1
|
Antony Dass M, Sherman CDH, van Oorschot RAH, Hartman D, Carter G, Durdle A. A preliminary study on detecting human DNA in aquatic environments: Potential of eDNA in forensics. Forensic Sci Int Genet 2024; 74:103155. [PMID: 39383603 DOI: 10.1016/j.fsigen.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Human environmental DNA (eDNA) application have not been fully applied or adequately considered in the fields of eDNA and forensics. Nonetheless, this technique holds great potential as a complementary tool for detecting human DNA in aquatic environments, particularly in cases involving crimes connect to such environments. However, the detectability or stability of eDNA can vary depending on several factors. Therefore, this preliminary study investigates the detection and degradation rates of human eDNA, as well as the recovery of nuclear short tandem repeat (STR) profiles and mitochondrial DNA (mtDNA) sequencing, using water samples from both saltwater and freshwater sources. To conduct the experiment, whole human blood was spiked into the water samples. Water samples were then filtered using a 5 µm pore size filter, and samples were collected at various time intervals up to 23 days. A human specific qPCR assay targeting HV1 region of human mtDNA was used to detect human eDNA. Results demonstrated that human eDNA remains detectable for up to 36 hours in freshwater samples and up 84 hours in saltwater samples. The limit of detection (LOD) of human eDNA, (205 copies/µl), was achieved after 60 hours in freshwater and 180 hours in saltwater samples. Partial STR profiles could be recovered up to 24 hours for freshwater and saltwater. Results from mtDNA sequencing indicate that full mtDNA profiles could be recovered from freshwater samples up to 48 hours and remained detectable up to 72 hours in saltwater. Overall, the findings of this study underscore the importance of considering and incorporating human eDNA analysis as a valuable tool in forensic practice. By harnessing the power of eDNA, law enforcement agencies can enhance their investigation capabilities, improve the accuracy of forensic reconstructions, and ultimately contribute to the resolution of cases involving aquatic environments. Further research and validation are needed to optimize and expand the utilization of eDNA techniques in forensic investigations.
Collapse
Affiliation(s)
- Marie Antony Dass
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong 3220, Australia.
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong 3220, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod 3085, Australia; School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora 3086, Australia
| | - Dadna Hartman
- Victorian Institute of Forensic Medicine, 65 Kavanagh Street, Southbank 3006, Australia; Department of Forensic Medicine, Monash University, 65 Kavanagh Street Southbank, Melbourne, Victoria 3006, Australia
| | - Gemma Carter
- Victorian Institute of Forensic Medicine, 65 Kavanagh Street, Southbank 3006, Australia
| | - Annalisa Durdle
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong 3220, Australia; Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod 3085, Australia
| |
Collapse
|
2
|
Chan AHE, Saralamba N, Saralamba S, Ruangsittichai J, Chaisiri K, Limpanont Y, Charoennitiwat V, Thaenkham U. Sensitive and accurate DNA metabarcoding of parasitic helminth mock communities using the mitochondrial rRNA genes. Sci Rep 2022; 12:9947. [PMID: 35705676 PMCID: PMC9200835 DOI: 10.1038/s41598-022-14176-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Next-generation sequencing technologies have accelerated the pace of helminth DNA metabarcoding research, enabling species detection in bulk community samples. However, finding suitable genetic markers with robust species-level resolution and primers targeting a broad species range among parasitic helminths are some of the challenges faced. This study aimed to demonstrate the potential use of the mitochondrial 12S and 16S rRNA genes for parasitic helminth (nematodes, trematodes, cestodes) DNA metabarcoding. To demonstrate the robustness of the 12S and 16S rRNA genes for DNA metabarcoding, we determined the proportion of species successfully recovered using mock helminth communities without environment matrix and mock helminth communities artificially spiked with environmental matrices. The environmental matrices are human fecal material, garden soil, tissue, and pond water. Our results revealed the robustness of the mitochondrial rRNA genes, through the high sensitivity of the 12S rRNA gene, and the effectiveness of the 12S and 16S primers targeting platyhelminths. With the mitochondrial rRNA genes, a broad range of parasitc helminths were successfully detected to the species level. The potential of the mitochondrial rRNA genes for helminth DNA metabarcoding was demonstrated, providing a valuable gateway for future helminth DNA metabarcoding applications like helminth detection and biodiversity studies.
Collapse
Affiliation(s)
- Abigail Hui En Chan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sompob Saralamba
- Mathematical and Economic Modelling (MAEMOD), Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jiraporn Ruangsittichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Urusa Thaenkham
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Assessment of the link between evidence and crime scene through soil bacterial and fungal microbiome: A mock case in forensic study. Forensic Sci Int 2021; 329:111060. [PMID: 34736047 DOI: 10.1016/j.forsciint.2021.111060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 01/28/2023]
Abstract
In forensic studies, soil traces can be used to find clues to the origin of an unknown sample or the relationship between a crime scene and a suspect and can provide invaluable evidence as they frequently adhere to objects, with high persistence. In this study, it was aimed to investigate the potential of the bacterial and fungal microbiome diversity of the soil to be used as legitimate evidence in the resolution of homicide cases. Within the scope of a mock homicide case scenario, a total of 12 soil samples were collected, including two evidence samples, three crime scene samples and seven non-crime scene related control samples. Both bacterial and fungal microbiome profiles of these samples were analysed using Illumina NovaSeq platform. The resulting sequences were analysed using QIIME 2 microbiome bioinformatics platform. Beta diversity analysis was performed to determine the difference between samples. In bacterial community analyses, it has been observed that it is difficult to distinguish evidence samples and crime scene samples from control samples at phylum and class level, whereas differentiation could be made at genus and species level. Fungal community analyses allowed to distinguish evidence samples and crime scene samples from control samples at both phylum and class and genus and species level. Principal coordinate analysis (PCoA) results showed that distance between evidence samples and crime scene reference samples was closer to each other than non-crime scene related control samples. The results of this study showed that bacterial and especially fungal DNA in soil has the potential to contribute effectively to the resolution of forensic cases. Thus, it has been understood that it is possible to establish a relationship between the case and the crime scene with the help of microbiome analyses on soil samples obtained in homicide cases.
Collapse
|
4
|
Jurkevitch E, Pasternak Z. A walk on the dirt: soil microbial forensics from ecological theory to the crime lab. FEMS Microbiol Rev 2021; 45:5937428. [PMID: 33098291 DOI: 10.1093/femsre/fuaa053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Forensics aims at using physical evidence to solve investigations with science-based principles, thus operating within a theoretical framework. This however is often rather weak, the exception being DNA-based human forensics that is well anchored in theory. Soil is a most commonly encountered, easily and unknowingly transferred evidence but it is seldom employed as soil analyses require extensive expertise. In contrast, comparative analyses of soil bacterial communities using nucleic acid technologies can efficiently and precisely locate the origin of forensic soil traces. However, this application is still in its infancy, and is very rarely used. We posit that understanding the theoretical bases and limitations of their uses is essential for soil microbial forensics to be judiciously implemented. Accordingly, we review the ecological theory and experimental evidence explaining differences between soil microbial communities, i.e. the generation of beta diversity, and propose to integrate a bottom-up approach of interactions at the microscale, reflecting historical contingencies with top-down mechanisms driven by the geographic template, providing a potential explanation as to why bacterial communities map according to soil types. Finally, we delimit the use of soil microbial forensics based on the present technologies and ecological knowledge, and propose possible venues to remove existing bottlenecks.
Collapse
Affiliation(s)
- Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zohar Pasternak
- Division of Identification and Forensic Science, Israel Police
| |
Collapse
|
5
|
Geographic source estimation using airborne plant environmental DNA in dust. Sci Rep 2021; 11:16238. [PMID: 34376726 PMCID: PMC8355115 DOI: 10.1038/s41598-021-95702-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Information obtained from the analysis of dust, particularly biological particles such as pollen, plant parts, and fungal spores, has great utility in forensic geolocation. As an alternative to manual microscopic analysis of dust components, we developed a pipeline that utilizes the airborne plant environmental DNA (eDNA) in settled dust to estimate geographic origin. Metabarcoding of settled airborne eDNA was used to identify plant species whose geographic distributions were then derived from occurrence records in the USGS Biodiversity in Service of Our Nation (BISON) database. The distributions for all plant species identified in a sample were used to generate a probabilistic estimate of the sample source. With settled dust collected at four U.S. sites over a 15-month period, we demonstrated positive regional geolocation (within 600 km2 of the collection point) with 47.6% (20 of 42) of the samples analyzed. Attribution accuracy and resolution was dependent on the number of plant species identified in a dust sample, which was greatly affected by the season of collection. In dust samples that yielded a minimum of 20 identified plant species, positive regional attribution was achieved with 66.7% (16 of 24 samples). For broader demonstration, citizen-collected dust samples collected from 31 diverse U.S. sites were analyzed, and trace plant eDNA provided relevant regional attribution information on provenance in 32.2% of samples. This showed that analysis of airborne plant eDNA in settled dust can provide an accurate estimate regional provenance within the U.S., and relevant forensic information, for a substantial fraction of samples analyzed.
Collapse
|
6
|
Procopio N, Lovisolo F, Sguazzi G, Ghignone S, Voyron S, Migliario M, Renò F, Sellitto F, D'Angiolella G, Tozzo P, Caenazzo L, Gino S. "Touch microbiome" as a potential tool for forensic investigation: A pilot study. J Forensic Leg Med 2021; 82:102223. [PMID: 34343925 DOI: 10.1016/j.jflm.2021.102223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Human skin hosts a variety of microbes that can be transferred to surfaces ("touch microbiome"). These microorganisms can be considered as forensic markers similarly to "touch DNA". With this pilot study, we wanted to evaluate the transferability and persistence of the "touch microbiome" on a surface after the deposition of a fingerprint and its exposure for 30 days at room temperature. Eleven volunteers were enrolled in the study. Skin microbiome samples were collected by swabbing the palm of their hands; additionally, donors were asked to touch a glass microscope slide to deposit their fingerprints, that were then swabbed. Both human and microbial DNA was isolated and quantified. Amelogenin locus and 16 human STRs were amplified, whereas the V4 region of 16 S rRNA gene was sequenced using Illumina MiSeq platform. STR profiles were successfully typed for 5 out of 22 "touch DNA" samples, while a microbiome profile was obtained for 20 out of 22 "touch microbiome" samples. Six skin core microbiome taxa were identified, as well as unique donor characterizing taxa. These unique taxa may have relevance for personal identification studies and may be useful to provide forensic intelligence information also when "touch DNA" fails. Additional future studies including greater datasets, additional time points and a greater number of surfaces may clarify the applicability of "touch microbiome" studies to real forensic contexts.
Collapse
Affiliation(s)
- Noemi Procopio
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK.
| | - Flavia Lovisolo
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Giulia Sguazzi
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Stefano Ghignone
- Istituto per La Protezione Sostenibile Delle Piante - SS Torino - Consiglio Nazionale Delle Ricerche, C/o Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy.
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy.
| | - Mario Migliario
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Filippo Renò
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Federica Sellitto
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK.
| | - Gabriella D'Angiolella
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Pamela Tozzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy.
| | - Luciana Caenazzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy.
| | - Sarah Gino
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
7
|
Liu Y, Xu C, Dong W, Yang X, Zhou S. Determination of a criminal suspect using environmental plant DNA metabarcoding technology. Forensic Sci Int 2021; 324:110828. [PMID: 34000616 DOI: 10.1016/j.forsciint.2021.110828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022]
Abstract
There are criminal cases that no frequently used evidence, for example, human DNAs from the criminal, is available. Such cases usually are unresolvable. With the advent of DNA metabarcoding, evidences are mined from environmental DNA and such cases become resolvable. This study reports how a criminal suspect was determined by environmental plant DNA metabarcoding technology. A girl was killed in a rural wet area in China without a witness or video record. Pants with dried mud was found from one of her classmate's house. The mud was removed from the pants and 11 more mud or soil samples surrounding murder scene were collected. DNA was extracted from the soil. Chloroplast rbcL gene were amplified and sequenced on a next generation sequencing platform. After bioinformatics analysis, ZOTU composition of 12 samples demonstrated that the mud on the suspect's pants was from the criminal scene. The suspect finally made a clean breast of his crime. This case implies that plant DNA in the environment soil is a new source of evidence in determination of suspects using DNA metabarcoding technology and has high potentials of extensive applications in criminal cases.
Collapse
Affiliation(s)
- Yanlei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wenpan Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Xueying Yang
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
8
|
Forensic botany: time to embrace natural history collections, large scale environmental data and environmental DNA. Emerg Top Life Sci 2021; 5:475-485. [PMID: 33871012 DOI: 10.1042/etls20200329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023]
Abstract
Forensic botany is a diverse discipline that spans many aspects of plant sciences, particularly taxonomy, field botany, anatomy, and ecology. Internationally, there is a significant opportunity to expand the application of forensic botany in criminal investigations, especially war crimes, genocide, homicide, sexual violence, serious physical assault, illegal trade in endangered species and wildlife crime. In civil proceedings, forensic botany may, for example, be called upon in trade disputes such as accidental contamination of commodities. Despite the potential, there are barriers to the wider application of forensic botany in criminal cases; there is a widespread need to improve the efficiency of botanical trace evidence identification. This could partly be addressed by embracing innovations in image recognition and by accessing the huge quantity of specimens and images housed in natural history collections worldwide. Additionally, the recent advances in DNA sequencing technologies and the expansion of environmental DNA (eDNA) and forensic ecogenomics, offers opportunities to more rapidly provide species-level identifications. The impact of taphonomic processes upon vegetation, and vice versa, remains poorly understood; improved understanding of these interactions and their ecological impacts may be invaluable in improving clandestine burial search protocols.
Collapse
|
9
|
Giampaoli S, De Vittori E, Barni F, Anselmo A, Rinaldi T, Baldi M, Miranda KC, Liao A, Brami D, Frajese GV, Berti A. DNA metabarcoding of forensic mycological samples. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2021. [DOI: 10.1186/s41935-021-00221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
DNA metabarcoding and massive parallel sequencing are valuable molecular tools for the characterization of environmental samples. In forensic sciences, the analysis of the sample’s fungal population can be highly informative for the estimation of post-mortem interval, the ascertainment of deposition time, the identification of the cause of death, or the location of buried corpses. Unfortunately, metabarcoding data analysis often requires strong bioinformatic capabilities that are not widely available in forensic laboratories.
Results
The present paper describes the adoption of a user-friendly cloud-based application for the identification of fungi in typical forensic samples. The samples have also been analyzed through the QIIME pipeline, obtaining a relevant data concordance on top genus classification results (88%).
Conclusions
The availability of a user-friendly application that can be run without command line activities will increase the popularity of metabarcoding fungal analysis in forensic samples.
Collapse
|
10
|
Ishak S, Dormontt E, Young JM. Microbiomes in forensic botany: a review. Forensic Sci Med Pathol 2021; 17:297-307. [PMID: 33830453 DOI: 10.1007/s12024-021-00362-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 11/24/2022]
Abstract
Fragments of botanical material can often be found at crime scenes (on live and dead bodies, or on incriminating objects) and can provide circumstantial evidence on various aspects of forensic investigations such as determining crime scene locations, times of death or possession of illegal species. Morphological and genetic analysis are the most commonly applied methods to analyze plant fragment evidence but are limited by their low capacity to differentiate between potential source locations, especially at local scales. Here, we review the current applications and limitations of current plant fragment analysis for forensic investigations and introduce the potential of microbiome analysis to complement the existing forensic plant fragment analysis toolkit. The potential for plant fragment provenance identification at geographic scales meaningful to forensic investigations warrants further investigation of the phyllosphere microbiome in this context. To that end we identify three key areas of future research: 1) Retrieval of microbial DNA of sufficient quality and quantity from botanical material; 2) Variability of the phyllosphere microbiome at different taxonomic and spatial scales, with explicit reference to assignment capacity; 3) Impacts on assignment capacity of time, seasonality and movement of fragments between locations. The development of robust microbiome analysis tools for forensic purposes in botanical material could increase the evidentiary value of the botanical evidence commonly encountered in casework, aiding in the identification of crime scene locations.
Collapse
Affiliation(s)
- Sarah Ishak
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | - Eleanor Dormontt
- Advanced DNA, Identification and Forensic Facility, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer M Young
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Robinson JM, Pasternak Z, Mason CE, Elhaik E. Forensic Applications of Microbiomics: A Review. Front Microbiol 2021; 11:608101. [PMID: 33519756 PMCID: PMC7838326 DOI: 10.3389/fmicb.2020.608101] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
The rise of microbiomics and metagenomics has been driven by advances in genomic sequencing technology, improved microbial sampling methods, and fast-evolving approaches in bioinformatics. Humans are a host to diverse microbial communities in and on their bodies, which continuously interact with and alter the surrounding environments. Since information relating to these interactions can be extracted by analyzing human and environmental microbial profiles, they have the potential to be relevant to forensics. In this review, we analyzed over 100 papers describing forensic microbiome applications with emphasis on geolocation, personal identification, trace evidence, manner and cause of death, and inference of the postmortem interval (PMI). We found that although the field is in its infancy, utilizing microbiome and metagenome signatures has the potential to enhance the forensic toolkit. However, many of the studies suffer from limited sample sizes and model accuracies, and unrealistic environmental settings, leaving the full potential of microbiomics to forensics unexplored. It is unlikely that the information that can currently be elucidated from microbiomics can be used by law enforcement. Nonetheless, the research to overcome these challenges is ongoing, and it is foreseeable that microbiome-based evidence could contribute to forensic investigations in the future.
Collapse
Affiliation(s)
- Jake M Robinson
- Department of Landscape, University of Sheffield, Sheffield, United Kingdom.,Healthy Urban Microbiome Initiative (HUMI), Adelaide, SA, Australia
| | - Zohar Pasternak
- Quality Assurance and Evidence Unit, Division of Identification and Forensic Science (DIFS), National Headquarters of the Israel Police, Jerusalem, Israel
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Eran Elhaik
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Young JM, Linacre A. Massively parallel sequencing is unlocking the potential of environmental trace evidence. Forensic Sci Int Genet 2020; 50:102393. [PMID: 33157385 DOI: 10.1016/j.fsigen.2020.102393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/16/2023]
Abstract
Massively parallel sequencing (MPS) has revolutionised the field of genomics enabling substantial advances in human DNA profiling. Further, the advent of MPS now allows biological signatures to be obtained from complex DNA mixtures and trace amounts of low biomass samples. Environmental samples serve as ideal forms of contact trace evidence as detection at a scene can establish a link between a suspect, location and victim. Many studies have applied MPS technology to characterise the biodiversity within high biomass environmental samples (such as soil and water) to address questions related to ecology, conservation, climate change and human health. However, translation of these tools to forensic science remains in its infancy, due in part to the merging of traditional forensic ecology practices with unfamiliar DNA technologies and complex datasets. In addition, people and objects also carry low biomass environmental signals which have recently been shown to reflect a specific individual or location. The sensitivity, and reducing cost, of MPS is now unlocking the power of both high and low biomass environmental DNA (eDNA) samples as useful sources of genetic information in forensic science. This paper discusses the potential of eDNA to forensic science by reviewing the most explored applications that are leading the integration of this technology into the field. We introduce novel areas of forensic ecology that could also benefit from these tools with a focus on linking a suspect to a scene or establishing provenance of an unknown sample and discuss the current limitations and validation recommendations to achieve translation of eDNA into casework.
Collapse
Affiliation(s)
- J M Young
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.
| | - A Linacre
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Doi H. Idea paper: Community‐interaction analyses contribute to improving the performance of microbial fuel cells. Ecol Res 2020. [DOI: 10.1111/1440-1703.12134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hideyuki Doi
- Graduate School of Simulation Studies University of Hyogo Kobe Japan
| |
Collapse
|
14
|
Dawson LA, Macdonald LM, Ritz K. Plant wax compounds and soil microbial DNA profiles to ascertain urban land use type. ACTA ACUST UNITED AC 2019. [DOI: 10.1144/sp492-2018-65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Fløjgaard C, Frøslev TG, Brunbjerg AK, Bruun HH, Moeslund J, Hansen AJ, Ejrnæs R. Predicting provenance of forensic soil samples: Linking soil to ecological habitats by metabarcoding and supervised classification. PLoS One 2019; 14:e0202844. [PMID: 31283764 PMCID: PMC6613677 DOI: 10.1371/journal.pone.0202844] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/19/2019] [Indexed: 11/29/2022] Open
Abstract
Environmental DNA (eDNA) is increasingly applied in ecological studies, including studies with the primary purpose of criminal investigation, in which eDNA from soil can be used to pair samples or reveal sample provenance. We collected soil eDNA samples as part of a large national biodiversity research project across 130 sites in Denmark. We investigated the potential for soil eDNA metabarcoding in predicting provenance in terms of environmental conditions, habitat type and geographic regions. We used linear regression for predicting environmental gradients of light, soil moisture, pH and nutrient status (represented by Ellenberg Indicator Values, EIVs) and Quadratic Discriminant Analysis (QDA) to predict habitat type and geographic region. eDNA data performed relatively well as a predictor of environmental gradients (R2 > 0.81). Its ability to discriminate between habitat types was variable, with high accuracy for certain forest types and low accuracy for heathland, which was poorly predicted. Geographic region was also less accurately predicted by eDNA. We demonstrated the application of provenance prediction in forensic science by evaluating and discussing two mock crime scenes. Here, we listed the plant species from annotated sequences, which can further aid in identifying the likely habitat or, in case of rare species, a geographic region. Predictions of environmental gradients and habitat types together give an overall accurate description of a crime scene, but care should be taken when interpreting annotated sequences, e.g. due to erroneous assignments in GenBank. Our approach demonstrates that important habitat properties can be derived from soil eDNA, and exemplifies a range of potential applications of eDNA in forensic ecology.
Collapse
Affiliation(s)
- Camilla Fløjgaard
- Section for Biodiversity, Department of Bioscience, Aarhus University, Rønde, Denmark
| | | | | | - Hans Henrik Bruun
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Moeslund
- Section for Biodiversity, Department of Bioscience, Aarhus University, Rønde, Denmark
| | | | - Rasmus Ejrnæs
- Section for Biodiversity, Department of Bioscience, Aarhus University, Rønde, Denmark
| |
Collapse
|
16
|
Sow A, Brévault T, Benoit L, Chapuis MP, Galan M, Coeur d'acier A, Delvare G, Sembène M, Haran J. Deciphering host-parasitoid interactions and parasitism rates of crop pests using DNA metabarcoding. Sci Rep 2019; 9:3646. [PMID: 30842584 PMCID: PMC6403368 DOI: 10.1038/s41598-019-40243-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/12/2019] [Indexed: 12/26/2022] Open
Abstract
An accurate estimation of parasitism rates and diversity of parasitoids of crop insect pests is a prerequisite for exploring processes leading to efficient natural biocontrol. Traditional methods such as rearing have been often limited by taxonomic identification, insect mortality and intensive work, but the advent of high-throughput sequencing (HTS) techniques, such as DNA metabarcoding, is increasingly seen as a reliable and powerful alternative approach. Little has been done to explore the benefits of such an approach for estimating parasitism rates and parasitoid diversity in an agricultural context. In this study, we compared the composition of parasitoid species and parasitism rates between rearing and DNA metabarcoding of host eggs and larvae of the millet head miner, Heliocheilus albipunctella De Joannis (Lepidoptera, Noctuidae), collected from millet fields in Senegal. We first assessed the detection threshold for the main ten endoparasitoids, by sequencing PCR products obtained from artificial dilution gradients of the parasitoid DNAs in the host moth. We then assessed the potential of DNA metabarcoding for diagnosing parasitism rates in samples collected from the field. Under controlled conditions, our results showed that relatively small quantities of parasitoid DNA (0.07 ng) were successfully detected within an eight-fold larger quantity of host DNA. Parasitoid diversity and parasitism rate estimates were always higher for DNA metabarcoding than for host rearing. Furthermore, metabarcoding detected multi-parasitism, cryptic parasitoid species and differences in parasitism rates between two different sampling sites. Metabarcoding shows promise for gaining a clearer understanding of the importance and complexity of host-parasitoid interactions in agro-ecosystems, with a view to improving pest biocontrol strategies.
Collapse
Affiliation(s)
- Ahmadou Sow
- Département de Biologie Animale, FST-UCAD, Dakar, Senegal. .,BIOPASS, CIRAD-IRD-ISRA-UCAD, Dakar, Senegal.
| | - Thierry Brévault
- BIOPASS, CIRAD-IRD-ISRA-UCAD, Dakar, Senegal.,CIRAD, UPR AIDA, F-34398, Montpellier, France.,AIDA, University Montpellier, CIRAD, Montpellier, France
| | - Laure Benoit
- CIRAD, CBGP, Montpellier, France.,CBGP, CIRAD, INRA, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
| | - Marie-Pierre Chapuis
- CIRAD, CBGP, Montpellier, France.,CBGP, CIRAD, INRA, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
| | - Maxime Galan
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
| | - Armelle Coeur d'acier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
| | - Gérard Delvare
- CIRAD, CBGP, Montpellier, France.,CBGP, CIRAD, INRA, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
| | - Mbacké Sembène
- Département de Biologie Animale, FST-UCAD, Dakar, Senegal.,BIOPASS, CIRAD-IRD-ISRA-UCAD, Dakar, Senegal
| | - Julien Haran
- CIRAD, CBGP, Montpellier, France.,CBGP, CIRAD, INRA, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
| |
Collapse
|
17
|
Habtom H, Pasternak Z, Matan O, Azulay C, Gafny R, Jurkevitch E. Applying microbial biogeography in soil forensics. Forensic Sci Int Genet 2018; 38:195-203. [PMID: 30447564 DOI: 10.1016/j.fsigen.2018.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/10/2018] [Accepted: 11/07/2018] [Indexed: 11/28/2022]
Abstract
The ubiquity, heterogeneity and transferability of soil makes it useful as evidence in criminal investigations, especially using new methods that survey the microbial DNA it contains. However, to be used effectively and reliably, more needs to be learned about the natural distribution patterns of microbial communities in soil. In this study we examine these patterns in detail, at local to regional scales (2 m-260 km), across an environmental gradient in three different soil types. Geographic location was found to be more important than soil type in determining the microbial community composition: communities from the same site but different soil types, although significantly different from each other, were still much more similar to each other than were communities from the same soil type but from different sites. At a local scale (25-1000 m), distance-decay relationships were observed in all soil types: the farther apart two soil communities were located, even in the same soil type, the more they differed. At regional-scale distances (1-260 km), differences between communities did not increase with increased geographic distance between them, and the dominant factor determining the community profile was the physico-chemical environment, most notably annual precipitation (R2 = 0.69), soil sodium (R2 = 0.49) and soil ammonium (R2 = 0.47) levels. We introduce a likelihood-ratio framework for quantitative evaluation of soil microbial DNA profile evidence in casework. In conclusion, these profiles, along with detailed knowledge of natural soil microbial biogeography, provide valuable forensic information on soil sample comparison and allow the determination of approximate source location on large (hundreds of km) spatial scales. Moreover, at small spatial scales it may enable pinpointing the source location of a sample to within at least 25 m, regardless of soil type and environmental conditions.
Collapse
Affiliation(s)
- Habteab Habtom
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Ofra Matan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Chen Azulay
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Gafny
- Forensic Biology Laboratory, Division of Identification and Forensic Science, Israel Police, National Headquarters, Haim Bar-Lev Road, Jerusalem, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
18
|
Oliveira M, Amorim A. Microbial forensics: new breakthroughs and future prospects. Appl Microbiol Biotechnol 2018; 102:10377-10391. [PMID: 30302518 PMCID: PMC7080133 DOI: 10.1007/s00253-018-9414-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022]
Abstract
Recent advances in genetic data generation, through massive parallel sequencing (MPS), storage and analysis have fostered significant progresses in microbial forensics (or forensic microbiology). Initial applications in circumstances of biocrime, bioterrorism and epidemiology are now accompanied by the prospect of using microorganisms (i) as ancillary evidence in criminal cases; (ii) to clarify causes of death (e.g., drownings, toxicology, hospital-acquired infections, sudden infant death and shaken baby syndromes); (iii) to assist human identification (skin, hair and body fluid microbiomes); (iv) for geolocation (soil microbiome); and (v) to estimate postmortem interval (thanatomicrobiome and epinecrotic microbial community). When compared with classical microbiological methods, MPS offers a diverse range of advantages and alternative possibilities. However, prior to its implementation in the forensic context, critical efforts concerning the elaboration of standards and guidelines consolidated by the creation of robust and comprehensive reference databases must be undertaken.
Collapse
Affiliation(s)
- Manuela Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal. .,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho,45, 4200-135, Porto, Portugal. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4200-135, Porto, Portugal.
| | - António Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho,45, 4200-135, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4200-135, Porto, Portugal
| |
Collapse
|
19
|
Damaso N, Mendel J, Mendoza M, von Wettberg EJ, Narasimhan G, Mills D. Bioinformatics Approach to Assess the Biogeographical Patterns of Soil Communities: The Utility for Soil Provenance. J Forensic Sci 2018; 63:1033-1042. [PMID: 29357400 DOI: 10.1111/1556-4029.13741] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 01/23/2023]
Abstract
Soil DNA profiling has potential as a forensic tool to establish a link between soil collected at a crime scene and soil recovered from a suspect. However, a quantitative measure is needed to investigate the spatial/temporal variability across multiple scales prior to their application in forensic science. In this study, soil DNA profiles across Miami-Dade, FL, were generated using length heterogeneity PCR to target four taxa. The objectives of this study were to (i) assess the biogeographical patterns of soils to determine whether soil biota is spatially correlated with geographic location and (ii) evaluate five machine learning algorithms for their predictive ability to recognize biotic patterns which could accurately classify soils at different spatial scales regardless of seasonal collection. Results demonstrate that soil communities have unique patterns and are spatially autocorrelated. Bioinformatic algorithms could accurately classify soils across all scales with Random Forest significantly outperforming all other algorithms regardless of spatial level.
Collapse
Affiliation(s)
- Natalie Damaso
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL 33199.,International Forensic Research Institute, Florida International University, 11200 SW 8th Street, OE 116, Miami, FL 33199
| | - Julian Mendel
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL 33199.,International Forensic Research Institute, Florida International University, 11200 SW 8th Street, OE 116, Miami, FL 33199
| | - Maria Mendoza
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL 33199.,International Forensic Research Institute, Florida International University, 11200 SW 8th Street, OE 116, Miami, FL 33199
| | - Eric J von Wettberg
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL 33199.,International Center for Tropical Botany, Florida International University, 4013 South Douglas Road, Miami, FL 33133
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL 33199
| | - DeEtta Mills
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL 33199.,International Forensic Research Institute, Florida International University, 11200 SW 8th Street, OE 116, Miami, FL 33199
| |
Collapse
|
20
|
Arenas M, Pereira F, Oliveira M, Pinto N, Lopes AM, Gomes V, Carracedo A, Amorim A. Forensic genetics and genomics: Much more than just a human affair. PLoS Genet 2017; 13:e1006960. [PMID: 28934201 PMCID: PMC5608170 DOI: 10.1371/journal.pgen.1006960] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
While traditional forensic genetics has been oriented towards using human DNA in criminal investigation and civil court cases, it currently presents a much wider application range, including not only legal situations sensu stricto but also and, increasingly often, to preemptively avoid judicial processes. Despite some difficulties, current forensic genetics is progressively incorporating the analysis of nonhuman genetic material to a greater extent. The analysis of this material-including other animal species, plants, or microorganisms-is now broadly used, providing ancillary evidence in criminalistics in cases such as animal attacks, trafficking of species, bioterrorism and biocrimes, and identification of fraudulent food composition, among many others. Here, we explore how nonhuman forensic genetics is being revolutionized by the increasing variety of genetic markers, the establishment of faster, less error-burdened and cheaper sequencing technologies, and the emergence and improvement of models, methods, and bioinformatics facilities.
Collapse
Affiliation(s)
- Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipe Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Manuela Oliveira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nadia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Centre of Mathematics of the University of Porto, Porto, Portugal
| | - Alexandra M. Lopes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Veronica Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Angel Carracedo
- Institute of Forensic Sciences Luis Concheiro, University of Santiago de Compostela, Santiago de Compostela, Spain
- Genomics Medicine Group, CIBERER, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|