1
|
Peng SX, Gao SM, Lin ZL, Luo ZH, Zhang SY, Shu WS, Meng F, Huang LN. Biogeography and ecological functions of underestimated CPR and DPANN in acid mine drainage sediments. mBio 2025:e0070525. [PMID: 40298441 DOI: 10.1128/mbio.00705-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Recent genomic surveys have uncovered candidate phyla radiation (CPR) bacteria and DPANN archaea as major microbial dark matter lineages in various anoxic habitats. Despite their extraordinary diversity, the biogeographic patterns and ecological implications of these ultra-small and putatively symbiotic microorganisms have remained elusive. Here, we performed metagenomic sequencing on 90 geochemically diverse acid mine drainage sediments sampled across southeast China and recovered 282 CPR and 189 DPANN nonredundant metagenome-assembled genomes, which collectively account for up to 28.6% and 31.2% of the indigenous prokaryotic communities, respectively. We found that, remarkably, geographic distance represents the primary factor driving the large-scale ecological distribution of both CPR and DPANN organisms, followed by pH and Fe. Although both groups might be capable of iron reduction through a flavin-based extracellular electron transfer mechanism, significant differences are found in their metabolic capabilities (with complex carbon degradation and chitin degradation being more prevalent in CPR whereas fermentation and acetate production being enriched in DPANN), indicating potential niche differentiation. Predicted hosts are mainly Acidobacteriota, Bacteroidota, and Proteobacteria for CPR and Thermoplasmatota for DPANN, and extensive, unbalanced metabolic exchanges between these symbionts and putative hosts are displayed. Together, our results provide initial insights into the complex interplays between the two lineages and their physicochemical environments and host populations at a large geographic scale.IMPORTANCECandidate phyla radiation (CPR) bacteria and DPANN archaea constitute a significant fraction of Earth's prokaryotic diversity. Despite their ubiquity and abundance, especially in anoxic habitats, we know little about the community patterns and ecological drivers of these ultra-small, putatively episymbiotic microorganisms across geographic ranges. This study is facilitated by a large collection of CPR and DPANN metagenome-assembled genomes recovered from the metagenomes of 90 sediments sampled from geochemically diverse acid mine drainage (AMD) environments across southeast China. Our comprehensive analyses have allowed first insights into the biogeographic patterns and functional differentiation of these major enigmatic prokaryotic groups in the AMD model system.
Collapse
Affiliation(s)
- Sheng-Xuan Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Liang Lin
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhen-Hao Luo
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Hu Y, Song Y, Cai J, Chao J, Gong Y, Jiang X, Shao K, Tang X, Gao G. Stronger biogeographical pattern of bacterioplankton communities than biofilm communities along a riverine ecosystem: A local scale study of the Kaidu river in the arid and semi-arid northwest of China. ENVIRONMENTAL RESEARCH 2025; 264:120294. [PMID: 39505133 DOI: 10.1016/j.envres.2024.120294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Although the biogeographical pattern and mechanisms underlying microbial assembly have been well-explored in lentic ecosystems, the relevant scenarios in lotic ecosystems remain poorly understood. By sequencing the bacterial communities in bacterioplankton and biofilm, our study detected their distance-decay relationship (DDR), and the balance between deterministic and stochastic processes, along the Kaidu river in an arid and semi-arid region of northwest China. Our results revealed that bacterioplankton and biofilm had significantly contrasting community structures. The bacterioplankton communities showed a gradually decreasing trend in alpha-diversity from the headwater to the river mouth, contrasting with the alpha-diversity of biofilm communities which was constant along the river length. Both bacterioplankton and biofilm showed significant DDRs along the 500-km river corridor with the slope of the bacterioplankton DDR being steeper than that of the biofilm DDR, which implies a stronger biogeography of bacterioplankton than biofilm. Relative to biofilm communities, the species interactions formed a denser and more complex network in the bacterioplankton communities than in the biofilm communities. Our results also revealed that there was a transition of community assembly from deterministic to stochastic processes upstream to downstream, although both the bacterioplankton and biofilm communities were mainly regulated by deterministic processes within the entire river. All these empirical results expand our knowledge of microbial ecology in an arid and semi-arid lotic ecosystem.
Collapse
Affiliation(s)
- Yang Hu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China
| | - Yifu Song
- Nanjing Forestry University, Nanjing, 210008, China
| | - Jian Cai
- Xiangyang Polytechnic, Hubei Province, 441000, China
| | - Jianying Chao
- Nanjing Institute of Environmental Science, Nanjing, 210008, China
| | - Yi Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China
| | - Xingyu Jiang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
3
|
Zhu D, Liu SY, Sun MM, Yi XY, Duan GL, Ye M, Gillings MR, Zhu YG. Adaptive expression of phage auxiliary metabolic genes in paddy soils and their contribution toward global carbon sequestration. Proc Natl Acad Sci U S A 2024; 121:e2419798121. [PMID: 39602267 PMCID: PMC11626168 DOI: 10.1073/pnas.2419798121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Habitats with intermittent flooding, such as paddy soils, are crucial reservoirs in the global carbon pool; however, the effect of phage-host interactions on the biogeochemical cycling of carbon in paddy soils remains unclear. Hence, this study applied multiomics and global datasets integrated with validation experiments to investigate phage-host community interactions and the potential of phages to impact carbon sequestration in paddy soils. The results demonstrated that paddy soil phages harbor a diverse and abundant repertoire of auxiliary metabolic genes (AMGs) associated with carbon fixation, comprising 23.7% of the identified AMGs. The successful annotation of protein structures and promoters further suggested an elevated expression potential of these genes within their bacterial hosts. Moreover, environmental stressors, such as heavy metal contamination, cause genetic variation in paddy phages and up-regulate the expression of carbon fixation AMGs, as demonstrated by the significant enrichment of related metabolites (P < 0.05). Notably, the findings indicate that lysogenic phages infecting carbon-fixing hosts increased by 10.7% under heavy metal stress. In addition, in situ isotopic labeling experiments induced by mitomycin-C revealed that by increasing heavy metal concentrations, 13CO2 emissions from the treatment with added lysogenic phage decreased by approximately 17.9%. In contrast, 13C-labeled microbial biomass carbon content increased by an average of 35.4% compared to the control. These results suggest that paddy soil phages prominently influence the global carbon cycle, particularly under global change conditions. This research enhances our understanding of phage-host cooperation in driving carbon sequestration in paddy soils amid evolving environmental conditions.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, People’s Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences Haixi Industrial Technology Innovation Center in Beilun, Ningbo315830, People’s Republic of China
| | - Shu-Yue Liu
- National Engineering Research Center for Soil Nutrient Management and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Ming-Ming Sun
- Soil Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, People’s Republic of China
| | - Xing-Yun Yi
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, People’s Republic of China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, People’s Republic of China
| | - Mao Ye
- National Engineering Research Center for Soil Nutrient Management and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Michael R. Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, People’s Republic of China
| |
Collapse
|
4
|
Gao SM, Wang P, Li Q, Shu WS, Tang LY, Lin ZL, Li JT, Huang LN. Deciphering microbial metabolic interactions and their implications for community dynamics in acid mine drainage sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135478. [PMID: 39137550 DOI: 10.1016/j.jhazmat.2024.135478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The microbially-mediated reduction processes have potential for the bioremediation of acid mine drainage (AMD), which represents a worldwide environment problem. However, we know little about the microbial interactions in anaerobic AMD sediments. Here we utilized genome-resolved metagenomics to uncover the nature of cooperative and competitive metabolic interactions in 90 AMD sediments across Southern China. Our analyses recovered well-represented prokaryotic communities through the reconstruction of 2625 population genomes. Functional analyses of these genomes revealed extensive metabolic handoffs which occurred more frequently in nitrogen metabolism than in sulfur metabolism, as well as stable functional redundancy across sediments resulting from populations with low genomic relatedness. Genome-scale metabolic modeling showed that metabolic competition promoted microbial co-occurrence relationships, suggesting that community assembly was dominated by habitat filtering in sediments. Notably, communities colonizing more extreme conditions tended to be highly competitive, which was typically accompanied with increased network complexity but decreased stability of the microbiome. Finally, our results demonstrated that heterotrophic Thermoplasmatota associated with ferric iron and sulfate reduction contributed most to the elevated levels of competition. Our study shed light on the cooperative and competitive metabolisms of microbiome in the hazardous AMD sediments, which may provide preliminary clues for the AMD bioremediation in the future.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Pandeng Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ling-Yun Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhi-Liang Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin-Tian Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
5
|
Shi J, Qian W, Zhou Z, Jin Z, Gao X, Fan J, Wang X. Effects of acid mine drainage and sediment contamination on soil bacterial communities, interaction patterns, and functions in alkaline desert grassland. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134832. [PMID: 38852245 DOI: 10.1016/j.jhazmat.2024.134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Acid mine drainage and sediments (AMD-Sed) contamination pose serious ecological and environmental problems. This study investigated the geochemical parameters and bacterial communities in the sediment layer (A) and buried soil layer (B) of desert grassland contaminated with AMD-Sed and compared them to an uncontaminated control soil layer (CK). The results showed that soil pH was significantly lower and iron, sulfur, and electroconductivity levels were significantly higher in the B layer compared to CK. A and B were dominated by Proteobacteria and Actinobacteriota, while CK was dominated by Firmicutes and Bacteroidota. The pH, Fe, S, and potentially toxic elements (PTEs) gradients were key influences on bacterial community variability, with AMD contamination characterization factors (pH, Fe, and S) explaining 48.6 % of bacterial community variation. A bacterial co-occurrence network analysis showed that AMD-Sed contamination significantly affected topological properties, reduced network complexity and stability, and increased the vulnerability of desert grassland soil ecosystems. In addition, AMD-Sed contamination reduced C/N-cycle functioning in B, but increased S-cycle functioning. The results highlight the effects of AMD-Sed contamination on soil bacterial communities and ecological functions in desert grassland and provide a reference basis for the management and restoration of desert grassland ecosystems in their later stages.
Collapse
Affiliation(s)
- Jianfei Shi
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China
| | - Wenting Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; Public Technology Service Center, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Zhibin Zhou
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhengzhong Jin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Xin Gao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jinglong Fan
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xin Wang
- Shaanxi Forestry Survey and Planning Institute, Xi'an, Shaanxi 710082, China
| |
Collapse
|
6
|
Luo ZH, Li Q, Xie YG, Lv AP, Qi YL, Li MM, Qu YN, Liu ZT, Li YX, Rao YZ, Jiao JY, Liu L, Narsing Rao MP, Hedlund BP, Evans PN, Fang Y, Shu WS, Huang LN, Li WJ, Hua ZS. Temperature, pH, and oxygen availability contributed to the functional differentiation of ancient Nitrososphaeria. THE ISME JOURNAL 2024; 18:wrad031. [PMID: 38365241 PMCID: PMC10833072 DOI: 10.1093/ismejo/wrad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/18/2024]
Abstract
Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes. Comparative genomics revealed that extant non-AOA are functionally diverse, with capacity for carbon fixation, carbon monoxide oxidation, methanogenesis, and respiratory pathways including oxygen, nitrate, sulfur, or sulfate, as potential terminal electron acceptors. Despite their diverse anaerobic pathways, evolutionary history inference suggested that the common ancestor of Nitrososphaeria was likely an aerobic thermophile. We further surmise that the functional differentiation of Nitrososphaeria was primarily shaped by oxygen, pH, and temperature, with the acquisition of pathways for carbon, nitrogen, and sulfur metabolism. Our study provides a more holistic and less biased understanding of the diversity, ecology, and deep evolution of the globally abundant Nitrososphaeria.
Collapse
Affiliation(s)
- Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qi Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuan-Guo Xie
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ling Qi
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yu-Xian Li
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang-Zhi Rao
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, 3460000 Talca, Chile
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, United States
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, United States
| | - Paul N Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Yuan Fang
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
- Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou 510006, PR China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
7
|
Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China. Nat Commun 2022; 13:2389. [PMID: 35501347 PMCID: PMC9061769 DOI: 10.1038/s41467-022-30049-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Recent advances in environmental genomics have provided unprecedented opportunities for the investigation of viruses in natural settings. Yet, our knowledge of viral biogeographic patterns and the corresponding drivers is still limited. Here, we perform metagenomic deep sequencing on 90 acid mine drainage (AMD) sediments sampled across Southern China and examine the biogeography of viruses in this extreme environment. The results demonstrate that prokaryotic communities dictate viral taxonomic and functional diversity, abundance and structure, whereas other factors especially latitude and mean annual temperature also impact viral populations and functions. In silico predictions highlight lineage-specific virus-host abundance ratios and richness-dependent virus-host interaction structure. Further functional analyses reveal important roles of environmental conditions and horizontal gene transfers in shaping viral auxiliary metabolic genes potentially involved in phosphorus assimilation. Our findings underscore the importance of both abiotic and biotic factors in predicting the taxonomic and functional biogeographic dynamics of viruses in the AMD sediments. The biogeography of viral communities in extreme environments remains understudied. Here, the authors use metagenomic sequencing on 90 acid mine drainage sediments sampled across Southern China, showing the predominant effects of prokaryotic communities and the influence of environmental variables on viral taxonomy and function.
Collapse
|