MTOR signaling pathway, WNT signaling pathway, and TGF BETA signaling pathway) that may explain the underlying mechanisms of KIRC. Furthermore, potential drugs for KIRC treatment were predicted by the Connectivity Map (Cmap) database based on DERBPs, including several important drugs, such as depudecin and vorinostat, that could reverse KIRC gene expression, which may provide reference for the treatment of KIRC. In summary, we developed and validated a robust nine-RBP signature for KIRC prognosis prediction. A nomogram with risk score and age can be applied to promote the individualized prediction of overall survival in patients with KIRC. Moreover, the two drugs depudecin and vorinostat may contribute to KIRC treatment.
Collapse
Affiliation(s)
| | | | | | - Maoshu Zhu
- The Fifth Hospital of Xiamen, Xiamen, China
| | | | - Ming-Hsien Chiang
- Taiwan LinkMed Asia Public Health & Healthcare Management Research Association, Taipei, Taiwan
| | - Huei-Shien Chiang
- Taiwan LinkMed Asia Public Health & Healthcare Management Research Association, Taipei, Taiwan
| | | | - Yao Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jiyi Huang
- The Fifth Hospital of Xiamen, Xiamen, China.,Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| |
Collapse
|
41
|
Fischer M, Weinberger T, Schulz C. The immunomodulatory role of Regnase family RNA-binding proteins. RNA Biol 2020; 17:1721-1726. [PMID: 32752923 DOI: 10.1080/15476286.2020.1795584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
RNA-binding proteins regulate RNA fate and govern post-transcriptional gene regulation. A new family of RNA-binding proteins is represented by regulatory RNases (Regnase, also known as Zc3h12 or MCPIP), which have emerged as important players in immune homoeostasis. Four members, Regnase1-4, have been identified to date. Here we summarize recent findings on the role of Regnase in the regulation of RNA biology and its consequences for cell functions and inflammatory processes.
Collapse
Affiliation(s)
- Maximilian Fischer
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universitaet , Munich, Germany.,German Center for Cardiovascular Research (DZHK) , Munich, Germany
| | - Tobias Weinberger
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universitaet , Munich, Germany.,German Center for Cardiovascular Research (DZHK) , Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universitaet , Munich, Germany.,German Center for Cardiovascular Research (DZHK) , Munich, Germany
| |
Collapse
|
42
|
Jackson TC, Kochanek PM. RNA Binding Motif 5 (RBM5) in the CNS-Moving Beyond Cancer to Harness RNA Splicing to Mitigate the Consequences of Brain Injury. Front Mol Neurosci 2020; 13:126. [PMID: 32765218 PMCID: PMC7381114 DOI: 10.3389/fnmol.2020.00126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Gene splicing modulates the potency of cell death effectors, alters neuropathological disease processes, influences neuronal recovery, but may also direct distinct mechanisms of secondary brain injury. Therapeutic targeting of RNA splicing is a promising avenue for next-generation CNS treatments. RNA-binding proteins (RBPs) regulate a variety of RNA species and are prime candidates in the hunt for druggable targets to manipulate and tailor gene-splicing responses in the brain. RBPs preferentially recognize unique consensus sequences in targeted mRNAs. Also, RBPs often contain multiple RNA-binding domains (RBDs)—each having a unique consensus sequence—suggesting the possibility that drugs could be developed to block individual functional domains, increasing the precision of RBP-targeting therapies. Empirical characterization of most RBPs is lacking and represents a major barrier to advance this emerging therapeutic area. There is a paucity of data on the role of RBPs in the brain including, identification of their unique mRNA targets, defining how CNS insults affect their levels and elucidating which RBPs (and individual domains within) to target to improve neurological outcomes. This review focuses on the state-of-the-art of the RBP tumor suppressor RNA binding motif 5 (RBM5) in the CNS. We discuss its potent pro-death roles in cancer, which motivated our interest to study it in the brain. We review recent studies showing that RBM5 levels are increased after CNS trauma and that it promotes neuronal death in vitro. Finally, we conclude with recent reports on the first set of RBM5 regulated genes identified in the intact brain, and discuss how those findings provide new clues germane to its potential function(s) in the CNS, and pose new questions on its therapeutic utility to mitigate CNS injury.
Collapse
Affiliation(s)
- Travis C Jackson
- Morsani College of Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, United States.,Morsani College of Medicine, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
43
|
Zhang H, Brown RD, Stenmark KR, Hu CJ. RNA-Binding Proteins in Pulmonary Hypertension. Int J Mol Sci 2020; 21:ijms21113757. [PMID: 32466553 PMCID: PMC7312837 DOI: 10.3390/ijms21113757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by significant vascular remodeling and aberrant expression of genes involved in inflammation, apoptosis resistance, proliferation, and metabolism. Effective therapeutic strategies are limited, as mechanisms underlying PH pathophysiology, especially abnormal expression of genes, remain unclear. Most PH studies on gene expression have focused on gene transcription. However, post-transcriptional alterations have been shown to play a critical role in inflammation and metabolic changes in diseases such as cancer and systemic cardiovascular diseases. In these diseases, RNA-binding proteins (RBPs) have been recognized as important regulators of aberrant gene expression via post-transcriptional regulation; however, their role in PH is less clear. Identifying RBPs in PH is of great importance to better understand PH pathophysiology and to identify new targets for PH treatment. In this manuscript, we review the current knowledge on the role of dysregulated RBPs in abnormal mRNA gene expression as well as aberrant non-coding RNA processing and expression (e.g., miRNAs) in PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - R. Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
- Department of Craniofacial Biology School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-4576; Fax: +1-303-724-4580
| |
Collapse
|
44
|
Gao C, Wang Y. mRNA Metabolism in Cardiac Development and Disease: Life After Transcription. Physiol Rev 2020; 100:673-694. [PMID: 31751167 PMCID: PMC7327233 DOI: 10.1152/physrev.00007.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The central dogma of molecular biology illustrates the importance of mRNAs as critical mediators between genetic information encoded at the DNA level and proteomes/metabolomes that determine the diverse functional outcome at the cellular and organ levels. Although the total number of protein-producing (coding) genes in the mammalian genome is ~20,000, it is evident that the intricate processes of cardiac development and the highly regulated physiological regulation in the normal heart, as well as the complex manifestation of pathological remodeling in a diseased heart, would require a much higher degree of complexity at the transcriptome level and beyond. Indeed, in addition to an extensive regulatory scheme implemented at the level of transcription, the complexity of transcript processing following transcription is dramatically increased. RNA processing includes post-transcriptional modification, alternative splicing, editing and transportation, ribosomal loading, and degradation. While transcriptional control of cardiac genes has been a major focus of investigation in recent decades, a great deal of progress has recently been made in our understanding of how post-transcriptional regulation of mRNA contributes to transcriptome complexity. In this review, we highlight some of the key molecular processes and major players in RNA maturation and post-transcriptional regulation. In addition, we provide an update to the recent progress made in the discovery of RNA processing regulators implicated in cardiac development and disease. While post-transcriptional modulation is a complex and challenging problem to study, recent technological advancements are paving the way for a new era of exciting discoveries and potential clinical translation in the context of cardiac biology and heart disease.
Collapse
Affiliation(s)
- Chen Gao
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
45
|
Cao H, Baranova A, Yue W, Yu H, Zhu Z, Zhang F, Liu D. miRNA-Coordinated Schizophrenia Risk Network Cross-Talk With Cardiovascular Repair and Opposed Gliomagenesis. Front Genet 2020; 11:149. [PMID: 32194626 PMCID: PMC7064629 DOI: 10.3389/fgene.2020.00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background Schizophrenia risk genes are widely investigated, but a systemic analysis of miRNAs contributing to schizophrenia is lacking. Methods Schizophrenia-associated genetic loci profiles were derived from a genome-wide association study (GWAS) from the Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC) dataset. Experimentally confirmed relationships between miRNAs and their target genes were retrieved from a miRTarBase. A competitive gene set association analysis for miRNA-target regulations was conducted by the Multi-marker Analysis of GenoMic Annotation (MAGMA) and further validated by literature-based functional pathway analysis using Pathway Studio. The association between the targets of three miRNAs and schizophrenia was further validated using a GWAS of antipsychotic treatment responses. Results Three novel schizophrenia-risk miRNAs, namely, miR-208b-3p, miR-208a-3p, and miR-494-5p, and their targetomes converged on calcium voltage-gated channel subunit alpha1 C (CACNA1C) and B-cell lymphoma 2 (BCL2), and these are well-known contributors to schizophrenia. Both miR-208a-3p and miR-208b-3p reduced the expression of the RNA-binding protein Quaking (QKI), whose suppression commonly contributes to demyelination of the neurons and to ischemia/reperfusion injury. On the other hand, both QKI and hsa-miR-494-5p were involved in gliomagenesis. Conclusion Presented results point at an orchestrating role of miRNAs in the pathophysiology of schizophrenia. The sharing of regulatory networks between schizophrenia and other pathologies may explain higher cardiovascular mortality and lower odds of glioma previously reported in psychiatric patients.
Collapse
Affiliation(s)
- Hongbao Cao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Department of Genomics Research, R&D Solutions, Elsevier Inc., Rockville, MD, United States.,School of Systems Biology, George Mason University (GMU), Fairfax, VA, United States
| | - Ancha Baranova
- School of Systems Biology, George Mason University (GMU), Fairfax, VA, United States.,Research Center for Medical Genetics, Moscow, Russia
| | - Weihua Yue
- Department of Psychiatry Institute of Mental Health, Peking University, Bejing, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, China
| | - Zufu Zhu
- Department of Neurology, Jiangyin People's Hospital Affiliated to Southeast University, Jiangyin, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dongbai Liu
- Department of Neurology, Jiangyin People's Hospital Affiliated to Southeast University, Jiangyin, China
| |
Collapse
|
46
|
Picchiarelli G, Dupuis L. Role of RNA Binding Proteins with prion-like domains in muscle and neuromuscular diseases. Cell Stress 2020; 4:76-91. [PMID: 32292882 PMCID: PMC7146060 DOI: 10.15698/cst2020.04.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A number of neuromuscular and muscular diseases, including amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and several myopathies, are associated to mutations in related RNA-binding proteins (RBPs), including TDP-43, FUS, MATR3 or hnRNPA1/B2. These proteins harbor similar modular primary sequence with RNA binding motifs and low complexity domains, that enables them to phase separate and create liquid microdomains. These RBPs have been shown to critically regulate multiple events of RNA lifecycle, including transcriptional events, splicing and RNA trafficking and sequestration. Here, we review the roles of these disease-related RBPs in muscle and motor neurons, and how their dysfunction in these cell types might contribute to disease.
Collapse
Affiliation(s)
- Gina Picchiarelli
- Université de Strasbourg, INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR_S 1118, Strasbourg, France
| | - Luc Dupuis
- Université de Strasbourg, INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR_S 1118, Strasbourg, France
| |
Collapse
|
47
|
Li W, Gao LN, Song PP, You CG. Development and validation of a RNA binding protein-associated prognostic model for lung adenocarcinoma. Aging (Albany NY) 2020; 12:3558-3573. [PMID: 32087603 PMCID: PMC7066909 DOI: 10.18632/aging.102828] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
RNA binding proteins (RBPs) dysregulation have been reported in various malignant tumors and associated with the occurrence and development of cancer. However, the role of RBPs in lung adenocarcinoma (LUAD) is poorly understood. We downloaded the RNA sequencing data of LUAD from the Cancer Genome Atlas (TCGA) database and determined the differently expressed RBPs between normal and cancer tissues. The study then systemically investigated the expression and prognostic value of these RBPs by a series of bioinformatics analysis. A total of 223 differently expressed RBPs were identified, including 101 up-regulated and 122 down-regulated RBPs. Eight RBPs (IGF2BP1, IFIT1B, PABPC1, TLR8, GAPDH, PIWIL4, RNPC3, and ZC3H12C) were identified as prognosis related hub gene and used to construct a prognostic model. Further analysis indicated that the patients in the high-risk subgroup had poor overall survival(OS) compared to those in low-risk subgroup based on the model. The area under the curve of the time-dependent receiver operator characteristic curve of the prognostic model are 0.775 in TCGA cohort and 0.814 in GSE31210 cohort, confirming a good prognostic model. We also established a nomogram based on eight RBPs mRNA and internal validation in the TCGA cohort, which displayed a favorable discriminating ability for lung adenocarcinoma.
Collapse
Affiliation(s)
- Wei Li
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Li-Na Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Pei-Pei Song
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
48
|
de Bruin RG, Vogel G, Prins J, Duijs JMJG, Bijkerk R, van der Zande HJP, van Gils JM, de Boer HC, Rabelink TJ, van Zonneveld AJ, van der Veer EP, Richard S. Targeting the RNA-Binding Protein QKI in Myeloid Cells Ameliorates Macrophage-Induced Renal Interstitial Fibrosis. EPIGENOMES 2020; 4:epigenomes4010002. [PMID: 34968236 PMCID: PMC8594696 DOI: 10.3390/epigenomes4010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
In the pathophysiologic setting of acute and chronic kidney injury, the excessive activation and recruitment of blood-borne monocytes prompts their differentiation into inflammatory macrophages, a process that leads to progressive glomerulosclerosis and interstitial fibrosis. Importantly, this differentiation of monocytes into macrophages requires the meticulous coordination of gene expression at both the transcriptional and post-transcriptional level. The transcriptomes of these cells are ultimately determined by RNA-binding proteins such as QUAKING (QKI), that define their pre-mRNA splicing and mRNA transcript patterns. Using two mouse models, namely (1) quaking viable mice (qkv) and (2) the conditional deletion in the myeloid cell lineage using the lysozyme 2-Cre (QKIFL/FL;LysM-Cre mice), we demonstrate that the abrogation of QKI expression in the myeloid cell lineage reduces macrophage infiltration following kidney injury induced by unilateral urethral obstruction (UUO). The qkv and QKIFL/FL;LysM-Cre mice both showed significant diminished interstitial collagen deposition and fibrosis in the UUO-damaged kidney, as compared to wild-type littermates. We show that macrophages isolated from QKIFL/FL;LysM-Cre mice are associated with defects in pre-mRNA splicing. Our findings demonstrate that reduced expression of the alternative splice regulator QKI in the cells of myeloid lineage attenuates renal interstitial fibrosis, suggesting that inhibition of this splice regulator may be of therapeutic value for certain kidney diseases.
Collapse
Affiliation(s)
- Ruben G. de Bruin
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, QC H3T 1E2, Canada;
| | - Gillian Vogel
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, QC H3T 1E2, Canada;
| | - Jurrien Prins
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Jacques M. J. G. Duijs
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Roel Bijkerk
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Hendrik J. P. van der Zande
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Janine M. van Gils
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Hetty C. de Boer
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Ton J. Rabelink
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Eric P. van der Veer
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
- Correspondence: (E.P.v.d.V.); (S.R.)
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, QC H3T 1E2, Canada;
- Correspondence: (E.P.v.d.V.); (S.R.)
| |
Collapse
|
49
|
Li W, Li N, Gao L, You C. Integrated analysis of the roles and prognostic value of RNA binding proteins in lung adenocarcinoma. PeerJ 2020; 8:e8509. [PMID: 32071816 PMCID: PMC7007976 DOI: 10.7717/peerj.8509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the top cause of carcinoma-associated deaths worldwide. RNA binding proteins (RBPs) dysregulation has been reported in various malignant tumors, and that dysregulation is closely associated with tumorigenesis and tumor progression. However, little is known about the roles of RBPs in lung adenocarcinoma (LUAD). In this study, we downloaded the RNA sequencing data of LUAD from The Cancer Genome Atlas (TCGA) database and determined the differently expressed RBPs between normal and cancer tissues. We then performed an integrative analysis to explore the expression and prognostic significance of these RBPs. A total of 164 differently expressed RBPs were identified, including 40 down-regulated and 124 up-regulated RBPs. Pathway and Gene ontology (GO) analysis indicated that the differently expressed RBPs were mainly related to RNA processing, RNA metabolic process, RNA degradation, RNA transport, splicing, localization, regulation of translation, RNA binding, TGF-beta signaling pathway, mRNA surveillance pathway, and aminoacyl-tRNA biosynthesis. Survival analysis revealed that the high expression of BOP1 or GNL3 or WDR12 or DCAF13 or IGF2BP3 or IGF2BP1 were associated with poor overall survival (OS). Conversely, overexpression of KHDRBS2/SMAD predicted high OS in these patients. ROC curve analysis showed that the eight hub genes with a better diagnostic accuracy to distinguish lung adenocarcinoma. The results provided novel insights into the pathogenesis of LUAD and the development of treatment targets and prognostic molecular markers.
Collapse
Affiliation(s)
- Wei Li
- Laboratory Medicine Center, Lanzhou University Second Hospital, Langzhou, China
| | - Na Li
- Department of Pathology, the First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Lina Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Langzhou, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Langzhou, China
| |
Collapse
|
50
|
Weirick T, Militello G, Hosen MR, John D, Moore JB, Uchida S. Investigation of RNA Editing Sites within Bound Regions of RNA-Binding Proteins. High Throughput 2019; 8:ht8040019. [PMID: 31795425 PMCID: PMC6970233 DOI: 10.3390/ht8040019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/08/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Studies in epitranscriptomics indicate that RNA is modified by a variety of enzymes. Among these RNA modifications, adenosine to inosine (A-to-I) RNA editing occurs frequently in the mammalian transcriptome. These RNA editing sites can be detected directly from RNA sequencing (RNA-seq) data by examining nucleotide changes from adenosine (A) to guanine (G), which substitutes for inosine (I). However, a careful investigation of such nucleotide changes must be conducted to distinguish sequencing errors and genomic mutations from the genuine editing sites. Building upon our recent introduction of an easy-to-use bioinformatics tool, RNA Editor, to detect RNA editing events from RNA-seq data, we examined the extent by which RNA editing events affect the binding of RNA-binding proteins (RBP). Through employing bioinformatic techniques, we uncovered that RNA editing sites occur frequently in RBP-bound regions. Moreover, the presence of RNA editing sites are more frequent when RNA editing islands were examined, which are regions in which RNA editing sites are present in clusters. When the binding of one RBP, human antigen R [HuR; encoded by ELAV-like protein 1 (ELAV1)], was quantified experimentally, its binding was reduced upon silencing of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) compared to the control-suggesting that the presence of RNA editing islands influence HuR binding to its target regions. These data indicate RNA editing as an important mediator of RBP-RNA interactions-a mechanism which likely constitutes an additional mode of post-transcription gene regulation in biological systems.
Collapse
Affiliation(s)
- Tyler Weirick
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Giuseppe Militello
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
- Department of Molecular Cellular and Developmental Biology, Yale University, Yale Science Building-260 Whitney Avenue, New Haven, CT 06511, USA;
| | - Mohammed Rabiul Hosen
- Department of Internal Medicine-II, Molecular Cardiology, Biomedical Center (BMZ), University of Bonn, Sigmund-Freud-Str. 25, Bonn 53127, Germany;
| | - David John
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany;
| | - Joseph B. Moore
- The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Shizuka Uchida
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
- The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
- Correspondence: ; Tel.: +1-502-854-0570
| |
Collapse
|