1
|
Jang J, Park J, Hwang CY, Gim Y, Park KT, Yoon YJ, Seo M, Lee BY. Selective transmission of airborne bacterial communities from the ocean to the atmosphere over the Northern Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177462. [PMID: 39528211 DOI: 10.1016/j.scitotenv.2024.177462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
This study simultaneously measured the taxonomic diversity of bacterial communities in both seawater and PM2.5 aerosol samples collected from the Northern Pacific Ocean during a cruise covering 7724 km between 37°N 126°E and 58°N 179°E. The relative abundance of Proteobacteria, Cyanobacteria, and Firmicutes were found to be more prevalent in aerosol samples (39 ± 16 %, 5.1 ± 1.9 %, and 3.2 ± 1.7 %, respectively) than in seawater samples (26 ± 9 %, 3.8 ± 1.7 %, and 0.02 ± 0.09 %, respectively). The preferential aerosolization of bacterial communities such as Proteobacteria and Firmicutes was likely to be accompanied by a terrestrial origin and high hydrophobicity. Cyanobacteria could undergo increased aerosolization, possibly because of their smaller size in the significantly higher salinity open ocean (32.8 ± 0.14 PSU) compared to those in lower salinity coastal areas (31.3 ± 1.4 PSU). The results of this study indicated that bacterial properties substantially affect their transfer from the ocean to the atmosphere, possibly influencing climate change and public health.
Collapse
Affiliation(s)
- Jiyi Jang
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea
| | - Jiyeon Park
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea.
| | - Chung Yeon Hwang
- School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, South Korea
| | - Yeontae Gim
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea
| | - Ki-Tae Park
- Department of Environmental Sciences and Biotechnology, Hallym University, Gangwon-do 24252, South Korea
| | - Young Jun Yoon
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea
| | - Minju Seo
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea; University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Bang Yong Lee
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea
| |
Collapse
|
2
|
Rahlff J, Westmeijer G, Weissenbach J, Antson A, Holmfeldt K. Surface microlayer-mediated virome dissemination in the Central Arctic. MICROBIOME 2024; 12:218. [PMID: 39449105 PMCID: PMC11515562 DOI: 10.1186/s40168-024-01902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/06/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Aquatic viruses act as key players in shaping microbial communities. In polar environments, they face significant challenges such as limited host availability and harsh conditions. However, due to the restricted accessibility of these ecosystems, our understanding of viral diversity, abundance, adaptations, and host interactions remains limited. RESULTS To fill this knowledge gap, we studied viruses from atmosphere-close aquatic ecosystems in the Central Arctic and Northern Greenland. Aquatic samples for virus-host analysis were collected from ~60 cm depth and the submillimeter surface microlayer (SML) during the Synoptic Arctic Survey 2021 on icebreaker Oden in the Arctic summer. Water was sampled from a melt pond and open water before undergoing size-fractioned filtration, followed by genome-resolved metagenomic and cultivation investigations. The prokaryotic diversity in the melt pond was considerably lower compared to that of open water. The melt pond was dominated by a Flavobacterium sp. and Aquiluna sp., the latter having a relatively small genome size of 1.2 Mb and the metabolic potential to generate ATP using the phosphate acetyltransferase-acetate kinase pathway. Viral diversity on the host fraction (0.2-5 µm) of the melt pond was strikingly limited compared to that of open water. From the 1154 viral operational taxonomic units (vOTUs), of which two-thirds were predicted bacteriophages, 17.2% encoded for auxiliary metabolic genes (AMGs) with metabolic functions. Some AMGs like glycerol-3-phosphate cytidylyltransferase and ice-binding like proteins might serve to provide cryoprotection for the host. Prophages were often associated with SML genomes, and two active prophages of new viral genera from the Arctic SML strain Leeuwenhoekiella aequorea Arc30 were induced. We found evidence that vOTU abundance in the SML compared to that of ~60 cm depth was more positively correlated with the distribution of a vOTU across five different Arctic stations. CONCLUSIONS The results indicate that viruses employ elaborate strategies to endure in extreme, host-limited environments. Moreover, our observations suggest that the immediate air-sea interface serves as a platform for viral distribution in the Central Arctic. Video Abstract.
Collapse
Affiliation(s)
- Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany.
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| | - George Westmeijer
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Julia Weissenbach
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Alfred Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
3
|
Rahlff J, Esser SP, Plewka J, Heinrichs ME, Soares A, Scarchilli C, Grigioni P, Wex H, Giebel HA, Probst AJ. Marine viruses disperse bidirectionally along the natural water cycle. Nat Commun 2023; 14:6354. [PMID: 37816747 PMCID: PMC10564846 DOI: 10.1038/s41467-023-42125-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Marine viruses in seawater have frequently been studied, yet their dispersal from neuston ecosystems at the air-sea interface towards the atmosphere remains a knowledge gap. Here, we show that 6.2% of the studied virus population were shared between air-sea interface ecosystems and rainwater. Virus enrichment in the 1-mm thin surface microlayer and sea foams happened selectively, and variant analysis proved virus transfer to aerosols collected at ~2 m height above sea level and rain. Viruses detected in rain and these aerosols showed a significantly higher percent G/C base content compared to marine viruses. CRISPR spacer matches of marine prokaryotes to foreign viruses from rainwater prove regular virus-host encounters at the air-sea interface. Our findings on aerosolization, adaptations, and dispersal support transmission of viruses along the natural water cycle.
Collapse
Affiliation(s)
- Janina Rahlff
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany.
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39231, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Sarah P Esser
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141, Essen, Germany
| | - Julia Plewka
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141, Essen, Germany
| | - Mara Elena Heinrichs
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - André Soares
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141, Essen, Germany
| | - Claudio Scarchilli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123, Rome, Italy
| | - Paolo Grigioni
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123, Rome, Italy
| | - Heike Wex
- Atmospheric Microphysics, Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Center for Marine Sensors (ZfMarS), Carl von Ossietzky University of Oldenburg, 26382, Wilhelmshaven, Germany
| | - Alexander J Probst
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
4
|
Rahlff J, Wietz M, Giebel HA, Bayfield O, Nilsson E, Bergström K, Kieft K, Anantharaman K, Ribas-Ribas M, Schweitzer HD, Wurl O, Hoetzinger M, Antson A, Holmfeldt K. Ecogenomics and cultivation reveal distinctive viral-bacterial communities in the surface microlayer of a Baltic Sea slick. ISME COMMUNICATIONS 2023; 3:97. [PMID: 37723220 PMCID: PMC10507051 DOI: 10.1038/s43705-023-00307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Visible surface films, termed slicks, can extensively cover freshwater and marine ecosystems, with coastal regions being particularly susceptible to their presence. The sea-surface microlayer (SML), the upper 1-mm at the air-water interface in slicks (herein slick SML) harbors a distinctive bacterial community, but generally little is known about SML viruses. Using flow cytometry, metagenomics, and cultivation, we characterized viruses and bacteria in a brackish slick SML in comparison to non-slick SML as well as seawater below slick and non-slick areas (subsurface water = SSW). Size-fractionated filtration of all samples distinguished viral attachment to hosts and particles. The slick SML contained higher abundances of virus-like particles, prokaryotic cells, and dissolved organic carbon compared to non-slick SML and SSW. The community of 428 viral operational taxonomic units (vOTUs), 426 predicted as lytic, distinctly differed across all size fractions in the slick SML compared to non-slick SML and SSW. Specific metabolic profiles of bacterial metagenome-assembled genomes and isolates in the slick SML included a prevalence of genes encoding motility and carbohydrate-active enzymes (CAZymes). Several vOTUs were enriched in slick SML, and many virus variants were associated with particles. Nine vOTUs were only found in slick SML, six of them being targeted by slick SML-specific clustered-regularly interspaced short palindromic repeats (CRISPR) spacers likely originating from Gammaproteobacteria. Moreover, isolation of three previously unknown lytic phages for Alishewanella sp. and Pseudoalteromonas tunicata, abundant and actively replicating slick SML bacteria, suggests that viral activity in slicks contributes to biogeochemical cycling in coastal ecosystems.
Collapse
Affiliation(s)
- Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Center for Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Oliver Bayfield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Kristofer Bergström
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Mariana Ribas-Ribas
- Center of Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | | | - Oliver Wurl
- Center of Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Matthias Hoetzinger
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Alfred Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
5
|
Galgani L, Tzempelikou E, Kalantzi I, Tsiola A, Tsapakis M, Pitta P, Esposito C, Tsotskou A, Magiopoulos I, Benavides R, Steinhoff T, Loiselle SA. Marine plastics alter the organic matter composition of the air-sea boundary layer, with influences on CO 2 exchange: a large-scale analysis method to explore future ocean scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159624. [PMID: 36280077 DOI: 10.1016/j.scitotenv.2022.159624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications in the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used six large scale mesocosms to simulate future ocean scenarios of high plastic concentration. Each mesocosm was filled with 3 m3 of seawater from the oligotrophic Sea of Crete, in the Eastern Mediterranean Sea. A known amount of standard polystyrene microbeads of 30 μm diameter was added to three replicate mesocosms, while maintaining the remaining three as plastic-free controls. Over the course of a 12-day experiment, we explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of carbohydrate-like and proteinaceous marine gel compounds in the sea-surface microlayer. Importantly, this resulted in a ∼3 % reduction in the concentration of dissolved CO2 in the underlying water. This reduction was associated to both direct and indirect impacts of microplastic pollution on the uptake of CO2 within the marine carbon cycle, by modifying the biogenic composition of the sea's boundary layer with the atmosphere.
Collapse
Affiliation(s)
- Luisa Galgani
- Environmental Spectroscopy Group, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Center for Colloids and Surface Science, Sesto Fiorentino, Italy; GEOMAR-Helmholtz Centre for Ocean Research Kiel, Germany; Harbor Branch Oceanographic Institute, Florida Atlantic University, USA.
| | - Eleni Tzempelikou
- Institute of Oceanography, Hellenic Centre for Marine Research, Anavyssos, Greece
| | - Ioanna Kalantzi
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Anastasia Tsiola
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Manolis Tsapakis
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Paraskevi Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Chiara Esposito
- Lake Ecology, Department of Ecoscience and WATEC Aarhus University Centre for Water Technology, Aarhus University, Denmark
| | - Anastasia Tsotskou
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece; University of Western Macedonia, School of Agricultural Sciences, Department of Agriculture, Florina, Greece
| | - Iordanis Magiopoulos
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece
| | | | | | - Steven A Loiselle
- Environmental Spectroscopy Group, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Center for Colloids and Surface Science, Sesto Fiorentino, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Florence, Italy
| |
Collapse
|
6
|
Michalska M, Zorena K, Marks R, Wąż P. The emergency discharge of sewage to the Bay of Gdańsk as a source of bacterial enrichment in coastal air. Sci Rep 2021; 11:20959. [PMID: 34697351 PMCID: PMC8546070 DOI: 10.1038/s41598-021-00390-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/07/2021] [Indexed: 11/12/2022] Open
Abstract
The purpose of this research was to study the presence of potential pathogenic bacteria in the seawater and air in five coastal towns (Hel, Puck, Gdynia, Sopot, Gdańsk-Brzeźno) as well as the enrichment of bacteria from the seawater into the coastal air after an emergency discharge of sewage into the Bay of Gdańsk. A total of 594 samples of air and seawater were collected in the coastal zone between spring and summer (between 2014 and 2018). Air samples were collected using the impact method with a SAS Super ISO 100. The multivariate analysis, conducted using contingency tables, showed a statistically significant variation between the concentration of coliforms, psychrophilic and mesophilic bacteria in the seawater microlayer and air in 2018, after an emergency discharge of sewage into the Bay of Gdańsk, compared to 2014-2017. Moreover, we detected a marine aerosol enrichment in psychrophilic, mesophilic bacteria, coliforms and Escherichia coli. We also showed a statistically significant relationship between the total concentration of bacteria and humidity, air temperature, speed and wind direction. This increased concentration of bacteria in the seawater and coastal air, and the high factor of air enrichment with bacteria maybe associated with the emergency discharge of wastewater into the Bay of Gdańsk. Therefore, it is suggested that in the event of a malfunction of a sewage treatment plant, as well as after floods or sudden rainfall, the public should be informed about the sanitary and epidemiological status of the coastal waters and be recommended to limit their use of coastal leisure areas.
Collapse
Affiliation(s)
- Małgorzata Michalska
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine Medical University of Gdańsk, ul. Dębinki 7, 80-211, Gdańsk, Poland.
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine Medical University of Gdańsk, ul. Dębinki 7, 80-211, Gdańsk, Poland
| | - Roman Marks
- Institute of Marine and Environmental Sciences, University of Szczecin, ul. Mickiewicza 16, 70-383, Szczecin, Poland
| | - Piotr Wąż
- Department of Nuclear Medicine, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, ul. Dębinki 7, 80-211, Gdańsk, Poland
| |
Collapse
|
7
|
Rahlff J, Stolle C, Giebel HA, Mustaffa NIH, Wurl O, P R Herlemann D. Sea foams are ephemeral hotspots for distinctive bacterial communities contrasting sea-surface microlayer and underlying surface water. FEMS Microbiol Ecol 2021; 97:6149170. [PMID: 33625484 PMCID: PMC8012113 DOI: 10.1093/femsec/fiab035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
The occurrence of foams at oceans’ surfaces is patchy and generally short-lived, but a detailed understanding of bacterial communities inhabiting sea foams is lacking. Here, we investigated how marine foams differ from the sea-surface microlayer (SML), a <1-mm-thick layer at the air–sea interface, and underlying water from 1 m depth. Samples of sea foams, SML and underlying water collected from the North Sea and Timor Sea indicated that foams were often characterized by a high abundance of small eukaryotic phototrophic and prokaryotic cells as well as a high concentration of surface-active substances (SAS). Amplicon sequencing of 16S rRNA (gene) revealed distinctive foam bacterial communities compared with SML and underlying water, with high abundance of Gammaproteobacteria. Typical SML dwellers such as Pseudoalteromonas and Vibrio were highly abundant, active foam inhabitants and thus might enhance foam formation and stability by producing SAS. Despite a clear difference in the overall bacterial community composition between foam and SML, the presence of SML bacteria in foams supports the previous assumption that foam is strongly influenced by the SML. We conclude that active and abundant bacteria from interfacial habitats potentially contribute to foam formation and stability, carbon cycling and air–sea exchange processes in the ocean.
Collapse
Affiliation(s)
- Janina Rahlff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Christian Stolle
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany.,Leibniz Institute for Baltic Sea Research (IOW), Seestraße 15, 18119 Rostock, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Nur Ili Hamizah Mustaffa
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Oliver Wurl
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Daniel P R Herlemann
- Leibniz Institute for Baltic Sea Research (IOW), Seestraße 15, 18119 Rostock, Germany.,Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| |
Collapse
|
8
|
Michalska M, Kurpas M, Zorena K, Wąż P, Marks R. Mold and Yeast-Like Fungi in the Seaside Air of the Gulf of Gdańsk (Southern Baltic) after an Emergency Disposal of Raw Sewage. J Fungi (Basel) 2021; 7:jof7030219. [PMID: 33803048 PMCID: PMC8002913 DOI: 10.3390/jof7030219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to determine the correlation between the meteorological factors and the number of molds and yeast-like fungi in the air in the five coastal towns in the years 2014-2017, and in 2018, after emergency disposal of raw sewage to the Gdańsk Gulf. In the years 2014-2018, a total number of 88 air samples were collected in duplicate in the five coastal towns of Hel, Puck, Gdynia, Sopot, and Gdańsk-Brzeźno. After the application of the (PCA) analysis, this demonstrated that the first principal component (PC1) had a positive correlation with the water temperature, wind speed, air temperature, and relative humidity. The second principal component (PC2) had a positive correlation with the relative humidity, wind speed, wind direction, and air temperature. In 2018, potentially pathogenic mold and yeast-like fungi (Candida albicans, Stachybotrys chartarum complex, Aspergillus section Fumigati) were detected in the seaside air. While the detected species were not observed in the years 2014-2017. We suggest that it is advisable to inform residents about the potential health risk in the event of raw sewage disposal into the water. Moreover, in wastewater treatment plants, tighter measures, including wastewater disinfection, should be introduced.
Collapse
Affiliation(s)
- Małgorzata Michalska
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.K.); (K.Z.)
- Correspondence:
| | - Monika Kurpas
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.K.); (K.Z.)
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.K.); (K.Z.)
| | - Piotr Wąż
- Department of Nuclear Medicine, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Roman Marks
- Institute of Marine and Environmental Sciences, University of Szczecin, 70-453 Szczecin, Poland;
| |
Collapse
|
9
|
Enhanced Viral Activity in the Surface Microlayer of the Arctic and Antarctic Oceans. Microorganisms 2021; 9:microorganisms9020317. [PMID: 33557117 PMCID: PMC7913828 DOI: 10.3390/microorganisms9020317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/26/2022] Open
Abstract
The ocean surface microlayer (SML), with physicochemical characteristics different from those of subsurface waters (SSW), results in dense and active viral and microbial communities that may favor virus–host interactions. Conversely, wind speed and/or UV radiation could adversely affect virus infection. Furthermore, in polar regions, organic and inorganic nutrient inputs from melting ice may increase microbial activity in the SML. Since the role of viruses in the microbial food web of the SML is poorly understood in polar oceans, we aimed to study the impact of viruses on prokaryotic communities in the SML and in the SSW in Arctic and Antarctic waters. We hypothesized that a higher viral activity in the SML than in the SSW in both polar systems would be observed. We measured viral and prokaryote abundances, virus-mediated mortality on prokaryotes, heterotrophic and phototrophic nanoflagellate abundance, and environmental factors. In both polar zones, we found small differences in environmental factors between the SML and the SSW. In contrast, despite the adverse effect of wind, viral and prokaryote abundances and virus-mediated mortality on prokaryotes were higher in the SML than in the SSW. As a consequence, the higher carbon flux released by lysed cells in the SML than in the SSW would increase the pool of dissolved organic carbon (DOC) and be rapidly used by other prokaryotes to grow (the viral shunt). Thus, our results suggest that viral activity greatly contributes to the functioning of the microbial food web in the SML, which could influence the biogeochemical cycles of the water column.
Collapse
|
10
|
Shetye SS, Bandekar M, Nandakumar K, Kurian S, Gauns M, Jawak S, Pratihary A, Elangovan SS, Naik BR, Lakshmi S, Aswathi VK. Sea foam-associated pathogenic bacteria along the west coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:27. [PMID: 33389180 DOI: 10.1007/s10661-020-08783-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenic activities release effluents containing nutrients and pathogenic bacteria that change the characteristics of coastal ecosystems. An important type of marine pollution which has occurred in 3 different states in India during 2019 is sea foam. Sea foam was found on Hole beach, Goa (Lat: 15.404° N, Long: 73.787° E), where nutrients (NO3- = 137 μM and organic nitrogen = 121 μM) from a garbage dumpyard are released directly via streams/gutters to coastal waters. This resulted in a bloom of the diatom Thalassiosira pseudonana, associated with high concentration of total organic carbon and fucoxanthin. Decay of this bloom along with strong agitation due to rocks and wave action resulted in sea foam. We isolated foam-associated bacteria and identified pathogenic bacteria including Enterobacter cancerogenus through 16S rRNA gene sequencing. Such foam-associated pathogenic bacteria, could be antibiotic resistant, and may have adverse effects on human health. This can also hamper the tourism industry of a small state like Goa that relies heavily on tourism.
Collapse
Affiliation(s)
- Suhas S Shetye
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India.
| | - Mandar Bandekar
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | | | - Siby Kurian
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | - Mangesh Gauns
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | - Shridhar Jawak
- Svalbard Integrated Arctic Earth Observing System (SIOS), SIOS Knowledge Centre, Svalbard Science Centre, P.O. Box 156, N-9171, Longyearbyen, Svalbard, Norway
| | - Anil Pratihary
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | - S Sai Elangovan
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | - Bhagyashri R Naik
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | - Sethu Lakshmi
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| | - V K Aswathi
- CSIR-National Institute of Oceanography, Donapaula, Goa, 403004, India
| |
Collapse
|
11
|
Short-term associations between Legionnaires' disease incidence and meteorological variables in Belgium, 2011-2019. Epidemiol Infect 2020; 148:e150. [PMID: 32345387 PMCID: PMC7374801 DOI: 10.1017/s0950268820000886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The number of reported cases with Legionnaires' disease (LD) is increasing in Belgium. Previous studies have investigated the associations between LD incidence and meteorological factors, but the Belgian data remained unexplored. We investigated data collected between 2011 and 2019. Daily exposure data on temperature, relative humidity, precipitation and wind speed was obtained from the Royal Meteorological Institute for 29 weather stations. Case data were collected from the national reference centre and through mandatory notification. Daily case and exposure data were aggregated by province. We conducted a time-stratified case-crossover study. The 'at risk' period was defined as 10 to 2 days prior to disease onset. The corresponding days in the other study years were selected as referents. We fitted separate conditional Poisson models for each day in the 'at risk' period and a distributed lag non-linear model (DLNM) which fitted all data in one model. LD incidence showed a yearly peak in August and September. A total of 614 cases were included. Given seasonality, a sequence of precipitation, followed by high relative humidity and low wind speed showed a statistically significant association with the number of cases 6 to 4 days later. We discussed the advantages of DLNM in this context.
Collapse
|
12
|
Miranda ML, Osterholz H, Giebel HA, Bruhnke P, Dittmar T, Zielinski O. Impact of UV radiation on DOM transformation on molecular level using FT-ICR-MS and PARAFAC. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118027. [PMID: 31986429 DOI: 10.1016/j.saa.2020.118027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Dissolved organic matter (DOM) is an omnipresent constituent of natural water bodies. Reuse and transformation of DOM compounds in the water column is driven by physicochemical and biological processes leading to the production of refractory DOM. Typically, breakdown of DOM chemical compounds into smaller or more condensed fragments is triggered by ultraviolet (UV) radiation. Here, we present a study on the photodegradation of DOM produced during an incubation experiment with a natural microbial community. At the end of the first incubation without UV irradiation, the samples from 3 mesocosms were filtered to remove microbes and particles and continuously exposed to UV radiation (280-365 nm). We investigated DOM in depth via monitoring of dissolved organic carbon (DOC) concentrations, DOM molecular characterization by Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and excitation emission matrix spectroscopy (EEMS). Analysis of variance indicated no significant differences in the DOC concentration between treatments. Main peaks in the fluorescent DOM (FDOM) were photo-bleached by UV radiation, and an increase in the fluorescent intensity of selected peaks was observed on irradiated samples toward the end of the experiment. Parallel factor analysis (PARAFAC) indicated the presence of three main components in all treatments: C1 (Marine humic M), C2 (Bacterial produced humic C), C3 (Tyrosine), and an additional component in the dark incubation of mesocosm 3, C4 (Tryptophan). Despite an intensive filtration protocol through 0.7, 0.2 and 0.1 μm filters, low bacterial abundances were determined (<2.5 × 10-3 cells mL-1). We observed a direct correlation between structural indices and the intensity of PARAFAC components. Average double bond equivalent and aromaticity were strongly positively correlated with PARAFAC components C1 and C2 for one or more mesocosm. Moreover, FT-ICR-MS showed that under the tested conditions, the refractory character of the DOM assessed as the similarity to a deep ocean DOM reference did not increase on molecular level. Thus, mechanisms other than photochemical transformations of relatively recent DOM are likely necessary to facilitate long-term stability of DOM in the oceans.
Collapse
Affiliation(s)
- Mario L Miranda
- Marine Sensor Systems Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26382, Wilhelmshaven, Germany; Laboratorio de la Calidad del Aire y Agua (LACAYA), El Cangrejo, Universidad de Panamá, 0824, Panamá..
| | - H Osterholz
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany; Department of Marine Chemistry, Leibniz-Institute for Baltic Sea Research (IOW), Rostock 18119, Germany
| | - H-A Giebel
- Biology of Geological Processes Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129 Oldenburg, Germany
| | - P Bruhnke
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
| | - T Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg 26129, Germany
| | - O Zielinski
- Marine Sensor Systems Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26382, Wilhelmshaven, Germany; Marine Perception Research Group, German Research Center for Artifical Intelligence (DFKI), 26129 Oldenburg, Germany
| |
Collapse
|
13
|
Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol 2020; 17:247-260. [PMID: 30760902 DOI: 10.1038/s41579-019-0158-9] [Citation(s) in RCA: 829] [Impact Index Per Article: 165.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biofilms are a form of collective life with emergent properties that confer many advantages on their inhabitants, and they represent a much higher level of organization than single cells do. However, to date, no global analysis on biofilm abundance exists. We offer a critical discussion of the definition of biofilms and compile current estimates of global cell numbers in major microbial habitats, mindful of the associated uncertainty. Most bacteria and archaea on Earth (1.2 × 1030 cells) exist in the 'big five' habitats: deep oceanic subsurface (4 × 1029), upper oceanic sediment (5 × 1028), deep continental subsurface (3 × 1029), soil (3 × 1029) and oceans (1 × 1029). The remaining habitats, including groundwater, the atmosphere, the ocean surface microlayer, humans, animals and the phyllosphere, account for fewer cells by orders of magnitude. Biofilms dominate in all habitats on the surface of the Earth, except in the oceans, accounting for ~80% of bacterial and archaeal cells. In the deep subsurface, however, they cannot always be distinguished from single sessile cells; we estimate that 20-80% of cells in the subsurface exist as biofilms. Hence, overall, 40-80% of cells on Earth reside in biofilms. We conclude that biofilms drive all biogeochemical processes and represent the main way of active bacterial and archaeal life.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore, Singapore. .,Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
14
|
Rahlff J. The Virioneuston: A Review on Viral⁻Bacterial Associations at Air⁻Water Interfaces. Viruses 2019; 11:v11020191. [PMID: 30813345 PMCID: PMC6410083 DOI: 10.3390/v11020191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/16/2022] Open
Abstract
Vast biofilm-like habitats at air–water interfaces of marine and freshwater ecosystems harbor surface-dwelling microorganisms, which are commonly referred to as neuston. Viruses in the microlayer, i.e., the virioneuston, remain the most enigmatic biological entities in boundary surface layers due to their potential ecological impact on the microbial loop and major air–water exchange processes. To provide a broad picture of the viral–bacterial dynamics in surface microlayers, this review compiles insights on the challenges that viruses likely encounter at air–water interfaces. By considering viral abundance and morphology in surface microlayers, as well as dispersal and infection mechanisms as inferred from the relevant literature, this work highlights why studying the virioneuston in addition to the bacterioneuston is a worthwhile task. In this regard, major knowledge gaps and possible future research directions are discussed.
Collapse
Affiliation(s)
- Janina Rahlff
- University of Duisburg-Essen, Biofilm Centre, Universitätsstraße 5, 45141 Essen, Germany.
| |
Collapse
|
15
|
Plastic Accumulation in the Sea Surface Microlayer: An Experiment-Based Perspective for Future Studies. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9020066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plastic particles are ubiquitous in the marine environment. Given their low density, they have the tendency to float on the sea surface, with possible impacts on the sea surface microlayer (SML). The SML is an enriched biofilm of marine organic matter, that plays a key role in biochemical and photochemical processes, as well as controlling gas exchange between the ocean and the atmosphere. Recent studies indicate that plastics can interfere with the microbial cycling of carbon. However, studies on microplastic accumulation in the SML are limited, and their effects on organic matter cycling in the surface ocean are poorly understood. To explore potential dynamics in this key ocean compartment, we ran a controlled experiment with standard microplastics in the surface and bulk water of a marine monoculture. Bacterial abundance, chromophoric dissolved organic matter (CDOM), and oxygen concentrations were measured. The results indicate an accumulation of CDOM in the SML and immediate underlying water when microplastic particles are present, as well as an enhanced oxygen consumption. If extrapolated to a typical marine environment, this indicates that alterations in the quality and reactivity of the organic components of the SML could be expected. This preliminary study shows the need for a more integrated effort to our understanding the impact of microplastics on SML functioning and marine biological processes.
Collapse
|
16
|
Zäncker B, Cunliffe M, Engel A. Bacterial Community Composition in the Sea Surface Microlayer Off the Peruvian Coast. Front Microbiol 2018; 9:2699. [PMID: 30498480 PMCID: PMC6249803 DOI: 10.3389/fmicb.2018.02699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/23/2018] [Indexed: 02/01/2023] Open
Abstract
The sea surface microlayer (SML) is located at the air-sea interface, with microorganisms and organic matter in the SML influencing air-sea exchange processes. Yet understanding of the SML bacterial (bacterioneuston) community composition and assembly remains limited. Availability of organic matter, UV radiation and wind speed have previously been suggested to influence the community composition of bacterioneuston. Another mechanism potentially controlling bacterioneuston dynamics is bacterioplankton attached to gel-like particles that ascend through the water column into the SML. We analyzed the bacterial community composition, Transparent Exopolymer Particles (TEP) abundance and nutrient concentrations in the surface waters of the Peruvian upwelling region. The bacterioneuston and bacterioplankton communities were similar, suggesting a close spatial coupling. Four Bacteroidetes families were significantly enriched in the SML, two of them, the Flavobacteriaceae and Cryomorphaceae, were found to comprise the majority of SML-enriched operational taxonomic units (OTUs). The enrichment of these families was controlled by a variety of environmental factors. The SML-enriched bacterial families were negatively correlated with water temperature and wind speed in the SML and positively correlated with nutrient concentrations, salinity and TEP in the underlying water (ULW). The correlations with nutrient concentrations and salinity suggest that the enriched bacterial families were more abundant at the upwelling stations.
Collapse
Affiliation(s)
- Birthe Zäncker
- GEOMAR - Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Michael Cunliffe
- Marine Biological Association of the United Kingdom, Plymouth, United Kingdom.,Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Plymouth, United Kingdom
| | - Anja Engel
- GEOMAR - Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
17
|
Polystyrene microplastics increase microbial release of marine Chromophoric Dissolved Organic Matter in microcosm experiments. Sci Rep 2018; 8:14635. [PMID: 30279474 PMCID: PMC6168505 DOI: 10.1038/s41598-018-32805-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/15/2018] [Indexed: 02/03/2023] Open
Abstract
About 5 trillion plastic particles are present in our oceans, from the macro to the micro size. Like any other aquatic particulate, plastics and microplastics can create a micro-environment, within which microbial and chemical conditions differ significantly from the surrounding water. Despite the high and increasing abundance of microplastics in the ocean, their influence on the transformation and composition of marine organic matter is largely unknown. Chromophoric dissolved organic matter (CDOM) is the photo-reactive fraction of the marine dissolved organic matter (DOM) pool. Changes in CDOM quality and quantity have impacts on marine microbial dynamics and the underwater light environment. One major source of CDOM is produced by marine bacteria through their alteration of pre-existing DOM substrates. In a series of microcosm experiments in controlled marine conditions, we explored the impact of microplastics on the quality and quantity of microbial CDOM. In the presence of microplastics we observed an increased production of CDOM with changes in its molecular weight, which resulted from either an increased microbial CDOM production or an enhanced transformation of DOM from lower to higher molecular weight CDOM. Our results point to the possibility that marine microplastics act as localized hot spots for microbial activity, with the potential to influence marine carbon dynamics.
Collapse
|
18
|
SISI: A New Device for In Situ Incubations at the Ocean Surface. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2017. [DOI: 10.3390/jmse5040046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|