1
|
Lang T, Hussain M, Li M, Tam NFY, Pan M, Lee FWF, Xu SJL, Jiang M, Wang Y, Mu L, Zhou H. Unlocking the structure-activity relationship of mangrove condensed and hydrolysable tannins: Unveiling their potential ecological significance in antioxidant and antibacterial functions. Int J Biol Macromol 2025; 307:141918. [PMID: 40074115 DOI: 10.1016/j.ijbiomac.2025.141918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/12/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Tannins play key roles in regulating ecological processes within mangrove ecosystems, but the structures of mangrove condensed tannins (CT) and hydrolysable tannins (HT), as well as their antioxidant and antibacterial activities, are not well understood. In this study, MALDI-TOF MS was used to analyze the structural components of oligomers and polymers in phenolic extracts from Kandelia obovata, Aegiceras corniculatum, and Sonneratia apetala. Results identified two primary structural units: procyanidins (PC) and prodelphinidins (PD), with mass-to-charge ratios of 288 Da and 304 Da, respectively, and a 16 Da interval indicating differences in hydroxylation. Thiolysis degradation and acidic hydrolysis, combined with HPLC-ESI-MS, revealed significant variations in the mean degree of polymerization (mDP): oligomers had mDP values of 1.1-1.2, while polymers ranged from 7.8 to 9.1. Antioxidant assays (Folin-Ciocalteu, FRAP, TEAC, and DPPH) showed that PC < PD < HT in antioxidant capacity, with polymers exhibiting stronger activity than oligomers. Antibacterial tests revealed that A. corniculatum exhibited the weakest activity, while K. obovata and S. apetala showed similar efficacy against bacteria from Actinobacteria, Bacteroidetes, and Proteobacteria. This study enhances our understanding of mangrove phenolics' structural characteristics and their ecological roles in maintaining mangrove ecosystem functions.
Collapse
Affiliation(s)
- Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Agricultural and Food Engineering, Baise University, Baise 533000, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China; Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Muzammil Hussain
- College of Agricultural and Food Engineering, Baise University, Baise 533000, China
| | - Mingdang Li
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China
| | - Nora Fung-Yee Tam
- Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China; School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong 999077, China; State Key Laboratory in Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Min Pan
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong 999077, China
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong 999077, China
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong 999077, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Yibing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Lin Mu
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Haichao Zhou
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China.
| |
Collapse
|
2
|
de Matos RC, Bitencourt AFA, de Oliveira ADM, Prado VR, Machado RR, Scopel M. Evidence for the efficacy of anti-inflammatory plants used in Brazilian traditional medicine with ethnopharmacological relevance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118137. [PMID: 38574778 DOI: 10.1016/j.jep.2024.118137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE When exacerbated, inflammatory processes can culminate in physical and emotional disorders and, if not stopped, can be lethal. The high prevalence of inflammation has become a public health problem, and the need for new drugs to treat this pathology is imminent. The use of medicinal plants has emerged as an alternative, and a survey of data that corroborates its application in inflammatory diseases is the starting point. Furthermore, Brazil harbors a megadiversity, and the traditional use of plants is relevant and needs to be preserved and carefully explored for the discovery of new medicines. AIM OF THE STUDY This review sought to survey the medicinal plants traditionally used in Brazil for the treatment of inflammatory processes and to perform, in an integrative way, a data survey of these species and analysis of their phytochemical, pharmacological, and molecular approaches. MATERIALS AND METHODS Brazilian plants that are traditionally used for inflammation (ophthalmia, throat inflammation, orchitis, urinary tract inflammation, ear inflammation, and inflammation in general) are listed in the DATAPLAMT database. This database contains information on approximately 3400 native plants used by Brazilians, which were registered in specific documents produced until 1950. These inflammatory disorders were searched in scientific databases (PubMed/Medline, Scopus, Web of Science, Lilacs, Scielo, Virtual Health Library), with standardization of DECS/MESH descriptors for inflammation in English, Spanish, French, and Portuguese, without chronological limitations. For the inclusion criteria, all articles had to be of the evaluated plant species, without association of synthesized substances, and full articles free available in any of the four languages searched. Duplicated articles and those that were not freely available were excluded. RESULTS A total of 126 species were identified, culminating in 6181 articles in the search. After evaluation of the inclusion criteria, 172 articles representing 40 different species and 38 families were included in the study. Comparison of reproducibility in intra-species results became difficult because of the large number of extraction solvents tested and the wide diversity of evaluation models used. Although the number of in vitro and in vivo evaluations was high, only one clinical study was found (Abrus precatorius). In the phytochemical analyses, more than 225 compounds, mostly phenolic compounds, were identified. CONCLUSION This review allowed the grouping of preclinical and clinical studies of several Brazilian species traditionally used for the treatment of many types of inflammation, corroborating new searches for their pharmacological properties as a way to aid public health. Furthermore, the large number of plants that have not yet been studied has encouraged new research to revive traditional knowledge.
Collapse
Affiliation(s)
- Rafael C de Matos
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| | - Ana F A Bitencourt
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Alexsandro D M de Oliveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Vanessa R Prado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Renes R Machado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Marina Scopel
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Lang T, Ke X, Wei J, Hussain M, Li M, Gao C, Jiang M, Wang Y, Fu Y, Wu K, Zhang W, Tam NFY, Zhou H. Dynamics of tannin variations in mangrove leaf litter decomposition and their effects on environmental nitrogen and microbial activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168150. [PMID: 37918719 DOI: 10.1016/j.scitotenv.2023.168150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Tannins play vital roles in regulating ecological processes in mangrove forests. However, how tannins affect nitrogen (N) cycling and microbial metabolism in mangrove ecosystems remains largely unexplored. In this study, we hypothesized the types and amounts of tannins released into seawater and sediments during leaf litter decomposition differed among mangrove plant species, thus their effects on N and microbial metabolism also varied. The alterations of tannins, and environmental N and microbial metabolism during leaf litter decomposition of Kandelia obovata, Avicennia marina, and Sonneratia apetala were evaluated by a microcosm-simulated tidal system. Results showed that total polyphenols (TPs) in seawater treated with K. obovata litter were significantly higher than those in A. marina and S. apetala treatments, although the trends of TP changes elicited an initial increase followed by a decrease during decomposition. The dynamic changes in TPs reduced the seawater N concentrations in K. obovata treatment but not in A. marina and S. apetala treatments. The results of microbial metabolism analysis revealed that leaf litter significantly increased microbial metabolic activities and diversities. The types of carbon sources utilized by sediment microorganisms differed among treatments, with the microbes in S. apetala and A. marina litter used more varieties of amino acids, lipids and sugars than those in K. obovata treatment, probably due to the rich amount of hydrolysable tannins (HTs) in the first two species while the last species only contained ondensed tannins (CTs). CTs released from K. obovata leaf litter not only bound nitrogen-containing macromolecular compounds such as amino acids and proteins but also carbohydrates like polysaccharides, which decreased the supply of C and N to sediment microbiota. These results reveal that the release of mangrove tannins during leaf litter decomposition is one of the key factors driving N cycling, and microbial activities and diversities in mangrove wetlands.
Collapse
Affiliation(s)
- Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China; Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Xinran Ke
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jian Wei
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100091, China
| | - Muzammil Hussain
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China
| | - Mingdang Li
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China
| | - Changjun Gao
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou 510520, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Yibing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Yijian Fu
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China
| | - Kunhua Wu
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China
| | - Wenyan Zhang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China
| | - Nora Fung-Yee Tam
- Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China; Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong 999077, China
| | - Haichao Zhou
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China.
| |
Collapse
|
4
|
Reis A, Rovai AS, Lana PDC, Barros F. Mangrove interaction with saltmarsh varies at different life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167410. [PMID: 37769724 DOI: 10.1016/j.scitotenv.2023.167410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Mangroves and saltmarshes are two of the most relevant coastal habitats for humans. These ecosystems offer several services like coastal protection, climate mitigation, and nursery habitats for many artisanal and commercially exploited fish, crabs, and shellfish. They mostly dominate different latitudinal ranges but in several places around the world they co-occur and interact. Here, we summarize the current scientific knowledge on mangrove-saltmarsh ecological interactions and propose a conceptual model. We screened 1410 articles from 1945 to 2022 and selected 29 experiments that assessed mangrove-saltmarsh ecological interactions. Both positive and negative interactions are observed but there is variation along different mangrove life stages. Higher retention and establishment of mangrove propagules are found inside saltmarshes than on bare flats, i.e. facilitation, and these effects are higher at grass than at succulent saltmarsh species. Mangrove seedlings, saplings, or trees mostly compete with saltmarshes, negatively affecting mangrove growth. We propose a model with different outcomes considering the interaction between different mangrove's life stages and saltmarsh forms and discussed these interactions in the light of anthropogenic threats and climate change.
Collapse
Affiliation(s)
- Alice Reis
- Laboratório de Ecologia Bentônica, IBIO & CIEnAM & INCT IN-TREE, Universidade Federal da Bahia, Rua Barão de Geremoabo, s/n, Campus de Ondina, Salvador, Bahia 40170-000, Brazil.
| | - André Scarlate Rovai
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA
| | - Paulo da Cunha Lana
- Laboratório de Bentos, Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-mar, s/n, Pontal do Paraná, PR 83255-976, Brazil
| | - Francisco Barros
- Laboratório de Ecologia Bentônica, IBIO & CIEnAM & INCT IN-TREE, Universidade Federal da Bahia, Rua Barão de Geremoabo, s/n, Campus de Ondina, Salvador, Bahia 40170-000, Brazil
| |
Collapse
|
5
|
Scherer BP, Mason OU, Mast AR. Bacterial communities vary across populations and tissue type in red mangroves (Rhizophora mangle, Rhizophoraceae) along an expanding front. FEMS Microbiol Ecol 2022; 98:6840209. [PMID: 36413458 DOI: 10.1093/femsec/fiac139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Plant-associated microbial communities may be important sources of functional diversity and genetic variation that influence host evolution. Bacteria provide benefits for their hosts, yet in most plant systems we know little about their taxonomic composition or variation across tissues and host range. Red Mangrove (Rhizophora mangle L.) is a vital coastal plant species that is currently expanding poleward and with it, perhaps, its microbiome. We explored variability in bacterial communities across tissues, individuals, and populations. We collected samples from six sample types from 5 to 10 individuals at each of three populations and used 16S rRNA gene (iTag) sequencing to describe their bacterial communities. Core community members and dominant bacterial classes were determined for each sample type. Pairwise PERMANOVA of Bray-Curtis dissimilarity and Indicator Species Analysis revealed significant differences in bacterial communities between sample types and populations. We described the previously unexplored microbiome of the reproductive tissues of R. mangle. Populations and most sample types were associated with distinct communities. Bacterial communities associated with R. mangle are influenced by host geography and sample type. Our study provides a foundation for future work exploring the functional roles of these microbes and their relevance to biogeochemical cycling.
Collapse
Affiliation(s)
- Brendan P Scherer
- Florida State University, 319 Stadium Drive, Tallahassee, FL 32304, United States
| | - Olivia U Mason
- Department of Earth, Ocean and Atmospheric Sciences, Florida State University, 1011 Academic Way, Tallahassee, FL 32304, United States
| | - Austin R Mast
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32304, United States
| |
Collapse
|