1
|
Heredia Reto P, Castillo Rogel R, Palomino Lucano G, Falen JL, Avellan Laguno RD, Zapata Vidaurre K, Saavedra Febre M, Reyes Calle G, Zingg Rosell J, Lopez Perez J, Morán Rosillo J, Mialhe E, Diringer B. Assessing microbial diversity in open-pit mining: Metabarcoding analysis of soil and pit microbiota across operational and restoration stages. PLoS One 2025; 20:e0320923. [PMID: 40193359 PMCID: PMC11975129 DOI: 10.1371/journal.pone.0320923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Mine closure operations aim to restore the ecosystem to a near-original state. Microorganisms are indispensable for soil equilibrium and restoration. Metabarcoding was employed to characterize the bacterial and fungal composition in pristine soils, stockpiled soils (topsoils), enriched stockpiled soils (technosoils), enriched and revegetated soils (revegetated technosoils), and pit ecosystems in an open pit gold mine. Chao1 analysis revealed highest richness in pristine and topsoils, followed by technosoils (-17.5%) and pits (-63%). Bacterial diversity surpassed fungal diversity (-40%) in soil samples, but fungal OTUs were more abundant in pit samples (+73.4%). The findings identified the dominant microbial communities and conducted a comparative analysis of the shared microbiota. Dominant genera differed notably between pristine, topsoil, and technosoil samples for bacteria and fungi. The ecological indices' results indicated that the pristine soil microbial communities were distinct from those in the topsoils, revealing significant alterations during the stockpiling process. The revegetated technosoil showed more similarity to the pristine and topsoil samples than to the freshly prepared technosoil, suggesting that microbial restoration is an ongoing phenomenon. Microbial restoration analysis revealed that Bacterial communities recover faster than fungal communities highlighting the potential of managing technosoil physicochemical parameters to enhance microbial recovery similar to those found in pristine soils. Runoff water contribute to this rebalancing by transporting microorganisms between ecosystem. All pit samples exhibited significant differences in their microbial composition, with moisture and rock composition representing the primary axes of dissimilarity. The greater community complexity observed in soils is related to the availability of nutrients, physicochemical variations, and the possibility of interaction with other microbes. Pits represent extreme ecosystems that limit the growth of most microorganisms. The presented research provides a scientific basis for future restoration strategies to improve microbial diversity and ecosystem resilience in altered landscapes.
Collapse
Affiliation(s)
| | | | | | | | - Ricardo David Avellan Laguno
- IncaBiotec SAC, Tumbes, Peru
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | | | | | | | | | | | | | - Eric Mialhe
- IncaBiotec SAC, Tumbes, Peru
- Concepto Azul SA, Estero Salado, Guayaquil, Ecuador
| | - Benoit Diringer
- IncaBiotec SAC, Tumbes, Peru
- Concepto Azul SA, Estero Salado, Guayaquil, Ecuador
| |
Collapse
|
2
|
Berlow M, Mesa M, Creek M, Duarte JG, Carpenter E, Phinizy B, Andonian K, Dlugosch KM. Plant G × Microbial E: Plant Genotype Interaction with Soil Bacterial Community Shapes Rhizosphere Composition During Invasion. MICROBIAL ECOLOGY 2024; 87:113. [PMID: 39259393 PMCID: PMC11390927 DOI: 10.1007/s00248-024-02429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
It is increasingly recognized that different genetic variants of hosts can uniquely shape their microbiomes. Invasive species often evolve in their introduced ranges, but little is known about the potential for their microbial associations to change during invasion as a result. We asked whether host genotype (G), microbial environment (E), or their interaction (G × E) affected the composition and diversity of host-associated microbiomes in Centaurea solstitialis (yellow starthistle), a Eurasian plant that is known to have evolved novel genotypes and phenotypes and to have altered microbial interactions, in its severe invasion of CA, USA. We conducted an experiment in which native and invading plant genotypes were inoculated with native and invaded range soil microbial communities. We used amplicon sequencing to characterize rhizosphere bacteria in both the experiment and the field soils from which they were derived. We found that native and invading plant genotypes accumulated different microbial associations at the family level in each soil community, often counter to differences in family abundance between soil communities. Root associations with potentially beneficial Streptomycetaceae were particularly interesting, as these were more abundant in the invaded range field soil and accumulated on invading genotypes. We also found that bacterial diversity is higher in invaded soils, but that invading genotypes accumulated a lower diversity of bacteria and unique microbial composition in experimental inoculations, relative to native genotypes. Thus variation in microbial associations of invaders was driven by the interaction of plant G and microbial E, and rhizosphere microbial communities appear to change in composition in response to host evolution during invasion.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Miles Mesa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Mikayla Creek
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jesse G Duarte
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Elizabeth Carpenter
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brandon Phinizy
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Krikor Andonian
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
3
|
Borsodi AK, Megyes M, Zsigmond T, Horel Á. Soil bacterial communities affected by land-use types in a small catchment area of the Balaton Uplands (Hungary). Biol Futur 2024; 75:313-325. [PMID: 39066977 DOI: 10.1007/s42977-024-00233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Changes resulting from different tillage practices can affect the structure of microbial communities, thereby altering soil ecosystems and their functioning. The aim of this study was to explore and compare the physical, chemical properties and bacterial community composition of soils from different land use types (forest, grassland, vineyard, and arable field) in a small catchment. 16S rRNA gene-based amplicon sequencing was used to reveal the taxonomic diversity of summer and autumn soil samples taken from two different slope positions. The greater the anthropogenic impact was on the type of land use, the greater the change was in soil physical and chemical parameters. All sample types were dominated by the phyla Pseudomonadota, Acidobacteriota, Actinobacteriota, Bacteroidota and Verrucomicrobiota. Differences in the relative abundance of various bacterial taxa reflected the different land use types, the seasonality, and the topography. These diversity changes were consistent with the differences in soil properties.
Collapse
Affiliation(s)
- Andrea K Borsodi
- Department of Microbiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
- HUN-REN Centre for Ecological Research, Institute of Aquatic Ecology, Karolina út 29, Budapest, 1113, Hungary.
| | - Melinda Megyes
- Department of Microbiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Tibor Zsigmond
- HUN-REN Centre for Agricultural Research, Institute for Soil Sciences, Ruszti út 2-4, Budapest, 1022, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
- HUN-REN Centre for Agricultural Research, National Laboratory for Water Science and Water Security, Institute for Soil Sciences, Ruszti út 2-4, Budapest, 1022, Hungary
| | - Ágota Horel
- HUN-REN Centre for Agricultural Research, Institute for Soil Sciences, Ruszti út 2-4, Budapest, 1022, Hungary
- HUN-REN Centre for Agricultural Research, National Laboratory for Water Science and Water Security, Institute for Soil Sciences, Ruszti út 2-4, Budapest, 1022, Hungary
| |
Collapse
|
4
|
Brauer VS, Voskuhl L, Mohammadian S, Pannekens M, Haque S, Meckenstock RU. Imprints of ecological processes in the taxonomic core community: an analysis of naturally replicated microbial communities enclosed in oil. FEMS Microbiol Ecol 2024; 100:fiae074. [PMID: 38734895 PMCID: PMC11110866 DOI: 10.1093/femsec/fiae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
It is widely assumed that a taxonomic core community emerges among microbial communities from similar habitats because similar environments select for the same taxa bearing the same traits. Yet, a core community itself is no indicator of selection because it may also arise from dispersal and neutral drift, i.e. by chance. Here, we hypothesize that a core community produced by either selection or chance processes should be distinguishable. While dispersal and drift should produce core communities with similar relative taxon abundances, especially when the proportional core community, i.e. the sum of the relative abundances of the core taxa, is large, selection may produce variable relative abundances. We analyzed the core community of 16S rRNA gene sequences of 193 microbial communities occurring in tiny water droplets enclosed in heavy oil from the Pitch Lake, Trinidad and Tobago. These communities revealed highly variable relative abundances along with a large proportional core community (68.0 ± 19.9%). A dispersal-drift null model predicted a negative relationship of proportional core community and compositional variability along a range of dispersal probabilities and was largely inconsistent with the observed data, suggesting a major role of selection for shaping the water droplet communities in the Pitch Lake.
Collapse
Affiliation(s)
- Verena S Brauer
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany
| | - Lisa Voskuhl
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Sadjad Mohammadian
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Mark Pannekens
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
- IWW Water Center, 45476 Mülheim an der Ruhr, Germany
| | - Shirin Haque
- Department of Physics, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Rainer U Meckenstock
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
5
|
Sveen TR, Viketoft M, Bengtsson J, Bahram M. Core taxa underpin soil microbial community turnover during secondary succession. Environ Microbiol 2024; 26:e16561. [PMID: 38146666 DOI: 10.1111/1462-2920.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
Understanding the processes that underpin the community assembly of bacteria is a key challenge in microbial ecology. We studied soil bacterial communities across a large-scale successional gradient of managed and abandoned grasslands paired with mature forest sites to disentangle drivers of community turnover and assembly. Diversity partitioning and phylogenetic null-modelling showed that bacterial communities in grasslands remain compositionally stable following abandonment and secondary succession but they differ markedly from fully afforested sites. Zeta diversity analyses revealed the persistence of core microbial taxa that both reflected and differed from whole-scale community turnover patterns. Differences in soil pH and C:N were the main drivers of community turnover between paired grassland and forest sites and the variability of pH within successional stages was a key factor related to the relative dominance of deterministic assembly processes. Our results indicate that grassland microbiomes could be compositionally resilient to abandonment and secondary succession and that the major changes in microbial communities between grasslands and forests occur fairly late in the succession when trees have established as the dominant vegetation. We also show that core taxa may show contrasting responses to management and abandonment in grasslands.
Collapse
Affiliation(s)
- Tord Ranheim Sveen
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Viketoft
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Bengtsson
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Duborská E, Vojtková H, Matulová M, Šeda M, Matúš P. Microbial involvement in iodine cycle: mechanisms and potential applications. Front Bioeng Biotechnol 2023; 11:1279270. [PMID: 38026895 PMCID: PMC10643221 DOI: 10.3389/fbioe.2023.1279270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Stable iodine isotopes are essential for humans as they are necessary for producing thyroid gland hormones. However, there are hazardous radioactive iodine isotopes that are emitted into the environment through radioactive waste generated by nuclear power plants, nuclear weapon tests, and medical practice. Due to the biophilic character of iodine radionuclides and their enormous biomagnification potential, their elimination from contaminated environments is essential to prevent the spread of radioactive pollution in ecosystems. Since microorganisms play a vital role in controlling iodine cycling and fate in the environment, they also can be efficiently utilized in solving the issue of contamination spread. Thus, this paper summarizes all known on microbial processes that are involved in iodine transformation to highlight their prospects in remediation of the sites contaminated with radioactive iodine isotopes.
Collapse
Affiliation(s)
- Eva Duborská
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB–Technical University of Ostrava, Ostrava, Czechia
| | - Michaela Matulová
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovakia
- Radioactive Waste Repository Authority (SÚRAO), Praha, Czechia
| | - Martin Šeda
- Department of Applied Chemistry, Faculty of Agriculture and Technology, University of South Bohemia, České Budějovice, Czechia
| | - Peter Matúš
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
7
|
Arnold W, Taylor M, Bradford M, Raymond P, Peccia J. Microbial activity contributes to spatial heterogeneity of wetland methane fluxes. Microbiol Spectr 2023; 11:e0271423. [PMID: 37728556 PMCID: PMC10580924 DOI: 10.1128/spectrum.02714-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 09/21/2023] Open
Abstract
The emission of methane from wetlands is spatially heterogeneous, as concurrently measured surface fluxes can vary by orders of magnitude within the span of a few meters. Despite extensive study and the climatic significance of these emissions, it remains unclear what drives large, within-site variations. While geophysical factors (e.g., soil temperature) are known to correlate with methane (CH4) flux, measurable variance in these parameters often declines as spatial and temporal scales become finer. As methane emitted from wetlands is the direct, net product of microbial metabolisms which both produce and degrade CH4, it stands to reason that characterizing the spatial variability of microbial communities within a wetland-both horizontally and vertically-may help explain observed variances in flux. To that end, we surveyed microbial communities to a depth of 1 m across an ombrotrophic peat bog in Maine, USA using amplicon sequencing and gene expression techniques. Surface methane fluxes and geophysical factors were concurrently measured. Across the first meter of peat at the site, we observed significant changes in the abundance and composition of methanogenic taxa at every depth sampled, with variance in methanogen abundance explaining 70% of flux heterogeneity at a subset of plots. Among measured environmental factors, only peat depth emerged as correlated with flux, and had significant impact on the abundance and composition of methane-cycling communities. These conclusions suggest that a heightened awareness of how microbial communities are structured and spatially distributed within wetlands could offer improved insights into predicting CH4 flux dynamics. IMPORTANCE Globally, wetlands are one of the largest sources of methane (CH4), a greenhouse gas with a warming impact significantly greater than CO2. Methane produced in wetlands is the byproduct of a group of microorganisms which convert organic carbon into CH4. Despite our knowledge of how this process works, it is still unclear what drives dramatic, localized (<10 m) variance in emission rates from the surface of wetlands. While environmental conditions, like soil temperature or water table depth, correlate with methane flux when variance in these factors is large (e.g., spring vs fall), the explanatory power of these variables decline when spatial and temporal scales become smaller. As methane fluxes are the direct product of microbial activity, we profiled how the microbial community varied, both horizontally and vertically, across a peat bog in Maine, USA, finding that variance in microbial communities was likely contributing to much of the observed variance in flux.
Collapse
Affiliation(s)
- Wyatt Arnold
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut, USA
| | - Meghan Taylor
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Mark Bradford
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Peter Raymond
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Amon CER, Fossou RK, Ebou AET, Koua DK, Kouadjo CG, Brou YC, Voko Bi DRR, Cowan DA, Zézé A. The core bacteriobiome of Côte d'Ivoire soils across three vegetation zones. Front Microbiol 2023; 14:1220655. [PMID: 37692382 PMCID: PMC10483230 DOI: 10.3389/fmicb.2023.1220655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
The growing understanding that soil bacteria play a critical role in ecosystem servicing has led to a number of large-scale biogeographical surveys of soil microbial diversity. However, most of such studies have focused on northern hemisphere regions and little is known of either the detailed structure or function of soil microbiomes of sub-Saharan African countries. In this paper, we report the use of high-throughput amplicon sequencing analyses to investigate the biogeography of soil bacteria in soils of Côte d'Ivoire. 45 surface soil samples were collected from Côte d'Ivoire, representing all major biomes, and bacterial community composition was assessed by targeting the V4-V5 hypervariable region of the 16S ribosomal RNA gene. Causative relationships of both soil physicochemical properties and climatic data on bacterial community structure were infered. 48 phyla, 92 classes, 152 orders, 356 families, and 1,234 genera of bacteria were identified. The core bacteriobiome consisted of 10 genera ranked in the following order of total abundance: Gp6, Gaiella, Spartobacteria_genera_incertae_sedis, WPS-1_genera_incertae_sedis, Gp4, Rhodoplanes, Pseudorhodoplanes, Bradyrhizobium, Subdivision3_genera_incertae_sedis, and Gp3. Some of these genera, including Gp4 and WPS-1_genera_incertae_sedis, were unequally distributed between forest and savannah areas while other taxa (Bradyrhizobium and Rhodoplanes) were consistently found in all biomes. The distribution of the core genera, together with the 10 major phyla, was influenced by several environmental factors, including latitude, pH, Al and K. The main pattern of distribution that was observed for the core bacteriobiome was the vegetation-independent distribution scheme. In terms of predicted functions, all core bacterial taxa were involved in assimilatory sulfate reduction, while atmospheric dinitrogen (N2) reduction was only associated with the genus Bradyrhizobium. This work, which is one of the first such study to be undertaken at this scale in Côte d'Ivoire, provides insights into the distribution of bacterial taxa in Côte d'Ivoire soils, and the findings may serve as biological indicator for land management in Côte d'Ivoire.
Collapse
Affiliation(s)
- Chiguié Estelle Raïssa Amon
- Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Romain Kouakou Fossou
- Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Anicet E. T. Ebou
- Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Dominiqueua K. Koua
- Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Claude Ghislaine Kouadjo
- Laboratoire Central de Biotechnologies, Centre National de la Recherche Agronomique, Abidjan, Côte d’Ivoire
| | - Yao Casimir Brou
- Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Don Rodrigue Rosin Voko Bi
- Unité de Formation et de Recherche en Agroforesterie, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| |
Collapse
|
9
|
Samad A, Degenhardt D, Séguin A, Morency MJ, Gagné P, Martineau C. Microbial community structural and functional differentiation in capped thickened oil sands tailings planted with native boreal species. Front Microbiol 2023; 14:1168653. [PMID: 37465026 PMCID: PMC10350512 DOI: 10.3389/fmicb.2023.1168653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
The oil sands mining operations in Alberta have produced billions of m3 of tailings which must be reclaimed and integrated into various mine closure landforms, including terrestrial landforms. Microorganisms play a central role in nutrient cycling during the reclamation of disturbed landscapes, contributing to successful vegetation restoration and long-term sustainability. However, microbial community succession and response in reconstructed and revegetated tailings remain largely unexplored. This study aimed to monitor the structural and functional responses of microbial communities in tailings subjected to different capping and vegetation strategies over two growing seasons (GS). To achieve this, a column-based greenhouse experiment was conducted to investigate microbial communities in tailings that were capped with a layer (10 or 30 cm) of peat-mineral mix (PMM) and planted with either upland or wetland communities. DNA metabarcoding analysis of the bacterial 16S rRNA gene and fungal ITS2 region as well as shotgun metagenomics were used to asses the impact of treatments on microbial taxonomy and functions, respectively. Results showed that tailings microbial diversity and community composition changed considerably after two GS compared to baseline samples, while communities in the PMM capping layer were much more stable. Likewise, several microbial functions were significantly enriched in tailings after two GS. Interestingly, the impact of capping on bacterial communities in tailings varied depending on the plant community, leading to a higher number of differentially abundant taxa and to a decrease in Shannon diversity and evenness in the upland treatment but not in the wetland treatment. Moreover, while capping in the presence of wetland vegetation increased the energy-related metabolic functions (carbon, nitrogen, and sulfur), these functions were depleted by capping in the upland treatment. Fungi represented a small proportion of the microbial community in tailings, but the relative abundance of several taxa changed over time, while the capping treatments favored the growth of some beneficial taxa, notably the root endophyte Serendipita, in both upland and wetland columns. The results suggest that selecting the right combination of capping material and vegetation type may contribute to improve below-ground microbial processes and sustain plant growth in harsh environments such as oil sands tailings.
Collapse
Affiliation(s)
- Abdul Samad
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Dani Degenhardt
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, Canada
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Marie-Josée Morency
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Patrick Gagné
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Christine Martineau
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| |
Collapse
|
10
|
Labouyrie M, Ballabio C, Romero F, Panagos P, Jones A, Schmid MW, Mikryukov V, Dulya O, Tedersoo L, Bahram M, Lugato E, van der Heijden MGA, Orgiazzi A. Patterns in soil microbial diversity across Europe. Nat Commun 2023; 14:3311. [PMID: 37291086 PMCID: PMC10250377 DOI: 10.1038/s41467-023-37937-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/06/2023] [Indexed: 06/10/2023] Open
Abstract
Factors driving microbial community composition and diversity are well established but the relationship with microbial functioning is poorly understood, especially at large scales. We analysed microbial biodiversity metrics and distribution of potential functional groups along a gradient of increasing land-use perturbation, detecting over 79,000 bacterial and 25,000 fungal OTUs in 715 sites across 24 European countries. We found the lowest bacterial and fungal diversity in less-disturbed environments (woodlands) compared to grasslands and highly-disturbed environments (croplands). Highly-disturbed environments contain significantly more bacterial chemoheterotrophs, harbour a higher proportion of fungal plant pathogens and saprotrophs, and have less beneficial fungal plant symbionts compared to woodlands and extensively-managed grasslands. Spatial patterns of microbial communities and predicted functions are best explained when interactions among the major determinants (vegetation cover, climate, soil properties) are considered. We propose guidelines for environmental policy actions and argue that taxonomical and functional diversity should be considered simultaneously for monitoring purposes.
Collapse
Affiliation(s)
- Maëva Labouyrie
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
- Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| | | | - Ferran Romero
- Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | - Arwyn Jones
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | | | - Vladimir Mikryukov
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Olesya Dulya
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Mohammad Bahram
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Emanuele Lugato
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | - Marcel G A van der Heijden
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland.
- Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland.
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy.
| |
Collapse
|
11
|
Yang Y, Chai Y, Xie H, Zhang L, Zhang Z, Yang X, Hao S, Gai J, Chen Y. Responses of soil microbial diversity, network complexity and multifunctionality to three land-use changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160255. [PMID: 36402341 DOI: 10.1016/j.scitotenv.2022.160255] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Land-use change is one of the greatest challenges for natural ecosystem services. Soil microbiomes are essential for modulating multiple ecosystem functions. However, little is known about the impact of land-use changes on soil microbial communities and their associated soil functions. In this study, 150 alpine soil samples representing conversion of forests to shrublands or grasslands, and of shrublands to grasslands were investigated for bacterial, fungal and protistan community diversity, co-occurrence network, as well as their relationships with soil multifunctionality via a sampling strategy of space-for-time substitution. The conversion of forest to grassland increased the diversity of fungi and bacteria, and altered the microbial community structures of bacteria, fungi and protists, resulting a greater impact on soil microbiome than other land-use conversions. Cross-trophic interaction analyses demonstrated this conversion increased microbial network complexity and robustness, whereas forest to shrubland had the opposite trend. The land-use induced changes in soil multifunctionality were related with microbial network modules, but were not always associated with variations of microbial diversity. Random forest modeling further suggested the significant role of microbial modules in explaining soil multifunctionality, together with environmental factors. These findings indicate divergent responses of belowground multitrophic organisms to land-use changes, and the potential role of microbial module in forecasting soil multifunctionality.
Collapse
Affiliation(s)
- Yi Yang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yabo Chai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Hanjie Xie
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Zhang
- State Key laboratory Urban & Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiming Zhang
- School of Ecology and Environmental Sciences, Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, Yunnan, China
| | - Xue Yang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shenglei Hao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingping Gai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Yongliang Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Humate application alters microbiota-mineral interactions and assists in pasture dieback recovery. Heliyon 2023; 9:e13327. [PMID: 36755593 PMCID: PMC9900373 DOI: 10.1016/j.heliyon.2023.e13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Pasture dieback is a rapidly expanding decaying pasture syndrome that affects millions of hectares of agricultural land in Queensland, Australia, making it useless for the cattle industry and decimating farmers' income and welfare. Since the syndrome was first identified in the early 1990s, farmers and agronomists have tried various methods for pasture recovery, including slashing, burning, ploughing and resowing grass, fertilising, destocking, and overstocking. In most cases, after a minimal initial improvement, the grass reverts to dieback within a few weeks. Here, we present an application of potassium humate, a well-known plant growth stimulator, as a possible long-term recovery option. Humate was applied once at the rate of 12 ml per m2. Humate application did not alter the alpha or beta diversity of soil bacterial communities, nor did it change the mineral profile in the soil. However, humate application altered soil microbiota-mineral temporal interactions and introduced subtle changes in the microbial community that could assist pasture recovery. A single humate application increased paddock plant biomass significantly up to 20 weeks post-application. Eleven months after the single application, the paddock was grazed to the ground by the cattle just before the rainfall season. After pasture regrowth, the humate-treated plots significantly improved root morphometric indicators for both grass and dicots and increased the ratio of grass/weeds by 27.6% compared to the water-treated control. While this treatment will not resolve the dieback syndrome, our results invite more research to optimise the use of humate for maximum economic benefit in paddock use under pasture dieback syndrome conditions.
Collapse
|
13
|
Shi T, Liu X, Xue Y, He F, Dang Y, Sun D. Enhancement of denitrifying anaerobic methane oxidation via applied electric potential. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115527. [PMID: 35759969 DOI: 10.1016/j.jenvman.2022.115527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
In this study, single-chamber three-electrode electrochemical sequencing batch reactor (ESBR) was set up to investigate the impact of applying potential on denitrifying anaerobic methane oxidation (DAMO) process. When the applied potential was +0.8 V, the conversion rate of nitrite to nitrogen was superior to those of other potentials. With the optimal potential of +0.8 V for 60 days, the nitrite removal rate of ESBR could reach 3.34 ± 0.28 mg N/L/d, which was 4.5 times more than that of the non-current control (0.74 ± 0.16 mg N/L/d). The DAMO functional bacteria Candidatus Methylomirabilis exhibited noticeable enrichment under applying potential, and its functional gene of pmoA was significantly expressed. Through untargeted LC-MS metabolomics analysis, applied potential was shown to affect the regulation of prior metabolites including spermidine, spermine and glycerophosphocholine that were related to the metabolic pathways of glycerophospholipid metabolism and arginine and proline metabolism, which had positive effects on DAMO process. These results show that applying electric potential could be a useful strategy in DAMO process used for methane and nitrogen removal.
Collapse
Affiliation(s)
- Tianjing Shi
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yiting Xue
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Fang He
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Loganathachetti DS, Alhashmi F, Chandran S, Mundra S. Irrigation water salinity structures the bacterial communities of date palm ( Phoenix dactylifera)-associated bulk soil. FRONTIERS IN PLANT SCIENCE 2022; 13:944637. [PMID: 35991423 PMCID: PMC9388049 DOI: 10.3389/fpls.2022.944637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The irrigation of date palms (Phoenix dactylifera) with saline groundwater is routinely practiced in the agroecosystems of arid environments because of freshwater scarcity. This leads to salts deposition in topsoil layers and increases soil salinization. However, how different irrigation sources affect soil microbiota is poorly understood. Bulk soil samples were collected from date farms receiving non-saline water and saline groundwater to examine bacterial communities using metabarcoding. Overall, bacterial diversity measures (Shannon diversity index, richness, and evenness) did not vary between irrigation sources. Bacterial communities were structured based on irrigation water sources and were significantly associated with their electrical conductivity. Of 5,155 operational taxonomic units (OTUs), 21.3% were unique to soil irrigated with saline groundwater, 31.5% received non-saline water irrigation, and 47.2% were shared. The Proteobacteria abundance was higher in soil under saline groundwater irrigation while Actinobacteriota abundance was lower. A compositional shift at the genera level was also evident; the abundance of Subgroup_10 and Mycobacterium was higher under saline groundwater irrigation. Mycobacterium was a key indicator of OTU under saline groundwater irrigation while Solirubrobacter was an indicator of non-saline water irrigation. Functional gene analyses showed enrichment of fatty acid, cell wall, and starch biosynthesis pathways in soil under saline groundwater irrigation. These findings provide insights into how "salinity filtering" influences bacterial communities, key taxa, and the potential metabolic function in soil under increasing irrigation water salinities, and have broad implications for arid agroecosystems.
Collapse
Affiliation(s)
| | - Fardous Alhashmi
- Department of Biology, College of Science, United Arab Emirate University, Al Ain, United Arab Emirates
| | - Subha Chandran
- Department of Biology, College of Science, United Arab Emirate University, Al Ain, United Arab Emirates
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirate University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|