1
|
Galazis C, Shepperd S, Brouwer EJP, Queiros S, Alskaf E, Anjari M, Chiribiri A, Lee J, Bharath AA, Varela M. High-Resolution Maps of Left Atrial Displacements and Strains Estimated With 3D Cine MRI Using Online Learning Neural Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:2056-2067. [PMID: 40030862 DOI: 10.1109/tmi.2025.3526364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The functional analysis of the left atrium (LA) is important for evaluating cardiac health and understanding diseases like atrial fibrillation. Cine MRI is ideally placed for the detailed 3D characterization of LA motion and deformation but is lacking appropriate acquisition and analysis tools. Here, we propose tools for the Analysis of Left Atrial Displacements and DeformatIons using online learning neural Networks (Aladdin) and present a technical feasibility study on how Aladdin can characterize 3D LA function globally and regionally. Aladdin includes an online segmentation and image registration network, and a strain calculation pipeline tailored to the LA. We create maps of LA Displacement Vector Field (DVF) magnitude and LA principal strain values from images of 10 healthy volunteers and 8 patients with cardiovascular disease (CVD), of which 2 had large left ventricular ejection fraction (LVEF) impairment. We additionally create an atlas of these biomarkers using the data from the healthy volunteers. Results showed that Aladdin can accurately track the LA wall across the cardiac cycle and characterize its motion and deformation. Global LA function markers assessed with Aladdin agree well with estimates from 2D Cine MRI. A more marked active contraction phase was observed in the healthy cohort, while the CVD $\text {LVEF}_{\downarrow } $ group showed overall reduced LA function. Aladdin is uniquely able to identify LA regions with abnormal deformation metrics that may indicate focal pathology. We expect Aladdin to have important clinical applications as it can non-invasively characterize atrial pathophysiology. All source code and data are available at: https://github.com/cgalaz01/aladdin_cmr_la.
Collapse
|
2
|
Hasebe Y, Noda T, Nakano M, Chiba T, Sato H, Yamamoto N, Ito T, Kumagai K, Yasuda S. Impact of fat on the left atrial roof identified using intracardiac echocardiography during pulmonary vein isolation procedures. Heart Rhythm O2 2025; 6:3-10. [PMID: 40224260 PMCID: PMC11993803 DOI: 10.1016/j.hroo.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Background Previous studies have reported the presence of fat between the septopulmonary bundle and the septoatrial bundle on the left atrial (LA) roof. This fat may increase the wall thickness and protect the septopulmonary bundle from radiofrequency energy, potentially leading to conduction gaps. Objective This study aimed to determine whether fat on the LA roof can be identified using intracardiac echocardiography (ICE) and whether its presence affects the procedural outcomes of pulmonary vein isolation (PVI). Methods We evaluated 94 patients undergoing first-time radiofrequency catheter ablation for atrial fibrillation (60 men [63.8%]; mean age 65.7±10.7 years; 46 with paroxysmal atrial fibrillation [48.9%]) between February 2021 and September 2023. ICE was used to visualize the LA roof, and hypoechoic regions suggestive of fat were marked within the CARTOSOUND map (Biosense Webster, Irvine, CA). PVI was then performed with a personalized isolation line, avoiding fat regions when feasible. Results Fat on the LA roof was identified in 35 of 94 patients (37.2%). Conduction gaps on the left pulmonary vein roof were observed in 7 of 35 patients with fat (20.0%) and 1 of 59 patients without fat (1.7%) (P=.004). Among patients with conduction gaps, 7 of 8 (87.5%) had a PVI line that crossed a fat region. No significant differences were noted in conduction gaps in other areas between the 2 groups. Conclusion The findings indicate that the presence of fat on the LA roof, as identified using ICE, may be associated with a higher incidence of conduction gaps after PVI.
Collapse
Affiliation(s)
- Yuhi Hasebe
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- First Division of Internal Medicine (Cardiovascular Medicine), Tohoku Medical and Pharmaceutical University Graduate School of Medicine, Sendai, Japan
| | - Takashi Noda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Nakano
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takahiko Chiba
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Sato
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhiko Yamamoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Kumagai
- First Division of Internal Medicine (Cardiovascular Medicine), Tohoku Medical and Pharmaceutical University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Qi X, Chen H, Yang G, Liu H, Wang Z, Jiang X, Cui C, Cai C, Ju W, Chen M. Unipolar Voltage for Better Characterizing Left Atrium Substrates: Comparing the Predictive Efficacy for Recurrence Post Atrial Fibrillation Ablation in a Post Hoc Analysis of STABLE-SR-III Trial. J Cardiovasc Electrophysiol 2025; 36:149-156. [PMID: 39511789 DOI: 10.1111/jce.16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND While bipolar voltage (BV) is acknowledged as an indicator of viable cardiomyocyte activation, unipolar recording has emerged as an alternative technique due to its advantage of providing a wider field of view. This study aims to compare the efficacy of unipolar voltage (UV) versus BV in predicting ablation recurrence in atrial fibrillation patients. METHODS In Substrate Ablation in the Left Atrium during Sinus Rhythm Trial III, 375 patients completed the follow-up with preserved mapping data were included in the analysis. For each patient, the mean UV and BV was obtained from the electrograms sampled in left atrium (LA). RESULTS Totally 301 patients experience the primary endpoint within 23.0 ± 9.2 months. While both low UV and BV had significant associations with long-term recurrence of atrial tachyarrhythmia (ATa), only mean UV was independently associated with the outcome. The model by UV with ablation feature had higher discriminatory power to predict ATa recurrence compared with BV model (area under the curve [AUC]: 0.858 vs. 0.757, p < 0.001). In subgroup analysis, UV reveals more powerful predictive efficacy compared with BV, with the AUC 0.843 versus 0.751 (p < 0.001) in circumferential pulmonary vein isolation (CPVI) alone cohort and 0.882 versus 0.750 (p < 0.001) in CPVI plus cohort, respectively. CONCLUSION UV exhibits higher efficacy for predicting long-term ATa recurrence after ablation compared with BV in elderly patients with atrial fibrillation regardless of whether the patient accepts substrate modification. The outcome suggests that unipolar recording may better characterize LA fibrosis by capturing more comprehensive transmural features than bipolar signals. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov; URL: https://www. CLINICALTRIALS gov. Unique Identifier: NCT03462628.
Collapse
Affiliation(s)
- Xiuyu Qi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongwu Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Gang Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hailei Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zidun Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaohong Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chang Cui
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Cheng Cai
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weizhu Ju
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Minglong Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
4
|
Kim D, Kwon OS, Hwang T, Park H, Yu HT, Kim TH, Uhm JS, Joung B, Lee MH, Pak HN. Using computed tomography atrial myocardial thickness maps in cryoballoon pulmonary vein isolation: the UTMOST AF II randomized clinical trial. Europace 2024; 26:euae292. [PMID: 39585316 PMCID: PMC11630070 DOI: 10.1093/europace/euae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
AIMS Whether adjusting the duration of ablation based on left atrial wall thickness (LAWT) provides extra benefits for pulmonary vein (PV) isolation for atrial fibrillation (AF) is uncertain. We studied the safety and efficacy of tailored cryoballoon PV isolation (CB-PVI) based on LAWT for paroxysmal AF. METHODS AND RESULTS Two hundred seventy-seven patients with paroxysmal AF refractory to anti-arrhythmic drug were randomized 1:1 to either LAWT-guided CB-PVI (n = 135) and empirical CB-PVI (n = 142). Empirical CB-PVI was performed using a 28 mm cryoballoon with recommended application for 240 s per ablation. Cryoapplication in the LAWT-guided group was titrated (additional application for 120 s at PVs, where >25% of the circumference includes segments with LAWT > 2.5 mm and reduced baseline application to 180 s at PVs where >75% of the circumference includes segments with LAWT < 1.5 mm) according to the computed tomography LAWT colour map. The primary endpoint was freedom from any documented atrial arrhythmia of more than 30 s without antiarrhythmic medication, after a single ablation procedure. During a mean follow-up of 18.7 months, patients in the LAWT-guided CB-PVI group (70.8%) had a higher event-free rate from primary endpoint than those in the empirical CB-PVI group (54.4%; hazard ratio 0.64, 95% confidence interval 0.42-0.99; P = 0.043). No differences were observed between the groups in complication rates (3.0% in LAWT-guided vs. 4.9% in empirical CB-PVI). The total procedure time was extended in the LAWT group than in the empirical group (mean 70.2 vs. 65.2 min, respectively). CONCLUSION The LAWT-guided energy titration strategy improved freedom from atrial arrhythmia recurrence, compared with conventional strategy.
Collapse
Affiliation(s)
- Daehoon Kim
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Oh-Seok Kwon
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taehyun Hwang
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hanjin Park
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hee Tae Yu
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Tae-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moon-Hyoung Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Omotoye S, Singleton MJ, Zagrodzky J, Clark B, Sharma D, Metzl MD, Gallagher MM, Meininghaus DG, Leung L, Garg J, Warrier N, Panico A, Tamirisa K, Sanchez J, Mickelsen S, Sardana M, Shah D, Athill C, Hayat J, Silva R, Clark AT, Gray M, Levi B, Kulstad E, Girouard S, Zagrodzky W, Montoya MM, Bustamante TG, Berjano E, González-Suárez A, Daniels J. Mechanisms of action behind the protective effects of proactive esophageal cooling during radiofrequency catheter ablation in the left atrium. Heart Rhythm O2 2024; 5:403-416. [PMID: 38984358 PMCID: PMC11228283 DOI: 10.1016/j.hroo.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Proactive esophageal cooling for the purpose of reducing the likelihood of ablation-related esophageal injury resulting from radiofrequency (RF) cardiac ablation procedures is increasingly being used and has been Food and Drug Administration cleared as a protective strategy during left atrial RF ablation for the treatment of atrial fibrillation. In this review, we examine the evidence supporting the use of proactive esophageal cooling and the potential mechanisms of action that reduce the likelihood of atrioesophageal fistula (AEF) formation. Although the pathophysiology behind AEF formation after thermal injury from RF ablation is not well studied, a robust literature on fistula formation in other conditions (eg, Crohn disease, cancer, and trauma) exists and the relationship to AEF formation is investigated in this review. Likewise, we examine the abundant data in the surgical literature on burn and thermal injury progression as well as the acute and chronic mitigating effects of cooling. We discuss the relationship of these data and maladaptive healing mechanisms to the well-recognized postablation pathophysiological effects after RF ablation. Finally, we review additional important considerations such as patient selection, clinical workflow, and implementation strategies for proactive esophageal cooling.
Collapse
Affiliation(s)
| | | | - Jason Zagrodzky
- St. David’s Medical Center, Texas Cardiac Arrhythmia Institute, Austin, Texas
| | | | | | - Mark D. Metzl
- NorthShore University Health System, Evanston, Illinois
| | - Mark M. Gallagher
- St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | | | - Lisa Leung
- St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jalaj Garg
- Loma Linda University Medical Center, Loma Linda, California
| | - Nikhil Warrier
- MemorialCare Heart & Vascular Institute, Fountain Valley, California
| | | | - Kamala Tamirisa
- Cardiac Electrophysiology, Texas Cardiac Arrhythmia Institute, Dallas, Texas
| | - Javier Sanchez
- Cardiac Electrophysiology, Texas Cardiac Arrhythmia Institute, Dallas, Texas
| | | | | | - Dipak Shah
- Ascension Providence Hospital, Detroit, Michigan
| | | | - Jamal Hayat
- Department of Gastroenterology, St George’s University Hospital, London, United Kingdom
| | - Rogelio Silva
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, Illinois
- Advocate Aurora Christ Medical Center, Chicago, Illinois
| | - Audra T. Clark
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Benjamin Levi
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Erik Kulstad
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | | | - Enrique Berjano
- Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Ana González-Suárez
- Translational Medical Device Lab, School of Medicine, University of Galway, Galway, Ireland
- Valencian International University, Valencia, Spain
| | - James Daniels
- University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
6
|
Yang H, Majumder JA, Huang Z, Saluja D, Laurita K, Rollins AM, Hendon CP. Robust, high-density lesion mapping in the left atrium with near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:028001. [PMID: 38419756 PMCID: PMC10901242 DOI: 10.1117/1.jbo.29.2.028001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Significance Radiofrequency ablation (RFA) procedures for atrial fibrillation frequently fail to prevent recurrence, partially due to limitations in assessing extent of ablation. Optical spectroscopy shows promise in assessing RFA lesion formation but has not been validated in conditions resembling those in vivo. Aim Catheter-based near-infrared spectroscopy (NIRS) was applied to porcine hearts to demonstrate that spectrally derived optical indices remain accurate in blood and at oblique incidence angles. Approach Porcine left atria were ablated and mapped using a custom-fabricated NIRS catheter. Each atrium was mapped first in phosphate-buffered saline (PBS) then in porcine blood. Results NIRS measurements showed little angle dependence up to 60 deg. A trained random forest model predicted lesions with a sensitivity of 81.7%, a specificity of 86.1%, and a receiver operating characteristic curve area of 0.921. Predicted lesion maps achieved a mean structural similarity index of 0.749 and a mean normalized inner product of 0.867 when comparing maps obtained in PBS and blood. Conclusions Catheter-based NIRS can precisely detect RFA lesions on left atria submerged in blood. Optical parameters are reliable in blood and without perpendicular contact, confirming their ability to provide useful feedback during in vivo RFA procedures.
Collapse
Affiliation(s)
- Haiqiu Yang
- Columbia University, Department of Electrical Engineering, New York, United States
| | - Jonah A. Majumder
- Columbia University, Department of Biomedical Engineering, New York, United States
| | - Ziyi Huang
- Columbia University, Department of Electrical Engineering, New York, United States
| | - Deepak Saluja
- Columbia University Irving Medical Center, Cardiology Division, Department of Medicine, New York, United States
| | - Kenneth Laurita
- MetroHealth Hospital, Cardiology Division, Department of Medicine, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Andrew M. Rollins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Christine P. Hendon
- Columbia University, Department of Electrical Engineering, New York, United States
| |
Collapse
|
7
|
Meskin M, Starkey PA, Kaspersen AE, Ringgaard S, Sand SG, Nygaard JV, Jensen JA, Traberg MS, Johansen P. Investigating the importance of left atrial compliance on fluid dynamics in a novel mock circulatory loop. Sci Rep 2024; 14:1864. [PMID: 38253772 PMCID: PMC10803730 DOI: 10.1038/s41598-024-52327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
The left atrium (LA) hemodynamic indices hold prognostic value in various cardiac diseases and disorders. To understand the mechanisms of these conditions and to assess the performance of cardiac devices and interventions, in vitro models can be used to replicate the complex physiological interplay between the pulmonary veins, LA, and left ventricle. In this study, a comprehensive and adaptable in vitro model was created. The model includes a flexible LA made from silicone and allows distinct control over the systolic and diastolic functions of both the LA and left ventricle. The LA was mechanically matched with porcine LAs through expansion tests. Fluid dynamic measures were validated against the literature and pulmonary venous flows recorded on five healthy individuals using magnetic resonance flow imaging. Furthermore, the fluid dynamic measures were also used to construct LA pressure-volume loops. The in vitro pressure and flow recordings expressed a high resemblance to physiological waveforms. By decreasing the compliance of the LA, the model behaved realistically, elevating the a- and v-wave peaks of the LA pressure from 12 to 19 mmHg and 22 to 26 mmHg, respectively, while reducing the S/D ratio of the pulmonary venous flowrate from 1.5 to 0.3. This model provides a realistic platform and framework for developing and evaluating left heart procedures and interventions.
Collapse
Affiliation(s)
- Masoud Meskin
- Cardiovascular Biomechanics Group, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Cardiovascular Experimental Laboratory, Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, 8200, Aarhus N, Denmark
| | - Philip Alexander Starkey
- Cardiovascular Experimental Laboratory, Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, 8200, Aarhus N, Denmark
| | | | | | - Signe Gram Sand
- Cardiovascular Experimental Laboratory, Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, 8200, Aarhus N, Denmark
| | - Jens Vinge Nygaard
- Biomechanics and Mechanobiology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marie Sand Traberg
- Cardiovascular Biomechanics Group, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter Johansen
- Cardiovascular Experimental Laboratory, Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, 8200, Aarhus N, Denmark.
| |
Collapse
|
8
|
Negishi K, Okumura K, Onishi F, Yoshimura A, Okamatsu H, Tsurugi T, Tanaka Y, Sakai Y, Nakao K, Sakamoto T, Koyama J, Tomita H. Posterior wall thickness of the confluent inferior pulmonary veins measured by left atrial intracardiac echocardiography: implications for catheter ablation. J Interv Card Electrophysiol 2024; 67:193-201. [PMID: 37490133 PMCID: PMC10770267 DOI: 10.1007/s10840-023-01613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Confluent inferior pulmonary veins (CIPV) is a rare anatomical variant. There is few evidence in the literature regarding anatomic landmarks consideration to guide radiofrequency application in avoiding complications in the esophagus in CIPV cases. METHODS Of 986 consecutive patients undergoing atrial fibrillation (AF) ablation from July 2020 to June 2022, seven (0.7%) had CIPV with a common trunk connecting to the LA diagnosed by 3-dimensional contrast-enhanced computed tomography. Using intracardiac echocardiography (ICE) performed from the left atrium (LA), we measured the posterior wall thickness (PWT) of the CIPV adjacent to the esophagus and compared the measurement with the LA posterior wall thickness (LAPWT) at the left inferior PV level of 25 controls without CIPV. For ablation in CIPV patients, each superior PV was individually isolated, and box isolation of CIPV without ablating the CIPV posterior wall was added (tri-circle ablation technique). RESULTS The CIPV PWT was 0.7 ± 0.1 mm, while non-CIPV LAPWT was 2.0 ± 0.4 mm (P < 0.001). In the CIPV group, upper and lower portions of the CIPV were both apart from the esophagus (mean distances, 6.7 ± 3.4 mm and 7.9 ± 2.7 mm, respectively). Individual superior PV isolation and box CIPV isolation resulted in complete isolation of all PVs, with no complications. All CIPV patients except one remained AF recurrence-free for 376 ± 52 days. CONCLUSIONS Although CIPV frequency is low, CIPV PWT is very thin and special care is needed during ablation. A "tri-circle" ablation strategy avoids ablating in the thinnest portion of the posterior wall. Further studies are warranted to assess the safety.
Collapse
Affiliation(s)
- Kodai Negishi
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami Minami-Ku, Kumamoto, 861-4193, Japan
| | - Ken Okumura
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami Minami-Ku, Kumamoto, 861-4193, Japan.
| | - Fumitaka Onishi
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami Minami-Ku, Kumamoto, 861-4193, Japan
| | - Akino Yoshimura
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami Minami-Ku, Kumamoto, 861-4193, Japan
| | - Hideharu Okamatsu
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami Minami-Ku, Kumamoto, 861-4193, Japan
| | - Takuo Tsurugi
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami Minami-Ku, Kumamoto, 861-4193, Japan
| | - Yasuaki Tanaka
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami Minami-Ku, Kumamoto, 861-4193, Japan
| | - Yoshiro Sakai
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami Minami-Ku, Kumamoto, 861-4193, Japan
| | - Koichi Nakao
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami Minami-Ku, Kumamoto, 861-4193, Japan
| | - Tomohiro Sakamoto
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami Minami-Ku, Kumamoto, 861-4193, Japan
| | - Junjiro Koyama
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami Minami-Ku, Kumamoto, 861-4193, Japan
| | - Hirofumi Tomita
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
9
|
Bifulco SF, Macheret F, Scott GD, Akoum N, Boyle PM. Explainable Machine Learning to Predict Anchored Reentry Substrate Created by Persistent Atrial Fibrillation Ablation in Computational Models. J Am Heart Assoc 2023; 12:e030500. [PMID: 37581387 PMCID: PMC10492949 DOI: 10.1161/jaha.123.030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/21/2023] [Indexed: 08/16/2023]
Abstract
Background Postablation arrhythmia recurrence occurs in ~40% of patients with persistent atrial fibrillation. Fibrotic remodeling exacerbates arrhythmic activity in persistent atrial fibrillation and can play a key role in reentrant arrhythmia, but emergent interaction between nonconductive ablation-induced scar and native fibrosis (ie, residual fibrosis) is poorly understood. Methods and Results We conducted computational simulations in pre- and postablation left atrial models reconstructed from late gadolinium enhanced magnetic resonance imaging scans to test the hypothesis that ablation in patients with persistent atrial fibrillation creates new substrate conducive to recurrent arrhythmia mediated by anchored reentry. We trained a random forest machine learning classifier to accurately pinpoint specific nonconductive tissue regions (ie, areas of ablation-delivered scar or vein/valve boundaries) with the capacity to serve as substrate for anchored reentry-driven recurrent arrhythmia (area under the curve: 0.91±0.03). Our analysis suggests there is a distinctive nonconductive tissue pattern prone to serving as arrhythmogenic substrate in postablation models, defined by a specific size and proximity to residual fibrosis. Conclusions Overall, this suggests persistent atrial fibrillation ablation transforms substrate that favors functional reentry (ie, rotors meandering in excitable tissue) into an arrhythmogenic milieu more conducive to anchored reentry. Our work also indicates that explainable machine learning and computational simulations can be combined to effectively probe mechanisms of recurrent arrhythmia.
Collapse
Affiliation(s)
| | - Fima Macheret
- Division of CardiologyUniversity of WashingtonSeattleWAUSA
| | - Griffin D. Scott
- Department of BioengineeringUniversity of WashingtonSeattleWAUSA
| | - Nazem Akoum
- Department of BioengineeringUniversity of WashingtonSeattleWAUSA
- Division of CardiologyUniversity of WashingtonSeattleWAUSA
| | - Patrick M. Boyle
- Department of BioengineeringUniversity of WashingtonSeattleWAUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWAUSA
- Center for Cardiovascular BiologyUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
10
|
Nairn D, Eichenlaub M, Müller-Edenborn B, Huang T, Lehrmann H, Nagel C, Azzolin L, Luongo G, Figueras Ventura RM, Rubio Forcada B, Vallès Colomer A, Westermann D, Arentz T, Dössel O, Loewe A, Jadidi A. Differences in atrial substrate localization using late gadolinium enhancement-magnetic resonance imaging, electrogram voltage, and conduction velocity: a cohort study using a consistent anatomical reference frame in patients with persistent atrial fibrillation. Europace 2023; 25:euad278. [PMID: 37713626 PMCID: PMC10533207 DOI: 10.1093/europace/euad278] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023] Open
Abstract
AIMS Electro-anatomical voltage, conduction velocity (CV) mapping, and late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) have been correlated with atrial cardiomyopathy (ACM). However, the comparability between these modalities remains unclear. This study aims to (i) compare pathological substrate extent and location between current modalities, (ii) establish spatial histograms in a cohort, (iii) develop a new estimated optimized image intensity threshold (EOIIT) for LGE-MRI identifying patients with ACM, (iv) predict rhythm outcome after pulmonary vein isolation (PVI) for persistent atrial fibrillation (AF). METHODS AND RESULTS Thirty-six ablation-naive persistent AF patients underwent LGE-MRI and high-definition electro-anatomical mapping in sinus rhythm. Late gadolinium enhancement areas were classified using the UTAH, image intensity ratio (IIR >1.20), and new EOIIT method for comparison to low-voltage substrate (LVS) and slow conduction areas <0.2 m/s. Receiver operating characteristic analysis was used to determine LGE thresholds optimally matching LVS. Atrial cardiomyopathy was defined as LVS extent ≥5% of the left atrium (LA) surface at <0.5 mV. The degree and distribution of detected pathological substrate (percentage of individual LA surface are) varied significantly (P < 0.001) across the mapping modalities: 10% (interquartile range 0-14%) of the LA displayed LVS <0.5 mV vs. 7% (0-12%) slow conduction areas <0.2 m/s vs. 15% (8-23%) LGE with the UTAH method vs. 13% (2-23%) using IIR >1.20, with most discrepancies on the posterior LA. Optimized image intensity thresholds and each patient's mean blood pool intensity correlated linearly (R2 = 0.89, P < 0.001). Concordance between LGE-MRI-based and LVS-based ACM diagnosis improved with the novel EOIIT applied at the anterior LA [83% sensitivity, 79% specificity, area under the curve (AUC): 0.89] in comparison to the UTAH method (67% sensitivity, 75% specificity, AUC: 0.81) and IIR >1.20 (75% sensitivity, 62% specificity, AUC: 0.67). CONCLUSION Discordances in detected pathological substrate exist between LVS, CV, and LGE-MRI in the LA, irrespective of the LGE detection method. The new EOIIT method improves concordance of LGE-MRI-based ACM diagnosis with LVS in ablation-naive AF patients but discrepancy remains particularly on the posterior wall. All methods may enable the prediction of rhythm outcomes after PVI in patients with persistent AF.
Collapse
Affiliation(s)
- Deborah Nairn
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | - Martin Eichenlaub
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Björn Müller-Edenborn
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Taiyuan Huang
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Lehrmann
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Nagel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | - Luca Azzolin
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | - Giorgio Luongo
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | | | | | | | - Dirk Westermann
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Arentz
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | - Amir Jadidi
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Arrhythmia Division, Department of Cardiology, Heart Center Lucerne, Lucerne Cantonal Hospital, Lucerne, Switzerland
| |
Collapse
|
11
|
Lee H, Schubert EK, Vidula MK, Pryma DA, Marchlinski FE, Goldberg LR, Clancy CB, Rossman MD, DiCarli MF, Bravo PE. Potential clinical utility of 68Ga-DOTATATE PET/CT for detection and response assessment in cardiac sarcoidosis. J Nucl Cardiol 2023; 30:1075-1087. [PMID: 36266526 DOI: 10.1007/s12350-022-03111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/23/2022] [Indexed: 10/24/2022]
Abstract
BACKGROUND Somatostatin receptor is expressed in sarcoid granulomas, and preliminary clinical studies have shown that myocardial sarcoidosis can be identified on somatostatin receptor-targeted PET. We examined the potential clinical use of 68Ga-DOTATATE PET/CT for diagnosis and response assessment in cardiac sarcoidosis compared to 18F-FDG PET/CT. METHODS Eleven cardiac sarcoidosis patients with 18F-FDG PET/CT were prospectively enrolled for cardiac 68Ga-DOTATATE PET/CT. The two PET/CT studies were interpreted independently and were compared for patient-level and segment-level concordance, as well as for the degree of radiotracer uptake. Follow-up 68Ga-DOTATATE PET/CT was performed in eight patients. RESULTS Patient-level concordance was 91%: ten patients had multifocal DOTATATE uptake (active cardiac sarcoidosis) and one patient showed diffuse DOTATATE uptake. Segment-level agreement was 77.1% (Kappa 0.53 ± 0.07). The SUVmax-to-blood pool ratio was lower on 68Ga-DOTATATE PET/CT (3.2 ± 0.6 vs. 4.9 ± 1.5, P = 0.006 on paired t test). Follow-up 68Ga-DOTATATE PET/CT showed one case of complete response and one case of partial response, while 18F-FDG PET/CT showed four cases of response, including three with complete response. CONCLUSION Compared to 18F-FDG PET/CT, 68Ga-DOTATATE PET/CT can identify active cardiac sarcoidosis with high patient-level concordance, but with moderate segment-level concordance, low signal-to-background ratio, and underestimation of treatment response.
Collapse
Affiliation(s)
- Hwan Lee
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Erin K Schubert
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Mahesh K Vidula
- Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Pryma
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Francis E Marchlinski
- Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Lee R Goldberg
- Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Caitlin B Clancy
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Milton D Rossman
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo F DiCarli
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paco E Bravo
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
He J, Pertsov AM, Cherry EM, Fenton FH, Roney CH, Niederer SA, Zang Z, Mangharam R. Fiber Organization Has Little Effect on Electrical Activation Patterns During Focal Arrhythmias in the Left Atrium. IEEE Trans Biomed Eng 2023; 70:1611-1621. [PMID: 36399589 PMCID: PMC10183233 DOI: 10.1109/tbme.2022.3223063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past two decades there has been a steady trend towards the development of realistic models of cardiac conduction with increasing levels of detail. However, making models more realistic complicates their personalization and use in clinical practice due to limited availability of tissue and cellular scale data. One such limitation is obtaining information about myocardial fiber organization in the clinical setting. In this study, we investigated a chimeric model of the left atrium utilizing clinically derived patient-specific atrial geometry and a realistic, yet foreign for a given patient fiber organization. We discovered that even significant variability of fiber organization had a relatively small effect on the spatio-temporal activation pattern during regular pacing. For a given pacing site, the activation maps were very similar across all fiber organizations tested.
Collapse
|
13
|
He J, Pertsov AM, Cherry EM, Fenton FH, Roney CH, Niederer SA, Zang Z, Mangharam R. Fiber Organization has Little Effect on Electrical Activation Patterns during Focal Arrhythmias in the Left Atrium. ARXIV 2023:arXiv:2210.16497v3. [PMID: 36776816 PMCID: PMC9915751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Over the past two decades there has been a steady trend towards the development of realistic models of cardiac conduction with increasing levels of detail. However, making models more realistic complicates their personalization and use in clinical practice due to limited availability of tissue and cellular scale data. One such limitation is obtaining information about myocardial fiber organization in the clinical setting. In this study, we investigated a chimeric model of the left atrium utilizing clinically derived patient-specific atrial geometry and a realistic, yet foreign for a given patient fiber organization. We discovered that even significant variability of fiber organization had a relatively small effect on the spatio-temporal activation pattern during regular pacing. For a given pacing site, the activation maps were very similar across all fiber organizations tested.
Collapse
Affiliation(s)
- Jiyue He
- Department of Electrical and Systems Engineering, University of Pennsylvania, USA
| | | | - Elizabeth M Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, USA
| | | | - Caroline H Roney
- School of Engineering and Materials Science, Queen Mary University of London, UK
| | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - Zirui Zang
- Department of Electrical and Systems Engineering, University of Pennsylvania, USA
| | - Rahul Mangharam
- Department of Electrical and Systems Engineering, University of Pennsylvania, USA
| |
Collapse
|
14
|
Mujović NM, Marinković MM, Marković N, Kocijančić A, Kovačević V, Vučićević V, Mujović NM, Potpara TS. Risk factors for late reconnections after circumferential pulmonary vein isolation guided by lesion size index - Data from repeat invasive electrophysiology procedure. Front Cardiovasc Med 2023; 9:986207. [PMID: 36776941 PMCID: PMC9908948 DOI: 10.3389/fcvm.2022.986207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/29/2022] [Indexed: 01/27/2023] Open
Abstract
Background Late reconnections (LR) of pulmonary veins (PVs) after wide antral circumferential ablation (WACA) using point-to-point radiofrequency (RF) ablation are common. Lesion size index (LSI) is a novel marker of lesion quality proposed by Ensite Precision mapping system, expected to improve PV isolation durability. This study aimed to assess the durability of LSI-guided PVI and the risk factors for LR of PVs. Methods The prospective study included 33 patients with paroxysmal atrial fibrillation (PAF) who underwent (1) the index LSI-guided WACA procedure (with target LSI of 5.5-6.0 for anterior and 5.0-5.5 for posterior WACA segments) and (2) the 3-month protocol-mandated re-mapping procedure in all patients, irrespective of AF recurrence after the index procedure. Ablation parameters reported by Ensite mapping system were collected retrospectively. The inter-lesion distance (ILD) between all adjacent WACA lesions was calculated off-line. Association between index ablation parameters and the LRs of PVs at 3 months was analyzed. Results The median patient age was 61 (IQR: 53-64) years and 55% of them were males. At index procedure, the first-pass WACA isolation rate was higher for the left PVs than the right PVs (64 vs. 33%, p = 0.014). In addition, a low acute reconnection rates were observed, as follows: in 12.1% of patients, in 6.1% of WACA circles, in 3.8% of WACA segments and in 4.5% of PVs. However, the 3-month remapping study revealed LR of PV in 63.6% of patients, 37.9% of WACA circles, 20.5% of WACA segments and 26.5% of PVs. The LRs were identified mostly along the left anterior WACA segment. Independent risk factors for the LR of WACA were left-sided WACA location (OR 3.216 [95%CI: 1.065-9.716], p = 0.038) and longer ILD (OR 1.256 [95%CI: 1.035-1.523] for each 1-mm increase, p = 0.021). The ILD of > 8.0 mm showed a predictive value for the LR of WACA, with the sensitivity of 84% and specificity of 46%. A single case of cardiac tamponade occurred following the re-mapping invasive procedure. No other complications were encountered. Conclusion Although the LSI-guided PVI ensures a consistent PVI during the index procedure, LRs of PVs are still common. Besides the LSI, the PVI durability requires an optimal ILD between adjacent lesions, especially along the anterior lateral ridge.
Collapse
Affiliation(s)
- Nebojša M. Mujović
- Cardiology Clinic, University Clinical Center of Serbia, Belgrade, Serbia,Faculty of Medicine, University of Belgrade, Belgrade, Serbia,*Correspondence: Nebojša M. Mujović,
| | - Milan M. Marinković
- Cardiology Clinic, University Clinical Center of Serbia, Belgrade, Serbia,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nebojša Marković
- Cardiology Clinic, University Clinical Center of Serbia, Belgrade, Serbia,Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Aleksandar Kocijančić
- Cardiology Clinic, University Clinical Center of Serbia, Belgrade, Serbia,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladan Kovačević
- Cardiology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Vera Vučićević
- Center for Anesthesiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Nataša M. Mujović
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia,Center for Physical Medicine and Rehabilitation, University Clinical Center of Serbia, Belgrade, Serbia
| | - Tatjana S. Potpara
- Cardiology Clinic, University Clinical Center of Serbia, Belgrade, Serbia,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Abstract
The global burden caused by cardiovascular disease is substantial, with heart disease representing the most common cause of death around the world. There remains a need to develop better mechanistic models of cardiac function in order to combat this health concern. Heart rhythm disorders, or arrhythmias, are one particular type of disease which has been amenable to quantitative investigation. Here we review the application of quantitative methodologies to explore dynamical questions pertaining to arrhythmias. We begin by describing single-cell models of cardiac myocytes, from which two and three dimensional models can be constructed. Special focus is placed on results relating to pattern formation across these spatially-distributed systems, especially the formation of spiral waves of activation. Next, we discuss mechanisms which can lead to the initiation of arrhythmias, focusing on the dynamical state of spatially discordant alternans, and outline proposed mechanisms perpetuating arrhythmias such as fibrillation. We then review experimental and clinical results related to the spatio-temporal mapping of heart rhythm disorders. Finally, we describe treatment options for heart rhythm disorders and demonstrate how statistical physics tools can provide insights into the dynamics of heart rhythm disorders.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
16
|
Requirement of larger local impedance reduction for successful lesion formation at carinal area during pulmonary vein isolation. J Interv Card Electrophysiol 2022; 65:509-518. [PMID: 35794439 DOI: 10.1007/s10840-022-01282-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Local impedance (LI) measurement from an ablation catheter is useful in predicting lesion size and acute success of pulmonary vein isolation (PVI). The LI variation can be described by absolute LI drop (ΔLID) or ΔLID/initial LI (%LID). We evaluated the utility of these parameters in predicting acute lesion durability during PVI using a novel catheter capable of measuring both LI and contact force (CF). METHODS PVI with a targeted CF, power, and duration was performed in 23 consecutive patients with paroxysmal atrial fibrillation. LI was blinded to operators during ablation. Parameters for each RF application were collected and compared for acute successful lesions and gaps. RESULTS A total of 1633 RF applications including 97 (5.9%) gap lesions were analyzed. Successful lesions were more frequently observed at non-carinal sites and those with higher contact force, FTI, initial LI, and larger variation of LI and generator impedance (GI). Multivariate analysis demonstrated that absolute GI drop (ΔGID) [OR 1.09 (1.04-1.15), p < 0.001], ΔLID [1.12 (1.09-1.16), p < 0.001], ΔGID/initial GI (%GID) [OR 1.04 (1.01-1.07), p = 0.01], and %LID [OR 1.15 (1.12-1.28), p < 0.001] were significantly associated with successful lesions, and carinal site [OR 0.15(0.09-0.24), p < 0.001] was significantly related to gaps. Both ΔLID and %LID equally predicted the acute durability of lesions during PVI. ΔLID ≥ 24Ω and %LID ≥ 15% at the carina, and ΔLID ≥ 21Ω and %LID ≥ 14% at non-carinal sites significantly predicted acute successful lesions with negative predictive values of 93-99%. CONCLUSIONS Both ΔLID and %LID were equally useful in predicting acute successful lesions during PVI. Larger cut-off values should be applied to carinal sites.
Collapse
|
17
|
Compagnucci P, Dello Russo A, Bergonti M, Anselmino M, Zucchelli G, Gasperetti A, Cipolletta L, Volpato G, Ascione C, Ferraris F, Valeri Y, Bongiorni MG, Natale A, Tondo C, De Ferrari GM, Casella M. Ablation Index Predicts Successful Ablation of Focal Atrial Tachycardia: Results of a Multicenter Study. J Clin Med 2022; 11:jcm11071802. [PMID: 35407408 PMCID: PMC8999753 DOI: 10.3390/jcm11071802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
A radiofrequency energy lesion transmurality marker incorporating power, contact force, and time (Ablation Index, AI) was shown to be associated with outcomes of catheter ablation (CA) of multiple arrhythmias, but was never systematically assessed in the CA of focal atrial tachycardias (AT). We aimed to evaluate the role of AI as a predictor of outcomes in focal AT CA, and therefore, retrospectively included 45 consecutive patients undergoing CA for focal AT in four referral electrophysiology laboratories. Clinical and procedural information were collected. For each patient, maximum and mean (by averaging maximum AI values for each radiofrequency ablation lesion) AI were measured. The primary outcome was focal AT-free survival, and was systematically assessed with periodical Holter monitors or cardiac implantable electronic devices. CA was acutely effective in each case; however, 20% (n = 9) of the study population experienced a focal AT recurrence over a median follow-up of 288 days. Both maximum and mean AI values were significantly higher among patients without AT recurrences (maximum AI = 568 ± 91, mean AI = 426 ± 105) than in patients with AT relapses (maximum AI = 447 ± 142, mean AI = 352 ± 76, p = 0.036, and p = 0.028, respectively). The optimal cutoffs associated with freedom from recurrences were 461 for maximum AI (sensitivity, 0.89; specificity, 0.56) and 301 for mean AI (sensitivity, 0.97; specificity, 0.44). In a time-to-event analysis, maximum AI was significantly associated with survival free from AT recurrence (p = 0.001), whereas mean AI was not (p = 0.08). In summary, maximum AI is the best procedural parameter associated with the outcomes of CA for focal AT, and may help standardize the procedural approach.
Collapse
Affiliation(s)
- Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, 60126 Ancona, Italy; (A.D.R.); (L.C.); (G.V.); (Y.V.); (M.C.)
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60126 Ancona, Italy;
- Correspondence:
| | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, 60126 Ancona, Italy; (A.D.R.); (L.C.); (G.V.); (Y.V.); (M.C.)
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60126 Ancona, Italy;
| | - Marco Bergonti
- Operation Unit of Arrhythmology, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20138 Milan, Italy; (M.B.); (C.A.); (C.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20138 Milan, Italy
| | - Matteo Anselmino
- Division of Cardiology, “Città della Salute e della Scienza di Torino” Hospital, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.A.); (F.F.); (G.M.D.F.)
| | - Giulio Zucchelli
- Second Division of Cardiovascular Diseases, Cardio-Thoracic and Vascular Department, University Hospital of Pisa, 56124 Pisa, Italy; (G.Z.); (M.G.B.)
| | - Alessio Gasperetti
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60126 Ancona, Italy;
| | - Laura Cipolletta
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, 60126 Ancona, Italy; (A.D.R.); (L.C.); (G.V.); (Y.V.); (M.C.)
| | - Giovanni Volpato
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, 60126 Ancona, Italy; (A.D.R.); (L.C.); (G.V.); (Y.V.); (M.C.)
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60126 Ancona, Italy;
| | - Ciro Ascione
- Operation Unit of Arrhythmology, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20138 Milan, Italy; (M.B.); (C.A.); (C.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20138 Milan, Italy
| | - Federico Ferraris
- Division of Cardiology, “Città della Salute e della Scienza di Torino” Hospital, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.A.); (F.F.); (G.M.D.F.)
| | - Yari Valeri
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, 60126 Ancona, Italy; (A.D.R.); (L.C.); (G.V.); (Y.V.); (M.C.)
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60126 Ancona, Italy;
| | - Maria Grazia Bongiorni
- Second Division of Cardiovascular Diseases, Cardio-Thoracic and Vascular Department, University Hospital of Pisa, 56124 Pisa, Italy; (G.Z.); (M.G.B.)
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX 78705, USA;
| | - Claudio Tondo
- Operation Unit of Arrhythmology, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20138 Milan, Italy; (M.B.); (C.A.); (C.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20138 Milan, Italy
| | - Gaetano Maria De Ferrari
- Division of Cardiology, “Città della Salute e della Scienza di Torino” Hospital, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.A.); (F.F.); (G.M.D.F.)
| | - Michela Casella
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti”, 60126 Ancona, Italy; (A.D.R.); (L.C.); (G.V.); (Y.V.); (M.C.)
- Department of Clinical, Special and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| |
Collapse
|
18
|
Szegedi N, Simon J, Szilveszter B, Salló Z, Herczeg S, Száraz L, Kolossváry M, Orbán G, Széplaki G, Nagy KV, Mahdiui ME, Smit JM, Delgado V, Bax JJ, Maurovich-Horvat P, Merkely B, Gellér L. Abutting Left Atrial Appendage and Left Superior Pulmonary Vein Predicts Recurrence of Atrial Fibrillation After Point-by-Point Pulmonary Vein Isolation. Front Cardiovasc Med 2022; 9:708298. [PMID: 35242821 PMCID: PMC8885731 DOI: 10.3389/fcvm.2022.708298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe role of the spatial relationship between the left superior pulmonary vein (LSPV) and left atrial appendage (LAA) is unknown. We sought to evaluate whether an abutting LAA and LSPV play a role in AF recurrence after catheter ablation for paroxysmal AF.MethodsConsecutive patients, who underwent initial point-by-point radiofrequency catheter ablation for paroxysmal AF at the Heart and Vascular Center of Semmelweis University, Budapest, Hungary, between January of 2014 and December of 2017, were enrolled in the study. All patients underwent pre-procedural cardiac CT to assess left atrial (LA) and pulmonary vein (PV) anatomy. Abutting LAA-LSPV was defined as cases when the minimum distance between the LSPV and LAA was less than 2 mm.ResultsWe included 428 patients (60.7 ± 10.8 years, 35.5% female) in the analysis. AF recurrence rate was 33.4%, with a median recurrence-free time of 21.2 (8.8–43.0) months. In the univariable analysis, female sex (HR = 1.45; 95%CI = 1.04–2.01; p = 0.028), LAA flow velocity (HR = 1.01; 95%CI = 1.00–1.02; p = 0.022), LAA orifice area (HR = 1.00; 95%CI = 1.00–1.00; p = 0.028) and abutting LAA-LSPV (HR = 1.53; 95%CI = 1.09–2.14; p = 0.013) were associated with AF recurrence. In the multivariable analysis, abutting LAA-LSPV (adjusted HR = 1.55; 95%CI = 1.04–2.31; p = 0.030) was the only independent predictor of AF recurrence.ConclusionAbutting LAA-LSPV predisposes patients to have a higher chance for arrhythmia recurrence after catheter ablation for paroxysmal AF.
Collapse
Affiliation(s)
- Nándor Szegedi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- *Correspondence: Nándor Szegedi
| | - Judit Simon
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bálint Szilveszter
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zoltán Salló
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Szilvia Herczeg
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Lili Száraz
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Márton Kolossváry
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Orbán
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Széplaki
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Heart and Vascular Centre, Mater Private Hospital, Dublin, Ireland
| | | | - Mohammed El Mahdiui
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeff M. Smit
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen J. Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - László Gellér
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Hayashi K, Okumura K, Okamatsu H, Kaneko S, Negishi K, Tsurugi T, Tanaka Y, Nakao K, Sakamoto T, Koyama J. Real-time visualization of the esophagus and left atrial posterior wall by intra-left atrial echocardiography. J Interv Card Electrophysiol 2021; 63:629-637. [PMID: 34791606 DOI: 10.1007/s10840-021-01093-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Localization of the esophagus and the left atrium (LA) posterior wall thickness (LAPWT) should be taken into account when delivering radiofrequency energy. To validate the visualization of the esophagus and analyze LAPWT by ICE advanced into the LA in patients with atrial fibrillation (AF) undergoing ablation index (AI)-guided pulmonary vein (PV) isolation. METHODS In 73 patients (mean age, 68 ± 12; paroxysmal AF in 45), a 3-dimensional (3D) esophagus image was created with CARTO SoundstarⓇ and its location was compared with contrast esophagography saved in Carto UNIVU™. LAPWT adjacent to the esophagus was measured at 4 levels: left superior PV (LSPV), intervenous carina (IC), left inferior PV (LIPV), and LIPV bottom. A target AI value was 260 (25 W power) on the esophagus demonstrated by ICE. RESULTS All patients had the esophagus posterior to the left PV antrum. Creating a 3D esophagus and measurement of LAPWT with ICE was done without any complications. ICE esophagus image was completely overlapped with contrast esophagography. LAPWT (mm) was 2.8 (interquartile range, 2.5-3.2), 2.2 (1.9-2.5), 1.9 (1.8-2.1), and 2.1 (1.9-2.4) for LSPV, IC, LIPV, and LIPV bottom, respectively, while LA roof thickness was 3.2 (2.9-3.6) (P < 0.0001 by ANOVA). No residual conduction gap on the esophagus after the first circumferential PV isolation was found in 64 of 73 (88%) patients. CONCLUSIONS ICE inserted into the LA can reliably locate and display the esophagus and its relationship to the LA. LAPWT was the thinnest at the LIPV level. AI-guided ablation targeting at AI value 260 on the esophagus seemed to be effective.
Collapse
Affiliation(s)
- Katsuhide Hayashi
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami, Minami-ku, Kumamoto City, 861-4193, Japan
| | - Ken Okumura
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami, Minami-ku, Kumamoto City, 861-4193, Japan.
| | - Hideharu Okamatsu
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami, Minami-ku, Kumamoto City, 861-4193, Japan
| | - Shozo Kaneko
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami, Minami-ku, Kumamoto City, 861-4193, Japan
| | - Kodai Negishi
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami, Minami-ku, Kumamoto City, 861-4193, Japan
| | - Takuo Tsurugi
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami, Minami-ku, Kumamoto City, 861-4193, Japan
| | - Yasuaki Tanaka
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami, Minami-ku, Kumamoto City, 861-4193, Japan
| | - Koichi Nakao
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami, Minami-ku, Kumamoto City, 861-4193, Japan
| | - Tomohiro Sakamoto
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami, Minami-ku, Kumamoto City, 861-4193, Japan
| | - Junjiro Koyama
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, 5-3-1 Chikami, Minami-ku, Kumamoto City, 861-4193, Japan
| |
Collapse
|
20
|
Left atrial wall thickness; at the forefront of atrial fibrillation ablation strategies. Int J Cardiovasc Imaging 2021; 37:3537-3538. [PMID: 34635966 DOI: 10.1007/s10554-021-02434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
|
21
|
Towards Intraoperative Quantification of Atrial Fibrosis Using Light-Scattering Spectroscopy and Convolutional Neural Networks. SENSORS 2021; 21:s21186033. [PMID: 34577240 PMCID: PMC8471003 DOI: 10.3390/s21186033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023]
Abstract
Light-scattering spectroscopy (LSS) is an established optical approach for characterization of biological tissues. Here, we investigated the capabilities of LSS and convolutional neural networks (CNNs) to quantitatively characterize the composition and arrangement of cardiac tissues. We assembled tissue constructs from fixed myocardium and the aortic wall with a thickness similar to that of the atrial free wall. The aortic sections represented fibrotic tissue. Depth, volume fraction, and arrangement of these fibrotic insets were varied. We gathered spectra with wavelengths from 500–1100 nm from the constructs at multiple locations relative to a light source. We used single and combinations of two spectra for training of CNNs. With independently measured spectra, we assessed the accuracy of the CNNs for the classification of tissue constructs from single spectra and combined spectra. Combined spectra, including the spectra from fibers distal from the illumination fiber, typically yielded the highest accuracy. The maximal classification accuracy of the depth detection, volume fraction, and permutated arrangements was (mean ± standard deviation (stddev)) 88.97 ± 2.49%, 76.33 ± 1.51%, and 84.25 ± 1.88%, respectively. Our studies demonstrate the reliability of quantitative characterization of tissue composition and arrangements using a combination of LSS and CNNs. The potential clinical applications of the developed approach include intraoperative quantification and mapping of atrial fibrosis, as well as the assessment of ablation lesions.
Collapse
|
22
|
Review of the 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation-What Has Changed and How Does This Affect Daily Practice. J Clin Med 2021; 10:jcm10173922. [PMID: 34501370 PMCID: PMC8432123 DOI: 10.3390/jcm10173922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 01/01/2023] Open
Abstract
The high prevalence of atrial fibrillation (AF) in the overall population and its association with substantial morbidity, increased mortality and health care cost has instigated significant basic and clinical research efforts over recent years. The publication of multiple new high-quality randomized multi-center trials in the area of AF management and the rapidly evolving technological progress in terms of diagnostic possibilities and catheter ablation in recent years demanded a revision of the previous ESC AF Guidelines from 2016. The 2020 guidelines provide up-to-date, evidence-based guidance for the management of AF. One of the most important innovations is the presentation of a new concept for structural characterization of AF (the “4S AF scheme”) replacing the traditional classification based on its temporal pattern alone (paroxysmal-persistent-permanent). The 4S-AF-scheme highlights the importance of systematic assessment of stroke risk, severity of symptoms, total AF burden and underlying substrate as the foundation for effective and individualized AF treatment for each and every patient. Further novelties relate to the presentation of an easy and intuitive management pathway (“ABC pathway”) and strengthening the recommendations for early rhythm control, in particular the role of first line catheter ablation in heart failure. Another core component of the guidelines is the focus on patient involvement to achieve optimal outcomes. Patient education, shared decision making and incorporation of patient values and patient reported outcome of treatment interventions as well as integrated care by a multidisciplinary team all have a central role in the proposed management pathway for AF.
Collapse
|
23
|
Evaluation of different ablation strategies verifying the optimal overlap ratio in point-by-point laser balloon ablation for patients with atrial fibrillation. Heart Rhythm O2 2021; 2:347-354. [PMID: 34430940 PMCID: PMC8369302 DOI: 10.1016/j.hroo.2021.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Optimal overlap ratio remains unclear in point-by-point laser balloon (LB) ablation. Objective This study sought to determine the optimal overlap strategy with target energies on the acute and chronic outcomes in LB pulmonary vein (PV) isolation (PVI). Methods Consecutive 38 patients (148 PVs) with atrial fibrillation underwent the first-generation LB PVI with the following protocols based on the overlap ratios for each PV anterior/posterior wall: 50%/50% (13 patients [49 PVs], group A), 50%/25% (15 patients [60 PVs], group B), and 25%/25% (10 patients [39 PVs], group C). High energies (240–255 J: 12 W / 20 seconds, 8.5 W / 30 seconds), moderate energies (200–210 J: 10 W / 20 seconds, 7 W / 30 seconds), and low-to-moderate energies (low, 165–170 J: 5.5 W / 30 seconds, 8.5 W / 20 seconds) were targeted for left PV anterior walls, right PV anterior walls, and bilateral PV posterior walls, respectively. First-pass PVI, the other procedure-related data, and atrial tachyarrhythmia recurrences were analyzed. Results First-pass PVI rate per PV was higher in group A (94%) than in group B (88%) and group C (62%) (P < .001). All PVs were finally isolated. First-pass time, total LB PVI time, complications, and atrial tachyarrhythmia recurrences during a mean follow-up of 11 ± 5 months did not differ between the groups. A few residual gaps after first-pass LB ablations were found for PV anterior walls even in group A and group B. Conclusion Sufficiently overlapped LB ablation promises a high rate of first-pass PVI without adverse outcomes. High energy could be required for PV anterior walls.
Collapse
|
24
|
Craft J, Li Y, Bhatti S, Cao JJ. How to do left atrial late gadolinium enhancement: a review. Radiol Med 2021; 126:1159-1169. [PMID: 34132927 DOI: 10.1007/s11547-021-01383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Quantification of left atrial late gadolinium enhancement is a powerful clinical and research tool. Fibrosis burden has been shown to predict the success of pulmonary vein isolation, post-ablation reoccurrence, and major adverse cardiovascular events such as stroke. OVERVIEW The standardized cardiovascular magnetic resonance imaging protocols 2020 update describes the key components of the examination. This review is a more in-depth guide, geared toward building left atrial late gadolinium enhancement imaging from the ground up. The standard protocol consists of the following: localization, pulmonary vein magnetic resonance angiography, cardiac cines, left ventricular, and atrial late gadolinium enhancement. We also review typical segmentation and post-processing techniques, as well as discuss pitfalls, limitations, and potential future innovations in this area. CONCLUSIONS With sufficient experience and optimized protocols, left atrial late gadolinium enhancement imaging is a strong addition to the cardiac magnetic resonance imaging repertoire.
Collapse
Affiliation(s)
- Jason Craft
- St Francis Hospital, Dematteis Research Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.
| | - Yulee Li
- St Francis Hospital, Dematteis Research Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Salman Bhatti
- The Ohio State University Wexner Medical Center, 410 W 10th Ave, Columbus, OH, 43210, USA
| | - Jie Jane Cao
- St Francis Hospital, Dematteis Research Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| |
Collapse
|
25
|
Firouznia M, Feeny AK, LaBarbera MA, McHale M, Cantlay C, Kalfas N, Schoenhagen P, Saliba W, Tchou P, Barnard J, Chung MK, Madabhushi A. Machine Learning-Derived Fractal Features of Shape and Texture of the Left Atrium and Pulmonary Veins From Cardiac Computed Tomography Scans Are Associated With Risk of Recurrence of Atrial Fibrillation Postablation. Circ Arrhythm Electrophysiol 2021; 14:e009265. [PMID: 33576688 PMCID: PMC8015207 DOI: 10.1161/circep.120.009265] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/08/2021] [Indexed: 01/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Albert K. Feeny
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve Univ
| | | | - Meghan McHale
- Dept of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, OH
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Diagnostic Radiology, Cleveland Clinic, Cleveland, OH
| | - Catherine Cantlay
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Diagnostic Radiology, Cleveland Clinic, Cleveland, OH
| | - Natalie Kalfas
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Diagnostic Radiology, Cleveland Clinic, Cleveland, OH
| | - Paul Schoenhagen
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve Univ
- Dept of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, OH
- Imaging Institute, Diagnostic Radiology, Cleveland Clinic, Cleveland, OH
| | - Walid Saliba
- Dept of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, OH
| | - Patrick Tchou
- Dept of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, OH
| | - John Barnard
- Quantitative Health Sciences, Lerner Research Institute, Diagnostic Radiology, Cleveland Clinic, Cleveland, OH
| | - Mina K Chung
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve Univ
- Dept of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, OH
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Diagnostic Radiology, Cleveland Clinic, Cleveland, OH
| | - Anant Madabhushi
- Dept of Biomedical Engineering, Case Western Reserve Univ
- Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH
| |
Collapse
|
26
|
Nedios S, Sanatkhani S, Oladosu M, Seewöster T, Richter S, Arya A, Heijman J, J G M Crijns H, Hindricks G, Bollmann A, Menon PG. Association of low-voltage areas with the regional wall deformation and the left atrial shape in patients with atrial fibrillation: A proof of concept study. IJC HEART & VASCULATURE 2021; 33:100730. [PMID: 33718586 PMCID: PMC7933256 DOI: 10.1016/j.ijcha.2021.100730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/30/2021] [Indexed: 11/30/2022]
Abstract
Background Left atrium (LA) remodeling is associated with atrial fibrillation (AF) and reduced success after AF ablation, but its relation with low-voltage areas (LVA) is not known. This study aimed to evaluate the relation between regional LA changes and LVAs in AF patients. Methods Pre-interventional CT data of patients (n = 24) with LA-LVA (<0.5 mV) in voltage mapping after AF ablation were analyzed (Surgery Explorer, QuantMD LLC). To quantify asymmetry (ASI = LA-A/LAV) a cutting plane parallel to the rear wall and along the pulmonary veins divided the LA-volume (LAV) into anterior (LA-A) and posterior parts. To quantify sphericity (LAS = 1-R/S), a patient-specific best-fit LA sphere was created. The average radius (R) and the mean deviation (S) from this sphere were calculated. The average local deviation (D) was measured for the roof, posterior, septum, inferior septum, inferior-posterior and lateral walls. Results The roof, posterior and septal regions had negative local deviations. There was a correlation between roof and septum (r = 0.42, p = 0.04), lateral and inferior-posterior (r = 0.48, p = 0.02) as well as posterior and inferior-septal deviations (r = −0.41, p = 0.046). ASI correlated with septum deformation (r = −0.43, p = 0.04). LAS correlated with dilatation (LAV, r = 0.49, p = 0.02), roof (r = 0.52, p = 0.009) and posterior deformation (r = −0.56, p = 0.005). Extended LVA correlated with local deformation of all LA walls, except the roof and the septum. LVA association with LAV, ASI and LAS did not reach statistical significance. Conclusion Extended LVA correlates with local wall deformations better than other remodeling surrogates. Therefore, their calculation could help predict LVA presence and deserve further evaluation in clinical studies.
Collapse
Key Words
- AF, atrial fibrillation
- AR, average radius
- ASI, asymmetry index
- Atrial fibrillation
- Atrial remodeling
- CA, catheter ablation
- CT, computed tomography
- Computer tomography
- IQR, inter-quartile range
- LA, left atrium
- LA-A, left atrial anterior (LA-A) partial volume
- LA-P, left atrial posterior (LA-P) partial volume
- LAA, left atrial appendage
- LAV, left atrial volume with anterior (LA-A) and posterior (LA-P) partial volumes
- LV, left ventricle
- LV-EF, left ventricular ejection fraction
- LVA, low-voltage area
- LVDD, left ventricular diastolic dysfunction
- MRI, magnetic resonance imaging
- PVI, pulmonary vein isolation
- S, mean deviation
- SD, standard deviation
- Sphericity
- Voltage mapping
Collapse
Affiliation(s)
- Sotirios Nedios
- Heart Center, University of Leipzig, Germany.,Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA.,Department of Cardiology and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands
| | | | | | | | | | - Arash Arya
- Heart Center, University of Leipzig, Germany
| | - Jordi Heijman
- Department of Cardiology and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands
| | - Harry J G M Crijns
- Department of Cardiology and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands
| | | | | | - Prahlad G Menon
- University of Pittsburgh, Pittsburgh, PA, USA.,Duquesne University, Pittsburgh, PA, USA.,QuantMD LLC, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Whitaker J, Karády J, Karim R, Tobon-Gomez C, Fastl T, Razeghi O, O'Neill L, Decroocq M, Williams S, Corrado C, Mukherjee RK, Sim I, O'Hare D, Kotadia I, Kolossváry M, Merkely B, Littvay L, Tarnoki AD, Tarnoki DL, Voros S, Razavi R, O'Neill M, Rajani R, Maurovich Horvat P, Niederer S. Standardised computed tomographic assessment of left atrial morphology and tissue thickness in humans. IJC HEART & VASCULATURE 2021; 32:100694. [PMID: 33392384 PMCID: PMC7772783 DOI: 10.1016/j.ijcha.2020.100694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/21/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022]
Abstract
AIMS Left atrial (LA) remodelling is a common feature of many cardiovascular pathologies and is a sensitive marker of adverse cardiovascular outcomes. The aim of this study was to establish normal ranges for LA parameters derived from coronary computed tomographic angiography (CCTA) imaging using a standardised image processing pipeline to establish normal ranges in a previously described cohort. METHODS CCTA imaging from 193 subjects recruited to the Budapest GLOBAL twin study was analysed. Indexed LA cavity volume (LACVi), LA surface area (LASAi), wall thickness and LA tissue volume (LATVi) were calculated. Wall thickness maps were combined into an atlas. Indexed LA parameters were compared with clinical variables to identify early markers of pathological remodelling. RESULTS LACVi is similar between sexes (31 ml/m2 v 30 ml/m2) and increased in hypertension (33 ml/m2 v 29 ml/m2, p = 0.009). LASAi is greater in females than males (47.8 ml/m2 v 45.8 ml/m2 male, p = 0.031). Median LAWT was 1.45 mm. LAWT was lowest at the inferior portion of the posterior LA wall (1.14 mm) and greatest in the septum (median = 2.0 mm) (p < 0.001). Conditions known to predispose to the development of AF were not associated with differences in tissue thickness. CONCLUSIONS The reported LACVi, LASAi, LATVi and tissue thickness derived from CCTA may serve as reference values for this age group and clinical characteristics for future studies. Increased LASAi in females in the absence of differences in LACVi or LATVi may indicate differential LA shape changes between the sexes. AF predisposing conditions, other than sex, were not associated with detectable changes in LAWT.Clinical trial registration:http://www.ClinicalTrials.gov/NCT01738828.
Collapse
Key Words
- AF, atrial fibrillation
- BSA, body surface area
- CCTA, cardiac computed tomography
- Computed tomography (CT)
- DZ, dizygotic
- LA, left atrium
- LAA, left atrial appendage
- LACV, left atrial cavity volume
- LASA, left atrial surface area
- LATV, left atrial tissue volume
- LAWT, left atrial wall thickness
- Left atrium
- MZ, monozygotic
- PV, pulmonary vein
- Tissue thickness
Collapse
Affiliation(s)
- John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Júlia Karády
- Cardiovascular Imaging Research Group, Semmelweis University, Budapest, Hungary
| | - Rashed Karim
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Catalina Tobon-Gomez
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Thomas Fastl
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Orod Razeghi
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Louisa O'Neill
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Marie Decroocq
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Steven Williams
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Cesare Corrado
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Rahul K. Mukherjee
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Iain Sim
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Daniel O'Hare
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Irum Kotadia
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Márton Kolossváry
- Cardiovascular Imaging Research Group, Semmelweis University, Budapest, Hungary
| | - Bela Merkely
- Cardiovascular Imaging Research Group, Semmelweis University, Budapest, Hungary
| | - Levente Littvay
- Cardiovascular Imaging Research Group, Semmelweis University, Budapest, Hungary
| | - Adam D. Tarnoki
- Department of Radiology, Semmelweis University, Budapest, Hungary
- Hungarian Twin Registry, Budapest, Hungary
| | - David L. Tarnoki
- Department of Radiology, Semmelweis University, Budapest, Hungary
- Hungarian Twin Registry, Budapest, Hungary
| | - Szilard Voros
- Cardiovascular Imaging Research Group, Semmelweis University, Budapest, Hungary
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Ronak Rajani
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | | | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
| |
Collapse
|
28
|
Bhaskaran A, Fitzgerald J, Jackson N, Gizurarson S, Nanthakumar K, Porta-Sánchez A. Decrement Evoked Potential Mapping to Guide Ventricular Tachycardia Ablation: Elucidating the Functional Substrate. Arrhythm Electrophysiol Rev 2020; 9:211-218. [PMID: 33437489 PMCID: PMC7788395 DOI: 10.15420/aer.2020.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Empirical approaches to targeting the ventricular tachycardia (VT) substrate include mapping of late potentials, local abnormal electrogram, pace-mapping and homogenisation of the abnormal signals. These approaches do not try to differentiate between the passive or active role of local signals as the critical components of the VT circuit. By not considering the functional components, these approaches often view the substrate as a fixed anatomical barrier. Strategies to improve the success of VT ablation need to include the identification of critical functional substrate. Decrement-evoked potential (DeEP) mapping has been developed to elucidate this using an extra-stimulus added to a pacing drive train. With knowledge translation in mind, the authors detail the evolution of the DeEP concept by way of a study of simultaneous panoramic endocardial mapping in VT ablation; an in silico modelling study to demonstrate the factors influencing DeEPs; a multicentre VT ablation validation study; a practical approach to DeEP mapping; the potential utility of DeEPs to identify arrhythmogenic atrial substrate; and, finally, other functional mapping strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreu Porta-Sánchez
- Hospital Universitario Quirónsalud Madrid, Molecular Cardiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, Spain
| |
Collapse
|
29
|
Razeghi O, Sim I, Roney CH, Karim R, Chubb H, Whitaker J, O’Neill L, Mukherjee R, Wright M, O’Neill M, Williams SE, Niederer S. Fully Automatic Atrial Fibrosis Assessment Using a Multilabel Convolutional Neural Network. Circ Cardiovasc Imaging 2020; 13:e011512. [PMID: 33317334 PMCID: PMC7771635 DOI: 10.1161/circimaging.120.011512] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Pathological atrial fibrosis is a major contributor to sustained atrial fibrillation. Currently, late gadolinium enhancement (LGE) scans provide the only noninvasive estimate of atrial fibrosis. However, widespread adoption of atrial LGE has been hindered partly by nonstandardized image processing techniques, which can be operator and algorithm dependent. Minimal validation and limited access to transparent software platforms have also exacerbated the problem. This study aims to estimate atrial fibrosis from cardiac magnetic resonance scans using a reproducible operator-independent fully automatic open-source end-to-end pipeline. Methods: A multilabel convolutional neural network was designed to accurately delineate atrial structures including the blood pool, pulmonary veins, and mitral valve. The output from the network removed the operator dependent steps in a reproducible pipeline and allowed for automated estimation of atrial fibrosis from LGE-cardiac magnetic resonance scans. The pipeline results were compared against manual fibrosis burdens, calculated using published thresholds: image intensity ratio 0.97, image intensity ratio 1.61, and mean blood pool signal +3.3 SD. Results: We validated our methods on a large 3-dimensional LGE-cardiac magnetic resonance data set from 207 labeled scans. Automatic atrial segmentation achieved a 91% Dice score, compared with the mutual agreement of 85% in Dice seen in the interobserver analysis of operators. Intraclass correlation coefficients of the automatic pipeline with manually generated results were excellent and better than or equal to interobserver correlations for all 3 thresholds: 0.94 versus 0.88, 0.99 versus 0.99, 0.99 versus 0.96 for image intensity ratio 0.97, image intensity ratio 1.61, and +3.3 SD thresholds, respectively. Automatic analysis required 3 minutes per case on a standard workstation. The network and the analysis software are publicly available. Conclusions: Our pipeline provides a fully automatic estimation of fibrosis burden from LGE-cardiac magnetic resonance scans that is comparable to manual analysis. This removes one key source of variability in the measurement of atrial fibrosis.
Collapse
Affiliation(s)
- Orod Razeghi
- Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (O.R., I.S., C.H.R., R.K., H.C., J.W., L.O., R.M., M.O., S.E.W., S.N.)
| | - Iain Sim
- Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (O.R., I.S., C.H.R., R.K., H.C., J.W., L.O., R.M., M.O., S.E.W., S.N.)
| | - Caroline H. Roney
- Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (O.R., I.S., C.H.R., R.K., H.C., J.W., L.O., R.M., M.O., S.E.W., S.N.)
| | - Rashed Karim
- Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (O.R., I.S., C.H.R., R.K., H.C., J.W., L.O., R.M., M.O., S.E.W., S.N.)
| | - Henry Chubb
- Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (O.R., I.S., C.H.R., R.K., H.C., J.W., L.O., R.M., M.O., S.E.W., S.N.)
| | - John Whitaker
- Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (O.R., I.S., C.H.R., R.K., H.C., J.W., L.O., R.M., M.O., S.E.W., S.N.)
| | - Louisa O’Neill
- Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (O.R., I.S., C.H.R., R.K., H.C., J.W., L.O., R.M., M.O., S.E.W., S.N.)
| | - Rahul Mukherjee
- Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (O.R., I.S., C.H.R., R.K., H.C., J.W., L.O., R.M., M.O., S.E.W., S.N.)
| | - Matthew Wright
- Cardiology Department, St. Thomas’ Hospital, London, United Kingdom (M.W., M.O.)
| | - Mark O’Neill
- Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (O.R., I.S., C.H.R., R.K., H.C., J.W., L.O., R.M., M.O., S.E.W., S.N.)
- Cardiology Department, St. Thomas’ Hospital, London, United Kingdom (M.W., M.O.)
| | - Steven E. Williams
- Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (O.R., I.S., C.H.R., R.K., H.C., J.W., L.O., R.M., M.O., S.E.W., S.N.)
| | - Steven Niederer
- Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom (O.R., I.S., C.H.R., R.K., H.C., J.W., L.O., R.M., M.O., S.E.W., S.N.)
| |
Collapse
|
30
|
Kalaycıoğlu E, Çetin M, Özyıldız AG, Kırış T. Impaired left atrial mechanical functions as indicators for increased aortic root diameter in hypertensive and diabetic patients. Herz 2020; 46:272-279. [PMID: 33196863 DOI: 10.1007/s00059-020-04997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Previous studies have demonstrated that increased aortic root diameter (ARD) is frequently associated with increased cardiovascular (CV) events and is a predictor of stroke. Two-dimensional speckle tracking echocardiography (2D-STE) provides a better evaluation of left atrial (LA) functions. Left atrial mechanical dispersion is a useful predictor of new-onset atrial fibrillation (AF) independent of LA enlargement and dysfunction. We aimed to investigate the relationship between ARD and LA mechanical functions. METHODS The present study included 93 consecutive patients with hypertension and diabetes. The relationships between ARD and LA functions was evaluated. RESULTS Study population was divided into two groups according to the mean ARD values: group 1 (ARD ≤30.03 mm, n = 53) and group 2 (ARD >30.03 mm, n = 40). In group 2, age, LA max volume (vol), LA pre A vol, LA min vol, LA emptying fraction, LA active ejection fraction (EF), and LA expansion index were significantly higher compared to group 1. S‑LAs and SR-LAs (peak LA strain and strain rate, respectively, during ventricular systole) and S‑LAe and SR-LAe (peak early diastolic LA strain and strain rate, respectively) were significantly lower in group 2 compared to group 1. Age, LA max vol, LA pre A vol, LA min vol, LA emptying fraction, LA active EF, LA expansion index, S‑LAs, S‑LAe, SR-LAs, and SR-LAe were significantly associated with increased ARD. In multivariate logistic regression analysis, age, LA expansion index, and SR-LAe were independent predictors for ARD. CONCLUSION Impaired LA mechanical functions determined by speckle tracking methods are related with increased ARD independent of LV diastolic dysfunction.
Collapse
Affiliation(s)
- Ezgi Kalaycıoğlu
- Ahi Evren Thoracic and Cardiovascular Surgery Education and Research Hospital, Department of Cardiology, University of Health Sciences Turkey, Trabzon, Turkey
| | - Mustafa Çetin
- Faculty of Medicine, Training and Research Hospital, Department of Cardiology, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Ali Gökhan Özyıldız
- Faculty of Medicine, Training and Research Hospital, Department of Cardiology, Recep Tayyip Erdoğan University, Rize, Turkey.
| | - Tuncay Kırış
- Atatürk Training and Research Hospital, Department of Cardiology, İzmir Katip Çelebi University, İzmir, Turkey
| |
Collapse
|
31
|
Mangiafico V, Saberwal B, Lavalle C, Raharja A, Ahmed Z, Papageorgiou N, Ahsan S. The role of CT in detecting AF substrate. Trends Cardiovasc Med 2020; 31:457-466. [PMID: 33068722 DOI: 10.1016/j.tcm.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/29/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Despite technological advancements and evolving ablation strategies, atrial fibrillation catheter ablation outcome remains suboptimal for a cohort of patients. Imaging-based biomarkers have the potential to play a pivotal role in the overall assessment and prognostic stratification of AF patients, allowing for tailored treatments and individualized care. Alongside consolidated evaluation parameters, novel imaging biomarkers that can detect and stage the remodelling process and correlate it to electrophysiological phenomena are emerging. This review aims to provide a better understanding of the different types of atrial substrate, and how Computed Tomography can be used as a pre-ablation risk stratification tool by assessing the various novel imaging biomarkers, providing a valuable insight into the mechanisms that sustain AF and potentially allowing for a patient-specific ablation strategy.
Collapse
Affiliation(s)
- Valentina Mangiafico
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy.
| | - Bunny Saberwal
- Barts Heart Centre, West Smithfield, London, EC1A 7BE, England.
| | - Carlo Lavalle
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy.
| | - Antony Raharja
- Barts Heart Centre, West Smithfield, London, EC1A 7BE, England.
| | - Zuhair Ahmed
- Queen Mary University of London, London, England.
| | | | - Syed Ahsan
- Barts Heart Centre, West Smithfield, London, EC1A 7BE, England.
| |
Collapse
|
32
|
Ghannam M, Yun HJ, Ficaro EP, Ghanbari H, Lazarus JJ, Konerman M, Shah RV, Weinberg R, Corbett JR, Oral H, Murthy VL. Multiparametric assessment of left atrial remodeling using 18F-FDG PET/CT cardiac imaging: A pilot study. J Nucl Cardiol 2020; 27:1547-1562. [PMID: 30191438 PMCID: PMC6411463 DOI: 10.1007/s12350-018-1429-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/08/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Left atrial (LA) remodeling is associated with structural, electric, and metabolic LA changes. Integrated evaluation of these features in vivo is lacking. METHODS Patients undergoing 18F-fluorodeoxyglucose (FDG) PET-CT during a hyperinsulinemic-euglycemic clamp were classified into sinus rhythm (SR), paroxysmal AF (PAF), and persistent AF (PerAF). The LA was semiautomatically segmented, and global FDG uptake was quantified using standardized uptake values (SUVmax and SUVmean) in gated, attenuation-corrected images and normalized to LA blood pool activity. Regression was used to relate FDG data to AF burden and critical patient factors. Continuous variables were compared using t-tests or Mann-Whitney tests. RESULTS 117 patients were included (76% men, age 66.4 ± 11.0, ejection fraction (EF) 25[22-35]%) including those with SR (n = 48), PAF (n = 55), and PerAF (n = 14). Patients with any AF had increased SUVmean (2.3[1.5-2.4] vs 2.0[1.5-2.5], P = 0.006), SUVmax (4.4[2.8-6.7] vs 3.2[2.3-4.3], P < 0.001), uptake coefficient of variation (CoV) 0.28[0.22-0.40] vs 0.25[0.2-0.33], P < 0.001), and hypometabolic scar (32%[14%-53%] vs 16.5%[0%-38.5%], P = 0.01). AF burden correlated with increased SUVmean, SUVmax, CoV, and scar independent of age, gender, EF, or LA size (P < 0.03 for all). CONCLUSIONS LA structure and metabolism can be assessed using FDG PET/CT. Greater AF burden correlates with the increased LA metabolism and scar.
Collapse
Affiliation(s)
- Michael Ghannam
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - Hong Jun Yun
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - Edward P Ficaro
- INVIA Medical Imaging Solutions, Ann Arbor, MI, USA
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Hamid Ghanbari
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - John J Lazarus
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - Matthew Konerman
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - Ravi V Shah
- Department of Medicine (Division of Cardiovascular Medicine), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard Weinberg
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - James R Corbett
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
- INVIA Medical Imaging Solutions, Ann Arbor, MI, USA
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Hakan Oral
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA
| | - Venkatesh L Murthy
- Department of Medicine (Division of Cardiovascular Medicine), University of Michigan, 1500 E. Medical Center Dr. SPC 5873, Ann Arbor, MI, 48109, USA.
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Mulder MJ, Kemme MJB, Hagen AMD, Hopman LHGA, van de Ven PM, Hauer HA, Tahapary GJM, Götte MJW, van Rossum AC, Allaart CP. Impact of local left atrial wall thickness on the incidence of acute pulmonary vein reconnection after Ablation Index-guided atrial fibrillation ablation. IJC HEART & VASCULATURE 2020; 29:100574. [PMID: 32642554 PMCID: PMC7334811 DOI: 10.1016/j.ijcha.2020.100574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
Ablation Index-guided ablation allows for ablation lesions of consistent depth. Ablation Index-guided ablation is limited by ignoring local wall thickness. Local atrial wall thickness is associated with acute pulmonary vein reconnection. Wall thickness adjusted Ablation Index targets may improve ablation outcomes.
Background Although Ablation Index (AI)-guided ablation facilitates creation of lesions of consistent depth, pulmonary vein (PV) reconnection is still commonly observed after AI-guided pulmonary vein isolation (PVI). The present study aimed to investigate the impact of local left atrial wall thickness on the incidence of acute PV reconnection after AI-guided atrial fibrillation (AF) ablation. Methods and results Seventy patients (63% paroxysmal AF, 67% male, mean age 63 ± 8 years) who underwent preprocedural CT imaging and AI-guided AF ablation were studied. Occurrence of acute PV reconnection after initial PVI was assessed after a 30-minute waiting period. Ablation procedures were retrospectively analyzed and each ablation circle was subdivided into 8 segments. Minimum AI, force-time integral, contact force, ablation duration, power, impedance drop and maximum interlesion distance were determined for each segment. PV antrum wall thickness was assessed for each segment on reconstructed CT images based on patient-specific thresholds in Hounsfield Units. Acute reconnection occurred in 27/1120 segments (2%, 15 anterior/roof, 12 posterior/inferior) in 19/140 ablation circles (14%). Reconnected segments were characterized by a greater local atrial wall thickness, both in anterior/roof (1.87 ± 0.42 vs. 1.54 ± 0.42 mm; p < 0.01) and posterior/inferior (1.43 ± 0.20 vs. 1.16 ± 0.22 mm; p < 0.01) segments. Minimum AI, force-time integral, contact force, ablation duration, power, impedance drop and maximum interlesion distance were not associated with acute reconnection. Conclusions Local atrial wall thickness is associated with acute pulmonary vein reconnection after AI-guided PVI. Individualized AI targets based on local wall thickness may be of use to create transmural ablation lesions and prevent PV reconnection after PVI.
Collapse
Affiliation(s)
- Mark J Mulder
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences Amsterdam, the Netherlands
| | - Michiel J B Kemme
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences Amsterdam, the Netherlands
| | - Amaya M D Hagen
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences Amsterdam, the Netherlands
| | - Luuk H G A Hopman
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences Amsterdam, the Netherlands
| | - Peter M van de Ven
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Herbert A Hauer
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences Amsterdam, the Netherlands.,Cardiology Centers of the Netherlands, Amsterdam, the Netherlands
| | - Giovanni J M Tahapary
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences Amsterdam, the Netherlands.,Department of Cardiology, North West Clinics, Alkmaar, the Netherlands
| | - Marco J W Götte
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences Amsterdam, the Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences Amsterdam, the Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences Amsterdam, the Netherlands
| |
Collapse
|
34
|
Augustin CM, Fastl TE, Neic A, Bellini C, Whitaker J, Rajani R, O'Neill MD, Bishop MJ, Plank G, Niederer SA. The impact of wall thickness and curvature on wall stress in patient-specific electromechanical models of the left atrium. Biomech Model Mechanobiol 2020; 19:1015-1034. [PMID: 31802292 PMCID: PMC7203597 DOI: 10.1007/s10237-019-01268-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022]
Abstract
The left atrium (LA) has a complex anatomy with heterogeneous wall thickness and curvature. The anatomy plays an important role in determining local wall stress; however, the relative contribution of wall thickness and curvature in determining wall stress in the LA is unknown. We have developed electromechanical finite element (FE) models of the LA using patient-specific anatomical FE meshes with rule-based myofiber directions. The models of the LA were passively inflated to 10mmHg followed by simulation of the contraction phase of the atrial cardiac cycle. The FE models predicted maximum LA volumes of 156.5 mL, 99.3 mL and 83.4 mL and ejection fractions of 36.9%, 32.0% and 25.2%. The median wall thickness in the 3 cases was calculated as [Formula: see text] mm, [Formula: see text] mm, and [Formula: see text] mm. The median curvature was determined as [Formula: see text] [Formula: see text], [Formula: see text], and [Formula: see text]. Following passive inflation, the correlation of wall stress with the inverse of wall thickness and curvature was 0.55-0.62 and 0.20-0.25, respectively. At peak contraction, the correlation of wall stress with the inverse of wall thickness and curvature was 0.38-0.44 and 0.16-0.34, respectively. In the LA, the 1st principal Cauchy stress is more dependent on wall thickness than curvature during passive inflation and both correlations decrease during active contraction. This emphasizes the importance of including the heterogeneous wall thickness in electromechanical FE simulations of the LA. Overall, simulation results and sensitivity analyses show that in complex atrial anatomy it is unlikely that a simple anatomical-based law can be used to estimate local wall stress, demonstrating the importance of FE analyses.
Collapse
Affiliation(s)
- Christoph M Augustin
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, USA
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Thomas E Fastl
- Department of Biomedical Engineering, King's College London, London, UK
| | - Aurel Neic
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, USA
| | - John Whitaker
- Department of Cardiology, Guy's and St Thomas' Hospitals, London, UK
| | - Ronak Rajani
- Department of Cardiology, Guy's and St Thomas' Hospitals, London, UK
| | - Mark D O'Neill
- Department of Cardiology, Guy's and St Thomas' Hospitals, London, UK
| | - Martin J Bishop
- Department of Biomedical Engineering, King's College London, London, UK
| | - Gernot Plank
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Steven A Niederer
- Department of Biomedical Engineering, King's College London, London, UK.
| |
Collapse
|
35
|
Abstract
Atrial anisotropy affects electrical propagation patterns, anchor locations of atrial reentrant drivers, and atrial mechanics. However, patient-specific atrial fibre fields and anisotropy measurements are not currently available, and consequently assigning fibre fields to atrial models is challenging. We aimed to construct an atrial fibre atlas from a high-resolution DTMRI dataset that optimally reproduces electrophysiology simulation predictions corresponding to patient-specific fibre fields, and to develop a methodology for automatically assigning fibres to patient-specific anatomies. We extended an atrial coordinate system to map the pulmonary veins, vena cava and appendages to standardised positions in the coordinate system corresponding to the average location across the anatomies. We then expressed each fibre field in this atrial coordinate system and calculated an average fibre field. To assess the effects of fibre field on patient-specific modelling predictions, we calculated paced activation time maps and electrical driver locations during AF. In total, 756 activation time maps were calculated (7 anatomies with 9 fibre maps and 2 pacing locations, for the endocardial, epicardial and bilayer surface models of the LA and RA). Patient-specific fibre fields had a relatively small effect on average paced activation maps (range of mean local activation time difference for LA fields: 2.67-3.60 ms, and for RA fields: 2.29-3.44 ms), but had a larger effect on maximum LAT differences (range for LA 12.7-16.6%; range for RA 11.9-15.0%). A total of 126 phase singularity density maps were calculated (7 anatomies with 9 fibre maps for the LA and RA bilayer models). The fibre field corresponding to anatomy 1 had the highest median PS density map correlation coefficient for LA bilayer simulations (0.44 compared to the other correlations, ranging from 0.14 to 0.39), while the average fibre field had the highest correlation for the RA bilayer simulations (0.61 compared to the other correlations, ranging from 0.37 to 0.56). For sinus rhythm simulations, average activation time is robust to fibre field direction; however, maximum differences can still be significant. Patient specific fibres are more important for arrhythmia simulations, particularly in the left atrium. We propose using the fibre field corresponding to DTMRI dataset 1 for LA simulations, and the average fibre field for RA simulations as these optimally predicted arrhythmia properties.
Collapse
|
36
|
Feng L, Gao H, Griffith B, Niederer S, Luo X. Analysis of a coupled fluid-structure interaction model of the left atrium and mitral valve. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3254. [PMID: 31454470 PMCID: PMC7003446 DOI: 10.1002/cnm.3254] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 05/17/2023]
Abstract
We present a coupled left atrium-mitral valve model based on computed tomography scans with fibre-reinforced hyperelastic materials. Fluid-structure interaction is realised by using an immersed boundary-finite element framework. Effects of pathological conditions, eg, mitral valve regurgitation and atrial fibrillation, and geometric and structural variations, namely, uniform vs non-uniform atrial wall thickness and rule-based vs atlas-based fibre architectures, on the system are investigated. We show that in the case of atrial fibrillation, pulmonary venous flow reversal at late diastole disappears, and the filling waves at the left atrial appendage orifice during systole have reduced magnitude. In the case of mitral regurgitation, a higher atrial pressure and disturbed flows are seen, especially during systole, when a large regurgitant jet can be found with the suppressed pulmonary venous flow. We also show that both the rule-based and atlas-based fibre defining methods lead to similar flow fields and atrial wall deformations. However, the changes in wall thickness from non-uniform to uniform tend to underestimate the atrial deformation. Using a uniform but thickened wall also lowers the overall strain level. The flow velocity within the left atrial appendage, which is important in terms of appendage thrombosis, increases with the thickness of the left atrial wall. Energy analysis shows that the kinetic and dissipation energies of the flow within the left atrium are altered differently by atrial fibrillation and mitral valve regurgitation, providing a useful indication of the atrial performance in pathological situations.
Collapse
Affiliation(s)
- Liuyang Feng
- School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
| | - Hao Gao
- School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
| | - Boyce Griffith
- Departments of Mathematics, Applied Physical Sciences, and Biomedical EngineeringUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Steven Niederer
- Department of Biomedical EngineeringKing's College LondonLondonUK
| | - Xiaoyu Luo
- School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
| |
Collapse
|
37
|
Wang Y, Xiong Z, Nalar A, Hansen BJ, Kharche S, Seemann G, Loewe A, Fedorov VV, Zhao J. A robust computational framework for estimating 3D Bi-Atrial chamber wall thickness. Comput Biol Med 2019; 114:103444. [PMID: 31542646 PMCID: PMC6817405 DOI: 10.1016/j.compbiomed.2019.103444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022]
Abstract
Atrial fibrillation (AF) is the most prevalent form of cardiac arrhythmia. The atrial wall thickness (AWT) can potentially improve our understanding of the mechanism underlying atrial structure that drives AF and provides important clinical information. However, most existing studies for estimating AWT rely on ruler-based measurements performed on only a few selected locations in 2D or 3D using digital calipers. Only a few studies have developed automatic approaches to estimate the AWT in the left atrium, and there are currently no methods to robustly estimate the AWT of both atrial chambers. Therefore, we have developed a computational pipeline to automatically calculate the 3D AWT across bi-atrial chambers and extensively validated our pipeline on both ex vivo and in vivo human atria data. The atrial geometry was first obtained by segmenting the atrial wall from the MRIs using a novel machine learning approach. The epicardial and endocardial surfaces were then separated using a multi-planar convex hull approach to define boundary conditions, from which, a Laplace equation was solved numerically to automatically separate bi-atrial chambers. To robustly estimate the AWT in each atrial chamber, coupled partial differential equations by coupling the Laplace solution with two surface trajectory functions were formulated and solved. Our pipeline enabled the reconstruction and visualization of the 3D AWT for bi-atrial chambers with a relative error of 8% and outperformed existing algorithms by >7%. Our approach can potentially lead to improved clinical diagnosis, patient stratification, and clinical guidance during ablation treatment for patients with AF.
Collapse
Affiliation(s)
- Yufeng Wang
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1142, New Zealand
| | - Zhaohan Xiong
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1142, New Zealand
| | - Aaqel Nalar
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1142, New Zealand
| | - Brian J Hansen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Sanjay Kharche
- Department of Medical Biophysics, Western University, Canada
| | - Gunnar Seemann
- The Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| | - Axel Loewe
- The Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1142, New Zealand.
| |
Collapse
|
38
|
Ginami G, Lòpez K, Mukherjee RK, Neji R, Munoz C, Roujol S, Mountney P, Razavi R, Botnar RM, Prieto C. Non-contrast enhanced simultaneous 3D whole-heart bright-blood pulmonary veins visualization and black-blood quantification of atrial wall thickness. Magn Reson Med 2019; 81:1066-1079. [PMID: 30230609 PMCID: PMC6492092 DOI: 10.1002/mrm.27472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Pre-interventional assessment of atrial wall thickness (AWT) and of subject-specific variations in the anatomy of the pulmonary veins may affect the success rate of RF ablation procedures for the treatment of atrial fibrillation (AF). This study introduces a novel non-contrast enhanced 3D whole-heart sequence providing simultaneous information on the cardiac anatomy-including both the arterial and the venous system-(bright-blood volume) and AWT (black-blood volume). METHODS The proposed MT-prepared bright-blood and black-blood phase sensitive inversion recovery (PSIR) BOOST framework acquires 2 differently weighted bright-blood volumes in an interleaved fashion. The 2 data sets are then combined in a PSIR-like reconstruction to obtain a complementary black-blood volume for atrial wall visualization. Image-based navigation and non-rigid respiratory motion correction are exploited for 100% scan efficiency and predictable acquisition time. The proposed approach was evaluated in 11 healthy subjects and 4 patients with AF scheduled for RF ablation. RESULTS Improved depiction of the cardiac venous system was obtained in comparison to a T2 -prepared BOOST implementation, and quantified AWT was shown to be in good agreement with previously reported measurements obtained in healthy subjects (right atrium AWT: 2.54 ± 0.87 mm, left atrium AWT: 2.51 ± 0.61 mm). Feasibility for MT-prepared BOOST acquisitions in patients with AF was demonstrated. CONCLUSION The proposed motion-corrected MT-prepared BOOST sequence provides simultaneous non-contrast pulmonary vein depiction as well as black-blood visualization of atrial walls. The proposed sequence has a large spectrum of potential clinical applications and further validation in patients is warranted.
Collapse
Affiliation(s)
- Giulia Ginami
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Karina Lòpez
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Rahul K. Mukherjee
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- MR Research Collaborations, Siemens Healthcare LimitedFrimleyUnited Kingdom
| | - Camila Munoz
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Peter Mountney
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Medical Imaging TechnologiesSiemens HealthineersPrincetonNew Jersey
| | - Reza Razavi
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - René M. Botnar
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
39
|
Karim R, Blake LE, Inoue J, Tao Q, Jia S, Housden RJ, Bhagirath P, Duval JL, Varela M, Behar JM, Cadour L, van der Geest RJ, Cochet H, Drangova M, Sermesant M, Razavi R, Aslanidi O, Rajani R, Rhode K. Algorithms for left atrial wall segmentation and thickness - Evaluation on an open-source CT and MRI image database. Med Image Anal 2018; 50:36-53. [PMID: 30208355 PMCID: PMC6218662 DOI: 10.1016/j.media.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022]
Abstract
Structural changes to the wall of the left atrium are known to occur with conditions that predispose to Atrial fibrillation. Imaging studies have demonstrated that these changes may be detected non-invasively. An important indicator of this structural change is the wall's thickness. Present studies have commonly measured the wall thickness at few discrete locations. Dense measurements with computer algorithms may be possible on cardiac scans of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). The task is challenging as the atrial wall is a thin tissue and the imaging resolution is a limiting factor. It is unclear how accurate algorithms may get and how they compare in this new emerging area. We approached this problem of comparability with the Segmentation of Left Atrial Wall for Thickness (SLAWT) challenge organised in conjunction with MICCAI 2016 conference. This manuscript presents the algorithms that had participated and evaluation strategies for comparing them on the challenge image database that is now open-source. The image database consisted of cardiac CT (n=10) and MRI (n=10) of healthy and diseased subjects. A total of 6 algorithms were evaluated with different metrics, with 3 algorithms in each modality. Segmentation of the wall with algorithms was found to be feasible in both modalities. There was generally a lack of accuracy in the algorithms and inter-rater differences showed that algorithms could do better. Benchmarks were determined and algorithms were ranked to allow future algorithms to be ranked alongside the state-of-the-art techniques presented in this work. A mean atlas was also constructed from both modalities to illustrate the variation in thickness within this small cohort.
Collapse
Affiliation(s)
- Rashed Karim
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK.
| | - Lauren-Emma Blake
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Jiro Inoue
- Robarts Research Institute, University of Western Ontario, Canada
| | - Qian Tao
- Leiden University Medical Center, Leiden, The Netherlands
| | - Shuman Jia
- Epione, INRIA Sophia Antipolis, Nice, France
| | - R James Housden
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Pranav Bhagirath
- Department of Cardiology, Haga Teaching Hospital, The Netherlands
| | - Jean-Luc Duval
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Marta Varela
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Jonathan M Behar
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Loïc Cadour
- Epione, INRIA Sophia Antipolis, Nice, France
| | | | | | - Maria Drangova
- Robarts Research Institute, University of Western Ontario, Canada
| | | | - Reza Razavi
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Oleg Aslanidi
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Ronak Rajani
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Kawal Rhode
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| |
Collapse
|
40
|
Fastl TE, Tobon-Gomez C, Crozier A, Whitaker J, Rajani R, McCarthy KP, Sanchez-Quintana D, Ho SY, O'Neill MD, Plank G, Bishop MJ, Niederer SA. Personalized computational modeling of left atrial geometry and transmural myofiber architecture. Med Image Anal 2018; 47:180-190. [PMID: 29753182 PMCID: PMC6277816 DOI: 10.1016/j.media.2018.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023]
Abstract
Atrial fibrillation (AF) is a supraventricular tachyarrhythmia characterized by complete absence of coordinated atrial contraction and is associated with an increased morbidity and mortality. Personalized computational modeling provides a novel framework for integrating and interpreting the role of atrial electrophysiology (EP) including the underlying anatomy and microstructure in the development and sustenance of AF. Coronary computed tomography angiography data were segmented using a statistics-based approach and the smoothed voxel representations were discretized into high-resolution tetrahedral finite element (FE) meshes. To estimate the complex left atrial myofiber architecture, individual fiber fields were generated according to morphological data on the endo- and epicardial surfaces based on local solutions of Laplace’s equation and transmurally interpolated to tetrahedral elements. The influence of variable transmural microstructures was quantified through EP simulations on 3 patients using 5 different fiber interpolation functions. Personalized geometrical models included the heterogeneous thickness distribution of the left atrial myocardium and subsequent discretization led to high-fidelity tetrahedral FE meshes. The novel algorithm for automated incorporation of the left atrial fiber architecture provided a realistic estimate of the atrial microstructure and was able to qualitatively capture all important fiber bundles. Consistent maximum local activation times were predicted in EP simulations using individual transmural fiber interpolation functions for each patient suggesting a negligible effect of the transmural myofiber architecture on EP. The established modeling pipeline provides a robust framework for the rapid development of personalized model cohorts accounting for detailed anatomy and microstructure and facilitates simulations of atrial EP.
Collapse
Affiliation(s)
- Thomas E Fastl
- Department of Biomedical Engineering, King's College London, London, United Kingdom.
| | - Catalina Tobon-Gomez
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Andrew Crozier
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - John Whitaker
- Department of Biomedical Engineering, King's College London, London, United Kingdom; Department of Cardiology, Guy's and St Thomas' Hospitals, London, United Kingdom
| | - Ronak Rajani
- Department of Biomedical Engineering, King's College London, London, United Kingdom; Department of Cardiology, Guy's and St Thomas' Hospitals, London, United Kingdom
| | - Karen P McCarthy
- Cardiac Morphology Unit, Royal Brompton Hospital, London, United Kingdom
| | | | - Siew Y Ho
- Cardiac Morphology Unit, Royal Brompton Hospital, London, United Kingdom
| | - Mark D O'Neill
- Department of Biomedical Engineering, King's College London, London, United Kingdom; Department of Cardiology, Guy's and St Thomas' Hospitals, London, United Kingdom
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Martin J Bishop
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Steven A Niederer
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| |
Collapse
|
41
|
Buttner P, Galli R, Husser D, Bollmann A. Label-free Imaging of Myocardial Remodeling in Atrial Fibrillation Using Nonlinear Optical Microscopy: A Feasibility Study. J Atr Fibrillation 2018; 10:1644. [PMID: 29988238 DOI: 10.4022/jafib.1644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 01/21/2023]
Abstract
Atrial fibrillation, characterized by rapid disorganized electrical activation of myocardium, is caused by and accompanied by remodeling of myocardial tissue. We applied nonlinear optical microscopy (NLOM) to visualize typical myocardial features and atrial fibrillation effects in order to test anon-destructive imaging technology that in principle can be applied in vivo.Coherent anti-Stokes Raman scattering, endogenous two-photon excited fluorescence, and second harmonic generation were used to inspect unstained human atrial myocardium from three patients who underwent surgical Cox-MAZE procedure with amputation of left atrial appendage. Using NLOM techniques, we collected detailrich pictures of unstained tissue that enable comprehensive characterization of myocardial characteristics like myocyte structure, collagen and lipofuscin deposition, intercalating disc width, and fatty degradation. Development of in vivo application of the NLOM technique may represent a revolutionary approach in characterizing atrial fibrillation associated myocardial remodeling with important implications for therapy individualization and monitoring.
Collapse
Affiliation(s)
- Petra Buttner
- Department of Electrophysiology, Heart Center Leipzig, Strumpellstrabe 39, 04289 Leipzig, Germany
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrabe 74, 01307 Dresden, Germany
| | - Daniela Husser
- Department of Electrophysiology, Heart Center Leipzig, Strumpellstrabe 39, 04289 Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, Strumpellstrabe 39, 04289 Leipzig, Germany
| |
Collapse
|
42
|
Loewe A, Dössel O. Commentary: Virtual In-Silico Modeling Guided Catheter Ablation Predicts Effective Linear Ablation Lesion Set for Longstanding Persistent Atrial Fibrillation: Multicenter Prospective Randomized Study. Front Physiol 2018; 8:1113. [PMID: 29313849 PMCID: PMC5744431 DOI: 10.3389/fphys.2017.01113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/15/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
43
|
Wasek S. 16th Atrial Fibrillation Symposium. Arrhythm Electrophysiol Rev 2017; 6:1-22. [PMID: 40270538 PMCID: PMC12012826 DOI: 10.15420/aer.2017.6.4.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
|
44
|
Song JS, Wi J, Lee HJ, Hwang M, Lim B, Kim TH, Uhm J, Joung B, Lee M, Seo JW, Pak HN. Role of atrial wall thickness in wave-dynamics of atrial fibrillation. PLoS One 2017; 12:e0182174. [PMID: 28827810 PMCID: PMC5565105 DOI: 10.1371/journal.pone.0182174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023] Open
Abstract
Background/Aims Atrial anatomy and thickness may affect the electrical wave-dynamics of atrial fibrillation (AF). We explored the relationship between left atrial (LA) wall thickness (LAWT) or LA geometry and AF wave-dynamics. Methods We included 15 patients with persistent AF (age, 62.3 ± 11.9 years) who underwent AF catheter ablation. We measured the LAWT, LA endocardial curvature, and SD-curvature (surface bumpiness) from preprocedural computed tomography images. We compared those anatomical characteristics with electrophysiologic parameters such as dominant frequency (DF), Shannon entropy (ShEn), or complex fractionated atrial electrogram (CFAE)-cycle length (CL), calculated from intracardiac bipolar electrograms (300–500 points, 5 s), acquired during ablation procedures. Results 1. LAWT (excluding fat) varied widely among patients, locations, and types of AF. LAWT was inversely correlated with LA volume (r = -0.565, p = 0.028) and positively correlated with SD-curvature (r = 0.272, p < 0.001). 2. LAWT was positively correlated with ShEn (r = 0.233, p < 0.001) and negatively correlated with CFAE-CL (r = -0.107, p = 0.038). 3. In the multivariate linear regression analyses for AF wave-dynamics parameters, DF (β = -0.29 [95% CI -0.44–-0.14], p < 0.001), ShEn (β = 0.19 [95% CI 0.12–0.25], p < 0.001), and CFAE-CL (β = 7.49 [95% CI 0.65–14.34], p = 0.032) were independently associated with LAWT. Conclusion Regional LAWT is associated with LA structural features, and has significant correlations with the wave-dynamics parameters associated with electrical wavebreaks or rotors in patients with persistent AF.
Collapse
Affiliation(s)
- Jun-Seop Song
- Yonsei University Health System, Seoul, Republic of Korea
| | - Jin Wi
- Yonsei University Health System, Seoul, Republic of Korea
| | - Hye-Jeong Lee
- Yonsei University Health System, Seoul, Republic of Korea
| | - Minki Hwang
- Yonsei University Health System, Seoul, Republic of Korea
| | - Byounghyun Lim
- Yonsei University Health System, Seoul, Republic of Korea
| | - Tae-Hoon Kim
- Yonsei University Health System, Seoul, Republic of Korea
| | - Jae‐Sun Uhm
- Yonsei University Health System, Seoul, Republic of Korea
| | - Boyoung Joung
- Yonsei University Health System, Seoul, Republic of Korea
| | | | - Jeong-Wook Seo
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hui-Nam Pak
- Yonsei University Health System, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
45
|
Varela M, Morgan R, Theron A, Dillon-Murphy D, Chubb H, Whitaker J, Henningsson M, Aljabar P, Schaeffter T, Kolbitsch C, Aslanidi OV. Novel MRI Technique Enables Non-Invasive Measurement of Atrial Wall Thickness. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1607-1614. [PMID: 28422654 PMCID: PMC5549842 DOI: 10.1109/tmi.2017.2671839] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Knowledge of atrial wall thickness (AWT) has the potential to provide important information for patient stratification and the planning of interventions in atrial arrhythmias. To date, information about AWT has only been acquired in post-mortem or poor-contrast computed tomography (CT) studies, providing limited coverage and highly variable estimates of AWT. We present a novel contrast agent-free MRI sequence for imaging AWT and use it to create personalized AWT maps and a biatrial atlas. A novel black-blood phase-sensitive inversion recovery protocol was used to image ten volunteers and, as proof of concept, two atrial fibrillation patients. Both atria were manually segmented to create subject-specific AWT maps using an average of nearest neighbors approach. These were then registered non-linearly to generate an AWT atlas. AWT was 2.4 ± 0.7 and 2.7 ± 0.7 mm in the left and right atria, respectively, in good agreement with post-mortem and CT data, where available. AWT was 2.6 ± 0.7 mm in the left atrium of a patient without structural heart disease, similar to that of volunteers. In a patient with structural heart disease, the AWT was increased to 3.1 ± 1.3 mm. We successfully designed an MRI protocol to non-invasively measure AWT and create the first whole-atria AWT atlas. The atlas can be used as a reference to study alterations in thickness caused by atrial pathology. The protocol can be used to acquire personalized AWT maps in a clinical setting and assist in the treatment of atrial arrhythmias.
Collapse
|
46
|
Olsen FJ, Bertelsen L, de Knegt MC, Christensen TE, Vejlstrup N, Svendsen JH, Jensen JS, Biering-Sørensen T. Multimodality Cardiac Imaging for the Assessment of Left Atrial Function and the Association With Atrial Arrhythmias. Circ Cardiovasc Imaging 2017; 9:CIRCIMAGING.116.004947. [PMID: 27729358 DOI: 10.1161/circimaging.116.004947] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Several cardiac imaging modalities are able to visualize the left atrium (LA) and, therefore, allow for quantification of both structural and functional properties of this cardiac chamber. In echocardiography, only the maximal LA volume is included in the assessment of diastolic function at the current moment. Numerous studies, however, have shown that functional measures may be superior to the maximal LA volume in several aspects and to possess clinical value even in the absence of structural abnormalities. Such functional measures could prove particularly useful in the setting of predicting atrial fibrillation, which will be a point of focus in this review. Pivotal cardiac magnetic resonance imaging studies have revealed high correlation between LA fibrosis and risk of atrial fibrillation recurrence after catheter ablation, and subsequent multimodality imaging studies have uncovered an inverse relationship between LA reservoir function and degree of LA fibrosis. This has sparked an increased interest into the application of advanced imaging modalities, including both speckle tracking echocardiography and tissue tracking by cardiac magnetic resonance imaging. Even though increasing evidence has supported the use of functional measures and proven its superiority to the maximal LA volume, they have still not been adopted in clinical guidelines. The reason for this discrepancy may rely on the fact that there is little to no agreement on how to technically perform deformation analysis of the LA. Such technical considerations, limitations, and alternate imaging prospects will be addressed in this review.
Collapse
Affiliation(s)
- Flemming Javier Olsen
- From the Department of Cardiology, Herlev & Gentofte Hospital (F.J.O., J.S.J., T.B.-S.), Department of Cardiology, Rigshospitalet (L.B., M.C.d.K., N.V., J.H.S.), Department of Cardiology, Department of Clinical Physiology, Nuclear Medicine & PET, Cluster for Molecular Imaging, Rigshospitalet (T.E.C.), and Institute of Clinical Medicine, Faculty of Health and Medical Sciences (J.H.S., J.S.J.), University of Copenhagen, Denmark; and Department of Radiology, Cardio-Vascular Imaging Division (T.E.C.) and Department of Medicine, Cardiovascular Medicine Division (T.B.-S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Litten Bertelsen
- From the Department of Cardiology, Herlev & Gentofte Hospital (F.J.O., J.S.J., T.B.-S.), Department of Cardiology, Rigshospitalet (L.B., M.C.d.K., N.V., J.H.S.), Department of Cardiology, Department of Clinical Physiology, Nuclear Medicine & PET, Cluster for Molecular Imaging, Rigshospitalet (T.E.C.), and Institute of Clinical Medicine, Faculty of Health and Medical Sciences (J.H.S., J.S.J.), University of Copenhagen, Denmark; and Department of Radiology, Cardio-Vascular Imaging Division (T.E.C.) and Department of Medicine, Cardiovascular Medicine Division (T.B.-S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Martina Chantal de Knegt
- From the Department of Cardiology, Herlev & Gentofte Hospital (F.J.O., J.S.J., T.B.-S.), Department of Cardiology, Rigshospitalet (L.B., M.C.d.K., N.V., J.H.S.), Department of Cardiology, Department of Clinical Physiology, Nuclear Medicine & PET, Cluster for Molecular Imaging, Rigshospitalet (T.E.C.), and Institute of Clinical Medicine, Faculty of Health and Medical Sciences (J.H.S., J.S.J.), University of Copenhagen, Denmark; and Department of Radiology, Cardio-Vascular Imaging Division (T.E.C.) and Department of Medicine, Cardiovascular Medicine Division (T.B.-S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Thomas Emil Christensen
- From the Department of Cardiology, Herlev & Gentofte Hospital (F.J.O., J.S.J., T.B.-S.), Department of Cardiology, Rigshospitalet (L.B., M.C.d.K., N.V., J.H.S.), Department of Cardiology, Department of Clinical Physiology, Nuclear Medicine & PET, Cluster for Molecular Imaging, Rigshospitalet (T.E.C.), and Institute of Clinical Medicine, Faculty of Health and Medical Sciences (J.H.S., J.S.J.), University of Copenhagen, Denmark; and Department of Radiology, Cardio-Vascular Imaging Division (T.E.C.) and Department of Medicine, Cardiovascular Medicine Division (T.B.-S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Niels Vejlstrup
- From the Department of Cardiology, Herlev & Gentofte Hospital (F.J.O., J.S.J., T.B.-S.), Department of Cardiology, Rigshospitalet (L.B., M.C.d.K., N.V., J.H.S.), Department of Cardiology, Department of Clinical Physiology, Nuclear Medicine & PET, Cluster for Molecular Imaging, Rigshospitalet (T.E.C.), and Institute of Clinical Medicine, Faculty of Health and Medical Sciences (J.H.S., J.S.J.), University of Copenhagen, Denmark; and Department of Radiology, Cardio-Vascular Imaging Division (T.E.C.) and Department of Medicine, Cardiovascular Medicine Division (T.B.-S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jesper Hastrup Svendsen
- From the Department of Cardiology, Herlev & Gentofte Hospital (F.J.O., J.S.J., T.B.-S.), Department of Cardiology, Rigshospitalet (L.B., M.C.d.K., N.V., J.H.S.), Department of Cardiology, Department of Clinical Physiology, Nuclear Medicine & PET, Cluster for Molecular Imaging, Rigshospitalet (T.E.C.), and Institute of Clinical Medicine, Faculty of Health and Medical Sciences (J.H.S., J.S.J.), University of Copenhagen, Denmark; and Department of Radiology, Cardio-Vascular Imaging Division (T.E.C.) and Department of Medicine, Cardiovascular Medicine Division (T.B.-S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jan Skov Jensen
- From the Department of Cardiology, Herlev & Gentofte Hospital (F.J.O., J.S.J., T.B.-S.), Department of Cardiology, Rigshospitalet (L.B., M.C.d.K., N.V., J.H.S.), Department of Cardiology, Department of Clinical Physiology, Nuclear Medicine & PET, Cluster for Molecular Imaging, Rigshospitalet (T.E.C.), and Institute of Clinical Medicine, Faculty of Health and Medical Sciences (J.H.S., J.S.J.), University of Copenhagen, Denmark; and Department of Radiology, Cardio-Vascular Imaging Division (T.E.C.) and Department of Medicine, Cardiovascular Medicine Division (T.B.-S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tor Biering-Sørensen
- From the Department of Cardiology, Herlev & Gentofte Hospital (F.J.O., J.S.J., T.B.-S.), Department of Cardiology, Rigshospitalet (L.B., M.C.d.K., N.V., J.H.S.), Department of Cardiology, Department of Clinical Physiology, Nuclear Medicine & PET, Cluster for Molecular Imaging, Rigshospitalet (T.E.C.), and Institute of Clinical Medicine, Faculty of Health and Medical Sciences (J.H.S., J.S.J.), University of Copenhagen, Denmark; and Department of Radiology, Cardio-Vascular Imaging Division (T.E.C.) and Department of Medicine, Cardiovascular Medicine Division (T.B.-S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
47
|
State-of-the-Art CT Imaging of the Left Atrium. CURRENT RADIOLOGY REPORTS 2016. [DOI: 10.1007/s40134-016-0171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|