1
|
S K, Saquib M, Poojary H, Illanad G, Valavan D, M S, Nayak R, Mazumder N, Ghosh C. Skin emitted volatiles analysis for noninvasive diagnosis: the current advances in sample preparation techniques for biomedical application. RSC Adv 2024; 14:12009-12020. [PMID: 38623290 PMCID: PMC11017966 DOI: 10.1039/d4ra01579g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Human skin emits a series of volatile compounds from the skin due to various metabolic processes, microbial activity, and several external factors. Changes in the concentration of skin volatile metabolites indicate many diseases, including diabetes, cancer, and infectious diseases. Researchers focused on skin-emitted compounds to gain insight into the pathophysiology of various diseases. In the case of skin volatolomics research, it is noteworthy that sample preparation, sampling protocol, analytical techniques, and comprehensive validation are important for the successful integration of skin metabolic profiles into regular clinical settings. Solid-phase microextraction techniques and polymer-based active sorbent traps were developed to capture the skin-emitted volatile compounds. The primary advantage of these sample preparation techniques is the ability to efficiently and targetedly capture skin metabolites, thus improving the detection of the biomarkers associated with various diseases. In further research, polydimethyl-based patches were utilized for skin research due to their biocompatibility and thermal stability properties. The microextraction sampling tools coupled with high sensitive Gas Chromatography-Mass Spectrometer provided a potential platform for skin volatolomes, thus emerging as a state-of-the-art analytical technique. Later, technological advancements, including the design of wearable sensors, have enriched skin-based research as it can integrate the information from skin-emitted volatile profiles into a portable platform. However, individual-specific hydration, temperature, and skin conditions can influence variations in skin volatile concentration. Considering the subject-specific skin depth, sampling time standardization, and suitable techniques may improve the skin sampling techniques for the potential discovery of various skin-based marker compounds associated with diseases. Here, we have summarised the current research progress, limitations, and technological advances in skin-based sample preparation techniques for disease diagnosis, monitoring, and personalized healthcare applications.
Collapse
Affiliation(s)
- Keerthana S
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Mohammad Saquib
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Harshika Poojary
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Gouri Illanad
- Department of Biotechnology, KLE Technological University Hubballi Karnataka 580021 India
| | - Divyadarshini Valavan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Selvakumar M
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Ramakrishna Nayak
- Department of Humanities and Management, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Chiranjit Ghosh
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
- Harvard Medical School 25 Shattuck Street Boston 02115 MA USA
| |
Collapse
|
2
|
Di Cicco F, Evans RL, James AG, Weddell I, Chopra A, Smeets MAM. Intrinsic and extrinsic factors affecting axillary odor variation. A comprehensive review. Physiol Behav 2023; 270:114307. [PMID: 37516230 DOI: 10.1016/j.physbeh.2023.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
Humans produce odorous secretions from multiple body sites according to the microbiomic profile of each area and the types of secretory glands present. Because the axilla is an active, odor-producing region that mediates social communication via the sense of smell, this article focuses on the biological mechanisms underlying the creation of axillary odor, as well as the intrinsic and extrinsic factors likely to impact the odor and determine individual differences. The list of intrinsic factors discussed includes sex, age, ethnicity, emotions, and personality, and extrinsic factors include dietary choices, diseases, climate, and hygienic habits. In addition, we also draw attention to gaps in our understanding of each factor, including, for example, topical areas such as the effect of climate on body odor variation. Fundamental challenges and emerging research opportunities are further outlined in the discussion. Finally, we suggest guidelines and best practices based on the factors reviewed herein for preparatory protocols of sweat collection, data analysis, and interpretation.
Collapse
Affiliation(s)
- Francesca Di Cicco
- Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, the Netherlands.
| | - Richard L Evans
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - A Gordon James
- Unilever Research & Development, Colworth House, Sharnbrook, UK
| | - Iain Weddell
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - Anita Chopra
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - Monique A M Smeets
- Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, the Netherlands; Unilever Research & Development, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Géhin C, Tokarska J, Fowler SJ, Barran PE, Trivedi DK. No skin off your back: the sampling and extraction of sebum for metabolomics. Metabolomics 2023; 19:21. [PMID: 36964290 PMCID: PMC10038389 DOI: 10.1007/s11306-023-01982-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/19/2023] [Indexed: 03/26/2023]
Abstract
INTRODUCTION Sebum-based metabolomics (a subset of "sebomics") is a developing field that involves the sampling, identification, and quantification of metabolites found in human sebum. Sebum is a lipid-rich oily substance secreted by the sebaceous glands onto the skin surface for skin homeostasis, lubrication, thermoregulation, and environmental protection. Interest in sebomics has grown over the last decade due to its potential for rapid analysis following non-invasive sampling for a range of clinical and environmental applications. OBJECTIVES To provide an overview of various sebum sampling techniques with their associated challenges. To evaluate applications of sebum for clinical research, drug monitoring, and human biomonitoring. To provide a commentary of the opportunities of using sebum as a diagnostic biofluid in the future. METHODS Bibliometric analyses of selected keywords regarding skin surface analysis using the Scopus search engine from 1960 to 2022 was performed on 12th January 2023. The published literature was compartmentalised based on what the work contributed to in the following areas: the understanding about sebum, its composition, the analytical technologies used, or the purpose of use of sebum. The findings were summarised in this review. RESULTS Historically, about 15 methods of sampling have been used for sebum collection. The sample preparation approaches vary depending on the analytes of interest and are summarised. The use of sebum is not limited to just skin diseases or drug monitoring but also demonstrated for other systemic disease. Most of the work carried out for untargeted analysis of metabolites associated with sebum has been in the recent two decades. CONCLUSION Sebum has a huge potential beyond skin research and understanding how one's physiological state affects or reflects on the skin metabolome via the sebaceous glands itself or by interactions with sebaceous secretion, will open doors for simpler biomonitoring. Sebum acts as a sink to environmental metabolites and has applications awaiting to be explored, such as biosecurity, cross-border migration, localised exposure to harmful substances, and high-throughput population screening. These applications will be possible with rapid advances in volatile headspace and lipidomics method development as well as the ability of the metabolomics community to annotate unknown species better. A key issue with skin surface analysis that remains unsolved is attributing the source of the metabolites found on the skin surface before meaningful biological interpretation.
Collapse
Affiliation(s)
- C Géhin
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester, M1 7DN, UK
| | - J Tokarska
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester, M1 7DN, UK
| | - S J Fowler
- Department of Respiratory Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - P E Barran
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester, M1 7DN, UK
| | - D K Trivedi
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
4
|
Hu B. Non-invasive Sampling of Human Body Fluids Using In Vivo SPME. EVOLUTION OF SOLID PHASE MICROEXTRACTION TECHNOLOGY 2023:451-465. [DOI: 10.1039/bk9781839167300-00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Noninvasive body fluids offer attractive sources to gain insights into human health. The in vivo solid-phase microextraction (SPME) technique is a fast and versatile sample preparation technique for the noninvasive sampling of human body fluids in various fields. This chapter summarizes the applications of SPME coupled with mass spectrometry (MS)-based approaches for noninvasive investigations of human body fluids, including urine, sweat, and saliva. New features of noninvasive SPME sampling and MS-based analysis are highlighted, and the prospects on their further development are also discussed.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment Jinan University Guangzhou 510632 China
| |
Collapse
|
5
|
Costa Queiroz ME, Donizeti de Souza I, Gustavo de Oliveira I, Grecco CF. In vivo solid phase microextraction for bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Tomičić R, Tomičić Z, Raspor P. Influence of culture conditions on co-aggregation of probiotic yeast Saccharomyces boulardii with Candida spp. and their auto-aggregation. Folia Microbiol (Praha) 2022; 67:507-515. [PMID: 35169980 DOI: 10.1007/s12223-022-00956-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022]
Abstract
Systemic infections caused by pathogenic Candida species pose a significant threat to public health in the past decades due to increasing resistance to existing antifungal drugs. Given this scenario, probiotics have been suggested as an alternative approach for managing Candida infections. Hence, the purpose of this study was to evaluate whether probiotic yeast Saccharomyces boulardii co-aggregate with Candida spp. as well as to determine their auto-aggregation ability in dependence on temperature (28 °C, 37 °C, 42 °C) and pH (4.5, 7.0, 8.5) after 5 h and 24 h. Our results revealed that the aggregation of tested yeasts was lower in the first 5 h but increased significantly after 24 h. All strains were able to auto-aggregate in different degrees ranging from 47.46 to 95.95% assessed at 24 h of incubation. Among them the highest auto-aggregation values had C. albicans and C. krusei strains followed by probiotic strain S. boulardii, while the less were observed in C. glabrata strains. In addition, co-aggregation between probiotic and Candida strains was strain-specific. It was evident that S. boulardii significantly inhibited the aggregation of C. albicans ATCC 10261, C. krusei ATCC 6258, and C. glabrata ZIM 2369. However, in C. glabrata ZIM 2382, the aggregation was even enhanced. Temperature and pH also affected the ability to aggregate in a different way only after 5 h of incubation, with the highest cell aggregation evidenced at temperature 37 °C in most cases and pH 4.5. These findings may be of importance when trying to establish probiotic use against pathogenic Candida species.
Collapse
Affiliation(s)
- Ružica Tomičić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Zorica Tomičić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Peter Raspor
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Footwear microclimate and its effects on the microbial community of the plantar skin. Sci Rep 2021; 11:20356. [PMID: 34645918 PMCID: PMC8514438 DOI: 10.1038/s41598-021-99865-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
The association between the footwear microclimate and microbial community on the foot plantar skin was investigated by experiments with three participants. Novel methods were developed for measuring in-shoe temperature and humidity at five footwear regions, as well as the overall ventilation rate inside the footwear. Three types of footwear were tested including casual shoes, running shoes, and perforated shoes for pairwise comparison of footwear microclimate and corresponding microbial community on the skin. The major findings are as follows: (1) footwear types make a significant difference to in-shoe temperature at the instep region with the casual shoes sustaining the warmest of all types; (2) significant differences were observed in local internal absolute humidity between footwear types, with the casual shoes sustaining the highest level of humidity at most regions; (3) the perforated shoes provided the highest ventilation rate, followed by running and casual shoes, and the faster the gait, the larger the discrepancy in ventilation rate between footwear types; (4) the casual shoes seemed to provide the most favorable internal environment for bacterial growth at the distal plantar skin; and (5) the bacterial growth at the distal plantar skin showed a positive linear correlation with the in-shoe temperature and absolute humidity, and a negative linear correlation with the ventilation rate. The ventilation rate seemed to be a more reliable indicator of the bacterial growth. Above all, we can conclude that footwear microclimate varies in footwear types, which makes contributions to the bacterial growth on the foot plantar skin.
Collapse
|
8
|
Hu B, Ouyang G. In situ solid phase microextraction sampling of analytes from living human objects for mass spectrometry analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116368] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Zhang Y, Shen Y, Cheng W, Wang X, Xue Y, Chen X, Han BZ. Understanding the Shifts of Microbial Community and Metabolite Profile From Wheat to Mature Daqu. Front Microbiol 2021; 12:714726. [PMID: 34322112 PMCID: PMC8312246 DOI: 10.3389/fmicb.2021.714726] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/14/2023] Open
Abstract
Wheat-originated microbes play an important role in shaping the quality of high-temperature Daqu which is commonly used as a starter for producing sauce-flavor Baijiu. However, the shifts of microbiota from raw material to fresh Daqu and then to mature Daqu remain unclear. Hence, in the present study, the inner and outer of fresh and mature Daqu were collected to explore the correlation between microbiota and metabolites as well as the source of the microbiota in Daqu. Results indicated that the activities of amylase and protease between the inner and outer of fresh Daqu varied significantly while both parts became similar after maturation. The predominant bacteria shifted from Saccharopolyspora (outer) and Staphylococcus (inner) to Kroppenstedtia (both outer and inner), while the predominant fungi shifted from Thermoascus (both outer and inner) to Byssochlamys (outer) and Fusarium (inner). A combining analysis of headspace solid-phase micro extraction-gas chromatography-mass spectrometry, headspace gas chromatography-ion mobility spectrometry, and nuclear magnetic resonance was employed to detect the metabolites. The network analysis was conducted to perform the relationships between microbes and metabolites. The results showed that the bacteria, especially Saccharopolyspora, Bacillus, and Acinetobacter, had a strong correlation with the productions of esters, amino acids and their derivatives, and sugars and their derivatives, while most fungi such as Thermoascus, were negatively correlated with the phenylalanine, trimethylamine n-oxide, and isovalerate. SourceTracker analysis indicated that wheat was the important source of the Daqu microbiota, especially, the microorganisms in the inner of Daqu might be the drivers of the microbial succession during maturation. This study provided a comprehensive exploration to understand the microbial sources and shifts in high-temperature Daqu during maturation.
Collapse
Affiliation(s)
- Yuandi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yi Shen
- Sichuan Langjiu Co., Ltd., Luzhou, China
| | - Wei Cheng
- Sichuan Langjiu Co., Ltd., Luzhou, China
| | - Xi Wang
- Sichuan Langjiu Co., Ltd., Luzhou, China
| | - Yansong Xue
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoxue Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Shetewi T, Finnegan M, Fitzgerald S, Xu S, Duffy E, Morrin A. Investigation of the relationship between skin-emitted volatile fatty acids and skin surface acidity in healthy participants - a pilot study. J Breath Res 2021; 15. [PMID: 33765666 DOI: 10.1088/1752-7163/abf20a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
Volatile organic compounds (VOCs) emitted from human skin are of great interest in general in research fields including disease diagnostics and comprise various compound classes including acids, alcohols, ketones and aldehydes. The objective of this research is to investigate the volatile fatty acid (VFA) emission as recovered from healthy participant skin VOC samples and to characterise its association with skin surface acidity. VOC sampling was performed via headspace-solid phase microextraction (HS-SPME) with analysis via gas chromatography-mass spectrometry (GC-MS). Several VFAs were recovered from participants, grouped based on gender and site (female forehead, female forearm, male forearm). Saturated VFAs (C9, C12, C14, C15, C16) and the unsaturated VFA C16:1 (recovered only from the female forehead) were considered for this study. VFA compositions and abundances are discussed in the context of body site and corresponding gland type and distribution, and their quantitative association with skin acidity investigated. Normalised chromatographic peak areas of the recovered VFAs were found to linearly correlate with hydrogen ion concentration measured at each of the different sites considered and is the first report to our knowledge to demonstrate such an association. Our observations are explained in terms of the free fatty acid (FFA) content at the skin surface which is well-established as being a major contributor to skin surface acidity. Furthermore, it is interesting to consider that these VFA emissions from skin, governed by equilibrium vapour pressures exhibited at the skin surface, will be dependent on skin pH. It is proposed that these pH-modulated equilibrium vapour pressures of the acids could be resulting in an enhanced VFA emission sensitivity with respect to skin surface pH. To translate our observations made here for future wearable biodiagnostic applications, the measurement of skin surface pH based on the volatile emission was demonstrated using a pH indicator dye in the form of a planar colorimetric sensor, which was incorporated into a wearable platform and worn above the palm surface. As acidic skin surface pH is required for optimal skin barrier function and cutaneous antimicrobial defence, it is envisaged that these colorimetric volatile acid sensors could be deployed in robust wearable formats for monitoring health and disease applications in the future.
Collapse
Affiliation(s)
- Tasneem Shetewi
- Insight SFI Research Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin City University, Dublin, IRELAND
| | - Melissa Finnegan
- Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland, Dublin, 9, IRELAND
| | - Shane Fitzgerald
- Insight SFI Research Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin City University, Dublin, IRELAND
| | - Steve Xu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Northwestern University, Evanston, Illinois, IL 60611, UNITED STATES
| | - Emer Duffy
- Insight SFI Research Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin City University, Dublin, IRELAND
| | - Aoife Morrin
- Insight SFI Research Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin City University, Dublin, IRELAND
| |
Collapse
|
11
|
Wang Y, Cai W, Wang W, Shu N, Zhang Z, Hou Q, Shan C, Guo Z. Analysis of microbial diversity and functional differences in different types of high-temperature Daqu. Food Sci Nutr 2021; 9:1003-1016. [PMID: 33598183 PMCID: PMC7866569 DOI: 10.1002/fsn3.2068] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/07/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
Bacterial communities that enrich in high-temperature Daqu are important for the Chinese maotai-flavor liquor brewing process. However, the bacterial communities in three different types of high-temperature Daqu (white Daqu, black Daqu, and yellow Daqu) are still undercharacterized. In this study, the bacterial diversity of three different types of high-temperature Daqu was investigated using Illumina MiSeq high-throughput sequencing. The bacterial community of high-temperature Daqu is mainly composed of thermophilic bacteria, and seven bacterial phyla along with 262 bacterial genera were identified in all 30 high-temperature Daqu samples. Firmicutes, Actinobacteria, Proteobacteria, and Acidobacteria were the dominant bacterial phyla in high-temperature Daqu samples, while Thermoactinomyces, Staphylococcus, Lentibacillus, Bacillus, Kroppenstedtia, Saccharopolyspora, Streptomyces, and Brevibacterium were the dominant bacterial genera. The bacterial community structure of three different types of high-temperature Daqu was significantly different (p < .05). In addition, the results of microbiome phenotype prediction by BugBase and bacterial functional potential prediction using PICRUSt show that bacteria from different types of high-temperature Daqu have similar functions as well as phenotypes, and bacteria in high-temperature Daqu have vigorous metabolism in the transport and decomposition of amino acids and carbohydrates. These results offer a reference for the comprehensive understanding of bacterial diversity of high-temperature Daqu.
Collapse
Affiliation(s)
- Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food IngredientsHubei University of Arts and ScienceXiangyangChina
| | - Wenchao Cai
- Hubei Provincial Engineering and Technology Research Center for Food IngredientsHubei University of Arts and ScienceXiangyangChina
- School of Food ScienceShihezi UniversityShiheziChina
| | - Wenping Wang
- Hubei Yaozhihe Chuwengquan Liquor Industry Co., Ltd.XiangyangChina
| | - Na Shu
- Hubei Yaozhihe Chuwengquan Liquor Industry Co., Ltd.XiangyangChina
| | - Zhendong Zhang
- Hubei Provincial Engineering and Technology Research Center for Food IngredientsHubei University of Arts and ScienceXiangyangChina
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food IngredientsHubei University of Arts and ScienceXiangyangChina
| | - Chunhui Shan
- School of Food ScienceShihezi UniversityShiheziChina
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food IngredientsHubei University of Arts and ScienceXiangyangChina
| |
Collapse
|
12
|
Applying mass spectrometry-based assays to explore gut microbial metabolism and associations with disease. ACTA ACUST UNITED AC 2020; 58:719-732. [DOI: 10.1515/cclm-2019-0974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
AbstractThe workings of the gut microbiome have gained increasing interest in recent years through the mounting evidence that the microbiota plays an influential role in human health and disease. A principal focus of this research seeks to further understand the production of metabolic by-products produced by bacteria resident in the gut, and the subsequent interaction of these metabolites on host physiology and pathophysiology of disease. Gut bacterial metabolites of interest are predominately formed via metabolic breakdown of dietary compounds including choline and ʟ-carnitine (trimethylamine N-oxide), amino acids (phenol- and indole-containing uremic toxins) and non-digestible dietary fibers (short-chain fatty acids). Investigations have been accelerated through the application of mass spectrometry (MS)-based assays to quantitatively assess the concentration of these metabolites in laboratory- and animal-based experiments, as well as for direct circulating measurements in clinical research populations. This review seeks to explore the impact of these metabolites on disease, as well as to introduce the application of MS for those less accustomed to its use as a clinical tool, highlighting pertinent research related to its use for measurements of gut bacteria-mediated metabolites to further understand their associations with disease.
Collapse
|
13
|
Three-dimensional pompon-like Au/ZnO porous microspheres as solid phase microextraction coating for determination of volatile fatty acids from foot odor. Talanta 2020; 209:120519. [PMID: 31892032 DOI: 10.1016/j.talanta.2019.120519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/12/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022]
Abstract
In this study, facile fabrication of three-dimensional (3D) pompon-like gold/zinc oxide (Au/ZnO) porous microspheres by hydrothermal procedure was investigated. These microspheres were utilized as solid phase microextraction (SPME) coating for determination of volatile fatty acids (VFAs) from foot odor coupling with gas chromatography-mass spectrometry (GC-MS). SEM and TEM characterizations showed that as-prepared material was composed of 1D porous nanowires and presented a uniform coating on stainless-steel wire. The extraction of VFAs including propanoic acid, butyric acid, isobutanoic acid, isovaleric acid, hexanoic acid, and heptylic acid was carried out by headspace model after sampling from human foot using cotton wool strips. Following optimization of extraction parameters including extraction temperature and time and desorption temperature and time, the as-prepared SPME coating presented better extraction efficiency than commercial DVB/CAR/PDMS fiber towards all the VFAs due to its excellent properties. Under the optimized conditions, the method exhibited good linearity (0.5-200 ng) with regression coefficients (R2) ranging from 0.9836 to 0.9981 for all the analytes. The limits of detection ranged from 0.017 to 0.098 ng. Single fiber repeatability varied from 6.5% to 11.2% and the fiber-to-fiber reproducibility ranged from 8.6% to 12.3%. The proposed method was successfully applied for extraction and determination of VFAs from foot odor after sampling using cotton wool strips.
Collapse
|
14
|
Abstract
Biological surfaces such as skin and ocular surface provide a plethora of information about the underlying biological activity of living organisms. However, they pose unique problems arising from their innate complexity, constant exposure of the surface to the surrounding elements, and the general requirement of any sampling method to be as minimally invasive as possible. Therefore, it is challenging but also rewarding to develop novel analytical tools that are suitable for in vivo and in situ sampling from biological surfaces. In this context, wearable extraction devices including passive samplers, extractive patches, and different microextraction technologies come forward as versatile, low-invasive, fast, and reliable sampling and sample preparation tools that are applicable for in vivo and in situ sampling. This review aims to address recent developments in non-invasive in vivo and in situ sampling methods from biological surfaces that introduce new ways and improve upon existing ones. Directions for the development of future technology and potential areas of applications such as clinical, bioanalytical, and doping analyses will also be discussed. These advancements include various types of passive samplers, hydrogels, and polydimethylsiloxane (PDMS) patches/microarrays, and other wearable extraction devices used mainly in skin sampling, among other novel techniques developed for ocular surface and oral tissue/fluid sampling.
Collapse
|
15
|
Irankhah S, Abdi Ali A, Mallavarapu M, Soudi MR, Subashchandrabose S, Gharavi S, Ayati B. Ecological role of Acinetobacter calcoaceticus GSN3 in natural biofilm formation and its advantages in bioremediation. BIOFOULING 2019; 35:377-391. [PMID: 31119950 DOI: 10.1080/08927014.2019.1597061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
This study assessed the role of a new Acinetobacter calcoaceticus strain, GSN3, with biofilm-forming and phenol-degrading abilities. Three biofilm reactors were spiked with activated sludge (R1), green fluorescent plasmid (GFP) tagged GSN3 (R2), and their combination (R3). More than 99% phenol removal was achieved during four weeks in R3 while this efficiency was reached after two and four further operational weeks in R2 and R1, respectively. Confocal scanning electron microscopy revealed that GSN3-gfp strains appeared mostly in the deeper layers of the biofilm in R3. After four weeks, almost 7.07 × 107 more attached sludge cells were counted per carrier in R3 in comparison to R1. Additionally, the higher numbers of GSN3-gfp in R2 were unable to increase the efficiency as much as measured in R3. The presence of GSN3-gfp in R3 conveyed advantages, including enhancement of cell immobilization, population diversity, metabolic cooperation and ultimately treatment efficiency.
Collapse
Affiliation(s)
- Sahar Irankhah
- a Department of Microbiology, Faculty of Biological Sciences , Alzahra University , Tehran , Iran
- b Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology , University of Newcastle , Callaghan , NSW , Australia
| | - Ahya Abdi Ali
- a Department of Microbiology, Faculty of Biological Sciences , Alzahra University , Tehran , Iran
| | - Megharaj Mallavarapu
- b Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology , University of Newcastle , Callaghan , NSW , Australia
- c CRC CARE, Newcastle University LPO , Callaghan , NSW , Australia
| | - Mohammad Reza Soudi
- a Department of Microbiology, Faculty of Biological Sciences , Alzahra University , Tehran , Iran
| | - Suresh Subashchandrabose
- b Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology , University of Newcastle , Callaghan , NSW , Australia
- c CRC CARE, Newcastle University LPO , Callaghan , NSW , Australia
| | - Sara Gharavi
- d Department of Biotechnology, Faculty of Biological Sciences , Alzahra University , Tehran , Iran
| | - Bita Ayati
- e Environmental Engineering Division, Civil and Environmental Engineering Faculty , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
16
|
Duffy E, Morrin A. Endogenous and microbial volatile organic compounds in cutaneous health and disease. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Beshiru A, Igbinosa EO. Characterization of extracellular virulence properties and biofilm-formation capacity of Vibrio species recovered from ready-to-eat (RTE) shrimps. Microb Pathog 2018; 119:93-102. [DOI: 10.1016/j.micpath.2018.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
|
18
|
Abstract
Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species.
Collapse
|