1
|
Châtillon E, Duran R, Rigal F, Cagnon C, Cébron A, Cravo-Laureau C. New insights into microbial community coalescence in the land-sea continuum. Microbiol Res 2022; 267:127259. [PMID: 36436444 DOI: 10.1016/j.micres.2022.127259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/30/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022]
Abstract
The land-sea continuum constitutes a mixing zone where soil microbial communities encounter, via runoff, those inhabiting marine coastal sediment resulting in community coalescence. Here, we propose an experimental approach, mimicking the land-sea continuum, to study the microbial community coalescence events in different situations, by 16S and 18S rRNA genes metabarcoding. The microbial community structure of sediment diverged with the soil inputs. For prokaryotes, phylogenetic enrichment and amplicon sequence variants (ASVs) replacements characterized the community changes in sediment receiving soil inputs. For fungi, despite phylogenetic enrichment was not observed, the fungal ASVs richness was maintained by soil inputs. Comparison of microbial communities revealed ASVs specific to sediment receiving soil inputs, and also ASVs shared with soil and/or runoff. Among these specific ASVs, four bacterial and one fungal ASVs were identified as indicators of coalescence. Our study provides evidences that coalescence involves the mixing of microorganisms and of the environment.
Collapse
Affiliation(s)
- Elise Châtillon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - François Rigal
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | | |
Collapse
|
2
|
Zheng CL, Zhu D, Xu YY. Co-driving factors of tidal effect on the abundance and distribution of antibiotic resistance genes in the Yongjiang Estuary, China. ENVIRONMENTAL RESEARCH 2022; 213:113649. [PMID: 35691381 DOI: 10.1016/j.envres.2022.113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The unreasonable use of antibiotics and the transmission of antibiotic resistance genes (ARGs) induced by antibiotics have led to a large number of ARGs entered the water environment, which seriously threatened human health and environmental safety. The estuarine aquatic environment connects with inland rivers and sea and is frequently influenced by human activities. This study aims to reveal the occurrences and abundances of ARGs and bacterial community composition by high-throughput quantitative PCR including 296 primers and high-throughput sequencing in the tide rising and ebbing of surface water in the Yongjiang Estuary, China. The results showed that there were a large number of ARGs and mobile genetic elements (MGEs) detected in the rising tide and ebb tide water bodies. The numbers of detected ARGs in each sample at rising and ebb tide ranged from 16 to 77 and 61 to 88, respectively, and the absolute abundance ranges were 1.69 × 104-1.69 × 109 copies/L and 3.18 × 103-2.57 × 109 copies/L, respectively. Obvious tidal distribution characteristics of ARGs were showed. Most of ARGs conferred resistance to multidrug, aminoglycosides and sulfanilamides. Proteobacteria, Actinobacteria and Bacteroidetes were the dominantly bacterial phylum in the Yongjiang Estuary. Network analysis results indicated that multi-genera were identified as possible ARGs hosts, and they carried more than two types of ARGs genes. Partial least squares path modeling further revealed that MGEs and bacterial community composition were the most important driving factors. The results of the study can provide the corresponding scientific basis for the diffusion and control of ARGs in estuaries.
Collapse
Affiliation(s)
- Chun-Li Zheng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| |
Collapse
|
3
|
Yan Q, Deng J, Wang F, Liu Y, Liu K. Community Assembly and Co-occurrence Patterns Underlying the Core and Satellite Bacterial Sub-communities in the Tibetan Lakes. Front Microbiol 2021; 12:695465. [PMID: 34745022 PMCID: PMC8567192 DOI: 10.3389/fmicb.2021.695465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial communities normally comprise a few core species and large numbers of satellite species. These two sub-communities have different ecological and functional roles in natural environments, but knowledge on the assembly processes and co-occurrence patterns of the core and satellite species in Tibetan lakes is still sparse. Here, we investigated the ecological processes and co-occurrence relationships of the core and satellite bacterial sub-communities in the Tibetan lakes via 454 sequencing of 16S rRNA gene. Our studies indicated that the core and satellite bacterial sub-communities have similar dominant phyla (Proteobacteria, Bacteroidetes, and Actinobacteria). But the core sub-communities were less diverse and exhibited a stronger distance-decay relationship than the satellite sub-communities. In addition, topological properties of nodes in the network demonstrated that the core sub-communities had more complex and stable co-occurrence associations and were primarily driven by stochastic processes (58.19%). By contrast, the satellite sub-communities were mainly governed by deterministic processes (62.17%). Overall, this study demonstrated the differences in the core and satellite sub-community assembly and network stability, suggesting the importance of considering species traits to understand the biogeographic distribution of bacterial communities in high-altitude lakes.
Collapse
Affiliation(s)
- Qi Yan
- School of Life Sciences, Lanzhou University, Lanzhou, China.,Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| | - Jianming Deng
- School of Life Sciences, Lanzhou University, Lanzhou, China.,State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yongqin Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China.,State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Zheng CL, Ruan T, Shun Chan FK, Bao P, Li G, Xu YY. Statistical approach reveals tidal effect on the antibiotics and environmental relationship with the case study of Yongjiang Estuary, China. MARINE ENVIRONMENTAL RESEARCH 2021; 164:105244. [PMID: 33450671 DOI: 10.1016/j.marenvres.2020.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/09/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
We used statistical approach by coupling redundancy analysis with linear regression analysis, which is useful to understand potential sources of antibiotics in the tide rising and ebbing of surface water in the Yongjiang Estuary, China. This study aimed to investigate the relationship between 29 antibiotics at five sites over four seasons and 13 environmental parameters during the tide rising and ebbing durations. The results found that dissolved organic carbon (DOC), salinity, temperature and chlorophyll a (Chla) were the main factors to impact antibiotics. The concentrations of macrolides were increasing with DOC, suggesting DOC may influence the adsorption capacity of antibiotics. The concentrations of tetracyclines had significant correlation with temperature and Chla during the tide rising period. This study demonstrated a method of exploring the relationship between the concentrations of antibiotics and environmental parameters, which is beneficial to future antibiotics research in estuaries.
Collapse
Affiliation(s)
- Chun-Li Zheng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China.
| | - Tian Ruan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| | - Faith Ka Shun Chan
- School of Geographical Sciences, Faculty of Geographical Sciences, University of Nottingham Ningbo China, Ningbo, 315100, People's Republic of China; School of Geography and Water@Leeds Research Institute, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Peng Bao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| |
Collapse
|
5
|
Adyari B, Shen D, Li S, Zhang L, Rashid A, Sun Q, Hu A, Chen N, Yu CP. Strong impact of micropollutants on prokaryotic communities at the horizontal but not vertical scales in a subtropical reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137767. [PMID: 32179350 DOI: 10.1016/j.scitotenv.2020.137767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Micropollutants have become of great concern, because of their disrupting effects on the structure and function of microbial communities. However, little is known about the relative importance of trace micropollutants on the aquatic prokaryotic communities as compared to the traditional physico-chemical characteristics, especially at different spatial dimensions. Here, we investigated free-living (FL) and particle-associated (PA) prokaryotic communities in a subtropical water reservoir, China, across seasons at horizontal (surface water) and vertical (depth-profile) scales by using 16S rRNA gene amplicon sequencing. Our results showed that the shared variances of physico-chemicals and micropollutants explained majority of the spatial variations in prokaryotic communities, suggesting a strong joint effect of the two abiotic categories on reservoir prokaryotic communities. Micropollutants appeared to exert strong independent influence on the core sub-communities (i.e., abundant and wide-spread taxa) than on the satellite (i.e., less abundant and narrow-range taxa) counterparts. The pure effect of micropollutants on both core and satellite sub-communities from FL and PA fractions was ~1.5 folds greater than that of physico-chemical factors at the horizontal scale, whereas an opposite effect was observed at the vertical scale. Moreover, eight micropollutants including anti-fungal agents, antibiotics, bisphenol analogues, stimulant and UV-filter were identified as the major disrupting compounds with strong associations with core taxa of typical freshwater prokaryotes. Altogether, we concluded that the ecological disrupting effects of micropollutants on prokaryotic communities may vary along horizontal and vertical dimensions in freshwater ecosystems.
Collapse
Affiliation(s)
- Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Dandan Shen
- Section of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde D-18119, Germany; Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Shuang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar, Pakistan
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
6
|
Wang H, Yang X, Chen Q, Su JQ, Mulla SI, Rashid A, Hu A, Yu CP. Response of prokaryotic communities to extreme precipitation events in an urban coastal lagoon: A case study of Yundang lagoon, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135937. [PMID: 31841847 DOI: 10.1016/j.scitotenv.2019.135937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Increasing extreme precipitation events (EPEs) can induce biogeochemical disturbances in the coastal lagoon ecosystems. Very little is known about the response of prokaryotic communities to such influences, which are the key components mediating the biogeochemical cycling in lagoons. Here 16S rRNA gene amplicon sequencing and high-through quantitative PCR (HT-qPCR) were employed to investigate the distribution of prokaryotic communities and fecal indicator genes in the surface waters of Yundang lagoon, Xiamen, China during EPEs, respectively. Prokaryotic communities from rainwaters, influents (IFs) and effluents (EFs) from a nearby wastewater treatment plant were also characterised. The results indicated a significant variation in the composition of lagoon prokaryotic communities compared with rainwaters, IFs and EFs. Multivariate and phylogenetic signal analyses revealed that environmental filtering, mainly controlled by salinity, was the major ecological process responsible for the temporal succession of lagoon prokaryotic communities during EPEs. Moreover, the pollution indicator taxa (based on amplicon sequencing) and fecal indicator genes (based on HT-qPCR) demonstrated that EPEs may induce sewage overflows and fecal pollution (mainly from humans and dogs), resulting in an increase in the relative abundance of pollution indicator taxa and genes in Yundang lagoon. Network analysis illustrated that the number of network edges and keystone species decreased along the sampling times, implying that EPEs-induced disturbances may affect prokaryotic species associations. Taken together, this study provides an enhanced understanding of the responses of lagoon prokaryotic communities to EPEs-induced disturbances.
Collapse
Affiliation(s)
- Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Qingfu Chen
- Yundang Lake Management Center, Xiamen, Fujian 361004, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Sikandar I Mulla
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; Department of Biochemistry, School of Applied Sciences, Reva University, Bangalore 560 064, India
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar, Pakistan
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China.
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
7
|
Xuan L, Sheng Z, Lu J, Qiu Q, Chen J, Xiong J. Bacterioplankton community responses and the potential ecological thresholds along disturbance gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:134015. [PMID: 31470324 DOI: 10.1016/j.scitotenv.2019.134015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 05/28/2023]
Abstract
Increasing intensity and frequency of coastal pollutions are the trajectory to be expected due to anthropogenic pressures. However, it is still unclear how and to what extent bacterioplankton communities respond to the two factors, despite the functional importance of bacterioplankton in biogeochemical cycles. In this study, significant organic pollution index (OPI) and offshore distance gradients, as respective proxies of disturbance intensity and disturbance frequency, were detected in a regional scale across the East China Sea. A multiple regression on matrices (MRM) revealed that the biogeography of bacterioplankton community depended on spatial scale, which was governed by local characters. Bacterioplankton community compositions (BCCs) were primarily governed by the conjointly direct (-0.28) and indirect (-0.48) effects of OPI, while offshore distance contributed a large indirectly effect (0.52). A SEGMENTED analysis depicted non-linear responses of BCCs to increasing disturbance intensity and disturbance frequency, as evidenced by significant tipping points. This was also true for the dominant bacterial phyla. Notably, we screened 30 OPI-discriminatory taxa that could quantitatively diagnose coastal OPI levels, with an overall 79.3% accuracy. Collectively, the buffer capacity of bacterioplankton communities to increasing disturbance intensity and disturbance frequency is limited, of which the significant tipping points afford a warning line for coastal management. In addition, coastal pollution level can be accurately diagnosed by a few OPI-discriminatory taxa.
Collapse
Affiliation(s)
- Lixia Xuan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zheliang Sheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaqi Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
8
|
Hou L, Hu A, Chen S, Zhang K, Orlić S, Rashid A, Yu CP. Deciphering the Assembly Processes of the Key Ecological Assemblages of Microbial Communities in Thirteen Full-Scale Wastewater Treatment Plants. Microbes Environ 2019; 34:169-179. [PMID: 30996148 PMCID: PMC6594736 DOI: 10.1264/jsme2.me18107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Limited information is currently available on the assembly processes (deterministic vs. stochastic) shaping the compositions of key microbial communities in activated sludge (AS). The relative importance of deterministic and stochastic processes for key bacterial and archaeal assemblages (i.e., core-satellite and habitat generalist-specialist) in AS from 13 wastewater treatment plants in China was investigated using 16S rDNA amplicon sequencing. The results obtained indicated 1,388 and 369 core operational taxonomic units (OTUs), 1,038 and 1,683 satellite OTUs, 255 and 48 habitat generalist OTUs, and 192 and 111 habitat specialist OTUs for Bacteria and Archaea, respectively. The proportions of shared OTUs between core and habitat specialist communities were similar to or higher than those between core and habitat generalist communities, suggesting a stronger inter-linkage between the former two groups. Deterministic processes, indicated by abundance-based β-null models, were responsible for shaping core communities, in which NH4-N, OrgC/OrgN, Cr, and Ni were the main controlling factors. In contrast, satellite communities were predominantly influenced by stochastic processes. Moreover, we found that deterministic and stochastic processes were mainly responsible for shaping the assembly of habitat specialists and generalists, respectively. However, the influence of deterministic factors on habitat specialists remains unclear. The present study provides novel insights into the assembly mechanisms of AS microbial communities.
Collapse
Affiliation(s)
- Liyuan Hou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences.,Department of Civil and Environmental Engineering, University of Missouri
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences
| | - Kaisong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences
| | - Sandi Orlić
- Ruđer Bošković Institute.,Center of Excellence for Science and Technology-integration of Mediterranean region- STIM
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences.,Nuclear Institute for Food and Agriculture
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences.,Graduate Institute of Environmental Engineering, National Taiwan University
| |
Collapse
|
9
|
Wang P, Zhao J, Xiao H, Yang W, Yu X. Bacterial community composition shaped by water chemistry and geographic distance in an anthropogenically disturbed river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:61-69. [PMID: 30469069 DOI: 10.1016/j.scitotenv.2018.11.234] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
'Core bacterial communities', bacterial species that are found consistently throughout a river continuum, have previously been identified. However, variations in core and non-core bacterial community structure, as well as the relationships between these communities and water chemistry or geographic distance have not been well studied. Here, we sampled in the entire course of the Le'an River, China, and explored the bacterial community composition at each site using Illumina high-throughput sequencing. The proportion of sequence reads assigned to the core community was ~95% in the upper and middle reaches, gradually decreasing below 90% in the lower reaches. Both the Chao1 richness index and the Shannon diversity index of the bacterial communities were significantly higher in the wet season than in the dry season, and both indices increased slightly from upstream to downstream. The variation in the non-core community was more aggregated from upstream to downstream in the wet season than in the dry season, while the aggregation of the core community was similar between the dry season and the wet season. The proportion of typical freshwater bacterial was significantly higher in the core community than in the non-core community. NO3--N was the subset of water chemistry parameters that best explained bacterial community dissimilarities, while 'river length' was the subset of geographic distance parameters that best explained bacterial community dissimilarities. Water chemistry parameters explained more of the variations in the bacterial communities than did geographic distance, especially in the dry season. However, the correlation between water chemistry and bacteria was primarily due to collective allochthonous input (mass effects), not because of any nutritious or toxic effects on bacterial growth competition (species sorting). The greater influence of the mass effects, as compared to species sorting, on bacterial community structure was due to the allochthonous input of bacteria from anthropogenic sources.
Collapse
Affiliation(s)
- Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China.
| | - Jun Zhao
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Hanyu Xiao
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Wenjing Yang
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaofang Yu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
10
|
Hu A, Li S, Zhang L, Wang H, Yang J, Luo Z, Rashid A, Chen S, Huang W, Yu CP. Prokaryotic footprints in urban water ecosystems: A case study of urban landscape ponds in a coastal city, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1729-1739. [PMID: 30064876 DOI: 10.1016/j.envpol.2018.07.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
The urban water ecosystems, such as the landscape ponds are commonly considered under the influence of anthropogenic disturbances, which can lead to the deterioration of the water quality. The prokaryotic communities are considered as one of the best indicators of the water quality. However, there are significant gaps in understanding the ecological processes that shape the composition and function of prokaryotic communities in the urban water ecosystems. Here, we investigated the biogeographic distribution of prokaryotic assemblages in water environments including landscape ponds, drinking water reservoirs, influents (IFs) and effluents (EFs) of wastewater treatment plants of a coastal city (Xiamen), China, by using 16S rDNA amplicon sequencing. Our results indicated that the ponds had higher α-diversity of prokaryotic communities than those in the reservoirs, while there were significant variations in the community compositions among ponds, reservoirs, IFs and EFs. Moreover, ponds harbored a significantly higher proportion of sewage- and fecal-indicator taxa than those in the reservoirs, suggesting the occurrence of exogenous pollution in the urban ponds. Null model analysis revealed that dispersal limitation was the main ecological processes resulting in the divergence of prokaryotic community compositions between ponds and other environments, while dispersal limitation and variable selection played an essential role in the formation of unique prokaryotic assemblages in the reservoirs. Function predication analysis demonstrated that the ponds shared more similar functional profiles with IFs or EFs (e.g., chemoheterotrophy, fermentation, chlorate reducers, nitrate reduction and respiration) than the reservoirs, whereas dominance of photoautotrophy was observed in the reservoirs. Overall, this study provides a profound insight of the ecological mechanisms underlying the responses of prokaryotic communities in the urban landscape ponds to the anthropogenic disturbances.
Collapse
Affiliation(s)
- Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Shuang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhuanxi Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar, Pakistan
| | - Shaoqing Chen
- Village Planning and Construction Management Station of Jimei District, Xiamen 361022, China
| | - Weixiong Huang
- Xinglin Construction and Development Co. LTD., Xiamen 361022, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
11
|
Characterization of Microbial Communities in Pilot-Scale Constructed Wetlands with Salicornia for Treatment of Marine Aquaculture Effluents. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2018; 2018:7819840. [PMID: 29853796 PMCID: PMC5949191 DOI: 10.1155/2018/7819840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/15/2018] [Accepted: 03/28/2018] [Indexed: 01/30/2023]
Abstract
Microorganisms play an essential role in the performance of constructed wetlands (CWs) for wastewater treatment. However, there has been limited discussion on the characteristics of microbial communities in CWs for treatment of effluents from marine recirculating aquaculture systems (RAS). This study is aimed at characterizing the microbial communities of pilot-scale CWs with Salicornia bigelovii for treatment of saline wastewater from a land-based Atlantic salmon RAS plant located in Northern China. Illumina high-throughput sequencing was employed to identify the profile of microbial communities of three CWs receiving wastewater under different total ammonia nitrogen (TAN) concentrations. Results of this study showed remarkable spatial variations in diversity and composition of microbial communities between roots and substrates in three CWs, with distinct response to different TAN concentrations. In particular, Proteobacteria, Firmicutes, Cyanobacteria, and Bacteroidetes were predominant in roots, while Cyanobacteria, Proteobacteria, Firmicutes, Verrucomicrobia, and Bacteroidetes were prevalent in substrates. Moreover, redundancy analysis indicated that specific functional genera, such as Nitrosopumilus, Vibrio, Pseudoalteromonas, Nitrospina, and Planctomyces, played key roles in the removal of nitrogen/phosphorus pollutants and growth of wetland plants. From a microorganism perspective, the findings of this study could contribute to better understanding of contaminants' removal mechanism and improved management of CWs for treatment of effluents from land-based marine aquaculture.
Collapse
|