1
|
Htet M, Lei S, Bajpayi S, Zoitou A, Chamakioti M, Tampakakis E. The role of noncoding genetic variants in cardiomyopathy. Front Cardiovasc Med 2023; 10:1116925. [PMID: 37283586 PMCID: PMC10239966 DOI: 10.3389/fcvm.2023.1116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Cardiomyopathies remain one of the leading causes of morbidity and mortality worldwide. Environmental risk factors and genetic predisposition account for most cardiomyopathy cases. As with all complex diseases, there are significant challenges in the interpretation of the molecular mechanisms underlying cardiomyopathy-associated genetic variants. Given the technical improvements and reduced costs of DNA sequence technologies, an increasing number of patients are now undergoing genetic testing, resulting in a continuously expanding list of novel mutations. However, many patients carry noncoding genetic variants, and although emerging evidence supports their contribution to cardiac disease, their role in cardiomyopathies remains largely understudied. In this review, we summarize published studies reporting on the association of different types of noncoding variants with various types of cardiomyopathies. We focus on variants within transcriptional enhancers, promoters, intronic sites, and untranslated regions that are likely associated with cardiac disease. Given the broad nature of this topic, we provide an overview of studies that are relatively recent and have sufficient evidence to support a significant degree of causality. We believe that more research with additional validation of noncoding genetic variants will provide further mechanistic insights on the development of cardiac disease, and noncoding variants will be increasingly incorporated in future genetic screening tests.
Collapse
Affiliation(s)
- Myo Htet
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shunyao Lei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Sheetal Bajpayi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Asimina Zoitou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | | | - Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
2
|
Zheng SQ, Chen HX, Liu XC, Yang Q, He GW. Identification of variants of ISL1 gene promoter and cellular functions in isolated ventricular septal defects. Am J Physiol Cell Physiol 2021; 321:C443-C452. [PMID: 34260301 DOI: 10.1152/ajpcell.00167.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022]
Abstract
Ventricular septal defects (VSDs) are the most common congenital heart defects (CHDs). Studies have documented that ISL1 has a crucial impact on cardiac growth, but the role of variants in the ISL1 gene promoter in patients with VSD has not been explored. In 400 subjects (200 patients with isolated and sporadic VSDs: 200 healthy controls), we investigated the ISL1 gene promoter variant and performed cellular functional experiments by using the dual-luciferase reporter assay to verify the impact on gene expression. In the ISL1 promoter, five variants were found only in patients with VSD by sequencing. Cellular functional experiments demonstrated that three variants decreased the transcriptional activity of the ISL1 promoter (P < 0.05). Further analysis with the online JASPAR database demonstrated that a cluster of putative binding sites for transcription factors may be altered by these variants, possibly resulting in change of ISL1 protein expression and VSD formation. Our study has, for the first time, identified novel variants in the ISL1 gene promoter region in the Han Chinese patients with isolated and sporadic VSD. In addition, the cellular functional experiments, electrophoretic mobility shift assay, and bioinformatic analysis have demonstrated that these variants significantly alter the expression of the ISL1 gene and affect the binding of transcription factors, likely resulting in VSD. Therefore, this study may provide new insights into the role of the gene promoter region for a better understanding of genetic basis of the formation of CHDs and may promote further investigations on mechanism of the formation of CHDs.
Collapse
MESH Headings
- Adolescent
- Asian People
- Base Sequence
- Binding Sites
- Case-Control Studies
- Child
- Child, Preschool
- Databases, Genetic
- Female
- Gene Expression
- Genes, Reporter
- HEK293 Cells
- Heart Septal Defects, Ventricular/ethnology
- Heart Septal Defects, Ventricular/genetics
- Heart Septal Defects, Ventricular/metabolism
- Heart Septal Defects, Ventricular/pathology
- Humans
- Infant
- LIM-Homeodomain Proteins/genetics
- LIM-Homeodomain Proteins/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Male
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic
- Protein Binding
- Sequence Analysis, DNA
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ventricular Septum/metabolism
- Ventricular Septum/pathology
Collapse
Affiliation(s)
- Si-Qiang Zheng
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Xiao-Cheng Liu
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
- Drug Research and Development Center, Wannan Medical College, Wuhu, People's Republic of China
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
3
|
Wu SH, Wang XH, Xu YJ, Gu JN, Yang CX, Qiao Q, Guo XJ, Guo YH, Qiu XB, Jiang WF, Yang YQ. ISL1 loss-of-function variation causes familial atrial fibrillation. Eur J Med Genet 2020; 63:104029. [PMID: 32771629 DOI: 10.1016/j.ejmg.2020.104029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023]
Abstract
Atrial fibrillation (AF) represents the most frequent form of sustained cardiac rhythm disturbance, affecting approximately 1% of the general population worldwide, and confers a substantially enhanced risk of cerebral stroke, heart failure, and death. Increasing epidemiological studies have clearly demonstrated a strong genetic basis for AF, and variants in a wide range of genes, including those coding for ion channels, gap junction channels, cardiac structural proteins and transcription factors, have been identified to underlie AF. Nevertheless, the genetic pathogenesis of AF is complex and still far from completely understood. Here, whole-exome sequencing and bioinformatics analyses of a three-generation family with AF were performed, and after filtering variants by multiple metrics, we identified a heterozygous variant in the ISL1 gene (encoding a transcription factor critical for embryonic cardiogenesis and postnatal cardiac remodeling), NM_002202.2: c.481G > T; p.(Glu161*), which was validated by Sanger sequencing and segregated with autosome-dominant AF in the family with complete penetrance. The nonsense variant was absent from 284 unrelated healthy individuals used as controls. Functional assays with a dual-luciferase reporter assay system revealed that the truncating ISL1 protein lost transcriptional activation on the verified target genes MEF2C and NKX2-5. Additionally, the variant nullified the synergistic transactivation between ISL1 and TBX5 as well as GATA4, two other transcription factors that have been implicated in AF. The findings suggest ISL1 as a novel gene contributing to AF, which adds new insight to the genetic mechanisms underpinning AF, implying potential implications for genetic testing and risk stratification of the AF family members.
Collapse
Affiliation(s)
- Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Wang Z, Song HM, Wang F, Zhao CM, Huang RT, Xue S, Li RG, Qiu XB, Xu YJ, Liu XY, Yang YQ. A New ISL1 Loss-of-Function Mutation Predisposes to Congenital Double Outlet Right Ventricle. Int Heart J 2019; 60:1113-1122. [DOI: 10.1536/ihj.18-685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhi Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Hao-Ming Song
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Fei Wang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Yi-Qing Yang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University
- Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University
- Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University
| |
Collapse
|
5
|
Gao R, Liang X, Cheedipudi S, Cordero J, Jiang X, Zhang Q, Caputo L, Günther S, Kuenne C, Ren Y, Bhattacharya S, Yuan X, Barreto G, Chen Y, Braun T, Evans SM, Sun Y, Dobreva G. Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate. Cell Res 2019; 29:486-501. [PMID: 31024170 PMCID: PMC6796926 DOI: 10.1038/s41422-019-0168-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/01/2019] [Indexed: 01/25/2023] Open
Abstract
Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. Using an Isl1 hypomorphic mouse line which shows congenital heart defects, genome-wide profiling of Isl1 binding together with RNA- and ATAC-sequencing of cardiac progenitor cells and their derivatives, we uncover a regulatory network downstream of Isl1 that orchestrates cardiogenesis. Mechanistically, we show that Isl1 binds to compacted chromatin and works in concert with the Brg1-Baf60c-based SWI/SNF complex to promote permissive cardiac lineage-specific alterations in the chromatin landscape not only of genes with critical functions in cardiac progenitor cells, but also of cardiomyocyte structural genes that are highly expressed when Isl1 itself is no longer present. Thus, the Isl1/Brg1-Baf60c complex plays a crucial role in orchestrating proper cardiogenesis and in establishing epigenetic memory of cardiomyocyte fate commitment.
Collapse
Affiliation(s)
- Rui Gao
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xingqun Liang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | | | - Julio Cordero
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xue Jiang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qingquan Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Luca Caputo
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yonggang Ren
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Xuejun Yuan
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guillermo Barreto
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yihan Chen
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sylvia M Evans
- Department of Medicine, Skaggs School of Pharmacy, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Gergana Dobreva
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Medical Faculty, University of Frankfurt, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Identification and Functional Characterization of an ISL1 Mutation Predisposing to Dilated Cardiomyopathy. J Cardiovasc Transl Res 2018; 12:257-267. [DOI: 10.1007/s12265-018-9851-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
|
7
|
Ma L, Wang J, Li L, Qiao Q, Di RM, Li XM, Xu YJ, Zhang M, Li RG, Qiu XB, Li X, Yang YQ. ISL1 loss-of-function mutation contributes to congenital heart defects. Heart Vessels 2018; 34:658-668. [PMID: 30390123 DOI: 10.1007/s00380-018-1289-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023]
Abstract
Congenital heart defect (CHD) is the most common form of birth deformity and is responsible for substantial morbidity and mortality in humans. Increasing evidence has convincingly demonstrated that genetic defects play a pivotal role in the pathogenesis of CHD. However, CHD is a genetically heterogeneous disorder and the genetic basis underpinning CHD in the vast majority of cases remains elusive. This study was sought to identify the pathogenic mutation in the ISL1 gene contributing to CHD. A cohort of 210 unrelated patients with CHD and a total of 256 unrelated healthy individuals used as controls were registered. The coding exons and splicing boundaries of ISL1 were sequenced in all study subjects. The functional effect of an identified ISL1 mutation was evaluated using a dual-luciferase reporter assay system. A novel heterozygous ISL1 mutation, c.409G > T or p.E137X, was identified in an index patient with congenital patent ductus arteriosus and ventricular septal defect. Analysis of the proband's pedigree revealed that the mutation co-segregated with CHD, which was transmitted in the family in an autosomal dominant pattern with complete penetrance. The nonsense mutation was absent in 512 control chromosomes. Functional analysis unveiled that the mutant ISL1 protein failed to transactivate the promoter of MEF2C, alone or in synergy with TBX20. This study firstly implicates ISL1 loss-of-function mutation with CHD in humans, which provides novel insight into the molecular mechanism of CHD, implying potential implications for genetic counseling and individually tailored treatment of CHD patients.
Collapse
Affiliation(s)
- Lan Ma
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.,Department of Ultrasound, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Juan Wang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qi Qiao
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Ruo-Min Di
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Xiu-Mei Li
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xun Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Yi-Qing Yang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China. .,Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China. .,Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Salman OF, El-Rayess HM, Abi Khalil C, Nemer G, Refaat MM. Inherited Cardiomyopathies and the Role of Mutations in Non-coding Regions of the Genome. Front Cardiovasc Med 2018; 5:77. [PMID: 29998127 PMCID: PMC6028572 DOI: 10.3389/fcvm.2018.00077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/04/2018] [Indexed: 01/16/2023] Open
Abstract
Cardiomyopathies (CMs) are a group of cardiac pathologies caused by an intrinsic defect within the myocardium. The relative contribution of genetic mutations in the pathogenesis of certain CMs, such as hypertrophic cardiomyopathy (HCM), arrythmogenic right/left ventricular cardiomyopathy (ARVC) and left ventricular non-compacted cardiomyopathy (LVNC) has been established in comparison to dilated cardiomyopathy (DCM) and restrictive cardiomyopathy (RCM). The aim of this article is to review mutations in the non-coding parts of the genome, namely, microRNA, promoter elements, enhancer/silencer elements, 3′/5′UTRs and introns, that are involved in the pathogenesis CMs. Additionally, we will explore the role of some long non-coding RNAs in the pathogenesis of CMs.
Collapse
Affiliation(s)
- Oday F Salman
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hebah M El-Rayess
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Charbel Abi Khalil
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan M Refaat
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Circulating Biomarkers in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1067:89-108. [PMID: 29392578 DOI: 10.1007/5584_2017_140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biological markers have served for diagnosis, risk stratification and guided therapy of heart failure (HF). Our knowledge regarding abilities of biomarkers to relate to several pathways of HF pathogenesis and reflect clinical worsening or improvement in the disease is steadily expanding. Although there are numerous clinical guidelines, which clearly diagnosis, prevention and evidence-based treatment of HF, a strategy regarding exclusion of HF, as well as risk stratification of HF, nature evolution of disease is not well established and requires more development. The aim of the chapter is to discuss a role of biomarker-based approaches for more accurate diagnosis, in-depth risk stratification and individual targeting in treatment of patients with HF.
Collapse
|
10
|
Yuan X, Qi H, Li X, Wu F, Fang J, Bober E, Dobreva G, Zhou Y, Braun T. Disruption of spatiotemporal hypoxic signaling causes congenital heart disease in mice. J Clin Invest 2017; 127:2235-2248. [PMID: 28436940 DOI: 10.1172/jci88725] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) represents the most prevalent inborn anomaly. Only a minority of CHD cases are attributed to genetic causes, suggesting a major role of environmental factors. Nonphysiological hypoxia during early pregnancy induces CHD, but the underlying reasons are unknown. Here, we have demonstrated that cells in the mouse heart tube are hypoxic, while cardiac progenitor cells (CPCs) expressing islet 1 (ISL1) in the secondary heart field (SHF) are normoxic. In ISL1+ CPCs, induction of hypoxic responses caused CHD by repressing Isl1 and activating NK2 homeobox 5 (Nkx2.5), resulting in decreased cell proliferation and enhanced cardiomyocyte specification. We found that HIF1α formed a complex with the Notch effector hes family bHLH transcription factor 1 (HES1) and the protein deacetylase sirtuin 1 (SIRT1) at the Isl1 gene. This complex repressed Isl1 in the hypoxic heart tube or following induction of ectopic hypoxic responses. Subsequently, reduced Isl1 expression abrogated ISL1-dependent recruitment of histone deacetylases HDAC1/5, inhibiting Nkx2.5 expression. Inactivation of Sirt1 in ISL1+ CPCs blocked Isl1 suppression via the HIF1α/HES1/SIRT1 complex and prevented CHDs induced by pathological hypoxia. Our results indicate that spatial differences in oxygenation of the developing heart serve as signals to control CPC expansion and cardiac morphogenesis. We propose that physiological hypoxia coordinates homeostasis of CPCs, providing mechanistic explanations for some nongenetic causes of CHD.
Collapse
|
11
|
Pon JR, Marra MA. MEF2 transcription factors: developmental regulators and emerging cancer genes. Oncotarget 2016; 7:2297-312. [PMID: 26506234 PMCID: PMC4823036 DOI: 10.18632/oncotarget.6223] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
The MEF2 transcription factors have roles in muscle, cardiac, skeletal, vascular, neural, blood and immune system cell development through their effects on cell differentiation, proliferation, apoptosis, migration, shape and metabolism. Altered MEF2 activity plays a role in human diseases and has recently been implicated in the development of several cancer types. In particular, MEF2B, the most divergent and least studied protein of the MEF2 family, has a role unique from its paralogs in non-Hodgkin lymphomas. The use of genome-scale technologies has enabled comprehensive MEF2 target gene sets to be identified, contributing to our understanding of MEF2 proteins as nodes in complex regulatory networks. This review surveys the molecular interactions of MEF2 proteins and their effects on cellular and organismal phenotypes. We include a discussion of the emerging roles of MEF2 proteins as oncogenes and tumor suppressors of cancer. Throughout this article we highlight similarities and differences between the MEF2 family proteins, including a focus on functions of MEF2B.
Collapse
Affiliation(s)
- Julia R Pon
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Nouhravesh N, Ahlberg G, Ghouse J, Andreasen C, Svendsen JH, Haunsø S, Bundgaard H, Weeke PE, Olesen MS. Analyses of more than 60,000 exomes questions the role of numerous genes previously associated with dilated cardiomyopathy. Mol Genet Genomic Med 2016; 4:617-623. [PMID: 27896284 PMCID: PMC5118206 DOI: 10.1002/mgg3.245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/24/2022] Open
Abstract
Background Hundreds of genetic variants have been described as disease causing in dilated cardiomyopathy (DCM). Some of these associations are now being questioned. We aimed to identify the prevalence of previously DCM associated variants in the Exome Aggregation Consortium (ExAC), in order to identify potentially false‐positive DCM variants. Methods Variants listed as DCM disease‐causing variants in the Human Gene Mutation Database were extracted from ExAC. Pathogenicity predictions for these variants were mined from dbNSFP v 2.9 database. Results Of the 473 DCM variants listed in HGMD, 148 (31%) were found in ExAC. The expected number of individuals with DCM in ExAC is 25 based on the prevalence in the general population. Yet, 35 variants were found in more than 25 individuals. In 13 genes, we identified all variants previously associated with DCM; four genes contained variants above our estimated cut‐off. Prediction tools found ExAC variants to be significantly more tolerated when compared to variants not found in ExAC (P = 0.004). Conclusion In ExAC, we identified a higher genotype prevalence of variants considered disease‐causing than expected. More importantly, we found 13 genes in which all variants previously associated with DCM were identified in ExAC, questioning the association of these genes with the monogenic form of DCM.
Collapse
Affiliation(s)
- Nina Nouhravesh
- Laboratory of Molecular Cardiology Department of Cardiology The Heart Centre University Hospital of Copenhagen Rigshospitalet Copenhagen Denmark
| | - Gustav Ahlberg
- Laboratory of Molecular Cardiology Department of Cardiology The Heart Centre University Hospital of Copenhagen Rigshospitalet Copenhagen Denmark
| | - Jonas Ghouse
- Laboratory of Molecular Cardiology Department of Cardiology The Heart Centre University Hospital of Copenhagen Rigshospitalet Copenhagen Denmark
| | - Charlotte Andreasen
- Laboratory of Molecular Cardiology Department of Cardiology The Heart Centre University Hospital of Copenhagen Rigshospitalet Copenhagen Denmark
| | - Jesper H Svendsen
- Laboratory of Molecular CardiologyDepartment of CardiologyThe Heart CentreUniversity Hospital of CopenhagenRigshospitaletCopenhagenDenmark; Department of Clinical MedicineFaculty of Medicine and Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Stig Haunsø
- Laboratory of Molecular Cardiology Department of Cardiology The Heart Centre University Hospital of Copenhagen Rigshospitalet Copenhagen Denmark
| | - Henning Bundgaard
- Unit for Inherited Cardiac Diseases The Heart Center National University Hospitals Rigshospitalet Copenhagen Denmark
| | - Peter E Weeke
- Laboratory of Molecular Cardiology Department of Cardiology The Heart Centre University Hospital of Copenhagen Rigshospitalet Copenhagen Denmark
| | - Morten S Olesen
- Laboratory of Molecular Cardiology Department of Cardiology The Heart Centre University Hospital of Copenhagen Rigshospitalet Copenhagen Denmark
| |
Collapse
|
13
|
Basmanav FB, Forstner AJ, Fier H, Herms S, Meier S, Degenhardt F, Hoffmann P, Barth S, Fricker N, Strohmaier J, Witt SH, Ludwig M, Schmael C, Moebus S, Maier W, Mössner R, Rujescu D, Rietschel M, Lange C, Nöthen MM, Cichon S. Investigation of the role of TCF4 rare sequence variants in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:354-62. [PMID: 26010163 DOI: 10.1002/ajmg.b.32318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
Transcription factor 4 (TCF4) is one of the most robust of all reported schizophrenia risk loci and is supported by several genetic and functional lines of evidence. While numerous studies have implicated common genetic variation at TCF4 in schizophrenia risk, the role of rare, small-sized variants at this locus-such as single nucleotide variants and short indels which are below the resolution of chip-based arrays requires further exploration. The aim of the present study was to investigate the association between rare TCF4 sequence variants and schizophrenia. Exon-targeted resequencing was performed in 190 German schizophrenia patients. Six rare variants at the coding exons and flanking sequences of the TCF4 gene were identified, including two missense variants and one splice site variant. These six variants were then pooled with nine additional rare variants identified in 379 European participants of the 1000 Genomes Project, and all 15 variants were genotyped in an independent German sample (n = 1,808 patients; n = 2,261 controls). These data were then analyzed using six statistical methods developed for the association analysis of rare variants. No significant association (P < 0.05) was found. However, the results from our association and power analyses suggest that further research into the possible involvement of rare TCF4 sequence variants in schizophrenia risk is warranted by the assessment of larger cohorts with higher statistical power to identify rare variant associations.
Collapse
Affiliation(s)
- F Buket Basmanav
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Heide Fier
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Department of Genomic Mathematics, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sandra Meier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,National Center for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich, Germany
| | - Sandra Barth
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Nadine Fricker
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Christine Schmael
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Susanne Moebus
- Centre of Urban Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Essen, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Rainald Mössner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.,Department of Psychiatry, University of Tübingen
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Christoph Lange
- Department of Genomic Mathematics, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich, Germany
| |
Collapse
|
14
|
Yang J, Xu WW, Hu SJ. Heart failure: advanced development in genetics and epigenetics. BIOMED RESEARCH INTERNATIONAL 2015; 2015:352734. [PMID: 25949994 PMCID: PMC4407520 DOI: 10.1155/2015/352734] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/25/2015] [Accepted: 03/19/2015] [Indexed: 01/16/2023]
Abstract
Heart failure (HF) is a complex pathophysiological syndrome that arises from a primary defect in the ability of the heart to take in and/or eject sufficient blood. Genetic mutations associated with familial dilated cardiomyopathy, hypertrophic cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy can contribute to the various pathologies of HF. Therefore, genetic screening could be an approach for guiding individualized therapies and surveillance. In addition, epigenetic regulation occurs via key mechanisms, including ATP-dependent chromatin remodeling, DNA methylation, histone modification, and RNA-based mechanisms. MicroRNA is also a hot spot in HF research. This review gives an overview of genetic mutations associated with cardiomyopathy and the roles of some epigenetic mechanisms in HF.
Collapse
Affiliation(s)
- Jian Yang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing-Chun Road, Hangzhou 310003, China
| | - Wei-wei Xu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing-Chun Road, Hangzhou 310003, China
| | - Shen-jiang Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing-Chun Road, Hangzhou 310003, China
| |
Collapse
|
15
|
Expression of the LIM homeobox domain transcription factor ISL1 (Islet-1) is frequent in rhabdomyosarcoma but very limited in other soft tissue sarcoma types. Pathology 2015; 46:289-95. [PMID: 24751901 DOI: 10.1097/pat.0000000000000091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The transcription factor ISL1 (islet-1) has emerged as a useful marker for metastatic pancreatic well differentiated neuroendocrine neoplasms, but recent studies showed wider expression in poorly differentiated neuroendocrine carcinomas from different sites as well as poorly differentiated neuroblastoma. Expression of ISL1 in soft tissue sarcomas has not been studied before.We evaluated ISL1 expression in 249 soft tissue tumour specimens from 249 patients and 17 precursor cell lymphoblastic lymphomas (ALL). ISL1 was not detected in any of 63 liposarcomas of different subtypes, 55 leiomyosarcomas, 22 solitary fibrous tumours, 20 undifferentiated pleomorphic/spindle cell sarcomas, 13 small cell synovial sarcomas and 17 ALL cases. Variable nuclear expression was detected in rhabdomyosarcoma (15/25, 60%), rhabdomyoblastic areas of malignant müllerian mixed tumours (5/5), Ewing sarcoma (2/12, very weak) and monophasic fibrous synovial sarcoma (2/29). More extensive staining (moderate to strong) was restricted to rhabdomyosarcoma. Taken by histological subtype, ISL1 was expressed more frequently in alveolar (9/11, 82%) versus non-alveolar (6/14, 43%) rhabdomyosarcoma. ISL1 is commonly expressed in rhabdomyosarcoma, particularly the alveolar subtype and should be distinguished from poorly differentiated neuroendocrine and neuroblastic neoplasms. Awareness of this finding helps to avoid misinterpretation as neuroendocrine neoplasms that would result in inappropriate therapeutic and prognostic consequences.
Collapse
|
16
|
Osoegawa K, Schultz K, Yun K, Mohammed N, Shaw GM, Lammer EJ. Haploinsufficiency of insulin gene enhancer protein 1 (ISL1) is associated with d-transposition of the great arteries. Mol Genet Genomic Med 2014; 2:341-51. [PMID: 25077177 PMCID: PMC4113275 DOI: 10.1002/mgg3.75] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 01/13/2023] Open
Abstract
Congenital heart defects are the most common malformation, and are the foremost causes of mortality in the first year of life. Among congenital heart defects, conotruncal defects represent about 20% and are severe malformations with significant morbidity. Insulin gene enhancer protein 1 (ISL1) has been considered a candidate gene for conotruncal heart defects based on its embryonic expression pattern and heart defects induced in Isl1 knockout mice. Nevertheless no mutation of ISL1 has been reported from any human subject with a heart defect. From a population base of 974,579 births during 1999–2004, we used multiplex ligation-dependent probe amplification to screen for microdeletions/duplications of ISL1 among 389 infants with tetralogy of Fallot or d-transposition of the great arteries (d-TGA). We also sequenced all exons of ISL1. We identified a novel 20-kb microdeletion encompassing the entire coding region of ISL1, but not including either flanking gene, from an infant with d-TGA. We confirmed that the deletion was caused by nonhomologous end joining mechanism. Sequencing of exons of ISL1 did not reveal any subject with a novel nonsynonymous mutation. This is the first report of an ISL1 mutation of a child with a congenital heart defect.
Collapse
Affiliation(s)
- Kazutoyo Osoegawa
- Center for Genetics, Children's Hospital Oakland Research Institute, Children's Hospital Research Center Oakland Oakland, 94609, California ; Department of Pathology, Stanford University School of Medicine Palo Alto, California
| | - Kathleen Schultz
- Center for Genetics, Children's Hospital Oakland Research Institute, Children's Hospital Research Center Oakland Oakland, 94609, California
| | - Kenneth Yun
- Center for Genetics, Children's Hospital Oakland Research Institute, Children's Hospital Research Center Oakland Oakland, 94609, California
| | - Nebil Mohammed
- Center for Genetics, Children's Hospital Oakland Research Institute, Children's Hospital Research Center Oakland Oakland, 94609, California
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine Stanford, California
| | - Edward J Lammer
- Center for Genetics, Children's Hospital Oakland Research Institute, Children's Hospital Research Center Oakland Oakland, 94609, California
| |
Collapse
|
17
|
Wnt-promoted Isl1 expression through a novel TCF/LEF1 binding site and H3K9 acetylation in early stages of cardiomyocyte differentiation of P19CL6 cells. Mol Cell Biochem 2014; 391:183-92. [DOI: 10.1007/s11010-014-2001-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/21/2014] [Indexed: 11/26/2022]
|
18
|
Islet1 is a direct transcriptional target of the homeodomain transcription factor Shox2 and rescues the Shox2-mediated bradycardia. Basic Res Cardiol 2013; 108:339. [PMID: 23455426 PMCID: PMC3597335 DOI: 10.1007/s00395-013-0339-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/31/2013] [Accepted: 02/08/2013] [Indexed: 01/10/2023]
Abstract
The heart's rhythm is initiated and regulated by a group of specialized cells in the sinoatrial node (SAN), the primary pacemaker of the heart. Abnormalities in the development of the SAN can result in irregular heart rates (arrhythmias). Although several of the critical genes important for SAN formation have been identified, our understanding of the transcriptional network controlling SAN development remains at a relatively early stage. The homeodomain transcription factor Shox2 is involved in the specification and patterning of the SAN. While the Shox2 knockout in mice results in embryonic lethality due to severe cardiac defects including improper SAN development, Shox2 knockdown in zebrafish causes a reduced heart rate (bradycardia). In order to gain deeper insight into molecular pathways involving Shox2, we compared gene expression levels in right atria of wildtype and Shox2 (-/-) hearts using microarray experiments and identified the LIM homeodomain transcription factor Islet1 (Isl1) as one of its putative target genes. The downregulation of Isl1 expression in Shox2 (-/-) hearts was confirmed and the affected region narrowed down to the SAN by whole-mount in situ hybridization. Using luciferase reporter assays and EMSA studies, we identified two specific SHOX2 binding sites within intron 2 of the ISL1 locus. We also provide functional evidence for Isl1 as a transcriptional target of Shox2 by rescuing the Shox2-mediated bradycardia phenotype with Isl1 using zebrafish as a model system. Our findings demonstrate a novel epistatic relationship between Shox2 and Isl1 in the heart with important developmental consequences for SAN formation and heart beat.
Collapse
|