1
|
Zhu F, Ying H, Siadat SD, Fateh A. The gut-lung axis and microbiome dysbiosis in non-tuberculous mycobacterial infections: immune mechanisms, clinical implications, and therapeutic frontiers. Gut Pathog 2025; 17:40. [PMID: 40481550 PMCID: PMC12144820 DOI: 10.1186/s13099-025-00718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Accepted: 05/30/2025] [Indexed: 06/11/2025] Open
Abstract
Non-tuberculous mycobacteria (NTM) are emerging pathogens of global concern, particularly in regions with declining tuberculosis rates. This review synthesizes current evidence on the epidemiology, immune pathogenesis, and microbiome interactions underlying NTM infections. The rising incidence of NTM is driven by environmental factors, immunocompromised populations, and advanced diagnostics. Clinically, NTM manifests as pulmonary, lymphatic, skin/soft tissue, or disseminated disease, with Mycobacterium avium complex (MAC) and M. abscessus being predominant pathogens. Host immunity, particularly Th1 responses mediated by IL-12/IFN-γ and TLR2 signaling, is critical for controlling NTM, while dysregulated immunity (e.g., elevated Th2 cytokines, PD-1/IL-10 pathways) exacerbates susceptibility. Emerging research highlights the gut-lung axis as a pivotal mediator of disease, where microbiome dysbiosis-marked by reduced Prevotella and Bifidobacterium-impairs systemic immunity and promotes NTM progression. Short-chain fatty acids (SCFAs) and microbial metabolites like inosine modulate macrophage and T-cell responses, offering therapeutic potential. Studies reveal distinct airway microbiome signatures in NTM patients, characterized by enriched Streptococcus and Prevotella, and reduced diversity linked to worse outcomes. Despite advances, treatment remains challenging due to biofilm formation, antibiotic resistance, and relapse rates. This review underscores the need for microbiome-targeted therapies, personalized medicine, and longitudinal studies to unravel causal relationships between microbial ecology and NTM pathogenesis.
Collapse
Affiliation(s)
- Fangfang Zhu
- Pinghu Traditional Chinese Medicine Hospital, Pinghu, Zhejiang, 314200, China
| | - Hao Ying
- Zhuji People´s Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China.
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Kim CW, Ku KB, Hwang I, Jung HE, Kim KD, Lee HK. Differential responses of lung and intestinal microbiota to SARS-CoV-2 infection: a comparative study of the Wuhan and Omicron strains in K18-hACE2 Tg mice. Lab Anim Res 2025; 41:11. [PMID: 40270072 PMCID: PMC12016229 DOI: 10.1186/s42826-025-00241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/07/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by SARS-CoV-2, has led to the emergence of viral variants with distinct characteristics. Understanding the differential impacts of SARS-CoV-2 variants is crucial for effective public health response and treatment development. We investigated the differential effects of the original Wuhan strain and the emergent Omicron variant of SARS-CoV-2 using a K18-hACE2 transgenic mouse model. We compared the mortality rates, viral loads, and histopathological changes in lung and tracheal tissues, as well as alterations in the lung and intestinal microbiota following infection. RESULTS Our findings revealed significant differences between the variants, with the Wuhan strain causing higher mortality rates, severe lung pathology, and elevated viral loads compared to the Omicron variant. Microbiome analyses uncovered novel and distinct shifts in the lung and intestinal microbiota associated with each variant, providing evidence for variant-specific microbiome alterations. These changes suggest microbiome-related mechanisms that might modulate disease severity and host responses to SARS-CoV-2 infection. CONCLUSIONS This study highlights critical differences between the Wuhan strain and Omicron variant in terms of mortality, lung pathology, and microbiota changes, emphasizing the role of the microbiome in influencing disease outcomes. Novel findings include the identification of variant-specific microbiota shifts, which underscore potential microbiome-related mechanisms underlying differences in disease severity. These insights pave the way for future research exploring microbiome-targeted interventions to mitigate the impacts of SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Chae Won Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Life Science Institute, KAIST, Daejeon, 34141, Republic of Korea
| | - Keun Bon Ku
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Insu Hwang
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hi Eun Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Life Science Institute, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyun-Do Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| | - Heung Kyu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Mohamad Habibullah NN, Shahar S, Ismail M, Ibrahim N, Kamaruddin MZA, Tang SGH, Hamid MFA, Ramasamy K. Efficacy of yeast beta-glucan 1,3/1,6 supplementation on respiratory infection, fatigue, immune markers and gut health among moderate stress adults in Klang Valley of Malaysia: protocol for a randomised, double-blinded, placebo-controlled, parallel-group study. BMJ Open 2025; 15:e084277. [PMID: 39832981 PMCID: PMC11749537 DOI: 10.1136/bmjopen-2024-084277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Yeast beta-glucan (YBG) are recognised for enhancing the immune system by activating macrophages, a key defence mechanism. Given the global prevalence and impact of upper respiratory tract infections (URTIs) on productivity and healthcare costs, YBG has shown promise as a potential therapeutic and preventive strategy for recurrent respiratory tract infections. However, little is known regarding the efficacy of YBG at lower dosages in relation to URTI, fatigue, immune response and uncertainties of how they affect the gut microbiota composition. METHODS AND ANALYSIS This 12-week randomised, double-blinded, placebo control, parallel-group clinical trial aims to evaluate the efficacy of YBG 1,3/1,6 on respiratory tract infection, fatigue, immune markers and gut health among adults with moderate stress. The study involves 198 adults aged 18-59 years with moderate stress levels as assessed using Perceived Stress Scale 10 (score 14-26) and Patient Health Questionnaire 9 (score ≥9); and had symptoms of common colds for the past 6 months as assessed using Jackson Cold Scale. These participants will be randomised into three groups, receiving YBG 1,3/1,6 at either 120 mg, 204 mg or a placebo. The outcomes measures include respiratory infection symptoms, fatigue, mood state and quality of life assessed using Wisconsin Upper Respiratory Symptoms Scale, Multidimensional Fatigue Inventory, Profile of Mood State and Short Form 36 Health Survey Questionnaire, respectively. In addition, full blood analysis and assessment of immune, inflammatory and oxidative stress biomarkers will be taken. Secondary outcome includes gut microbiota analysis using stool samples via 16S rRNA sequencing. ETHICS AND DISSEMINATION The research protocol of the study was reviewed and approved by the Research Ethics Committee of Universiti Kebangsaan Malaysia (UKM/PPI/111/8/JEP-2023-211). The findings will be disseminated to participants, healthcare professionals and researchers via conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER ISRCTN48336189.
Collapse
Affiliation(s)
- Nur Nadia Mohamad Habibullah
- Dietetics Programme, Centre for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Federal Territories Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Dietetics Programme, Centre for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Federal Territories Kuala Lumpur, Malaysia
| | - Munirah Ismail
- Dietetics Programme, Centre for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Federal Territories Kuala Lumpur, Malaysia
| | - Norhayati Ibrahim
- Clinical Psychology Programme, Centre for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Federal Territories Kuala Lumpur, Malaysia
| | - Mohd Zul Amin Kamaruddin
- Dietetics Programme, Centre for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Federal Territories Kuala Lumpur, Malaysia
| | - Shirley Gee Hoon Tang
- Biomedical Science Programme, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Federal Territories Kuala Lumpur, Malaysia
| | - Mohd Faisal Abdul Hamid
- Respiratory Unit, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras Kuala Lumpur, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Malaysia
| |
Collapse
|
4
|
Fallah A, Sedighian H, Kachuei R, Fooladi AAI. Human microbiome in post-acute COVID-19 syndrome (PACS). CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100324. [PMID: 39717208 PMCID: PMC11665312 DOI: 10.1016/j.crmicr.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The global COVID-19 pandemic, which began in 2019, is still ongoing. SARS-CoV-2, also known as the severe acute respiratory syndrome coronavirus 2, is the causative agent. Diarrhea, nausea, and vomiting are common GI symptoms observed in a significant number of COVID-19 patients. Additionally, the respiratory and GI tracts express high level of transmembrane protease serine 2 (TMPRSS2) and angiotensin-converting enzyme-2 (ACE2), making them primary sites for human microbiota and targets for SARS-CoV-2 infection. A growing body of research indicates that individuals with COVID-19 and post-acute COVID-19 syndrome (PACS) exhibit considerable alterations in their microbiome. In various human disorders, including diabetes, obesity, cancer, ulcerative colitis, Crohn's disease, and several viral infections, the microbiota play a significant immunomodulatory role. In this review, we investigate the potential therapeutic implications of the interactions between host microbiota and COVID-19. Microbiota-derived metabolites and components serve as primary mediators of microbiota-host interactions, influencing host immunity. We discuss the various mechanisms through which these metabolites or components produced by the microbiota impact the host's immune response to SARS-CoV-2 infection. Additionally, we address confounding factors in microbiome studies. Finally, we examine and discuss about a range of potential microbiota-based prophylactic measures and treatments for COVID-19 and PACS, as well as their effects on clinical outcomes and disease severity.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Druszczynska M, Sadowska B, Kulesza J, Gąsienica-Gliwa N, Kulesza E, Fol M. The Intriguing Connection Between the Gut and Lung Microbiomes. Pathogens 2024; 13:1005. [PMID: 39599558 PMCID: PMC11597816 DOI: 10.3390/pathogens13111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Recent advances in microbiome research have uncovered a dynamic and complex connection between the gut and lungs, known as the gut-lung axis. This bidirectional communication network plays a critical role in modulating immune responses and maintaining respiratory health. Mediated by immune interactions, metabolic byproducts, and microbial communities in both organs, this axis demonstrates how gut-derived signals, such as metabolites and immune modulators, can reach the lung tissue via systemic circulation, influencing respiratory function and disease susceptibility. To explore the implications of this connection, we conducted a systematic review of studies published between 2001 and 2024 (with as much as nearly 60% covering the period 2020-2024), using keywords such as "gut-lung axis", "microbiome", "respiratory disease", and "immune signaling". Studies were selected based on their relevance to gut-lung communication mechanisms, the impact of dysbiosis, and the role of the gut microbiota in respiratory diseases. This review provides a comprehensive overview of the gut-lung microbiome axis, emphasizing its importance in regulating inflammatory and immune responses linked to respiratory health. Understanding this intricate pathway opens new avenues for microbiota-targeted therapeutic strategies, which could offer promising interventions for respiratory diseases like asthma, chronic obstructive pulmonary disease, and even infections. The insights gained through this research underscore the potential of the gut-lung axis as a novel target for preventative and therapeutic approaches in respiratory medicine, with implications for enhancing both gut and lung health.
Collapse
Affiliation(s)
- Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Beata Sadowska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland;
| | - Nikodem Gąsienica-Gliwa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Marek Fol
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| |
Collapse
|
6
|
Kaluç N, Bertorello S, Tombul OK, Baldi S, Nannini G, Bartolucci G, Niccolai E, Amedei A. Gut-lung microbiota dynamics in mice exposed to Nanoplastics. NANOIMPACT 2024; 36:100531. [PMID: 39447839 DOI: 10.1016/j.impact.2024.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Concern has grown over potential health effects of micro- and nanoplastics (M/NPs) exposure. There is significant interest in understanding their impact on animal and human microbiota due to its crucial role in preserving health, as research in this area is rapidly advancing. We conducted a sub-chronic exposure study involving 12 male mice, divided into two groups: a control group (n = 6) and a PET-NPs exposure group (n = 6). PET-NPs, administered by oral gavage at a dose of 0.5 mg/day in 0.1 ml/mice, were given daily for 28 days. Microbiota analyses were performed on lung, colon, oral cavity, and stool samples using 16S rRNA sequencing. Additionally, fecal short and medium-chain fatty acids were analyzed by GC/MS. No significant changes were observed in the fecal and oral microbiome of the treated mice, nor in the fecal fatty acid levels. However, there were prominent alterations in the colon, characterized by increased abundance of Gram-negative bacteria belonging to Veillonella and Prevotella genera, and of amino acid metabolism pathways, coupled with a decrease in Lactobacillus. PET-NPs ingestion caused unexpected alterations in the lung microbiome with an increase in the Pseudomonas and changes in microbial energy metabolism and nitrogen utilization. This study provides insights into the differential impact of PET-NPs exposure on various microbiome niches.
Collapse
Affiliation(s)
- Nur Kaluç
- Department of Medical Biology, University of Health Sciences, Istanbul, Turkey.
| | - Sara Bertorello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Oğuz Kaan Tombul
- Experimental Animal Application and Research Center, Maltepe University, İstanbul, Turkey.
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy.
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis research for a Circular Health), University of Florence, Italy; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Florence, Italy.
| |
Collapse
|
7
|
Lai MY, Chang YH, Lee CC. The impact of gut microbiota on morbidities in preterm infants. Kaohsiung J Med Sci 2024; 40:780-788. [PMID: 39073226 DOI: 10.1002/kjm2.12878] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The gut microbiota undergoes substantial development from birth, and its development in the initial years of life has a potentially lifelong effect on the health of the individual. However, various factors can disrupt the development of the gut microbiota, leading to a condition known as dysbiosis, particularly in preterm infants. Current studies involving adults have suggested that the gut microbiota not only influences the gut but also has multidimensional effects on remote organs; these pathways are often referred to as the gut-organ axis. Imbalance of the gut microbiota may lead to the development of multiple diseases. Recent studies have revealed that gut dysbiosis in preterm infants may cause several acute morbidities-such as necrotizing enterocolitis, late-onset sepsis, bronchopulmonary dysplasia, and retinopathy of prematurity-and it may also influence long-term outcomes including neurodevelopment and somatic growth. This review mainly presents the existing evidence regarding the relationships between the gut microbiota and these morbidities in preterm infants and explores the role of the gut-organ axis in these morbidities. This paper thus offers insights into the future perspectives on microbiota interventions for promoting the health of preterm infants.
Collapse
Affiliation(s)
- Mei-Yin Lai
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Hsi Chang
- Department of Ophthalmology, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Chung Lee
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
8
|
Bum Lee J, Huang Y, Oya Y, Nutzinger J, LE Ang Y, Sooi K, Chul Cho B, Soo RA. Modulating the gut microbiome in non-small cell lung cancer: Challenges and opportunities. Lung Cancer 2024; 194:107862. [PMID: 38959670 DOI: 10.1016/j.lungcan.2024.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Despite the efficacy of immunotherapy in non-small cell lung cancer (NSCLC), the majority of the patients experience relapse with limited subsequent treatment options. Preclinical studies of various epithelial tumors, such as melanoma and NSCLC, have shown that harnessing the gut microbiome resulted in improvement of therapeutic responses to immunotherapy. Is this review, we summarize the role of microbiome, including lung and gut microbiome in the context of NSCLC, provide overview of the mechanisms of microbiome in efficacy and toxicity of chemotherapies and immunotherapies, and address current ongoing clinical trials for NSCLC including fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs).
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yiqing Huang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Yuko Oya
- Department of Respiratory Medicine, Fujita Health University, Toyoake, Japan
| | - Jorn Nutzinger
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Yvonne LE Ang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Kenneth Sooi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.
| |
Collapse
|
9
|
Alqaydi TK, Bedir AS, Abu-Elsaoud AM, El-Tarabily KA, Al Raish SM. An Assessment of the Knowledge, Attitude, and Practice of Probiotics and Prebiotics among the Population of the United Arab Emirates. Foods 2024; 13:2219. [PMID: 39063303 PMCID: PMC11276527 DOI: 10.3390/foods13142219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Probiotics and prebiotics offer a range of advantageous effects on human health. The knowledge, attitudes, and practices (KAP) of individuals can impact their inclination to consume probiotics and prebiotics. The main objective of this study was to examine the KAP of the people in the United Arab Emirates (UAE) about probiotics and prebiotics consumption. Additionally, the study aimed to assess the impact of KAP and sociodemographic factors on the use of probiotics and prebiotics. In order to accomplish this objective, a verified online questionnaire was used with a five-point Likert scale and distributed using an online platform (Google Forms). A cross-sectional research, non-probability sampling was implemented, and G*Power statistical power analysis was used to estimate a sample size of 385 participants. A total of 408 replies were gathered. The population under study consisted of residents in the UAE between the ages of 18 to 64 years old, excluding populations under the age of 18 and those living outside the UAE. A total of 392 participants met the criteria for inclusion in this study. The research ethics committees of UAE University granted the study approval (ERSC_2024_4359), and the validity of the findings was confirmed through face-to-face interviews with around 50 individuals and a Cronbach's alpha test with result of 0.84. The statistical software SPSS version 29.0 for Mac OS was utilized to examine the relationships between KAP variables, including Chi-square tests and Pearson's correlation coefficients. The tests were selected based on their capacity to handle categorical and continuous data, respectively. The female population was 85.2% of the total, while the male population accounts for 14.8%. The age distribution of participants shows that the largest proportion, 68.4%, falls within the 18-24 age range. Out of the participants, 61.5% held a bachelor's degree. Most of the participants, 56.4%, were students, while 29.1% were employees. The average results indicate a significant inclination towards probiotics and prebiotics, as demonstrated by the scores above the midpoint for the six knowledge questions (M = 2.70), six attitude questions (M = 3.10), and six practice questions (M = 3.04). Several studies have examined this phenomenon; however, additional research comparing individuals in the UAE is necessary to fully comprehend the influence of KAP on the consumption of probiotics and prebiotics in the UAE.
Collapse
Affiliation(s)
- Turfa K. Alqaydi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (T.K.A.); (K.A.E.-T.)
| | - Alaa S. Bedir
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Abdelghafar M. Abu-Elsaoud
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (T.K.A.); (K.A.E.-T.)
| | - Seham M. Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (T.K.A.); (K.A.E.-T.)
| |
Collapse
|
10
|
Li K, Wang S, Qu W, Ahmed AA, Enneb W, Obeidat MD, Liu HY, Dessie T, Kim IH, Adam SY, Cai D. Natural products for Gut-X axis: pharmacology, toxicology and microbiology in mycotoxin-caused diseases. Front Pharmacol 2024; 15:1419844. [PMID: 38978980 PMCID: PMC11228701 DOI: 10.3389/fphar.2024.1419844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction: The gastrointestinal tract is integral to defending against external contaminants, featuring a complex array of immunological, physical, chemical, and microbial barriers. Mycotoxins, which are toxic metabolites from fungi, are pervasive in both animal feed and human food, presenting substantial health risks. Methods: This review examines the pharmacological, toxicological, and microbiological impacts of natural products on mycotoxicosis, with a particular focus on the gut-x axis. The analysis synthesizes current understanding and explores the role of natural products rich in polysaccharides, polyphenols, flavonoids, and saponins. Results: The review highlights that mycotoxins can disrupt intestinal integrity, alter inflammatory responses, damage the mucus layer, and disturb the bacterial balance. The toxins' effects are extensive, potentially harming the immune system, liver, kidneys, and skin, and are associated with serious conditions such as cancer, hormonal changes, genetic mutations, bleeding, birth defects, and neurological issues. Natural products have shown potential anticancer, anti-tumor, antioxidant, immunomodulatory, and antitoxic properties. Discussion: The review underscores the emerging therapeutic strategy of targeting gut microbial modulation. It identifies knowledge gaps and suggests future research directions to deepen our understanding of natural products' role in gut-x axis health and to mitigate the global health impact of mycotoxin-induced diseases.
Collapse
Affiliation(s)
- Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shiqi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wuyi Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Abdelkareem A. Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Gaborone, Botswana
| | - Wael Enneb
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mohammad Diya’ Obeidat
- Department of Animal Production, Jordan University of Science and Technology, Irbid, Jordan
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tadelle Dessie
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Saber Y. Adam
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Vakili B, Shoaei P, Shahzamani K, Siadat SD, Shojaei H, Esfandiari Z, Nasri E, Shabani S, Zamani Moghadam A, Ataei B. Gut-Lung Microbiota Characterization in Patients with Non-Small Cell Lung Carcinoma and COVID-19 Coinfection. ARCHIVES OF IRANIAN MEDICINE 2024; 27:62-71. [PMID: 38619029 PMCID: PMC11017262 DOI: 10.34172/aim.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/30/2023] [Indexed: 04/16/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) patients with COVID-19 have an excessive chance of morbidity and mortality. The fecal-nasopharyngeal microbiota compositions of NSCLC patients were assessed in this study. METHODS In total, 234 samples were collected from 17 NSCLC patients infected with COVID-19, 20 NSCLC patients without confirmed COVID-19, 40 non NSCLC patients with COVID-19, and 40 healthy individuals. RESULTS In lung microbiota, the abundance of Streptococcus spp. in NSCLC patients with confirmed COVID-19 was significantly higher than the two control groups. Pseudomonas aeruginosa and Staphylococcus aureus were listed as the most frequent pulmonary bacterial groups that colonized COVID-19 patients. In fecal specimens, the numbers of Bacteroidetes, Firmicutes, and Actinobacteria phyla were significantly higher amongst NSCLC patients with COVID-19. NSCLC patients infected with COVID-19 showed lower levels of Lactobacillus spp., Akkermansia muciniphila, and Bifidobacterium spp. The counts of Streptococcus spp., in NSCLC patients with COVID-19 were significantly higher than those of healthy individuals (8.49±0.70 log CFU/g wet feces vs 8.49±0.70 log CFU/g wet feces). Prevotella spp. were enriched in the gut and respiratory tracts of COVID-19 patient groups. The unbiased analysis showed an increment in Enterococcus spp., Streptococcus spp., and Prevotella spp. CONCLUSION Eventually, it was found that compared to control groups, COVID-19 patients with NSCLC showed diminished gut bacteria diversity and increase in Lactobacillus spp., A. muciniphila, and Bifidobacterium spp. The overgrowth of Enterococcus spp., Streptococcus spp., and Prevotella spp. could be potential predictive biomarkers in the gut-lung axis of NSCLC patients with COVID-19.
Collapse
Affiliation(s)
- Bahareh Vakili
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Shoaei
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiana Shahzamani
- Hepatitis Research Center, School of Medicine, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Shojaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Esfandiari
- Department of Food Science and Technology, Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Nasri
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Shabani
- Department of Infectious Diseases, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ali Zamani Moghadam
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrooz Ataei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Ghoshal A, Verma A, Bhaskar A, Dwivedi VP. The uncharted territory of host-pathogen interaction in tuberculosis. Front Immunol 2024; 15:1339467. [PMID: 38312835 PMCID: PMC10834760 DOI: 10.3389/fimmu.2024.1339467] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) effectively manipulates the host processes to establish the deadly respiratory disease, Tuberculosis (TB). M.tb has developed key mechanisms to disrupt the host cell health to combat immune responses and replicate efficaciously. M.tb antigens such as ESAT-6, 19kDa lipoprotein, Hip1, and Hsp70 destroy the integrity of cell organelles (Mitochondria, Endoplasmic Reticulum, Nucleus, Phagosomes) or delay innate/adaptive cell responses. This is followed by the induction of cellular stress responses in the host. Such cells can either undergo various cell death processes such as apoptosis or necrosis, or mount effective immune responses to clear the invading pathogen. Further, to combat the infection progression, the host secretes extracellular vesicles such as exosomes to initiate immune signaling. The exosomes can contain M.tb as well as host cell-derived peptides that can act as a double-edged sword in the immune signaling event. The host-symbiont microbiota produces various metabolites that are beneficial for maintaining healthy tissue microenvironment. In juxtaposition to the above-mentioned mechanisms, M.tb dysregulates the gut and respiratory microbiome to support its replication and dissemination process. The above-mentioned interconnected host cellular processes of Immunometabolism, Cellular stress, Host Microbiome, and Extracellular vesicles are less explored in the realm of exploration of novel Host-directed therapies for TB. Therefore, this review highlights the intertwined host cellular processes to control M.tb survival and showcases the important factors that can be targeted for designing efficacious therapy.
Collapse
Affiliation(s)
| | | | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|