1
|
Sadeghi M, Haghshenas B, Nami Y. Bifidobacterium exopolysaccharides: new insights into engineering strategies, physicochemical functions, and immunomodulatory effects on host health. Front Microbiol 2024; 15:1396308. [PMID: 38770019 PMCID: PMC11103016 DOI: 10.3389/fmicb.2024.1396308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Bifidobacteria are a prominent type of bacteria that have garnered significant research attention for their exceptional probiotic properties and capacity to produce exopolysaccharides (EPSs). These compounds exhibit diverse physical, chemical, and biological characteristics, prompting numerous investigations into their potential applications. Researchers have noted their beneficial effects as immune modulators within the host's body across various industries. Extensive research has been conducted on the immunomodulatory effects of bifidobacteria-derived EPSs, with emerging engineering strategies aimed at enhancing their immune-modulating capabilities. Understanding the structure, physicochemical properties, and biological activities of these compounds is crucial for their effective utilization across different industries. Our review encompassed numerous studies exploring Bifidobacterium and its metabolites, including EPSs, across various sectors, drawing from diverse databases. The distinctive properties of EPSs have spurred investigations into their applications, revealing their potential to bolster the immune system, combat inflammation, and treat various ailments. Additionally, these compounds possess antioxidant and antimicrobial properties, making them suitable for incorporation into a range of products spanning food, health, and medicine.
Collapse
Affiliation(s)
- Mahsa Sadeghi
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| |
Collapse
|
2
|
Liu D, Huang H, Han J, Wu Q, Xiang Y, Liu Y, Wei Y. Characterization of an EPS-producing bifidobacterial strain based on integration of phenotypic and complete genome sequencing data. Can J Microbiol 2023; 69:407-415. [PMID: 37352557 DOI: 10.1139/cjm-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
Bifidobacterium and Lactobacillus are known to be common members of the human intestinal microbiota, which play important roles in maintaining the homeostasis of host gut microenvironment. Several bifidobacterial and lactobacilli strains have been used as probiotics for health benefits. The exopolysaccharides (EPSs) produced by strains from Bifidobacterium and Lactobacillus are considered as beneficial traits mediating these beneficial effects. In this study, 21 strains belonging to Bifidobacterium and Lactobacillus were isolated from healthy infants' stool and were screened for EPS-producing ability. Among these strains, Bifidobacterium longum XZM1 showed the highest EPS productivity, which was further confirmed and characterized. The complete genome of strain XZM1 was sequenced, which revealed the presence of a gene cluster for EPS production. Furthermore, comparative genome analysis was performed among XZM1 and other strains from B. longum species. Following purification, the molecular weight (Mw) of EPS from XZM1 was determined as 4023 Da (Mw) through gel permeation chromatography. Analysis of the EPS hydrolysates revealed that the EPS was composed of mannose, glucose, galactose, arabinose, and fucose. Additionally, the EPS exhibited higher scavenging abilities toward hydroxyl than 1,1-diphenyl-2-picrylhydrazyl free radical. Overall, these results suggest that XZM1 from B. longum species may be a promising probiotic candidate.
Collapse
Affiliation(s)
- Dianbin Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Haohan Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinzhi Han
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qiong Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yaoyao Xiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
3
|
Farooq MZ, Wang X, Yan X. Effects of Aeriscardovia aeriphila on growth performance, antioxidant functions, immune responses, and gut microbiota in broiler chickens. J Zhejiang Univ Sci B 2023; 24:1014-1026. [PMID: 37961803 PMCID: PMC10646399 DOI: 10.1631/jzus.b2200621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/16/2023] [Indexed: 09/23/2023]
Abstract
Aeriscardovia aeriphila, also known as Bifidobacterium aerophilum, was first isolated from the caecal contents of pigs and the faeces of cotton-top tamarin. Bifidobacterium species play important roles in preventing intestinal infections, decreasing cholesterol levels, and stimulating the immune system. In this study, we isolated a strain of bacteria from the duodenal contents of broiler chickens, which was identified as A. aeriphila, and then evaluated the effects of A. aeriphila on growth performance, antioxidant functions, immune functions, and gut microbiota in commercial broiler chickens. Chickens were orally gavaged with A. aeriphila (1×109 CFU/mL) for 21 d. The results showed that A. aeriphila treatment significantly increased the average daily gain and reduced the feed conversion ratio (P<0.001). The levels of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) were significantly increased following A. aeriphila treatment (P<0.05). Blood urea nitrogen and aspartate aminotransferase levels were decreased, whereas glucose and creatinine levels increased as a result of A. aeriphila treatment. Furthermore, the levels of serum antioxidant enzymes, including catalase (P<0.01), superoxide dismutase (P<0.001), and glutathione peroxidase (P<0.05), and total antioxidant capacity (P<0.05) were enhanced following A. aeriphila treatment. A. aeriphila treatment significantly increased the levels of serum immunoglobulin A (IgA) (P<0.05), IgG (P<0.01), IgM (P<0.05), interleukin-1 (IL-1) (P<0.05), IL-4 (P<0.05), and IL-10 (P<0.05). The broiler chickens in the A. aeriphila group had higher secretory IgA (SIgA) levels in the duodenum (P<0.01), jejunum (P<0.001), and cecum (P<0.001) than those in the control group. The messenger RNA (mRNA) relative expression levels of IL-10 (P<0.05) and IL-4 (P<0.001) in the intestinal mucosa of chickens were increased, while nuclear factor-κB (NF-κB) (P<0.001) expression was decreased in the A. aeriphila group compared to the control group. Phylum-level analysis revealed Firmicutes as the main phylum, followed by Bacteroidetes, in both groups. The data also found that Phascolarctobacterium and Barnesiella were increased in A. aeriphila-treated group. In conclusion, oral administration of A. aeriphila could improve the growth performance, serum antioxidant capacity, immune modulation, and gut health of broilers. Our findings may provide important information for the application of A. aeriphila in poultry production.
Collapse
Affiliation(s)
- Muhammad Zahid Farooq
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Sciences, University of Veterinary and Animal Sciences (Jhang Campus), Lahore 54000, Pakistan
| | - Xinkai Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Yue Y, Wang Y, Han Y, Zhang Y, Cao T, Huo G, Li B. Genome Analysis of Bifidobacterium Bifidum E3, Structural Characteristics, and Antioxidant Properties of Exopolysaccharides. Foods 2023; 12:2988. [PMID: 37627987 PMCID: PMC10453370 DOI: 10.3390/foods12162988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, the antioxidant properties of intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) and whole genome sequencing of Bifidobacterium bifidum E3 (B. bifidum E3), as well as the structural characteristics and antioxidant properties of EPS-1, EPS-2, and EPS-3, were evaluated. The results revealed that intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) had potent DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), hydroxyl, and superoxide anion radical scavenging capacities, among which CFS was the best. At the genetic level, we identified a strong carbohydrate metabolism capacity, an EPS synthesis gene cluster, and five sugar nucleotides in B. bifidum E3. Therefore, we extracted cEPS from B. bifidum E3 and purified it to obtain EPS-1, EPS-2, and EPS-3. EPS-1, EPS-2, and EPS-3 were heteropolysaccharides with an average molecular weight of 4.15 × 104 Da, 3.67 × 104 Da, and 5.89 × 104 Da, respectively. The EPS-1 and EPS-2 are mainly comprised of mannose and glucose, and the EPS-3 is mainly comprised of rhamnose, mannose, and glucose. The typical characteristic absorption peaks of polysaccharides were shown in Fourier transform infrared spectroscopy (FT-IR spectroscopy). The microstructural study showed a rough surface structure for EPS-1, EPS-2, and EPS-3. Furthermore, EPS-1, EPS-2, and EPS-3 exhibited potent DPPH, hydroxyl, and superoxide anion radical scavenging capacities. Correlation analysis identified that antioxidant capacities may be influenced by various factors, especially molecular weight, chemical compositions, and monosaccharide compositions. In summary, the EPS that was produced by B. bifidum E3 may provide insights into health-promoting benefits in humans.
Collapse
Affiliation(s)
- Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yuqi Wang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yu Han
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Ting Cao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Yu Y, Ren X, Cao L, Liang Q, Xiao M, Cheng J, Nan S, Zhu C, Kong Q, Fu X, Mou H. Complete‐Genome
Sequence and
in vitro
Probiotic Characteristics Analysis of
Bifidobacterium pseudolongum
YY
‐26. J Appl Microbiol 2022; 133:2599-2617. [DOI: 10.1111/jam.15730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Ying Yu
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Xinmiao Ren
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Linyuan Cao
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Qingping Liang
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Mengshi Xiao
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Jiaying Cheng
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Shihao Nan
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University
| | - Changliang Zhu
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Qing Kong
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University
| | - Haijin Mou
- College of Food Science and Engineering Ocean University of China Qingdao China
| |
Collapse
|
6
|
Derrien M, Turroni F, Ventura M, van Sinderen D. Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood. Trends Microbiol 2022; 30:940-947. [DOI: 10.1016/j.tim.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023]
|
7
|
Tarracchini C, Viglioli M, Lugli GA, Mancabelli L, Fontana F, Alessandri G, Turroni F, Ventura M, Milani C. The Integrated Probiotic Database: a genomic compendium of bifidobacterial health-promoting strains. MICROBIOME RESEARCH REPORTS 2022; 1:9. [PMID: 38045645 PMCID: PMC10688828 DOI: 10.20517/mrr.2021.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 12/05/2023]
Abstract
Background: The World Health Organization defines probiotics as "live microorganisms, which when administered in adequate amounts confer a health benefit on the host". In this framework, probiotic strains should be regarded as safe for human and animal consumption, i.e., they should possess the GRAS (generally recognized as safe) status, notified by the local authorities. Consistently, strains of selected Bifidobacterium species are extensively used as probiotic agents to prevent and ameliorate a broad spectrum of human and/or animal gastrointestinal disorders. Even though probiotic properties are often genus- or species-associated, strain-level differences in the genetic features conferring individual probiotic properties to commercialized bifidobacterial strains have not been investigated in detail. Methods: In this study, we built a genomic database named Integrated Probiotic DataBase (IPDB), whose first iteration consists of common bifidobacterial strains used in probiotic products for which public genome sequences were available, such as members of B. longum subsp. longum, B. longum subsp. infantis, B. bifidum, B. breve, and B. animalis subsp. lactis taxa. Furthermore, the IPDB was exploited to perform comparative genome analyses focused on genetic factors conferring structural, functional, and chemical features predicted to be involved in microbe-host and microbe-microbe interactions. Results and conclusion: Our analyses revealed strain-level genetic differences, underlining the importance of inspecting the strain-specific and outcome-specific efficacy of probiotics. In this context, IPDB represents a valuable resource for obtaining genetic information of well-established bifidobacterial probiotic strains.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Martina Viglioli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
- GenProbio Srl, Via delle Scienze, 11/A, Parma 43100, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| |
Collapse
|
8
|
Kujawska M, Raulo A, Millar M, Warren F, Baltrūnaitė L, Knowles SCL, Hall LJ. Bifidobacterium castoris strains isolated from wild mice show evidence of frequent host switching and diverse carbohydrate metabolism potential. ISME COMMUNICATIONS 2022; 2:20. [PMID: 37938745 PMCID: PMC9723756 DOI: 10.1038/s43705-022-00102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 11/09/2023]
Abstract
Members of the gut microbiota genus Bifidobacterium are widely distributed human and animal symbionts believed to exert beneficial effects on their hosts. However, in-depth genomic analyses of animal-associated species and strains are somewhat lacking, particularly in wild animal populations. Here, to examine patterns of host specificity and carbohydrate metabolism capacity, we sequenced whole genomes of Bifidobacterium isolated from wild-caught small mammals from two European countries (UK and Lithuania). Members of Bifidobacterium castoris, Bifidobacterium animalis and Bifodobacterium pseudolongum were detected in wild mice (Apodemus sylvaticus, Apodemus agrarius and Apodemus flavicollis), but not voles or shrews. B. castoris constituted the most commonly recovered Bifidobacterium (78% of all isolates), with the majority of strains only detected in a single population, although populations frequently harboured multiple co-circulating strains. Phylogenetic analysis revealed that the mouse-associated B. castoris clades were not specific to a particular location or host species, and their distribution across the host phylogeny was consistent with regular host shifts rather than host-microbe codiversification. Functional analysis, including in vitro growth assays, suggested that mouse-derived B. castoris strains encoded an extensive arsenal of carbohydrate-active enzymes, including putative novel glycosyl hydrolases such as chitosanases, along with genes encoding putative exopolysaccharides, some of which may have been acquired via horizontal gene transfer. Overall, these results provide a rare genome-level analysis of host specificity and genomic capacity among important gut symbionts of wild animals, and reveal that Bifidobacterium has a labile relationship with its host over evolutionary time scales.
Collapse
Affiliation(s)
- Magdalena Kujawska
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich Research Park, Norwich, UK
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Aura Raulo
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, UK
| | - Molly Millar
- Food Innovation and Health, Quadram Institute Biosciences, Norwich Research Park, Norwich, UK
| | - Fred Warren
- Food Innovation and Health, Quadram Institute Biosciences, Norwich Research Park, Norwich, UK
| | | | - Sarah C L Knowles
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Herfordshire, UK
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich Research Park, Norwich, UK.
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
9
|
Bukharin OV, Andryushchenko SV, Perunova NB, Ivanova EV. Environmental Determination of Indigenous Bifidobacteria of the Human Intestine. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES 2022; 92:629-635. [PMID: 36340323 PMCID: PMC9628474 DOI: 10.1134/s1019331622050033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Abstract
The environmental determination of indigenous (constantly present) bifidobacteria of the human large intestine is considered in this review. Environmental determination (from the Latin determinere, "I determine") is understood as a set of natural phenomena of a habitat (biotope) that determine the role of indigenous microorganisms in the microbiocenosis. Using the symbiotic approach, an attempt is made to identify the environmental conditions for the habitat of bifidobacteria and their physiological effects in the microsymbiocenosis. The features of indigenous bifidobacteria in terms of their nature have been established: evolutionary-genetic (phylogenetic remoteness, genome conservation, metabolic specialization), biochemical (lysozyme resistance, constitutive acetate production), and physiological (microbial "friend-foe" identification, immunoregulation), which are important in adaptation (persistence) and the provision of mutualistic effects and stability of the bifidoflora in the population.
Collapse
Affiliation(s)
- O. V. Bukharin
- Institute for Cellular and Intracellular Symbiosis (ICIS), Ural Branch, Russian Academy of Sciences, Orenburg, Russia
| | - S. V. Andryushchenko
- Institute for Cellular and Intracellular Symbiosis (ICIS), Ural Branch, Russian Academy of Sciences, Orenburg, Russia
| | - N. B. Perunova
- Institute for Cellular and Intracellular Symbiosis (ICIS), Ural Branch, Russian Academy of Sciences, Orenburg, Russia
| | - E. V. Ivanova
- Institute for Cellular and Intracellular Symbiosis (ICIS), Ural Branch, Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
10
|
Muninathan C, Guruchandran S, Viswanath Kalyan AJ, Ganesan ND. Microbial exopolysaccharides: role in functional food engineering and gut‐health management. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Nandhini Devi Ganesan
- Centre for Food Technology Department of Biotechnology Anna University Chennai 600025 India
| |
Collapse
|
11
|
Chung The H, Nguyen Ngoc Minh C, Tran Thi Hong C, Nguyen Thi Nguyen T, Pike LJ, Zellmer C, Pham Duc T, Tran TA, Ha Thanh T, Van MP, Thwaites GE, Rabaa MA, Hall LJ, Baker S. Exploring the Genomic Diversity and Antimicrobial Susceptibility of Bifidobacterium pseudocatenulatum in a Vietnamese Population. Microbiol Spectr 2021; 9:e0052621. [PMID: 34523984 PMCID: PMC8557894 DOI: 10.1128/spectrum.00526-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 01/29/2023] Open
Abstract
Bifidobacterium pseudocatenulatum is a member of the human gut microbiota, and specific variants of B. pseudocatenulatum have been associated with health benefits such as improving gut integrity and reducing inflammatory responses. Here, we aimed to assess the genomic diversity and predicted metabolic profiles of B. pseudocatenulatum cells found colonizing the gut of healthy Vietnamese adults and children. We found that the population of B. pseudocatenulatum from each individual was distinct and highly diverse, with intraclonal variation attributed largely to a gain or loss of carbohydrate-utilizing enzymes. The B. pseudocatenulatum genomes were enriched with glycosyl hydrolases predicted to target plant-based nondigestible carbohydrates (GH13, GH43) but not host-derived glycans. Notably, the exopolysaccharide biosynthesis region from organisms isolated from healthy children showed extensive genetic diversity and was subject to a high degree of genetic modification. Antimicrobial susceptibility profiling revealed that the Vietnamese B. pseudocatenulatum cells were uniformly susceptible to beta-lactams but exhibited variable resistance to azithromycin, tetracycline, ciprofloxacin, and metronidazole. The genomic presence of ermX and tet variants conferred resistance against azithromycin and tetracycline, respectively; ciprofloxacin resistance was associated with a mutation(s) in the quinolone resistance-determining region (GyrA, S115, and/or D119). Our work provides the first detailed genomic and antimicrobial resistance characterization of B. pseudocatenulatum found in the Vietnamese population, which can be exploited for the rational design of probiotics. IMPORTANCE Bifidobacterium pseudocatenulatum is a beneficial member of the human gut microbiota. The organism can modulate inflammation and has probiotic potential, but its characteristics are largely strain dependent and associated with distinct genomic and biochemical features. Population-specific beneficial microbes represent a promising avenue for the development of potential probiotics, as they may exhibit a more suitable profile in the target population. This study investigates the underexplored diversity of B. pseudocatenulatum in Vietnam and provides more understanding of its genomic diversity, metabolic potential, and antimicrobial susceptibility. Such data from indigenous populations are essential for selecting probiotic candidates that can be accelerated into further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | - Lindsay J. Pike
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Caroline Zellmer
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Trung Pham Duc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuan-Anh Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Minh Pham Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Maia A. Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Lindsay J. Hall
- Quadram Institute Biosciences, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Stephen Baker
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
12
|
Hickey A, Stamou P, Udayan S, Ramón-Vázquez A, Esteban-Torres M, Bottacini F, Woznicki JA, Hughes O, Melgar S, Ventura M, Van Sinderen D, Rossini V, Nally K. Bifidobacterium breve Exopolysaccharide Blocks Dendritic Cell Maturation and Activation of CD4 + T Cells. Front Microbiol 2021; 12:653587. [PMID: 34220742 PMCID: PMC8242212 DOI: 10.3389/fmicb.2021.653587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Exopolysaccharide (EPS) is a bacterial extracellular carbohydrate moiety which has been associated with immunomodulatory activity and host protective effects of several gut commensal bacteria. Bifidobacterium breve are early colonizers of the human gastrointestinal tract (GIT) but the role of EPS in mediating their effects on the host has not been investigated for many strains. Here, we characterized EPS production by a panel of human B. breve isolates and investigated the effect of EPS status on host immune responses using human and murine cell culture-based assay systems. We report that B. breve EPS production is heterogenous across strains and that immune responses in human THP-1 monocytes are strain-specific, but not EPS status-specific. Using wild type and isogenic EPS deficient mutants of B. breve strains UCC2003 and JCM7017 we show that EPS had strain-specific divergent effects on cytokine responses from murine bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs). The B. breve UCC2003 EPS negative (EPS–) strain increased expression of cytokine genes (Tnfa, Il6, Il12a, and Il23a) relative to untreated BMDCs and BMDCs treated with wild type strain. B. breve UCC2003 and JCM7017 EPS– strains increased expression of dendritic cell (DC) activation and maturation marker genes (Cd80, Cd83, and Cd86) relative to untreated BMDCs. Consistent with this, BMDCs co-cultured with B. breve UCC2003 and JCM7017 EPS– strains engineered to express OVA antigen activated OVA-specific OT-II CD4+ T-cells in a co-culture antigen-presentation assay while EPS proficient strains did not. Collectively, these data indicate that B. breve EPS proficient strains use EPS to prevent maturation of DCs and activation of antigen specific CD4+ T cells responses to B. breve. This study identifies a new immunomodulatory role for B. breve EPS and suggests it may be important for immune evasion of adaptive immunity by B. breve and contribute to host-microbe mutualism.
Collapse
Affiliation(s)
- Ana Hickey
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - Sreeram Udayan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Owen Hughes
- Luminex Corporation, Austin, TX, United States
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marco Ventura
- Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe Van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Detection, Isolation, and Purification of Bifidobacterial Exopolysaccharides. Methods Mol Biol 2021. [PMID: 33649951 DOI: 10.1007/978-1-0716-1274-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This chapter describes some of the available methods to assess EPS production in bifidobacteria, being largely based on those developed for the same purpose for members of the lactic acid bacteria group. The first step is detection of putative EPS-producing bifidobacteria based on a mucoid and/or ropy phenotype. Next, a basic procedure is described for the isolation of the glycan polymer based on the release from bifidobacterial cells grown and collected from the surface of agar-MRSc ("crude EPS"), followed by a purification procedure intended to remove other bacterial macromolecules (DNA and proteinaceous material) to generate "purified EPS." Finally, several methods used for quantification and physical-chemical characterization of isolated/purified polysaccharide are outlined.
Collapse
|
14
|
Alessandri G, van Sinderen D, Ventura M. The genus bifidobacterium: From genomics to functionality of an important component of the mammalian gut microbiota running title: Bifidobacterial adaptation to and interaction with the host. Comput Struct Biotechnol J 2021; 19:1472-1487. [PMID: 33777340 PMCID: PMC7979991 DOI: 10.1016/j.csbj.2021.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Members of the genus Bifidobacterium are dominant and symbiotic inhabitants of the mammalian gastrointestinal tract. Being vertically transmitted, bifidobacterial host colonization commences immediately after birth and leads to a phase of host infancy during which bifidobacteria are highly prevalent and abundant to then transit to a reduced, yet stable abundance phase during host adulthood. However, in order to reach and stably colonize their elective niche, i.e. the large intestine, bifidobacteria have to cope with a multitude of oxidative, osmotic and bile salt/acid stress challenges that occur along the gastrointestinal tract (GIT). Concurrently, bifidobacteria not only have to compete with the myriad of other gut commensals for nutrient acquisition, but they also require protection against bacterial viruses. In this context, Next-Generation Sequencing (NGS) techniques, allowing large-scale comparative and functional genome analyses have helped to identify the genetic strategies that bifidobacteria have developed in order to colonize, survive and adopt to the highly competitive mammalian gastrointestinal environment. The current review is aimed at providing a comprehensive overview concerning the molecular strategies on which bifidobacteria rely to stably and successfully colonize the mammalian gut.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
15
|
Oerlemans MM, Akkerman R, Ferrari M, Walvoort MT, de Vos P. Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Exploring the Ecology of Bifidobacteria and Their Genetic Adaptation to the Mammalian Gut. Microorganisms 2020; 9:microorganisms9010008. [PMID: 33375064 PMCID: PMC7822027 DOI: 10.3390/microorganisms9010008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mammalian gut is densely inhabited by microorganisms that have coevolved with their host. Amongst these latter microorganisms, bifidobacteria represent a key model to study host–microbe interaction within the mammalian gut. Remarkably, bifidobacteria naturally occur in a range of ecological niches that are either directly or indirectly connected to the animal gastrointestinal tract. They constitute one of the dominant bacterial members of the intestinal microbiota and are among the first colonizers of the mammalian gut. Notably, the presence of bifidobacteria in the gut has been associated with several health-promoting activities. In this review, we aim to provide an overview of current knowledge on the genetic diversity and ecology of bifidobacteria. Furthermore, we will discuss how this important group of gut bacteria is able to colonize and survive in the mammalian gut, so as to facilitate host interactions.
Collapse
|
17
|
Luo M, Gan M, Yu X, Wu X, Xu F. Study on the regulatory effects and mechanisms of action of bifidobacterial exopolysaccharides on anaphylaxes in mice. Int J Biol Macromol 2020; 165:1447-1454. [PMID: 33011263 DOI: 10.1016/j.ijbiomac.2020.09.224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/07/2020] [Accepted: 09/24/2020] [Indexed: 01/13/2023]
Abstract
This study used bifidobacterial exopolysaccharides (EPSs) from the selected strains of Bifidobacterium bifidum WBBI01 and WBIN03, Bifidobacterium breve WBBR04, Bifidobacterium infantis WBAN07 and Bifidobacterium longum WBLO01 to explore the EPSs regulatory effect on anaphylaxis in mice. First of all, allergy mouse models were established via subcutaneous injection followed by OVA gavage, and then the EPSs from the five Bifidobacteria were fed into the mice via continuous gavage. Samples were taken from the mice periodically to determine the changes of cytokine levels in serum, including those of IgE, IgG, IL-4, IL-5, IL-13 and INF-γ. The test revealed that the EPSs from B. breve WBBR04 could considerably relieve food allergy in the mouse models, but the effect of B. infantis WBAN07 was unsatisfactory. Based on the above conclusions, the EPSs of B. bifidum WBBR04 and WBIN03, B. breve WBBR04, and B. longum WBLO01 were respectively incubated with the small intestine tissue sections of an allergic mouse model. The resulting culture supernatants were then tested. Based on the above, it can be concluded that EPS of B. breve WBBR04 can enhance the intestinal barrier integrity by attaching themselves onto the inner walls of the small intestine, hence effectively isolating the allergens and preventing food allergy.
Collapse
Affiliation(s)
- Meng Luo
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Min Gan
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - XiaoMin Yu
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - XiaoLi Wu
- College of Basic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Feng Xu
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
18
|
Longhi G, van Sinderen D, Ventura M, Turroni F. Microbiota and Cancer: The Emerging Beneficial Role of Bifidobacteria in Cancer Immunotherapy. Front Microbiol 2020; 11:575072. [PMID: 33013813 PMCID: PMC7507897 DOI: 10.3389/fmicb.2020.575072] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many intestinal bacteria are believed to be involved in various inflammatory and immune processes that influence tumor etiology because of their metabolic properties and their ability to alter the microbiota homeostasis. Although many functions of the microbiota are still unclear, there is compelling experimental evidence showing that the intestinal microbiota is able to modulate carcinogenesis and the response to anticancer therapies, both in the intestinal tract and other body sites. Among the wide variety of gut-colonizing microorganisms, various species belonging to the Bifidobacterium genus are believed to elicit beneficial effects on human physiology and on the host-immune system. Recent findings, based on preclinical mouse models and on human clinical trials, have demonstrated the impact of gut commensals including bifidobacteria on the efficacy of tumor-targeting immunotherapy. Although the underlying molecular mechanisms remain obscure, bifidobacteria and other microorganisms have become a promising aid to immunotherapeutic procedures that are currently applied to treat cancer. The present review focuses on strategies to recruit the microbiome in order to enhance anticancer responses and develop therapies aimed at fighting the onset and progression of malignancies.
Collapse
Affiliation(s)
- Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- Alimentary Pharmabotic Centre (APC) Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Püngel D, Treveil A, Dalby MJ, Caim S, Colquhoun IJ, Booth C, Ketskemety J, Korcsmaros T, van Sinderen D, Lawson MAE, Hall LJ. Bifidobacterium breve UCC2003 Exopolysaccharide Modulates the Early Life Microbiota by Acting as a Potential Dietary Substrate. Nutrients 2020; 12:E948. [PMID: 32235410 PMCID: PMC7231044 DOI: 10.3390/nu12040948] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bifidobacterium represents an important early life microbiota member. Specific bifidobacterial components, exopolysaccharides (EPS), positively modulate host responses, with purified EPS also suggested to impact microbe-microbe interactions by acting as a nutrient substrate. Thus, we determined the longitudinal effects of bifidobacterial EPS on microbial communities and metabolite profiles using an infant model colon system. METHODS Differential gene expression and growth characteristics were determined for each strain; Bifidobacterium breve UCC2003 and corresponding isogenic EPS-deletion mutant (B. breve UCC2003del). Model colon vessels were inoculated with B. breve and microbiome dynamics monitored using 16S rRNA sequencing and metabolomics (NMR). RESULTS Transcriptomics of EPS mutant vs. B. breve UCC2003 highlighted discrete differential gene expression (e.g., eps biosynthetic cluster), though overall growth dynamics between strains were unaffected. The EPS-positive vessel had significant shifts in microbiome and metabolite profiles until study end (405 h); with increases of Tyzzerella and Faecalibacterium, and short-chain fatty acids, with further correlations between taxa and metabolites which were not observed within the EPS-negative vessel. CONCLUSIONS These data indicate that B. breve UCC2003 EPS is potentially metabolized by infant microbiota members, leading to differential microbial metabolism and altered metabolite by-products. Overall, these findings may allow development of EPS-specific strategies to promote infant health.
Collapse
Affiliation(s)
- Deborah Püngel
- Gut Microbes & Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (D.P.); (A.T.); (M.J.D.); (S.C.); (J.K.); (T.K.)
| | - Agatha Treveil
- Gut Microbes & Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (D.P.); (A.T.); (M.J.D.); (S.C.); (J.K.); (T.K.)
- Earlham Institute, Norwich NR4 7UZ, UK
| | - Matthew J Dalby
- Gut Microbes & Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (D.P.); (A.T.); (M.J.D.); (S.C.); (J.K.); (T.K.)
| | - Shabhonam Caim
- Gut Microbes & Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (D.P.); (A.T.); (M.J.D.); (S.C.); (J.K.); (T.K.)
| | - Ian J Colquhoun
- Analytical Sciences, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (I.J.C.); (C.B.)
| | - Catherine Booth
- Analytical Sciences, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (I.J.C.); (C.B.)
| | - Jennifer Ketskemety
- Gut Microbes & Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (D.P.); (A.T.); (M.J.D.); (S.C.); (J.K.); (T.K.)
| | - Tamas Korcsmaros
- Gut Microbes & Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (D.P.); (A.T.); (M.J.D.); (S.C.); (J.K.); (T.K.)
- Earlham Institute, Norwich NR4 7UZ, UK
| | - Douwe van Sinderen
- APC Microbiome Institute, University College Cork, T12 K8AF Cork, Ireland;
| | - Melissa AE Lawson
- Gut Microbes & Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (D.P.); (A.T.); (M.J.D.); (S.C.); (J.K.); (T.K.)
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Lindsay J Hall
- Gut Microbes & Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (D.P.); (A.T.); (M.J.D.); (S.C.); (J.K.); (T.K.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
20
|
Turroni F, Duranti S, Milani C, Lugli GA, van Sinderen D, Ventura M. Bifidobacterium bifidum: A Key Member of the Early Human Gut Microbiota. Microorganisms 2019; 7:microorganisms7110544. [PMID: 31717486 PMCID: PMC6920858 DOI: 10.3390/microorganisms7110544] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022] Open
Abstract
Bifidobacteria typically represent the most abundant bacteria of the human gut microbiota in healthy breast-fed infants. Members of the Bifidobacterium bifidum species constitute one of the dominant taxa amongst these bifidobacterial communities and have been shown to display notable physiological and genetic features encompassing adhesion to epithelia as well as metabolism of host-derived glycans. In the current review, we discuss current knowledge concerning particular biological characteristics of the B. bifidum species that support its specific adaptation to the human gut and their implications in terms of supporting host health.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
- Correspondence:
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
- APC Microbiome Institute, University College Cork, T12 YT20 Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
21
|
Alessandri G, Ossiprandi MC, MacSharry J, van Sinderen D, Ventura M. Bifidobacterial Dialogue With Its Human Host and Consequent Modulation of the Immune System. Front Immunol 2019; 10:2348. [PMID: 31632412 PMCID: PMC6779802 DOI: 10.3389/fimmu.2019.02348] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Since bifidobacteria are among the pioneering colonizers of the human infant gut, their interaction with their host is believed to start soon following birth. Several members of the Bifidobacterium genus are purported to exert various health-promoting effects at local and systemic levels, e.g., limiting pathogen colonization/invasion, influencing gut homeostasis, and influencing the immune system through changes in innate and/or adaptive immune responses. This has promoted extensive research efforts to shed light on the precise mechanisms by which bifidobacteria are able to stimulate and interact with the host immune system. These studies uncovered a variety of secreted or surface-associated molecules that act as essential mediators for the establishment of a bifidobacteria-host immune system dialogue, and that allow interactions with mucosa-associated immune cells. Additionally, the by-products generated from bifidobacterial carbohydrate metabolism act as vectors that directly and indirectly trigger the host immune response, the latter by stimulating growth of other commensal microorganisms such as propionate- or butyrate-producing bacteria. This review is aimed to provide a comprehensive overview on the wide variety of strategies employed by bifidobacteria to engage with the host immune system.
Collapse
Affiliation(s)
- Giulia Alessandri
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Maria Cristina Ossiprandi
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - John MacSharry
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
22
|
Heteropolysaccharide-producing bifidobacteria for the development of functional dairy products. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P. Interactions of Surface Exopolysaccharides From Bifidobacterium and Lactobacillus Within the Intestinal Environment. Front Microbiol 2018; 9:2426. [PMID: 30364185 PMCID: PMC6193118 DOI: 10.3389/fmicb.2018.02426] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/28/2022] Open
Abstract
Exopolysaccharides (EPS) are surface carbohydrate polymers present in most bacteria acting as a protective surface layer but also interacting with the surrounding environment. This review discusses the roles of EPS synthesized by strains of Lactobacillus and Bifidobacterium, many of them with probiotic characteristics, in the intestinal environment. Current knowledge on genetics and biosynthesis pathways of EPS in lactic acid bacteria and bifidobacteria, as well as the development of genetic tools, has created possibilities to elucidate the interplay between EPS and host intestinal mucosa. These include the microbiota that inhabits this ecological niche and the host cells. Several carbohydrate recognition receptors located in the intestinal epithelium could be involved in the interaction with bacterial EPS and modulation of immune response; however, little is known about the receptors recognizing EPS from lactobacilli or bifidobacteria and the triggered response. On the contrary, it has been clearly demonstrated that EPS play a relevant role in the persistence of the producing bacteria in the intestinal tract. Indeed, some authors postulate that some of the beneficial actions of EPS-producing probiotics could be related to the formation of a biofilm layer protecting the host against injury, for example by pathogens or their toxins. Nevertheless, the in vivo formation of biofilms by probiotics has not been proved to date. Finally, EPS produced by probiotic strains are also able to interact with the intestinal microbiota that populates the gut. In fact, some of these polymers can be used as carbohydrate fermentable source by some gut commensals thus being putatively involved in the release of bacterial metabolites that exert positive benefits for the host. In spite of the increasing knowledge about the role that these surface molecules play in the interaction of probiotic bacteria with the gut mucosal actors, both intestinal receptors and microbiota, the challenging issue is to demonstrate the functionality of EPS in vivo, which will open an avenue of opportunities for the application of EPS-producing probiotics to improve health.
Collapse
Affiliation(s)
- Nuria Castro-Bravo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Abelardo Margolles
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
24
|
Egan M, Bottacini F, O'Connell Motherway M, Casey PG, Morrissey R, Melgar S, Faurie JM, Chervaux C, Smokvina T, van Sinderen D. Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Appl Microbiol Biotechnol 2018; 102:10645-10663. [PMID: 30306201 DOI: 10.1007/s00253-018-9413-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/08/2018] [Accepted: 09/16/2018] [Indexed: 01/16/2023]
Abstract
Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain's inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.
Collapse
Affiliation(s)
- Muireann Egan
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Mary O'Connell Motherway
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Patrick G Casey
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Ruth Morrissey
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | | | | | - Tamara Smokvina
- Danone Nutricia Research, Avenue de la Vauve, 91767, Palaiseau, France
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland.
| |
Collapse
|
25
|
Bromberg JS, Hittle L, Xiong Y, Saxena V, Smyth EM, Li L, Zhang T, Wagner C, Fricke WF, Simon T, Brinkman CC, Mongodin EF. Gut microbiota-dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes. JCI Insight 2018; 3:121045. [PMID: 30282817 DOI: 10.1172/jci.insight.121045] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
We hypothesized that the gut microbiota influences survival of murine cardiac allografts through modulation of immunity. Antibiotic pretreated mice received vascularized cardiac allografts and fecal microbiota transfer (FMT), along with tacrolimus immunosuppression. FMT source samples were from normal, pregnant (immune suppressed), or spontaneously colitic (inflammation) mice. Bifidobacterium pseudolongum (B. pseudolongum) in pregnant FMT recipients was associated with prolonged allograft survival and lower inflammation and fibrosis, while normal or colitic FMT resulted in inferior survival and worse histology. Transfer of B. pseudolongum alone resulted in reduced inflammation and fibrosis. Stimulation of DC and macrophage lines with B. pseudolongum induced the antiinflammatory cytokine IL-10 and homeostatic chemokine CCL19 but induced lesser amounts of the proinflammatory cytokines TNFα and IL-6. In contrast, LPS and Desulfovibrio desulfuricans (D. desulfuricans), more abundant in colitic FMT, induced a more inflammatory cytokine response. Analysis of mesenteric and peripheral lymph node structure showed that B. pseudolongum gavage resulted in a higher laminin α4/α5 ratio in the lymph node cortical ridge, indicative of a suppressive environment, while D. desulfuricans resulted in a lower laminin α4/α5 ratio, supportive of inflammation. Discrete gut bacterial species alter immunity and may predict graft outcomes through stimulation of myeloid cells and shifts in lymph node structure and permissiveness.
Collapse
Affiliation(s)
- Jonathan S Bromberg
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, Maryland, USA
| | - Lauren Hittle
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, Maryland, USA
| | - Yanbao Xiong
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, Maryland, USA
| | - Vikas Saxena
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, Maryland, USA
| | - Eoghan M Smyth
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, Maryland, USA
| | - Lushen Li
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, Maryland, USA
| | - Tianshu Zhang
- University of Maryland School of Medicine, Department of Surgery, Baltimore, Maryland, USA
| | - Chelsea Wagner
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, Maryland, USA
| | - W Florian Fricke
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Thomas Simon
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Colin C Brinkman
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, Maryland, USA
| | - Emmanuel F Mongodin
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Reconstruction of the Bifidobacterial Pan-Secretome Reveals the Network of Extracellular Interactions between Bifidobacteria and the Infant Gut. Appl Environ Microbiol 2018; 84:AEM.00796-18. [PMID: 29884754 DOI: 10.1128/aem.00796-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
The repertoire of secreted proteins decoded by a microorganism represents proteins released from or associated with the cell surface. In gut commensals, such as bifidobacteria, these proteins are perceived to be functionally relevant, as they regulate the interaction with the gut environment. In the current study, we screened the predicted proteome of over 300 bifidobacterial strains among the currently recognized bifidobacterial species to generate a comprehensive database encompassing bifidobacterial extracellular proteins. A glycobiome analysis of this predicted bifidobacterial secretome revealed that a correlation exists between particular bifidobacterial species and their capability to hydrolyze human milk oligosaccharides (HMOs) and intestinal glycoconjugates, such as mucin. Furthermore, an exploration of metatranscriptomic data sets of the infant gut microbiota allowed the evaluation of the expression of bifidobacterial genes encoding extracellular proteins, represented by ABC transporter substrate-binding proteins and glycoside hydrolases enzymes involved in the degradation of human milk oligosaccharides and mucin. Overall, this study provides insights into how bifidobacteria interact with their natural yet highly complex environment, the infant gut.IMPORTANCE The ecological success of bifidobacteria relies on the activity of extracellular proteins that are involved in the metabolism of nutrients and the interaction with the environment. To date, information on secreted proteins encoded by bifidobacteria is incomplete and just related to few species. In this study, we reconstructed the bifidobacterial pan-secretome, revealing extracellular proteins that modulate the interaction of bifidobacteria with their natural environment. Furthermore, a survey of the secretion systems between bifidobacterial genomes allowed the identification of a conserved Sec-dependent secretion machinery in all the analyzed genomes and the Tat protein translocation system in the chromosomes of 23 strains belonging to Bifidobacterium longum subsp. longum and Bifidobacterium aesculapii.
Collapse
|
27
|
Comparative genomics and genotype-phenotype associations in Bifidobacterium breve. Sci Rep 2018; 8:10633. [PMID: 30006593 PMCID: PMC6045613 DOI: 10.1038/s41598-018-28919-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/01/2018] [Indexed: 12/26/2022] Open
Abstract
Bifidobacteria are common members of the gastro-intestinal microbiota of a broad range of animal hosts. Their successful adaptation to this particular niche is linked to their saccharolytic metabolism, which is supported by a wide range of glycosyl hydrolases. In the current study a large-scale gene-trait matching (GTM) effort was performed to explore glycan degradation capabilities in B. breve. By correlating the presence/absence of genes and associated genomic clusters with growth/no-growth patterns across a dataset of 20 Bifidobacterium breve strains and nearly 80 different potential growth substrates, we not only validated the approach for a number of previously characterized carbohydrate utilization clusters, but we were also able to discover novel genetic clusters linked to the metabolism of salicin and sucrose. Using GTM, genetic associations were also established for antibiotic resistance and exopolysaccharide production, thereby identifying (novel) bifidobacterial antibiotic resistance markers and showing that the GTM approach is applicable to a variety of phenotypes. Overall, the GTM findings clearly expand our knowledge on members of the B. breve species, in particular how their variable genetic features can be linked to specific phenotypes.
Collapse
|
28
|
Omics of bifidobacteria: research and insights into their health-promoting activities. Biochem J 2017; 474:4137-4152. [PMID: 29212851 DOI: 10.1042/bcj20160756] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/10/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
Members of the genus Bifidobacterium include gut commensals that are particularly abundant among the microbial communities residing in the gut of healthy breast-fed infants, where their presence has been linked to many beneficial host effects. Next-generation DNA sequencing and comparative and functional genome methodologies have been shown to be particularly useful in exploring the diversity of this genus. These combined approaches have allowed the identification of genetic features related to bifidobacterial establishment in the gut, involving host-microbe as well as microbe-microbe interactions. Among these, proteinaceous structures, which protrude from the bacterial surface, i.e. pili or fimbriae, and exopolysaccharidic cell surface layers or capsules represent crucial features that assist in their colonization and persistence in the gut. As bifidobacteria are colonizers of the large intestine, they have to be able to cope with various sources of osmotic, oxidative, bile and acid stress during their transit across the gastric barrier and the small intestine. Bifidobacterial genomes thus encode various survival mechanisms, such as molecular chaperones and efflux pumps, to overcome such challenges. Bifidobacteria represent part of an anaerobic gut community, and feed on nondigestible carbohydrates through a specialized fermentative metabolic pathway, which in turn produces growth substrates for other members of the gut community. Conversely, bifidobacteria may also be dependent on other (bifido)bacteria to access host- and diet-derived glycans, and these complex co-operative interactions, based on resource sharing and cross-feeding strategies, represent powerful driving forces that shape gut microbiota composition.
Collapse
|
29
|
Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, Lugli GA, Rodriguez JM, Bode L, de Vos W, Gueimonde M, Margolles A, van Sinderen D, Ventura M. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev 2017; 81:e00036-17. [PMID: 29118049 PMCID: PMC5706746 DOI: 10.1128/mmbr.00036-17] [Citation(s) in RCA: 1121] [Impact Index Per Article: 140.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease.
Collapse
Affiliation(s)
- Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Bottacini
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Eoghan Casey
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Jennifer Mahony
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Susana Delgado Palacio
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Silvia Arboleya Montes
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Juan Miguel Rodriguez
- Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California-San Diego, La Jolla, California, USA
| | - Willem de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Department of Bacteriology & Immunology, RPU Immunobiology, University of Helsinki, Helsinki, Finland
| | - Miguel Gueimonde
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
30
|
Abstract
The human intestine harbors a dense microbial ecosystem (microbiota) that is different between individuals, dynamic over time, and critical for aspects of health and disease. Dietary polysaccharides directly shape the microbiota because of a gap in human digestive physiology, which is equipped to assimilate only proteins, lipids, simple sugars, and starch, leaving nonstarch polysaccharides as major nutrients reaching the microbiota. A mutualistic role of gut microbes is to digest dietary complex carbohydrates, liberating host-absorbable energy via fermentation products. Emerging data indicate that polysaccharides play extensive roles in host-gut microbiota symbiosis beyond dietary polysaccharide digestion, including microbial interactions with endogenous host glycans and the importance of microbial polysaccharides. In this review, we consider multiple mechanisms through which polysaccharides mediate aspects of host-microbe symbiosis in the gut, including some affecting health. As host and microbial metabolic pathways are intimately connected with diet, we highlight the potential to manipulate this system for health.
Collapse
Affiliation(s)
- Nathan T Porter
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| |
Collapse
|
31
|
Castro-Bravo N, Hidalgo-Cantabrana C, Rodriguez-Carvajal MA, Ruas-Madiedo P, Margolles A. Gene Replacement and Fluorescent Labeling to Study the Functional Role of Exopolysaccharides in Bifidobacterium animalis subsp. lactis. Front Microbiol 2017; 8:1405. [PMID: 28790996 PMCID: PMC5524739 DOI: 10.3389/fmicb.2017.01405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/11/2017] [Indexed: 01/01/2023] Open
Abstract
An extracellular layer of exopolysaccharides (EPS) covers the surface of some Bifidobacterium animalis subsp. lactis strains, which could be of relevance for its probiotic performance. In order to understand the functional characteristics of B. animalis subsp. lactis, two isogenic strains that differ in their EPS-producing phenotype, due to a single mutation in the gene Balat_1410, were studied. By means of a double crossover recombination strategy, successfully used for the first time in bifidobacteria, Balat_1410 in the type strain B. animalis subsp. lactis DSM10140 was replaced by a mutated gene containing a non-synonymous mutation previously associated with the appearance of a mucoid-ropy phenotype. Nuclear magnetic resonance and SEC-MALS analyses showed that the novel strain harboring the mutation acquired a ropy phenotype, due to the production of a high molecular weight (HMW)-EPS that is not produced in the wild-type strain. Fluorescence labeling of both strains with two fluorescent proteins, m-Cherry and Green Fluorescent Protein, was achieved by expressing the corresponding genes under the control of a native selected promoter (the elongation factor Tu promoter). Remarkably, qualitative and quantitative fluorescence analyses demonstrated that the ropy strain displays a lower capability to adhere to human intestinal epithelial cells. In addition, the presence of the HMW-EPS reduced the capability of the producing strain to form biofilms upon three different abiotic surfaces. This work also highlights the fact that different EPS confer variable functional characteristics to the bifidobacterial surface, which may be relevant for the performance of B. animalis subsp. lactis as a probiotic. The construction of molecular tools allowing the functional characterization of surface structures in next generation probiotics is still a challenging issue that deserves further attention, given the relevant role that such molecules must play in the interaction with the host.
Collapse
Affiliation(s)
- Nuria Castro-Bravo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| | - Claudio Hidalgo-Cantabrana
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| | | | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| |
Collapse
|
32
|
Inturri R, Molinaro A, Di Lorenzo F, Blandino G, Tomasello B, Hidalgo-Cantabrana C, De Castro C, Ruas-Madiedo P. Chemical and biological properties of the novel exopolysaccharide produced by a probiotic strain of Bifidobacterium longum. Carbohydr Polym 2017; 174:1172-1180. [PMID: 28821042 DOI: 10.1016/j.carbpol.2017.07.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023]
Abstract
Bifidobacterium longum W11 is a commercialized probiotic that has an exopolysaccharide (EPS) layer covering its surface which could play a role in the beneficial properties attributed to the strain; thus, we have carried out chemical and biological analyses of this polymer. The eps cluster putatively involved in the polymer synthesis presented a unique structural organization not previously reported in bifidobacteria. B. longum W11 produced a complex polysaccharide blend with the main component composed of glucose and galactose. An exhaustive structural analysis identified two different repeating units: one linear [→6)-β-Galf-(1→3)-α-Galp-(1→] and one, more abundant, with the same backbone in which the β-Galf is 5-substituted by a β-Glcp unit. The antioxidant capability and the lack of toxicity of the whole EPS W11 mixture, as well as some functional characteristics of the producing strain, such as the in vitro resistance to gastrointestinal conditions and the adhesion of colonocytes, were also determined.
Collapse
Affiliation(s)
- Rosanna Inturri
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n 33300 Villaviciosa, Asturias, Spain; Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy.
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy.
| | - Giovanna Blandino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
| | - Barbara Tomasello
- Department of Drug Science, Biochemistry Section, University of Catania. Viale Andrea Doria 6, 95123 Catania, Italy.
| | - Claudio Hidalgo-Cantabrana
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n 33300 Villaviciosa, Asturias, Spain.
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, NA, Italy.
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n 33300 Villaviciosa, Asturias, Spain.
| |
Collapse
|
33
|
Kato K, Odamaki T, Mitsuyama E, Sugahara H, Xiao JZ, Osawa R. Age-Related Changes in the Composition of Gut Bifidobacterium Species. Curr Microbiol 2017; 74:987-995. [PMID: 28593350 PMCID: PMC5486783 DOI: 10.1007/s00284-017-1272-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/27/2017] [Indexed: 12/18/2022]
Abstract
Bifidobacteria are one of the major components in human microbiota that are suggested to function in maintaining human health. The colonization and cell number of Bifidobacterium species in human intestine vary with ageing. However, sequential changes of Bifidobacterium species ranging from newborns to centenarians remain unresolved. Here, we investigated the gut compositional changes of Bifidobacterium species over a wide range of ages. Faecal samples of 441 healthy Japanese subjects between the ages of 0 and 104 years were analysed using real-time PCR with species-specific primers. B. longum group was widely detected from newborns to centenarians, with the highest detection rate. B. breve was detected in approximately 70% of children under 3 years old. B. adolescentis and B. catenulatum groups were predominant after weaning. B. bifidum was detected at almost all ages. The detection rate of B. dentium was higher in the elderly than in other ages. B. animalis ssp. lactis was detected in 11.4% of the subjects and their ages were restricted. B. gallinarum goup was detected in only nine subjects, while B. minimum and B. mongoliense were undetected at any age. The presence of certain Bifidobacterium groups was associated with significantly higher numbers of other Bifidobacterium species/subspecies. Inter-species correlations were found among each species, exception for B. animalis ssp. lactis. These results revealed the patterns and transition points with respect to compositional changes of Bifidobacterium species that occur with ageing, and the findings indicate that there may be symbiotic associations between some of these species in the gut microbiota.
Collapse
Affiliation(s)
- Kumiko Kato
- Next Generation Science Institute R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama-city, Kanagawa, 252-8583, Japan.
| | - Toshitaka Odamaki
- Next Generation Science Institute R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama-city, Kanagawa, 252-8583, Japan
| | - Eri Mitsuyama
- Next Generation Science Institute R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama-city, Kanagawa, 252-8583, Japan
| | - Hirosuke Sugahara
- Next Generation Science Institute R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama-city, Kanagawa, 252-8583, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama-city, Kanagawa, 252-8583, Japan
| | - Ro Osawa
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
34
|
Hidalgo-Cantabrana C, Delgado S, Ruiz L, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and Their Health-Promoting Effects. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0010-2016. [PMID: 28643627 PMCID: PMC11687494 DOI: 10.1128/microbiolspec.bad-0010-2016] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 12/28/2022] Open
Abstract
Bifidobacteria are members of the intestinal microbiota of mammals and other animals, and some strains are able to exert health-promoting effects. The genus Bifidobacterium belongs to the Actinobacteria phylum. Firmicutes, Bacteroidetes, and Actinobacteria constitute the most abundant phyla in the human intestinal microbiota, Firmicutes and Bacteroidetes being predominant in adults, and Actinobacteria in breast-fed infants, where bifidobacteria can reach levels higher than 90% of the total bacterial population. They are among the first microbial colonizers of the intestines of newborns, and play key roles in the development of their physiology, including maturation of the immune system and use of dietary components. Indeed, some nutrients, such as human milk oligosaccharides, are important drivers of bifidobacterial development. Some Bifidobacterium strains are considered probiotic microorganisms because of their beneficial effects, and they have been included as bioactive ingredients in functional foods, mainly dairy products, as well as in food supplements and pharma products, alone, or together with, other microbes or microbial substrates. Well-documented scientific evidence of their activities is currently available for bifidobacteria-containing preparations in some intestinal and extraintestinal pathologies. In this review, we focus on the role of bifidobacteria as members of the human intestinal microbiota and their use as probiotics in the prevention and treatment of disease.
Collapse
Affiliation(s)
- Claudio Hidalgo-Cantabrana
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n 33300, Villaviciosa, Asturias, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n 33300, Villaviciosa, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n 33300, Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n 33300, Villaviciosa, Asturias, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n 33300, Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n 33300, Villaviciosa, Asturias, Spain
| |
Collapse
|
35
|
Tahoun A, Masutani H, El-Sharkawy H, Gillespie T, Honda RP, Kuwata K, Inagaki M, Yabe T, Nomura I, Suzuki T. Capsular polysaccharide inhibits adhesion of Bifidobacterium longum 105-A to enterocyte-like Caco-2 cells and phagocytosis by macrophages. Gut Pathog 2017; 9:27. [PMID: 28469711 PMCID: PMC5412050 DOI: 10.1186/s13099-017-0177-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
Background Bifidobacterium longum 105-A produces markedly high amounts of capsular polysaccharides (CPS) and exopolysaccharides (EPS) that should play distinct roles in bacterial–host interactions. To identify the biological function of B. longum 105-A CPS/EPS, we carried out an informatics survey of the genome and identified the EPS-encoding genetic locus of B. longum 105-A that is responsible for the production of CPS/EPS. The role of CPS/EPS in the adaptation to gut tract environment and bacteria-gut cell interactions was investigated using the ΔcpsD mutant. Results A putative B. longum 105-A CPS/EPS gene cluster was shown to consist of 24 putative genes encoding a priming glycosyltransferase (cpsD), 7 glycosyltransferases, 4 CPS/EPS synthesis machinery proteins, and 3 dTDP-L-rhamnose synthesis enzymes. These enzymes should form a complex system that is involved in the biogenesis of CPS and/or EPS. To confirm this, we constructed a knockout mutant (ΔcpsD) by a double cross-over homologous recombination. Compared to wild-type, the ∆cpsD mutant showed a similar growth rate. However, it showed quicker sedimentation and formation of cell clusters in liquid culture. EPS was secreted by the ∆cpsD mutant, but had altered monosaccharide composition and molecular weight. Comparison of the morphology of B. longum 105-A wild-type and ∆cpsD by negative staining in light and electron microscopy revealed that the formation of fimbriae is drastically enhanced in the ∆cpsD mutant while the B. longum 105-A wild-type was coated by a thick capsule. The fimbriae expression in the ∆cpsD was closely associated with the disappearance of the CPS layer. The wild-type showed low pH tolerance, adaptation, and bile salt tolerance, but the ∆cpsD mutant had lost this survivability in gastric and duodenal environments. The ∆cpsD mutant was extensively able to bind to the human colon carcinoma Caco-2 cell line and was phagocytosed by murine macrophage RAW 264.7, whereas the wild-type did not bind to epithelial cells and totally resisted internalization by macrophages. Conclusions Our results suggest that CPS/EPS production and fimbriae formation are negatively correlated and play key roles in the survival, attachment, and colonization of B. longum 105-A in the gut. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0177-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amin Tahoun
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan.,Faculty of Veterinary Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Hisayoshi Masutani
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan
| | - Hanem El-Sharkawy
- Faculty of Veterinary Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, 33516 Egypt.,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan
| | - Trudi Gillespie
- CALM_live Imaging Facility, Centre for Inflammation Research, University of Edinburgh, Edinburgh, 47 EH16 4TJ UK
| | - Ryo P Honda
- Department of Molecular Pathobiochemistry, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan.,Department of Gene and Development, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan
| | - Mizuho Inagaki
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan.,United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan
| | - Tomio Yabe
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan.,United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan
| | - Izumi Nomura
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan
| | - Tohru Suzuki
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan.,United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan
| |
Collapse
|
36
|
Sabbioni A, Ferrario C, Milani C, Mancabelli L, Riccardi E, Di Ianni F, Beretti V, Superchi P, Ossiprandi MC. Modulation of the Bifidobacterial Communities of the Dog Microbiota by Zeolite. Front Microbiol 2016; 7:1491. [PMID: 27713735 PMCID: PMC5031887 DOI: 10.3389/fmicb.2016.01491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/07/2016] [Indexed: 01/02/2023] Open
Abstract
During last decades canine health and well being is becoming an important issue for human owners. In dogs, several factors including diet, pathogenic bacterial and stress conditions can affect the composition of the gut microbiota. In this study, we evaluated the effect of dietary chabazitic zeolitite (CZ) supplementation on the contribution of bifidobacteria to the fecal microbiota in training hunting dogs. Fecal microbiota cataloging based on 16S rRNA microbial profiling analyses highlighted an increase of Lactobacillus and Bifidobacterium in animals treated with CZ, with a simultaneous decrease of pathogens associated with dog gastrointestinal infections, such as Klebsiella and Enterobacter. A detailed profiling of the bifidobacterial population of dogs receiving CZ based on the ITS-based sequencing approach, revealed an enhancement bifidobacterial of species typical of animals such as Bifidobacterium animalis and B. pseudolongum. Moreover, these analyses identified the occurrence of putative new bifidobacterial taxa in both treated and untreated samples.
Collapse
Affiliation(s)
- Alberto Sabbioni
- Department of Veterinary Medical Science, University of ParmaParma,Italy
| | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Life Sciences, University of ParmaParma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Life Sciences, University of ParmaParma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Life Sciences, University of ParmaParma, Italy
| | - Enzo Riccardi
- Department of Veterinary Medical Science, University of ParmaParma,Italy
| | - Francesco Di Ianni
- Department of Veterinary Medical Science, University of ParmaParma,Italy
| | - Valentino Beretti
- Department of Veterinary Medical Science, University of ParmaParma,Italy
| | - Paola Superchi
- Department of Veterinary Medical Science, University of ParmaParma,Italy
| | | |
Collapse
|
37
|
Genomic analysis of three Bifidobacterium species isolated from the calf gastrointestinal tract. Sci Rep 2016; 6:30768. [PMID: 27468806 PMCID: PMC4965825 DOI: 10.1038/srep30768] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022] Open
Abstract
Ruminant animals contribute significantly to the global value of agriculture and rely on a complex microbial community for efficient digestion. However, little is known of how this microbial-host relationship develops and is maintained. To begin to address this, we have determined the ability of three Bifidobacterium species isolated from the faeces of newborn calves to grow on carbohydrates typical of a newborn ruminant diet. Genome sequences have been determined for these bacteria with analysis of the genomes providing insights into the host association and identification of several genes that may mediate interactions with the ruminant gastrointestinal tract. The present study provides a starting point from which we can define the role of potential beneficial microbes in the nutrition of young ruminants and begin to influence the interactions between the microbiota and the host. The differences observed in genomic content hint at niche partitioning among the bifidobacterial species analysed and the different strategies they employ to successfully adapt to this habitat.
Collapse
|
38
|
Soverini M, Rampelli S, Turroni S, Schnorr SL, Quercia S, Castagnetti A, Biagi E, Brigidi P, Candela M. Variations in the Post-weaning Human Gut Metagenome Profile As Result of Bifidobacterium Acquisition in the Western Microbiome. Front Microbiol 2016; 7:1058. [PMID: 27462302 PMCID: PMC4940381 DOI: 10.3389/fmicb.2016.01058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/23/2016] [Indexed: 12/13/2022] Open
Abstract
Studies of the gut microbiome variation among human populations revealed the existence of robust compositional and functional layouts matching the three subsistence strategies that describe a trajectory of changes across our recent evolutionary history: hunting and gathering, rural agriculture, and urban post-industrialized agriculture. In particular, beside the overall reduction of ecosystem diversity, the gut microbiome of Western industrial populations is typically characterized by the loss of Treponema and the acquisition of Bifidobacterium as an abundant inhabitant of the post-weaning gut microbial ecosystem. In order to advance the hypothesis about the possible adaptive nature of this exchange, here we explore specific functional attributes that correspond to the mutually exclusive presence of Treponema and Bifidobacterium using publically available gut metagenomic data from Hadza hunter-gatherers and urban industrial Italians. According to our findings, Bifidobacterium provides the enteric ecosystem with a diverse panel of saccharolytic functions, well suited to the array of gluco- and galacto-based saccharides that abound in the Western diet. On the other hand, the metagenomic functions assigned to Treponema are more predictive of a capacity to incorporate complex polysaccharides, such as those found in unrefined plant foods, which are consistently incorporated in the Hadza diet. Finally, unlike Treponema, the Bifidobacterium metagenome functions include genes that permit the establishment of microbe-host immunological cross-talk, suggesting recent co-evolutionary events between the human immune system and Bifidobacterium that are adaptive in the context of agricultural subsistence and sedentary societies.
Collapse
Affiliation(s)
- Matteo Soverini
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | | | - Sara Quercia
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Andrea Castagnetti
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| |
Collapse
|