1
|
Khan MAW, Bohannan BJM, Meyer KM, Womack AM, Nüsslein K, Grover JP, Mazza Rodrigues JL. Community-Level Metabolic Shifts Following Land Use Change in the Amazon Rainforest Identified by a Supervised Machine Leaning Approach. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70088. [PMID: 40269473 PMCID: PMC12018533 DOI: 10.1111/1758-2229.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 04/25/2025]
Abstract
The Amazon rainforest has been subjected to high rates of deforestation, mostly for pasturelands, over the last few decades. This change in plant cover is known to alter the soil microbiome and the functions it mediates, but the genomic changes underlying this response are still unresolved. In this study, we used a combination of deep shotgun metagenomics complemented by a supervised machine learning approach to compare the metabolic strategies of tropical soil microbial communities in pristine forests and long-term established pastures in the Amazon. Machine learning-derived metagenome analysis indicated that microbial community structures (bacteria, archaea and viruses) and the composition of protein-coding genes were distinct in each plant cover type environment. Forest and pasture soils had different genomic diversities for the above three taxonomic groups, characterised by their protein-coding genes. These differences in metagenome profiles in soils under forests and pastures suggest that metabolic strategies related to carbohydrate and energy metabolisms were altered at community level. Changes were also consistent with known modifications to the C and N cycles caused by long-term shifts in aboveground vegetation and were also associated with several soil physicochemical properties known to change with land use, such as the C/N ratio, soil temperature and exchangeable acidity. In addition, our analysis reveals that these alterations in land use can also result in changes to the composition and diversity of the soil DNA virome. Collectively, our study indicates that soil microbial communities shift their overall metabolic strategies, driven by genomic alterations observed in pristine forests and long-term established pastures with implications for the C and N cycles.
Collapse
Affiliation(s)
| | | | - Kyle M. Meyer
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Ann M. Womack
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Klaus Nüsslein
- Department of MicrobiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - James P. Grover
- Department of BiologyThe University of TexasArlingtonTexasUSA
| | - Jorge L. Mazza Rodrigues
- Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisCaliforniaUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
2
|
Landolfi M, Tiziani R, Riviere S, Trevisan F, Petraretti M, Jäger H, Cesco S, Gerzabek MH, Keiblinger K, Zehetner F, Villa F, Mimmo T, Borruso L. Life on the edge: mineral incrustations colonized by fungal communities in the sulfur fumarole on Sierra Negra volcano (Galápagos Archipelago). ROYAL SOCIETY OPEN SCIENCE 2025; 12:250010. [PMID: 40046662 PMCID: PMC11879618 DOI: 10.1098/rsos.250010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 03/26/2025]
Abstract
Despite the extensive studies on plant and animal endemism in the Galápagos Islands, fungal diversity remains largely unexplored, particularly in fumarole environments. Here, we explore the fungal diversity in two gypsum incrustations within an active fumarole of Sierra Negra volcano (Isabela Island). We hypothesize that minor differences in the chemical and mineralogical characteristics of these substrates, despite similar environmental conditions, lead to distinct fungal communities with substrate-specialized taxa. Alpha diversity indices showed no significant differences, but beta diversity analysis revealed two distinct fungal communities (PERMANOVA p < 0.01), with only 3.31% of operational taxonomic units (OTUs) shared between incrustations and 37.75 and 14.57% uniquely associated with each incrustation. A strong correlation was found between beta diversity and most measured chemical parameters (Mg, S, Fe, Na, Al, Mn, Zn, K, P, Cu). Our findings indicate that even minor differences in the mineral and chemical composition of closely located incrustations significantly influence fungal communities, emphasizing these deterministic factors as key drivers in shaping fungal diversity.
Collapse
Affiliation(s)
- Maria Landolfi
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Raphael Tiziani
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Sahra Riviere
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Fabio Trevisan
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Mariagioia Petraretti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milano, Italy
| | - Heinke Jäger
- Charles Darwin Research Station, Charles Darwin Foundation, Santa Cruz, Galapagos, Ecuador
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Martin H. Gerzabek
- Institute of Soil Research, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria
| | - Katharina Keiblinger
- Institute of Soil Research, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria
| | - Franz Zehetner
- Institute of Soil Research, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria
| | - Federica Villa
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milano, Italy
| | - Tanja Mimmo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
3
|
Zeng Z, Huang R, Li W. Elevation Determines Fungal Diversity, and Land Use Governs Community Composition: A Dual Perspective from Gaoligong Mountains. Microorganisms 2024; 12:2378. [PMID: 39597766 PMCID: PMC11596228 DOI: 10.3390/microorganisms12112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Soil fungi are closely tied to their surrounding environment. While numerous studies have reported the effects of land-use practices or elevations on soil fungi, our understanding of how their community structure and diversity vary with elevation across different land-use practices remains limited. In the present study, by collecting soil samples from four different land uses in the Gaoligong Mountain area, namely shrublands (SLs), coffee plantations (CPs), cornfields (CFs), and citrus orchards (COs), and combining them with the changes in altitude gradients (low: 900 m, medium: 1200 m, high: 1500 m), high-throughput sequencing technology was used to analyze the composition and diversity of soil fungal communities based on the collected soil samples. The results showed that the interaction between land-use types and elevation significantly influenced the structure and diversity of fungal communities, although their relative importance in shaping fungal diversity or community structure varied. Specifically, elevation posed a stronger effect on fungal community alpha-diversity and functional guilds, whereas land-use types had a greater influence over fungal community composition. Our study reveals the individual and combined effects of land-use practices and elevation on the structure and diversity of soil fungal communities in the Gaoligong Mountain region, enhancing our understanding of the distribution patterns and driving mechanisms of soil fungal communities in this biodiversity-rich region.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China; (Z.Z.); (R.H.)
| |
Collapse
|
4
|
Tomazelli D, Klauberg-Filho O, Mendes LW, Goss-Souza D. The impact of land-use changes and management intensification on bacterial communities in the last decade: a review. Appl Environ Microbiol 2024; 90:e0030924. [PMID: 38874336 PMCID: PMC11267915 DOI: 10.1128/aem.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
In the last decade, advances in soil bacterial ecology have contributed to increasing agricultural production. Brazil is the world leading agriculture producer and leading soil biodiversity reservoir. Meanwhile, there is still a significant gap in the knowledge regarding the soil microscopic life and its interactions with agricultural practices, and the replacement of natural vegetation by agroecosystems is yet to be unfolded. Through high throughput DNA sequencing, scientists are now exploring the complexity of soil bacterial communities and their relationship with soil and environmental characteristics. This study aimed to investigate the progress of bacterial ecology studies in Brazil over the last 10 years, seeking to understand the effect of the conversion of natural vegetation in agricultural systems on the diversity and structure of the soil microbial communities. We conducted a systematic search for scientific publication databases. Our systematic search has matched 62 scientific articles from three different databases. Most of the studies were placed in southeastern and northern Brazil, with no records of studies about microbial ecology in 17 out of 27 Brazilian states. Out of the 26 studies that examined the effects of replacing natural vegetation with agroecosystems, most authors concluded that changes in soil pH and vegetation cover replacement were the primary drivers of shifts in microbial communities. Understanding the ecology of the bacteria inhabiting Brazilian soils in agroecosystems is paramount for developing more efficient soil management strategies and cleaner agricultural technologies.
Collapse
Affiliation(s)
- Daniela Tomazelli
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, Santa Catarina, Brazil
| | - Osmar Klauberg-Filho
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, Santa Catarina, Brazil
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Dennis Goss-Souza
- College of Agronomy, Federal Institute of Paraná, Palmas, Paraná, Brazil
| |
Collapse
|
5
|
Soares MB, Pedrinho A, Ferreira JR, Mendes LW, Colzato M, Alleoni LRF. Redox conditions and biochar pyrolysis temperature affecting As and Pb biogeochemical cycles and bacterial community of sediment from mining tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134303. [PMID: 38669921 DOI: 10.1016/j.jhazmat.2024.134303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/17/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Despite the widespread use of biochar for soil and sediment remediation, little is known about the impact of pyrolysis temperature on the biogeochemistry of arsenic (As) and lead (Pb) and microorganisms in sediment under reducing conditions. In this study, we investigated the effects of pyrolysis temperature and the addition of glucose on the release and transformation of As and Pb, as well as their potential effects on the bacterial community in contaminated sediments. The addition of biochar altered the geochemical cycle of As, as it favors specific bacterial groups capable of changing species from As(V) to As(III) through fermentation, sulfate respiration and nitrate reduction. The carbon quality and content of N and S in solution shaped the pH and redox potential in a way that changed the microbial community, favoring Firmicutes and reducing Proteobacteria. This change played a fundamental role in the reductive dissolution of As and Pb minerals. The addition of biochar was the only efficient way to remove Pb, possibly as a function of its sorption and precipitation mechanisms. Such insights could contribute to the production or choice of high-efficiency biochar for the remediation of sediments subjected to redox conditions.
Collapse
Affiliation(s)
- Matheus Bortolanza Soares
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), 13418900 Piracicaba, SP, Brazil.
| | - Alexandre Pedrinho
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), 13418900 Piracicaba, SP, Brazil
| | - José Roberto Ferreira
- Environmental Science, São Paulo's Agency for Agribusiness Technology (APTA/SAA), 13412050, Piracicaba, Brazil; Analytical Chemistry Department, Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), 13416000, Piracicaba, Brazil
| | - Lucas William Mendes
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), 13416000 Piracicaba, SP, Brazil
| | - Marina Colzato
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), 13418900 Piracicaba, SP, Brazil
| | - Luís Reynaldo Ferracciú Alleoni
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), 13418900 Piracicaba, SP, Brazil
| |
Collapse
|
6
|
Cunha IDCMD, Silva AVRD, Boleta EHM, Pellegrinetti TA, Zagatto LFG, Zagatto SDSS, Chaves MGD, Mendes R, Patreze CM, Tsai SM, Mendes LW. The interplay between the inoculation of plant growth-promoting rhizobacteria and the rhizosphere microbiome and their impact on plant phenotype. Microbiol Res 2024; 283:127706. [PMID: 38574431 DOI: 10.1016/j.micres.2024.127706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Microbial inoculation stands as a pivotal strategy, fostering symbiotic relationships between beneficial microorganisms and plants, thereby enhancing nutrient uptake, bolstering resilience against environmental stressors, and ultimately promoting healthier and more productive plant growth. However, while the advantageous roles of inoculants are widely acknowledged, the precise and nuanced impacts of inoculation on the intricate interactions of the rhizosphere microbiome remain significantly underexplored. This study explores the impact of bacterial inoculation on soil properties, plant growth, and the rhizosphere microbiome. By employing various bacterial strains and a synthetic community (SynCom) as inoculants in common bean plants, the bacterial and fungal communities in the rhizosphere were assessed through 16 S rRNA and ITS gene sequencing. Concurrently, soil chemical parameters, plant traits, and gene expression were evaluated. The findings revealed that bacterial inoculation generally decreased pH and V%, while increasing H+Al and m% in the rhizosphere. It also decreased gene expression in plants related to detoxification, photosynthesis, and defense mechanisms, while enhancing bacterial diversity in the rhizosphere, potentially benefiting plant health. Specific bacterial strains showed varied impacts on rhizosphere microbiome assembly, predominantly affecting rhizospheric bacteria more than fungi, indirectly influencing soil conditions and plants. Notably, Paenibacillus polymyxa inoculation improved plant nitrogen (by 5.2%) and iron levels (by 28.1%), whereas Bacillus cereus boosted mycorrhization rates (by 70%). Additionally, inoculation led to increased complexity in network interactions within the rhizosphere (∼15%), potentially impacting plant health. Overall, the findings highlight the significant impact of introducing bacteria to the rhizosphere, enhancing nutrient availability, microbial diversity, and fostering beneficial plant-microbe interactions.
Collapse
Affiliation(s)
- Izadora de Cássia Mesquita da Cunha
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil; Luiz de Queiroz College of Agriculture ESALQ, University of São Paulo USP, Piracicaba, SP 13418-900, Brazil
| | - Ana Vitória Reina da Silva
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Eduardo Henrique Marcandalli Boleta
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Thierry Alexandre Pellegrinetti
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Luis Felipe Guandalin Zagatto
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil; Department of Terrestrial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen NL-6700 AB, the Netherlands
| | - Solange Dos Santos Silva Zagatto
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Miriam Gonçalves de Chaves
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariuna 18020-000, Brazil
| | - Camila Maistro Patreze
- Institute of Biosciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ 22290-240, Brazil
| | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Lucas William Mendes
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil.
| |
Collapse
|
7
|
Garg D, Patel N, Rawat A, Rosado AS. Cutting edge tools in the field of soil microbiology. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100226. [PMID: 38425506 PMCID: PMC10904168 DOI: 10.1016/j.crmicr.2024.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
The study of the whole of the genetic material contained within the microbial populations found in a certain environment is made possible by metagenomics. This technique enables a thorough knowledge of the variety, function, and interactions of microbial communities that are notoriously difficult to research. Due to the limitations of conventional techniques such as culturing and PCR-based methodologies, soil microbiology is a particularly challenging field. Metagenomics has emerged as an effective technique for overcoming these obstacles and shedding light on the dynamic nature of the microbial communities in soil. This review focuses on the principle of metagenomics techniques, their potential applications and limitations in soil microbial diversity analysis. The effectiveness of target-based metagenomics in determining the function of individual genes and microorganisms in soil ecosystems is also highlighted. Targeted metagenomics, including high-throughput sequencing and stable-isotope probing, is essential for studying microbial taxa and genes in complex ecosystems. Shotgun metagenomics may reveal the diversity of soil bacteria, composition, and function impacted by land use and soil management. Sanger, Next Generation Sequencing, Illumina, and Ion Torrent sequencing revolutionise soil microbiome research. Oxford Nanopore Technology (ONT) and Pacific Biosciences (PacBio)'s third and fourth generation sequencing systems revolutionise long-read technology. GeoChip, clone libraries, metagenomics, and metabarcoding help comprehend soil microbial communities. The article indicates that metagenomics may improve environmental management and agriculture despite existing limitations.Metagenomics has revolutionised soil microbiology research by revealing the complete diversity, function, and interactions of microorganisms in soil. Metagenomics is anticipated to continue defining the future of soil microbiology research despite some limitations, such as the difficulty of locating the appropriate sequencing method for specific genes.
Collapse
Affiliation(s)
- Diksha Garg
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Niketan Patel
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
- Computational Bioscience Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
| | - Anamika Rawat
- Center of Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
- Computational Bioscience Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
| |
Collapse
|
8
|
Mugnai G, Borruso L, Wu YL, Gallinaro M, Cappitelli F, Zerboni A, Villa F. Ecological strategies of bacterial communities in prehistoric stone wall paintings across weathering gradients: A case study from the Borana zone in southern Ethiopia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168026. [PMID: 37907101 DOI: 10.1016/j.scitotenv.2023.168026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Rock art paintings represent fragile ecosystems supporting complex microbial communities tuned to the lithic substrate and climatic conditions. The composition and activity of these microbial communities associated with different weathering patterns affecting rock art sites remain unexplored. This study aimed to explore how bacterial communities adapt their ecological strategies based on substrate weathering, while also examining the role of their metabolic pathways in either biodeterioration or bioprotection of the underlying stone. SEM-EDS investigations coupled with 16S rRNA gene sequencing and PICRUSt2 analysis were applied on different weathered surfaces that affect southern Ethiopian rock paintings to investigate the relationships between the current stone microbiome and weathering patterns. The findings revealed that samples experiencing low and high weathering reached a climax stage characterized by stable microenvironments and limited resources. This condition favored K-strategist microorganisms, leading to reduced α-biodiversity and a community with a positive or neutral impact on the substrate. In contrast, moderately-weathered samples displayed diverse microhabitats, resulting in the prevalence of r-strategist bacteria, increased α-biodiversity, and the presence of specialist microorganisms. Moreover, the bacterial communities in moderately-weathered samples demonstrated the highest potential for carbon fixation, stress responses, and complete nitrogen and sulfur cycles. This bacterial community also showed the potential to negatively impact the underlying substrate. This research provided valuable insights into the little-understood ecology of bacterial communities inhabiting deteriorated surfaces, shedding light on the potential role of these microorganisms in the sustainable conservation of rock art.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agriculture, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, I-06121 Perugia (PG), IT, Italy.
| | - Luigimaria Borruso
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy.
| | - Ying-Li Wu
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy.
| | - Marina Gallinaro
- Dipartimento di Scienze dell'Antichità, Università di Roma La Sapienza, 00185 Rome, Italy.
| | - Francesca Cappitelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy.
| | - Federica Villa
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
9
|
Canini F, Borruso L, Newsham KK, D'Alò F, D'Acqui LP, Zucconi L. Wide divergence of fungal communities inhabiting rocks and soils in a hyper-arid Antarctic desert. Environ Microbiol 2023; 25:3671-3682. [PMID: 37964667 DOI: 10.1111/1462-2920.16534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Highly simplified microbial communities colonise rocks and soils of continental Antarctica ice-free deserts. These two habitats impose different selection pressures on organisms, yet the possible filtering effects on the diversity and composition of microbial communities have not hitherto been fully characterised. We hence compared fungal communities in rocks and soils in three localities of inner Victoria Land. We found low fungal diversity in both substrates, with a mean species richness of 28 across all samples, and significantly lower diversity in rocks than in soils. Rock and soil communities were strongly differentiated, with a multinomial species classification method identifying just three out of 328 taxa as generalists with no affinity for either substrate. Rocks were characterised by a higher abundance of lichen-forming fungi (typically Buellia, Carbonea, Pleopsidium, Lecanora, and Lecidea), possibly owing to the more protected environment and the porosity of rocks permitting photosynthetic activity. In contrast, soils were dominated by obligate yeasts (typically Naganishia and Meyerozyma), the abundances of which were correlated with edaphic factors, and the black yeast Cryomyces. Our study suggests that strong differences in selection pressures may account for the wide divergences of fungal communities in rocks and soils of inner Victoria Land.
Collapse
Affiliation(s)
- Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bozen-Bolzano, Italy
| | - Kevin K Newsham
- British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Cambridge, UK
| | - Federica D'Alò
- Terrestrial Ecosystems Research Institute (IRET), National Research Council (CNR), Porano (TR), Italy
| | - Luigi P D'Acqui
- Institute of Polar Sciences (ISP), National Research Council (CNR), Messina, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Terrestrial Ecosystems Research Institute (IRET), National Research Council (CNR), Sesto Fiorentino (FI), Italy
| |
Collapse
|
10
|
Mendes LW, Raaijmakers JM, de Hollander M, Sepo E, Gómez Expósito R, Chiorato AF, Mendes R, Tsai SM, Carrión VJ. Impact of the fungal pathogen Fusarium oxysporum on the taxonomic and functional diversity of the common bean root microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:68. [PMID: 37537681 PMCID: PMC10401788 DOI: 10.1186/s40793-023-00524-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Plants rely on their root microbiome as the first line of defense against soil-borne fungal pathogens. The abundance and activities of beneficial root microbial taxa at the time prior to and during fungal infection are key to their protective success. If and how invading fungal root pathogens can disrupt microbiome assembly and gene expression is still largely unknown. Here, we investigated the impact of the fungal pathogen Fusarium oxysporum (fox) on the assembly of rhizosphere and endosphere microbiomes of a fox-susceptible and fox-resistant common bean cultivar. RESULTS Integration of 16S-amplicon, shotgun metagenome as well as metatranscriptome sequencing with community ecology analysis showed that fox infections significantly changed the composition and gene expression of the root microbiome in a cultivar-dependent manner. More specifically, fox infection led to increased microbial diversity, network complexity, and a higher proportion of the genera Flavobacterium, Bacillus, and Dyadobacter in the rhizosphere of the fox-resistant cultivar compared to the fox-susceptible cultivar. In the endosphere, root infection also led to changes in community assembly, with a higher abundance of the genera Sinorhizobium and Ensifer in the fox-resistant cultivar. Metagenome and metatranscriptome analyses further revealed the enrichment of terpene biosynthesis genes with a potential role in pathogen suppression in the fox-resistant cultivar upon fungal pathogen invasion. CONCLUSION Collectively, these results revealed a cultivar-dependent enrichment of specific bacterial genera and the activation of putative disease-suppressive functions in the rhizosphere and endosphere microbiome of common bean under siege.
Collapse
Affiliation(s)
- Lucas William Mendes
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP, 13416-000, Brazil.
- Departament of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands.
| | - Jos M Raaijmakers
- Departament of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Mattias de Hollander
- Departament of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
| | - Edis Sepo
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Ruth Gómez Expósito
- Departament of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
| | - Alisson Fernando Chiorato
- Centro de Análises e Pesquisa Tecnológica do Agronegócio dos Grãos e Fibras, Instituto Agronômico IAC, Campinas, 130001-970, Brazil
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariuna, 18020-000, Brazil
| | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP, 13416-000, Brazil
| | - Victor J Carrión
- Departament of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands.
- Institute of Biology, Leiden University, Leiden, the Netherlands.
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
11
|
Jiang M, Tian Y, Guo R, Li S, Guo J, Zhang T. Effects of warming and nitrogen addition on soil fungal and bacterial community structures in a temperate meadow. Front Microbiol 2023; 14:1231442. [PMID: 37502394 PMCID: PMC10369075 DOI: 10.3389/fmicb.2023.1231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Soil microbial communities have been influenced by global changes, which might negatively regulate aboveground communities and affect nutrient resource cycling. However, the influence of warming and nitrogen (N) addition and their combined effects on soil microbial community composition and structure are still not well understood. To explore the effect of warming and N addition on the composition and structure of soil microbial communities, a five-year field experiment was conducted in a temperate meadow. We examined the responses of soil fungal and bacterial community compositions and structures to warming and N addition using ITS gene and 16S rRNA gene MiSeq sequencing methods, respectively. Warming and N addition not only increased the diversity of soil fungal species but also affected the soil fungal community structure. Warming and N addition caused significant declines in soil bacterial richness but had few impacts on bacterial community structure. The changes in plant species richness affected the soil fungal community structure, while the changes in plant cover also affected the bacterial community structure. The response of the soil bacterial community structure to warming and N addition was lower than that of the fungal community structure. Our results highlight that the influence of global changes on soil fungal and bacterial community structures might be different, and which also might be determined, to some extent, by plant community, soil physicochemical properties, and climate characteristics at the regional scale.
Collapse
Affiliation(s)
- Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Yibo Tian
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Rui Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, China
| | - Shuying Li
- Forestry and Grassland Bureau of Aohan Banner, Chifeng, China
| | - Jixun Guo
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Tao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| |
Collapse
|
12
|
Araujo ASF, Pertile M, Costa RM, Costa MKL, de Aviz RO, Mendes LW, de Medeiros EV, da Costa DP, Melo VMM, Pereira APDA. Short-term responses of plant growth-promoting bacterial community to the herbicides imazethapyr and flumioxazin. CHEMOSPHERE 2023; 328:138581. [PMID: 37019406 DOI: 10.1016/j.chemosphere.2023.138581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Imazethapyr and flumioxazin are widely recommended herbicides for soybean fields due to their broad-spectrum effects. However, although both herbicides present low persistence, their potential impact on the community of plant growth-promoting bacteria (PGPB) is unclear. To address this gap, this study assessed the short-term effect of imazethapyr, flumioxazin, and their mixture on the PGPB community. Soil samples from soybean fields were treated with these herbicides and incubated for 60 days. We extracted soil DNA at 0, 15, 30, and 60 days and sequenced the 16S rRNA gene. In general, the herbicides presented temporary and short-term effects on PGPB. The relative abundance of Bradyrhizobium increased, while Sphingomonas decreased on the 30th day with the application of all herbicides. Both herbicides increased the potential function of nitrogen fixation at 15th days and decreased at 30th and 60th days of incubation. The proportions of generalists were similar (∼42%) comparing each herbicide and the control, while the proportion of specialists increased (varying from 24.9% to 27.6%) with the application of herbicides. Imazethapyr, flumioxazin and their mixture did not change the complexity and interactions of the PGPB network. In conclusion, this study showed that, in the short term, the application of imazethapyr, flumioxazin, and their mixture, at the recommended field rates, does not negatively affect the community of plant growth-promoting bacteria.
Collapse
Affiliation(s)
| | - Mariane Pertile
- Soil Quality Lab., Agricultural Science Center, Federal University of Piauí, Teresina, PI Brazil
| | - Romário Martins Costa
- Soil Quality Lab., Agricultural Science Center, Federal University of Piauí, Teresina, PI Brazil
| | | | - Rhaiana Oliveira de Aviz
- Soil Quality Lab., Agricultural Science Center, Federal University of Piauí, Teresina, PI Brazil
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of Sao Paulo CENA-USP, Piracicaba, SP Brazil
| | - Erika Valente de Medeiros
- Laboratory of Microbiology and Enzymology-LEMA, Federal University of Agreste Pernambuco, Garanhuns 55292-270, Brazil
| | - Diogo Paes da Costa
- Laboratory of Microbiology and Enzymology-LEMA, Federal University of Agreste Pernambuco, Garanhuns 55292-270, Brazil
| | - Vania Maria Maciel Melo
- Laboratório de Ecologia Microbiana e Biotecnologia, Federal University of Ceara, Fortaleza, CE Brazil
| | | |
Collapse
|
13
|
Araujo ASF, Miranda ARL, Pereira APDA, de Melo WJ, Melo VMM, Ventura SH, Brito Junior ES, de Medeiros EV, Araujo FF, Mendes LW. Microbial communities in the rhizosphere of maize and cowpea respond differently to chromium contamination. CHEMOSPHERE 2023; 313:137417. [PMID: 36460149 DOI: 10.1016/j.chemosphere.2022.137417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Chromium (Cr) contamination can affect microorganisms in the soil, but the response of the microbial community in the rhizosphere of plants grown in Cr-contaminated soils is poorly understood. Therefore, this study assessed the microbial community, by amplicon sequencing, in the rhizosphere of maize and cowpea growing in uncontaminated (∼6.0 mg kg-1 Cr) and Cr-contaminated soils (∼250 mg kg-1 Cr). Comparing Cr-contaminated and uncontaminated soils, the microbial community in the maize rhizosphere clustered separately, while the microbial community in the cowpea rhizosphere did not present clear clustering. The microbial richness ranged from ∼5000 (rhizosphere in Cr-contaminated soil) to ∼8000 OTUs (in uncontaminated soil). In the comparison of specific bacterial groups in the rhizosphere of maize, Firmicutes were enriched in Cr-contaminated soil, including Bacilli, Bacillales, and Paenibacillus. Cowpea rhizosphere showed a higher abundance of six microbial groups in Cr-contaminated soil, highlighting Rhizobiales, Pedomicrobium, and Gemmatimonadetes. The microbial community in both rhizospheres presented a similar proportion of specialists comparing uncontaminated (2.2 and 3.4% in the rhizosphere of maize and cowpea, respectively) and Cr-contaminated soils (1.8 and 3.2% in the rhizosphere of maize and cowpea, respectively). This study showed that each plant species drove differently the microbial community in the rhizosphere, with an important effect of Cr-contamination on the microbial community assembly.
Collapse
Affiliation(s)
| | | | | | - Wanderley José de Melo
- Universidade Estadual Paulista (Unesp), Faculdade de Agronomia e Veterinaria, Jaboticabal, Brazil
| | | | | | | | | | | | - Lucas William Mendes
- Centro de Energia Nuclear Na Agricultura, Universidade de Sao Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
14
|
Jiao H, Liu L, Wang R, Qin W, Zhang B. The rhizosphere Microbiome of Malus sieversii (Ldb.) Roem. in the geographic and environmental gradients of China's Xinjiang. BMC Microbiol 2023; 23:26. [PMID: 36681818 PMCID: PMC9862814 DOI: 10.1186/s12866-023-02763-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Malus sieversii (Ldb.) Roem. is the original species of modern cultivated apple and a key national essential conservation plant in China. In recent years, degradation and death of wild apple has been exacerbated by imbalances in the rhizosphere micro-ecosystems of wild apple forests due to soil nutrient loss, grazing, climate change and pest and disease outbreaks. However, the structure, diversity and response to environmental factors of wild apple rhizosphere microbial communities are so far unclear. In this study, the rhizosphere bacterial and eukaryotic communities of M. sieversii (Ldb.) Roem. in eight regions of the Yili River were analyzed using 16S/18S rDNA high-throughput sequencing technology. The results indicated that the bacterial operational taxonomic units (OTUs), Shannon index, and community composition were significantly lower in regions A, E, and F than in other regions. By contrast, the dominant eukaryotic communities in all regions were relatively similar in composition and differed less than the relative abundance of bacterial communities. Geographical and climatic distance were found to be key factors influencing the composition and diversity of wild apple rhizosphere microbial communities through mantel analysis. Moreover, these factors above were more correlated with bacterial diversity than with eukaryotes. This study identified the structure of wild apple rhizosphere microbial communities in Xinjiang and their interaction mechanisms under geographical and environmental gradients. It provides guidance for the sustainable management and ecological construction of wild apple forests in China.
Collapse
Affiliation(s)
- Huiying Jiao
- Faculty of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Liqiang Liu
- Faculty of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Ruizhe Wang
- Faculty of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Wei Qin
- Faculty of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Bo Zhang
- Faculty of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China
| |
Collapse
|
15
|
de Souza AJ, de Araújo Pereira AP, Pedrinho A, Andreote FD, Tornisielo VL, Tizioto PC, Coutinho LL, Regitano JB. Land use and roles of soil bacterial community in the dissipation of atrazine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154239. [PMID: 35245545 DOI: 10.1016/j.scitotenv.2022.154239] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Atrazine (ATZ) is one of the most widely used herbicides in the world even though it is classified as a carcinogenic endocrine disruptor. This study focused on how land use (grazing versus cultivation in parallel soils, the latter under no-till with a seven-year history of ATZ application) and bacterial community diversity affected ATZ dissipation. Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Acidobacteria, Verrucomicrobia, Planctomycetes, and Gemmatimonadetes were the dominant phyla in both soils. The mineralization of ATZ was much higher in soils under cultivation up to the onset of moderate diversity depletion (dilution =10-3), corresponding to 44-52% of the amount applied (< 5% in the grazed soil). This was attributed to the higher diversity and complexity of the soils´ bacterial communities which consist of microbial groups that were more adapted as a result of previous exposure to ATZ. In these cases, ATZ dissipation was attributed mainly to mineralization (DT50 = 4-11 d). However, formation of non-extractable ATZ residues was exceptionally important in the other cases (DT50 = 17-44 d). The cultivated soils also presented a higher number of bacterial genera correlated with ATZ dissipation, in which Acidothermus, Aquicela, Arenimonas, Candidatus_Koribacter, Hirschia, MND1, Nitrospira, Occallatibacter, OM27_clade, and Ralstonia are suggested as potential ATZ-degraders. Finally, ATZ dissipation was mostly associated with an abundance of microbial functions related to energy supply and N-metabolism, suggesting co-metabolism is its first biodegradation step.
Collapse
Affiliation(s)
- Adijailton Jose de Souza
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Alexandre Pedrinho
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Fernando Dini Andreote
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Valdemar Luiz Tornisielo
- Center of Nuclear Energy for Agriculture (CENA), University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Jussara Borges Regitano
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
16
|
Costa DPD, Araujo ASF, Pereira APDA, Mendes LW, França RFD, Silva TDGED, Oliveira JBD, Araujo JS, Duda GP, Menezes RSC, Medeiros EVD. Forest-to-pasture conversion modifies the soil bacterial community in Brazilian dry forest Caatinga. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151943. [PMID: 34864020 DOI: 10.1016/j.scitotenv.2021.151943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/21/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Soils comprise a huge fraction of the world's biodiversity, contributing to several crucial ecosystem functions. However, how the forest-to-pasture conversion impact soil bacterial diversity remains poorly understood, mainly in the Caatinga biome, the largest tropical dry forest of the world. Here, we hypothesized that forest-to-pasture conversion would shape the microbial community. Thus, the soil bacterial community was assessed using the 16S rRNA gene sequencing into the Illumina MiSeq platform. Then, we analyzed ecological patterns and correlated the bacterial community with environmental parameters in forest, and two distinct pastures areas, one less productive and another more productive. The variation in soil properties in pastures and forest influenced the structure and diversity of the bacterial community. Thus, the more productive pasture positively influenced the proportion of specialists and the co-occurrence network compared to the less productive pasture. Also, Proteobacteria, Acidobacteria, and Verrucomicrobia were abundant under forest, while Actinobacteria, Firmicutes, and Chloroflexi were abundant under pastures. Also, the more productive pasture presented a higher bacterial diversity, which is important since that a more stable and connected bacterial community could benefit the agricultural environment and enhance plant performance, as can be observed by the highest network complexity in this pasture. Together, our findings elucidate a significant shift in soil bacterial communities as a consequence of forest-to-pasture conversion and bring important information for the development of preservation strategies.
Collapse
Affiliation(s)
- Diogo Paes da Costa
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| | | | | | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, 13400-970 Piracicaba, SP, Brazil.
| | - Rafaela Felix da França
- Department of Soils, Federal Rural University of Rio de Janeiro, 23890-000 Seropédica, RJ, Brazil.
| | | | - Julyana Braga de Oliveira
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| | - Jenifer Sthephanie Araujo
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| | - Gustavo Pereira Duda
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| | | | - Erika Valente de Medeiros
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| |
Collapse
|
17
|
Zhang Q, Tang J, Angel R, Wang D, Hu X, Gao S, Zhang L, Tang Y, Zhang X, Koide RT, Yang H, Sun Q. Soil Properties Interacting With Microbial Metagenome in Decreasing CH 4 Emission From Seasonally Flooded Marshland Following Different Stages of Afforestation. Front Microbiol 2022; 13:830019. [PMID: 35283824 PMCID: PMC8905362 DOI: 10.3389/fmicb.2022.830019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Wetlands are the largest natural source of terrestrial CH4 emissions. Afforestation can enhance soil CH4 oxidation and decrease methanogenesis, yet the driving mechanisms leading to these effects remain unclear. We analyzed the structures of communities of methanogenic and methanotrophic microbes, quantification of mcrA and pmoA genes, the soil microbial metagenome, soil properties and CH4 fluxes in afforested and non-afforested areas in the marshland of the Yangtze River. Compared to the non-afforested land use types, net CH4 emission decreased from bare land, natural vegetation and 5-year forest plantation and transitioned to net CH4 sinks in the 10- and 20-year forest plantations. Both abundances of mcrA and pmoA genes decreased significantly with increasing plantation age. By combining random forest analysis and structural equation modeling, our results provide evidence for an important role of the abundance of functional genes related to methane production in explaining the net CH4 flux in this ecosystem. The structures of methanogenic and methanotrophic microbial communities were of lower importance as explanatory factors than functional genes in terms of in situ CH4 flux. We also found a substantial interaction between functional genes and soil properties in the control of CH4 flux, particularly soil particle size. Our study provides empirical evidence that microbial community function has more explanatory power than taxonomic microbial community structure with respect to in situ CH4 fluxes. This suggests that focusing on gene abundances obtained, e.g., through metagenomics or quantitative/digital PCR could be more effective than community profiling in predicting CH4 fluxes, and such data should be considered for ecosystem modeling.
Collapse
Affiliation(s)
- Qian Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jie Tang
- Hunan Academy of Forestry, Changsha, China
| | - Roey Angel
- Soil and Water Research Infrastructure and Institute of Soil Biology, Biology Centre, Czech Academy of Sciences (CAS), České Budějovice, Czechia
| | - Dong Wang
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China
| | - Xingyi Hu
- Hubei Academy of Forestry, Wuhan, China
| | - Shenghua Gao
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lei Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yuxi Tang
- Hunan Academy of Forestry, Changsha, China
| | - Xudong Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Roger T. Koide
- Department of Biology, Brigham Young University, Provo, UT, United States
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Qixiang Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
18
|
Bizuti DTG, Robin A, Soares TM, Moreno¹ VS, Almeida DRA, Andreote FD, Casagrande JC, Guillemot J, Herrmann L, Melis J, Perim JEL, Medeiros SDS, Sorrini TB, Brancalion PHS. Multifunctional soil recovery during the restoration of Brazil's Atlantic Forest after bauxite mining. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Denise T. G. Bizuti
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Agnès Robin
- CIRADUMR Eco&Sols Piracicaba Brazil
- Eco&SolsUniversité de MontpellierCIRADINRAIRD Montpellier SupAgro, Montpellier France
- Department of Soil Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Thaís M. Soares
- Center for Nuclear Energy in Agriculture University of São Paulo Piracicaba Brazil
| | | | - Danilo R. A. Almeida
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Fernando D. Andreote
- Department of Soil Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - José Carlos Casagrande
- Department of Natural Resources and Environmental Protection Federal University of São Carlos Araras Brazil
| | - Joannès Guillemot
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
- CIRADUMR Eco&Sols Piracicaba Brazil
- Eco&SolsUniversité de MontpellierCIRADINRAIRD Montpellier SupAgro, Montpellier France
| | - Laetitia Herrmann
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT‐Asia)Common Microbial Biotechnology Platform (CMBP) Hanoi Vietnam
| | - Juliano Melis
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Júlia E. L. Perim
- Department of Soil Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Simone D. S. Medeiros
- Department of Informatics and Statistics Federal University of Santa Catarina Florianópolis Brazil
| | - Taísi B. Sorrini
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Pedro H. S. Brancalion
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| |
Collapse
|
19
|
Oliveira VM, Andreote FD, Cortelo PC, Castro-Gamboa I, Costa-Lotufo LV, Polizeli MDLTM, Thiemann OH, Setubal JC. Microorganisms: the secret agents of the biosphere, and their key roles in biotechnology. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract We present a survey of projects that have been funded by FAPESP under the BIOTA-Microorganisms program. These projects generated a wide variety of results, including the identification of novel antibacterial-producing microorganisms, the characterization of novel microbial enzymes for industrial applications, taxonomic classification of novel microorganisms in several environments, investigation of the soil and mangrove microbial ecosystems and its influence on endangered plant species, and the sequencing of novel metagenome-assembled genomes. The results surveyed demonstrate the importance of microorganisms in environments that play important roles in human activities as well as the potential that many of these microorganisms have in contributing to biotechnological applications crucial for human survival in the 21st century.
Collapse
|
20
|
Araujo ASF, de Pereira APDA, Antunes JEL, Oliveira LMDS, de Melo WJ, Rocha SMB, do Amorim MR, Araujo FF, Melo VMM, Mendes LW. Dynamics of bacterial and archaeal communities along the composting of tannery sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64295-64306. [PMID: 34304356 DOI: 10.1007/s11356-021-15585-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The process of composting has been proposed as a biological alternative to improve the quality of tannery sludge (TS) by the action of microbial communities. However, there is limited knowledge about the dynamic of these microbial communities during the composting process. This study assessed the responses of bacterial and archaeal communities during TS composting using the 16S rRNA sequencing. The composting process occurred within 90 days, and samples of compost were collected on day 7 (d7; mesophilic stage), 30 (d30; thermophilic stage), 60 (d60; cooling stage), and 90 (d90; maturation stage). The results showed a succession of microbial phyla during the composting with enrichment of Synergistetes, WS1, and Euryarchaeota at the mesophilic stage, while at the thermophilic stage, there was an enrichment of Hydrogenedentes, WPS-2, Chloroflexi, and Deinococcus-Thermus. At the cooling stage, there was an enrichment of Kiritimatiellaeota, and at the maturation stage, there was an enrichment of Entotheonellaeota, Dadabacteria, Nitrospirae, Dependiatiae, and Fibrobacteres. When analyzing the drivers influencing microbial communities, Cr and pH presented more negative correlations with general phyla. In contrast, S, C, K, temperature, and N presented more positive correlations, while Ni, Cd, and P showed fewer correlations. According to niche occupancy, we observed a decreased proportion of generalists with a consequently increased proportion of specialists following the composting process. This study showed that different stages of the composting present a specific microbial community structure and dynamics, which are related to some specific composting characteristics.
Collapse
Affiliation(s)
| | | | | | | | - Wanderley José de Melo
- Technology Department, São Paulo State University, Jaboticabal, SP, Brazil
- Graduate Program in Environmental Science, Campus of Descalvado, Brazil University, Descalvado, SP, Brazil
| | | | | | | | - Vania Maria Maciel Melo
- Laboratory of Microbial Ecology and Biotechnology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Lucas William Mendes
- Cellular and Molecular Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
21
|
Silva-Olaya AM, Mora-Motta DA, Cherubin MR, Grados D, Somenahally A, Ortiz-Morea FA. Soil enzyme responses to land use change in the tropical rainforest of the Colombian Amazon region. PLoS One 2021; 16:e0255669. [PMID: 34407107 PMCID: PMC8372923 DOI: 10.1371/journal.pone.0255669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
Soil enzymes mediate key processes and functions of the soils, such as organic matter decomposition and nutrient cycling in both natural and agricultural ecosystems. Here, we studied the activity of five extracellular soil enzymes involved in the C, N, and P-mineralizing process in both litter and surface soil layer of rainforest in the northwest region of the Colombian Amazon and the response of those soil enzymes to land use change. The experimental study design included six study sites for comparing long-term pasture systems to native forest and regeneration practices after pasture, within the main landscapes of the region, mountain and hill landscapes separately. Results showed considerable enzymatic activity in the litter layer of the forest, highlighting the vital role of this compartment in the nutrient cycling of low fertility soils from tropical regions. With the land use transition to pastures, changes in soil enzymatic activities were driven by the management of pastures, with SOC and N losses and reduced absolute activity of soil enzymes in long-term pastures under continuous grazing (25 years). However, the enzyme activities expressed per unit of SOC did not show changes in C and N-acquiring enzymes, suggesting a higher mineralization potential in pastures. Enzymatic stoichiometry analysis indicated a microbial P limitation that could lead to a high catabolic activity with a potential increase in the use of SOC by microbial communities in the search for P, thus affecting soil C sequestration, soil quality and the provision of soil-related ecosystem services.
Collapse
Affiliation(s)
| | - Dúber A. Mora-Motta
- Amazonian Research Center CIMAZ-MACAGUAL, University of the Amazon, Florencia, Colombia
| | - Maurício R. Cherubin
- Department of Soil Science, ‘‘Luiz de Queiroz” College of Agriculture, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel Grados
- Instituto del Mar del Perú, Esquina Gamarra y General Valle s/n Chucuito, Callao, Perú
| | - Anil Somenahally
- Department of Soil and Crop Sciences, Texas A&M University, Overton, Texas, United States of America
| | - Fausto A. Ortiz-Morea
- Amazonian Research Center CIMAZ-MACAGUAL, University of the Amazon, Florencia, Colombia
| |
Collapse
|
22
|
Babin D, Leoni C, Neal AL, Sessitsch A, Smalla K. Editorial to the Thematic Topic "Towards a more sustainable agriculture through managing soil microbiomes". FEMS Microbiol Ecol 2021; 97:6321563. [PMID: 34263312 DOI: 10.1093/femsec/fiab094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Doreen Babin
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Carolina Leoni
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa de Producción y Sustentabilidad Ambiental, Estación Experimental INIA Las Brujas, Ruta 48 Km 10, 90200 Rincón del Colorado, Canelones, Uruguay
| | - Andrew L Neal
- Department of Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Devon EX20 2SB, United Kingdom
| | - Angela Sessitsch
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
23
|
Abstract
Riparian forests were frequently cleared and converted to agricultural pastures, but in recent times these pastures are often revegetated in an effort to return riparian forest structure and function. We tested if there is a change in the soil bacterial taxonomy and function in areas of riparian forest cleared for agricultural pasture then revegetated, and if soil bacterial taxonomy and function is related to vegetation and soil physicochemical properties. The study was conducted in six riparian areas in south-eastern Australia, each comprising of three land-use types: remnant riparian forest, cleared forest converted to pasture, and revegetated pastures. We surveyed three strata of vegetation and sampled surface soil and subsoil to characterize physicochemical properties. Taxonomic and functional composition of soil bacterial communities were assessed using 16S rRNA gene sequences and community level physiological profiles, respectively. Few soil physiochemical properties differed with land use despite distinct vegetation in pasture relative to remnant and revegetated areas. Overall bacterial taxonomic and functional composition of remnant forest and revegetated soils were distinct from pasture soil. Land-use differences were not consistent for all bacterial phyla, as Acidobacteria were more abundant in remnant soils; conversely, Actinobacteria were more abundant in pasture soils. Overall, bacterial metabolic activity and soil carbon and nitrogen content decreased with soil depth, while bacterial metabolic diversity and evenness increased with soil depth. Soil bacterial taxonomic composition was related to soil texture and soil fertility, but functional composition was only related to soil texture. Our results suggest that the conversion of riparian forests to pasture is associated with significant changes in the soil bacterial community, and that revegetation contributes to reversing such changes. Nevertheless, the observed changes in bacterial community composition (taxonomic and functional) were not directly related to changes in vegetation but were more closely related to soil attributes.
Collapse
|
24
|
Distinct bacterial community structure and composition along different cowpea producing ecoregions in Northeastern Brazil. Sci Rep 2021; 11:831. [PMID: 33437021 PMCID: PMC7804402 DOI: 10.1038/s41598-020-80840-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
Soil microbial communities represent the largest biodiversity on Earth, holding an important role in promoting plant growth and productivity. However, the knowledge about how soil factors modulate the bacteria community structure and distribution in tropical regions remain poorly understood, mainly in different cowpea producing ecoregions belonging to Northeastern Brazil. This study addressed the bacterial community along three different ecoregions (Mata, Sertão, and Agreste) through the16S rRNA gene sequencing. The results showed that soil factors, such as Al3+, sand, Na+, cation exchange excel, and total organic C, influenced the bacterial community and could be a predictor of the distinct performance of cowpea production. Also, the bacterial community changed between different ecoregions, and some keystone groups related to plant-growth promotion, such as Bradyrhizobium, Bacillales, Rhizobiales, and Solibacillus, were correlated to cowpea yield, so revealing that the soil microbiome has a primordial role in plant productivity. Here, we provide evidence that bacterial groups related to nutrient cycling can help us to increase cowpea efficiency and we suggest that a better microbiome knowledge can contribute to improving the agricultural performance.
Collapse
|